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Abstract 

Reductions in the cost of sequencing have enabled whole genome sequencing to identify sequence 

variants segregating in a population.  An efficient approach is to sequence many samples at low 

coverage then to combine data across samples to detect shared variants.  Here we present methods to 

discover and genotype single nucleotide polymorphism (SNP) sites from low coverage sequencing data, 

making use of shared haplotype (linkage disequilibrium) information. For each population, we first 

collect SNP candidates based on independent sequence calls per site. We then use MARGARITA with 

genotype or phased haplotype data from the same samples to collect 20 ancestral recombination graphs 

(ARGs). We refine the posterior probability of SNP candidates by considering possible mutations at 

internal branches of the 40 marginal ancestral trees inferred from the 20 ARGs at the left and right 

flanking genotype sites. Using a population genetic prior on tree branch length and Bayesian inference 

we determine a posterior probability of the SNP being real, and also the most probable phased 

genotype call for each individual. We present experiments on both simulation data and real data from 

the 1000 Genomes Project to prove the applicability of the methods. We also explore the relative 

tradeoff between sequencing depth and the number of sequenced samples.  Software to implement the 

methods is available in the QCALL package from ftp://ftp.sanger.ac.uk/pub/rd/QCALL. 
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Introduction 

Recent advances in sequencing technologies enable the sequencing of personal genomes to identify 

most genetic variation present in one sample (Venter et al. 2001; Levy et al. 2007; Wang et al. 2008; 

Wheeler et al. 2008; Kim et al. 2009). To achieve high accuracy at almost all accessible sites requires 

high average depth, for example the average depth in (Kim et al. 2009) is 27.8x. This high depth is 

expensive and limits the number of samples that can be sequenced. An alternative strategy to find 

sequence variants shared in a population was introduced in (Liti et al. 2009) where 70 haploid yeast 

samples were sequenced with only 1-4x coverage to find sequence variants. The 1000 Genomes Project 

is taking a similar approach and in its low coverage pilot has sequenced 179 samples at average 3.7x 

coverage (The 1000 Genomes Project Consortium 2010). 

Several methods have been introduced to detect variants from sequencing individual genomes (Li 

et al. 2008; Li et al. 2009). The standard approach is to estimate the likelihood of sequencing data given 

possible genotypes and then convert to the probability of genotypes given data using Bayes' rule with an 

assumption about the prior probability of heterozygous and homozygous sequence variants. These 

methods work well with high coverage data but have low power and unacceptable false positive rates 

(FPR) when applied to individual samples with low coverage sequencing data. For example, Li et al. 

(2009b)  reported 0.04% false positive rates per base pair (bp) for a single sample with 4x coverage data, 

implying cumulative false positive rates would go up to 
%4)0004.01(1 100 ≈−−

per bp, or 40 per kb, 

when applied to 100 independent samples. The rate of true SNPs would be expected to be 

approximately 6 SNPs per kb 
( )3-199

1
105.873/1 ×=∑ =i

iθ
 meaning that false positives would outnumber 

true SNP calls by ~7 to 1, giving ~87% false discovery rate (FDR).  Consistent with this, when we use 

SAMtools (Li et al. 2009) separately on 100 samples with 4x coverage as described below, we see 

cumulative false positive rates of 5% per bp (see below).  Moreover, genotype error rates when 

analyzing low coverage samples independently are, not surprisingly, high: 0.041, 0.283, and 0.030 for 

homozygous reference, heterozygous, and homozygous non-reference genotypes respectively.  

In this paper we present two new methods to discover SNPs from low coverage sequencing data by 

combining data across samples, which were developed to detect SNPs in the low coverage pilot in the 

1000 Genomes Project.  In the first method, non linkage disequilibrium analysis (NLDA), we apply a 
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dynamic programming algorithm to estimate the posterior probability of k non-reference alleles in 2m 

chromosomes in O(m2) time for all values of k from 1 to 2m-1. Having obtained the posterior probability 

of k non-reference alleles in 2m chromosomes, we calculate the probability of a SNP at a site by the 

probability of k>0 given assumptions about variant frequency and allele frequency distribution. This 

method can be applied to the whole genome of hundreds of samples in reasonable computing time.  

 In the second method, linkage disequilibrium analysis (LDA), we make use of shared haplotype 

structure to estimate posterior probabilities of SNPs and genotypes.   To do this, we build a set of 

possible ancestral recombination graphs (ARG) for samples using MARGARITA (Minichiello and Durbin 

2006) on genotypes or phased haplotypes at previously genotyped sites.  For example, we built 20 ARGs 

for samples in the low coverage pilot data of the 1000 Genomes Project from genotypes/phased 

haplotypes from the HapMap3 project (The International HapMap 3 Consortium 2010).  Having built the 

ARGs, for each candidate SNP site we collect marginal ancestral trees inferred at the left and right 

flanking genotyped sites, 40 in total.  We estimate the SNP posterior probability by evaluating the 

likelihood of the observed sequencing data for all possible mutations in the 40 trees, assuming that any 

sequence variant in the m samples is caused by a single mutation.  Both simulated and real data show 

that LDA has the same SNP discovery rate as NLDA and produces lower false positive rates. However, 

the complexity of LDA, O(NAm
2
nt) with number of nucleotides NA = 4 and the number of trees nt=40, 

makes LDA inapplicable to analyse the whole genome with hundreds of samples.  Fortunately, we found 

that very few sites with low NLDA posterior probability have high LDA posterior probability, and so we 

adopt a strategy in which we first collect potential SNP candidates using NLDA with a threshold selected 

to ensure that the SNP candidate set is feasible for LDA. Then we apply LDA to the SNP candidate set 

and use the posterior probability of LDA to determine SNPs at a chosen threshold.  We filter false 

positive calls by removing sites where there are 3 SNP calls within 10 bp (FW10) (Li et al. 2008).  We can 

impute genotypes and phased haplotypes of m samples under the same LDA framework.  These 

methods have been used to provide one of the primary call sets for the low coverage pilot of the 1000 

Genomes Project (The 1000 Genomes Project Consortium 2010). 

Results  

We implemented QCALL as described in Methods.  
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 NLDA and LDA comparison on simulation data 

We simulated 3,000 haplotypes across a 5 Mbp region of chromosome 20 as described in Data section. 

Then we created five nested populations with 1,600x sequencing coverage in total, 50 samples with 32x 

coverage, 100 samples with 16x coverage, 200 samples with 8x coverage, 266 samples with 6x coverage, 

and 400 samples with 4x coverage.  There are 24,289, 28,181, 31,675, 32,807, and 34,807 SNPs 

respectively in these simulated populations.  We also simulate a population of 60 samples that have the 

same sequencing depths (3.7x average coverage) as the 60 CEU samples from the low coverage pilot of 

the 1000 Genomes Project (CEU samples are from Utah residents with Northern and Western European 

ancestry). 

We applied both NLDA and LDA methods (see Materials and Methods) to the 400 samples with 4x 

coverage to understand performance of these two methods in SNP calling (Figure 1).  It is clear that LDA 

is better than NLDA in detecting SNPs as it provides a lower false positive rate and a higher discovery 

rate.  We applied a filter to remove sets of three or more SNP calls within 10 bases (FW10) as we found 

that most of the calls are false positives caused by misalignment of reads around short insertions or 

deletions (indels).  FW10 helps to lower the false positive rates and keeps almost the same power in 

detecting true SNPs.  In Table 1 we show the number of false positives for each sequencing strategy at a 

0.99 posterior confidence level (Q20) with FW10 filter to obtain the false positives of each strategy 

(Table 1).  We found that false positives in simulated data are mainly caused by indels, e.g., 929/942 

false positives of 400 samples with 4x happen within 5 base pairs (bp) of indels (Table 2).  A stronger 

filter FW5 that removes sets of two SNP calls within 5bp reduces the false positive number further to 

510, but also removes many more true positives (overall loss of 9.8% true positives).  An alternative way 

to filter false positives around indels would be to realign reads around indels, as is possible with DIndel 

(Albers et al. 2010) and GATK (McKenna et al. 2010).  If these removed all false positives around indels, 

then we could in theory obtain a false positive rate in simulated data of about 1 per Mbp (1x5/24,804 ~ 

0.0002 FDR) for 50 samples with 32x or about 2.6 per Mbp (2.6*5/29,823~0.0004 FDR) for 400 samples 

with 4x.  

Number of sequenced samples versus sequencing depth 

With low coverage sequencing data, it is difficult to detect SNPs with low non reference allele frequency 

(the total number of non-reference allele among 2m haplotypes of m samples-nrAF) as the lower the 

nrAF, the smaller the chance to observe sequencing data that supports the non-reference (alternative) 

allele (Figure 2).  This issue becomes more serious for heterozygous SNPs when they need data to 
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support both alleles. For example, the marginal rate of detecting singleton SNPs drops from 99% with 

32x coverage data to 18% with 4x coverage data.  However, for fixed sequencing budget one can 

sequence more samples with low coverage than at high coverage.  Below we show that we can increase 

the total number of population variants found by decreasing coverage and increasing the number of 

sequenced samples. 

Starting with the 24,289 SNPs in the first 50 samples (100 haplotypes), we detect 24,029 (98.9%) 

SNPs from 32x coverage sequencing data.  The marginal discovery rate (the fraction of SNPs with a 

particular nrAF that are discovered) is therefore 99% for singleton SNPs (Figure 1).  We miss 240 SNPs, 

most of which are singletons.  When we sequence more samples with lower coverage, we start to miss 

some SNPs from the 100 haplotypes of the first 50 samples but we gain SNPs in the additional 

sequenced samples. For example, when we reduce the sequencing depth from 32x to 16x we lose 187 

SNPs from the first 100 haplotypes, but gain 3628 new SNPs from the 100 new sequenced haplotypes. 

Table 2 shows how these net gains progress as we sequence more samples at lower depth. The most 

variants are found when we sequence 400 samples of 4x coverage. 

If we look at detection power as a function of nrAF calculated from all 3,000 sequences in the 

simulation, 400 samples at 4x also show the best power to detect SNPs with 1% nrAF, although at lower 

population frequencies, 266 samples at 6x give slightly higher power (Figure 3).  The strategy of 50 

samples with 32x coverage shows the worst performance at low nrAF; for example it detects about 40% 

SNPs with 0.005 nrAF, while that of 400 samples with 4x is about 75%.  The simulation results indicate 

that the strategy of sequencing a large number of samples with low depths (4x-6x) is better than that of 

sequencing a small number of samples with high depths in detecting rare SNPs.  However there is no 

difference between these strategies in detecting high nrAF SNPs, e.g., all strategies get to 100% 

discovery rates for SNPs with nrAF > 5%. 

CEU samples of Pilot 1 in the 1000 Genomes Project 

We analyse the same 5 Mbp region on chromosome 20 (43,000,000-48,000,000) in 60 samples from the 

CEU population of the low coverage pilot of the 1000 Genomes Project (see subsection Data). The 

corresponding call set on the full genome contributed to the results from the low coverage pilot of the 

1000 Genomes Project (The 1000 Genomes Project Consortium 2010).  We first applied NLDA to select 

61,308 SNP candidates with 1% threshold. Then we used LDA to select 16,954 SNP calls with 90% 

threshold (Q10).  Of these calls, 31% are in HapMap2 and 67% are in dbSNP, equivalent to 33% novel 
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calls. The calls show a ratio between transitions (mutations between A and G, or between C and T) and 

transversions (mutations from A or G to C or T, or vice versa) of 2.28, which is consistent with the value 

of 2.30 for the final 1000 Genomes Project call set in this interval (The 1000 Genomes Project 

Consortium 2010), though above the genome average of approximately 2.1. 

We applied NLDA and LDA to the 60 simulated samples that have the same depths as the CEU 

samples from the low coverage pilot of the 1000 Genomes Project.  Results on these simulation data 

show that we are able to detect about 19,077 SNPs from 25,268 SNPs from 60 samples with 3.7x 

coverage data (~75%).  We called 456 false positives, equivalent to 
46

10 ~)10456/(5
−×  FPR or 

%33.2~19533/456 FDR.  We also compare the marginal discovery rate of QCALL as a function of the 

non reference allele frequency on simulation data and real data, using the 43 samples in the 1000 

Genomes Project CEU sample for which there is HapMap2 genotype data to provide the truth for the 

real data calls. The power as a function of allele frequency is remarkably similar (see Figure 4). 

Genotype accuracy 

One advantage of the LDA method is the ability to provide more accurate genotypes estimated from low 

coverage data based on a local structure haplotype.  For example, the NLDA genotype estimator, which 

generates the posterior probability of genotypes by using Bayes' rule, has an error rate about 0.424 for 

heterozygous SNPs.  LDA, however, assigns genotypes/haplotypes for samples by averaging over sets of 

calls that are consistent with local haplotype structure (see Methods subsection Genotyping).   

Empirical experiments on the CEU population 1000 Genomes Project data comparing with HapMap 

II genotypes not at HapMap 3 sites (which were used to build the ARGs)  give an overall genotype false 

discovery rate for LDA of 2.7%,  corresponding to 1.4%, 3.9%, 4.2% FDR for homozygous, heterozygous, 

and homozygous non-reference genotypes respectively (see Table 3).  These FDRs are competitive with 

those of Beagle (Browning and Yu, 2009), which is another haplotype-based approach to genotype 

calling from likelihood data comparable to LDA (2.8% overall, 0.8%, 5.7%, 3.4% by genotype category).   

For simulation data, the overall genotype FDR of QCALL drops from 2.56% to 1.94% when we 

increase the number of sequenced samples from 50 to 400.  We believe this decrease under represents 

the potential of the tree based calling approach of QCALL, and is instead limited by the ability of 

MARGARITA to scale effectively to large sample sets, since we have noticed that for 400 samples 

MARGARITA, which implements a greedy algorithm, gets locked into incorrect structures.  We are 

exploring other approaches to generating ARGs to avoid this problem. 
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Discussion 

Detecting SNPs from multiple samples with low coverage data is an efficient approach to detect low 

frequency SNPs in a population. Experimental results show that QCALL with NLDA and LDA methods 

detects shared variants from multiple samples better than analysing individual samples independently. 

In particular, the genotype accuracy is substantially improved.   

The probability to detect a SNP at a site depends on the number of non-reference alleles present in 

the sequencing samples, and the evidence in the sequencing data for the observation. The strategy of 

sequencing a large number of samples with low coverage increases the expected number of non-

reference alleles in the sample but lowers confidence the evidence for seeing them, compared to the 

strategy of sequencing a small number of samples with high coverage. The best strategy for a particular 

nrAF is a tradeoff between the two factors.  For example, at 0.005 nrAF the probability of there being at 

least one non-reference allele in 50 samples (100 haplotypes) is 0.3942 and so the resulting discovery 

rate cannot be higher than 0.3942 even at very high depth.  However, the probability of there being at 

least one non reference allele in 400 samples (800 haplotypes) is 0.9819, and it is likely there will be 

more than one, so the discovery rate at 4x is about 73%.  However, there is almost no difference 

between two strategies for high nrAF SNPs (common SNPs) as both strategies achieve near 100% power. 

Even when the overall power to detect variants is similar, there are circumstances in which sequencing a 

larger number of samples at lower depth can be preferable, such as to better characterize the allele 

frequency of variants, or when phenotyped samples are being sequenced for an association study and 

increasing the number of sequenced samples increases statistical power.  

Many false positive calls are caused by short indels where sequencing reads are mapped wrongly to 

the reference, particularly when the indels occur at the beginning or end of the reads. Thus, we often 

found a set of false positives around an indel.  FW10 is a simple and quite efficient method to remove 

the false positives as they are often very dense around the indel.  However, FW10 cannot solve the 

problem when there are fewer than 3 false positives or the false positives are separated by more than 

10 bps.  An alternative solution is to realign reads around indels, as is possible with DIndel (Albers et al. 

2010) and GATK (ref).  LDA gives good quality SNP calls but it has two main limitations, first it is 

computationally expensive, and second it requires ARGs to have been previously created from 

genotyped data.  The computational cost can be overcome by prescreening with NLDA to filter out sites 

without evidence of being SNPs.  QCALL takes about 10 hours for one Mbp segment of 400 samples but 

a proportion of the 10 hours are used to prepare likelihoods of sequencing data from multiple samples. 
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To solve the requirement for genotype data, we are developing methods to add new samples into 

existing ARGs or build ARGs directly from sequencing data.  

Although our discussion of the method and results has been in the context of full genome shotgun 

data, QCALL can also be used on targeted sequencing data such as from exome projects (Ng et al. 2010), 

given that genotype data are available from which to build ARGs with MARGARITA. Furthermore, it can 

be used for other types of bi-allelic variant that are in local linkage disequilibrium with SNPs, such as 

small insertions or deletions (indels), by limiting to two possible states rather than the four bases.  For 

these other uses it is possible to change the prior expectation of the transition to transversion ratio from 

2, which is typical for human whole genome SNPs, to for example 3.5 which is typical of coding regions, 

or 1 when encoding other variant types.  QCALL was used for calling short indel genotypes for the 1000 

Genomes Project pilot (The 1000 Genomes Project Consortium 2010). 

Finally, the LDA approach we discussed here is related to other haplotype sharing imputation 

methods such as BEAGLE (Browning and Yu 2009) mentioned above, IMPUTE (Howie et al. 2009), or 

MACH (Li et al. 2010).  These can all be adapted for variant calling from low coverage sequencing, and in 

fact both BEAGLE and MACH have been also used in the 1000 Genomes Project with the results being 

combined with those from QCALL to provide final consensus calls (1000 Genomes Project Consortium, 

2010). 

Methods 

Data 

All experimental results were obtained on a 5 Mbp region of chromosome 20 (43,000,001 – 48,000,000) 

in NCBI 36 human reference (International Human Genome Consortium Apr 2006).  

Simulation data 

We simulated 3,000 haplotypes using MaCs with the same population parameters provided in (Chen et 

al. 2009).  We used Maq to simulate 51 bp paired end reads for 800 haplotypes with error parameters 

estimated from one Illumina lane of NA12750 (The 1000 Genomes Project Consortium 2010).  We 

mapped the reads to Human Genome reference NCBI 36 using BWA (Li and Durbin 2009) and transform 

into the BAM format. We build simulated "HapMap3" sites by identifying SNPs from 10 haplotypes and 

selected the same number of sites as in HapMap3 data, taking the nearest site seen twice in the 10 

simulated haplotypes to each true HapMap3 site.  We simulated 5 sets of data with a total 1600x 
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coverage: 50 samples with 32x coverage, 100 samples with 16x coverage, 200 samples with 8x coverage, 

266 samples with 6x coverage and 400 samples with 4x coverage. We also simulated 60 samples with 

3.7x to model the data from the 60 CEU samples of the low coverage pilot in the 1000 Genomes Project.  

Real data  

We used the same 5 Mbp region (chromosome 20, 43-48Mbp) of the CEU population in the low 

coverage pilot of the 1000 Genomes Project. 

Non Linkage Disequilibrium Analysis (NLDA) 

Assume we have observed data ),...,( 1 mddD =  of m samples at site s and likelihoods )|( ii gdp for id  

given possible genotype g . )|( ii gdp  can be estimated using Samtools (Li et al. 2009) or GATK 

(McKenna et al. 2010).   For example, Samtools employs the method of (Li et al. 2008) where 

homozygous likelihoods )|( aagdp ii =  are calculated as the product of estimated base errors for non-a 

bases from the sequencing quality values, corrected for non-independence of errors, and heterozygous 

liklelihoods )|( abgdp i =  as ba nn +
2/1  times the product of estimated base errors for non-ab bases, 

since there is a half chance of observing an a or b (see  Samtools (Li et al. 2009)  and Maq (Li et al. 2008) 

for more detail).
 

Assume the haplotypes of m samples at a site come from bi-allelic alleles, a and b. Obviously, the 

posterior probability of a SNP at s given observed data D, )(s=SNP|Dp  is 1 - the probability of 2m 

haplotypes being equal to the reference allele r at s. 

∑
−===−==

'

1
)'()'|(

)()|(
1)|:),...,((1)|(

g

gg

gg
g

pDp

pDp
DrrgggpDSNPsp in

 (1) 

 

where a configuration ),...,( 1 mgg=g  is the genotypes of m samples,  )(gp  and )|( gDp are the prior 

probability of g  and the probability of D given genotypes g .  The prior probability of a configuration is 

considered as the prior probability of a mutation that results in g , 
k

kp
θ

~)(  where θ  is the population 

scaled mutation rate and k is the number mutant alleles in g .  Denote an  be the number of allele a 

in g ,  
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We set 001.0=θ  for standard human SNP calling.  It can be set as a program parameter for other uses 

of QCALL.  

Assuming that the sequencing data is independent between samples, the probability of D given m 

genotypes ),...,( 1 mgg=g , )|( gDp , is calculated as 

∏
=

==
m

i

iim gdpggDp
1

1 )|()),...,(|( g  (2) 

The key to calculating )|( DSNPsp = in Equation (1) is to compute the normalization 

factor,∑
g

gg )()|( pDp . We have 
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where 
kmQ ,1− presents for the total probability of all figurations of m-1 samples such that the number of 

allele a among m-1 samples equals to k. 
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Using this recursion, we can calculate 
kmQ ,
 from the individual genotype likelihoods  

p(di | gi)  in )( 2mO steps by dynamic programming. Having obtained 
kmQ ,
, we can easily 

estimate ∑
g

gg )()|( pDp  in Equation (1) 

Linkage Disequilibrium Analysis (LDA) 

 
First we give an informal description, then the technical details.  We assume that genetic variants are 

caused by a single mutation on a coalescent tree during evolution.   Figure 5 shows an example of an 

ancestral tree at some site for 4 samples, 1s , 2s , 3s , and 4s .  Assuming for the moment that this tree is 

correct, and that we know the ancestral base value and the position of a mutation on the tree, for 

example the mutation from A to C shown in Figure 5, we can infer the base for each haplotype at the 

site, and hence the genotypes of the individuals.  Given the genotypes we can calculate the likelihood of 

the sequencing data D given the tree, the root value and the mutation.  Since we do not know the root 

value and the mutation site we integrate over them, weighting the mutation probabilities by the 

expected branch length under a population genetic prior, and then we average over a sample of trees to 

provide an estimate of the total likelihood of data D given that there was a mutation.  Conditional on 

there being a mutation, we marginalize over genotypes to generate genotype posteriors. 

To find the coalescent trees, we use MARGARITA (Minichiello and Durbin 2006) to estimate 

ancestral recombination graphs (ARGs) from known genotypes or phased haplotypes at samples at sites 

genotyped on SNPs.  We prefer phased haplotypes to unphased genotypes because MARGARITA works 

better with phased data.  However it can work on unphased genotype data, or a mixture.  For example, 

for the low coverage pilot of the 1000 Genomes Project we used phased haplotypes from HapMap 3 for 

most samples, but genotypes for a few samples for which phased haplotypes were not available.  For 

the simulation data we used phased haplotypes at a subset of sites selected to correspond to HapMap 3 

sites as described above. 

MARGARITA (Minichiello and Durbin 2006) can only handle a limited number of SNPs (markers) in 

terms of running time and memory, and therefore we cut the whole genome into 1Mbp segments.  To 

make ARGs consistent at the ends of the 1 Mbp segments, we expanded 0.5 Mbp at each end of each 1 

Mbp segment, so MARGARITA was run across overlapping intervals of 2Mb.  We kept 20 ARGs for 

further analysis as a compromise between QCALL’s accuracy and running time.  A higher number of 
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ARGs does not improve the performance of QCALL much but increases running time linearly.  For 

example, MARGARITA takes on average approximately 8 hours to build 20 ARGs for 400 samples on one 

2Mb segment. 

 MARGARITA only gives trees at the sites that were used to build it.  We approximated coalescent 

trees at candidate SNP sites s by the trees T at the left and right flanking genotyped sites.  Let ∆  and ∆  

be the two cases where there is one and no mutation at s.  We compute the probability of a mutation at 

s given D by Bayes' rule: 

)|(),|()|(),|(

)|(),|(
),|(

TpTDpTpTDp

TpTDp
TDp

∆∆+∆∆

∆∆
=∆  (3) 

where the priors ∑
=

=∆
m

i i
Tp

2

1

1
)|( θ  and )|(1)|( TpTp ∆−=∆  are derived from standard neutral 

population genetics theory.  

We start solving Equation (3) by estimating the probability of D given no mutation, ),|( TDp ∆ .  To 

handle the situation where there are errors in the reference sequence, we set  

∑ ∆=∆
r

rprTDpTDp )(),,|(),|(  ,  

where r is the true (ancestral) unmutated reference  



 =−

=
otherwise3/

36 NCBI of allele reference1
)(

ε

ε r
rp  (4) 

where ε is the error rate in the observed reference, which we set to 
5

102
−×=ε  based on empirical 

experiments in the 1000 Genomes Project.

  

Given true base r and no mutation at s, all genotypes of m 

samples must be rr, leading to

 

∑ ∏
=

==∆
r

m

i

ii rrgdprpTDp
1

)|()(),|(  

To estimate ),|( TDp ∆ , we scan all possible mutations on trees ofT , and integrate the 

probabilities of D given these mutations weighted by a prior distribution over mutations.  Let us start 

with reference r, 



13 

 

 

 

)(),,|()(

),,|()(),|(

k

r

k

r

prDprp

rTDprpTDp

k

tt
t

∑ ∑

∑

∆=
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where kt is a tree at flanking site of s. We assume trees kt are independent and have the same prior 

probability, ||/1)( Tp k =t . 

To estimate∑ ∆
k

rDp k

t

t ),,|( , we scan all possible mutations in kt  such that the reference r 

must exist among m genotypes. We also consider the case where r is not represented in the m 

observed samples and was caused by a mutation outside kt . 

( )∑ ∑
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∈ ≠
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===∆

ke ra

raark
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miaagDpraprDp

t

t

t
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 (6) 

where µ is the prior probability of an external mutation from a to r, set to that of a mutation at a leaf 

branch of 12m+  leaves, p(a,r) is the prior probability of a mutation from a to r, )|( kep t is the prior 

probability of a mutation happening on edge e, and )|( areDp  ( )|( raeDp ) is the probability of data 

given a mutation from a to r (r to a)  at edge e.  

 The first part of Equation (6) allows for an external mutation from a to r outside kt and the 

second part handles the case where a mutation happens at an edge in kt . µ  is set proportional to 

12

1

+m
 and normalized with ∑

+

=

12

1

1m

i i
.  The prior probability of a mutation from a to r, ),( rap , can be set 

to allow for an arbitrary transition to transversion ratio.  For standard genome wide calls we set this to 

be 2.0  
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The prior probability of a mutation happening at e is set such that the more recent mutations have 

lower prior probability.  

)(
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2

11
)(

aaa nNnmn
ep 









−
+∝  

where an  is the number of haplotype a at the leaves when mutation a →  b happens at edge e and 

)( anN  is the number of possible mutations in kt  that result in an haplotype a at the leaves. We 

normalize )|( kep t such that ∑ =
e

kep 1)|( t . 

Let ),...,( 1 mgg=g  be the genotypes of m samples that result from mutation ra →  (or  ar → )  

at edge e, 

∏
=

=
m

i

iiar gdpeDp
1

)|()|(  

Merging Equations  (5)  and (6), we have 
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 (7) 

 

We note that the complexity of computing ),|( TDp ∆  in Equation (7) is )( 2

tA nmNO where the 

number of nucleotides, 4=AN , and number of flanking trees, tn =40. 

Genotyping 

Let ),...,( 1 mgg=g  be the genotypes of m samples at s.  Given a mutation at s, we calculate the 

posterior probability for ig  as follows: 

∑ ∆==∆=
r

ii rTDabgprpTDabgp ),,,|()(),,|(  

where r is the reference allele and )(rp  is the prior probability estimated as in Equation 

(4). ),,,|( rTDabgp i ∆=  is given by 
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Let 
j

ikE  be the set of edges in kt  where j (j=0,1 or 2) haplotype(s) of sample i are mutants caused 

by a mutation at 
j

ikEe ∈ .  ),,|,( rabgDp ki t∆= is estimated under following cases: 

If rba == , then ),,|,( ∆== ki araagDp t  is the sum of probabilities of all possible mutations from 

a to x  on edge 0

ikEe∈ or from x  to a on edge 2

ikEe∈ . 
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If rba ≠= , then ),,|,( ∆≠= ki araagDp t  is the sum of probabilities of mutations from a to r  on 

edges outside kt or on edge 0

ikEe∈ or from r  to a on edge 2

ikEe∈ . 
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If ba ≠ , then ),,|,( ∆= ki rabgDp t is the sum of a mutation from a to b or b  to a  on edge 

1

ikEe∈ . r  must be either a or b . 

[ ]∑
∈

+=∆=
1

)|(),()|(),(
2

1
),,|,(

ikEe

baabki eDpabpeDpbaprabgDp t  

Having obtained posterior genotype probabilities ),,|( TDabgp i ∆= , we determine the genotype 

of sample i  as the maximum likelihood genotype: 

{ }),,|(maxarg TDabgpg i
ab

i ∆==  
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Haplotype Phasing 

Let ),...,( 21 mhh=h  be the 2m haplotypes of m samples at site s. We compute the posterior 

probability of  ahi =  given a mutation ∆ , observed data D , marginal coalescent trees T as: 

∑ ∆==∆=
r

ii rTDahprpTDahp ),,,|()(),,|(  

where r is the reference allele and )(rp  is the prior probability estimated as in Equation (4). 

 ),,,|( rTDahp i ∆=  is calculated as 

∑ ∆=

∆=
=∆=

b

i

i
i

rTbhDp

rTahDp
rTDahp

),,|,(

),,|,(
),,,|(  

where  
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t

tt  

 

Denote kiE ,  be the set of edges in kt  such that a mutation 
ikEe ∈ results in 

ih . 
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
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Having obtained ),,|( ∆= TDahp i
, we determine the haplotype of sample i as the maximum 

likelihood allele. 

{ }),,|(maxarg ∆== TDahph i
a

i
 

Issue with singletons and haplotype phasing 

Singletons are a special case where a mutation happens at leaf branches. For each singleton, there are 

two possible mutations at leaf branches resulting in the same genotype configuration (Figure 6). This 

results in an equal posterior probability for both alleles at the singleton.  Thus, we cannot phase 

singletons.  In practice, when our genotype calls indicate there is a singleton (all homozygous except one 
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that is heterozygous) we only give a genotype call for the heterozygous sample and do not attempt to 

phase it. 
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FIGURE LEGENDS 

Figure 1: Discovery and false positive rates of QCALL for 400 samples with 4.0x coverage sequencing 

data. LDA and LDA,FW10 stand for linkage disequilibrium analysis without FW10 and with FW10.  The 

same notation is applied to NLDA. 

Figure 2:  SNP discovery power for different sequencing strategies, all using 1,600x data, plotted as a 

function of the number of non-reference alleles present in the sequenced samples. 

Figure 3: SNP discovery power for different sequencing strategies as a function of the non-reference 

allele frequency in the population.  The continuous lines show empirical results from the simulation with 

the allele frequency estimated from all 3,000 simulated haplotypes, and the dashed lines present 

calculations based on sampling with marginal discovery rates per sample from Figure 2 and the. 

Figure 4: Marginal discovery rates as a function of non reference allele count in 43 samples, from the 

CEU simulation, and from 1000 Genomes Project data evaluated at HapMap 2 sites not in HapMap 3, on 

the 43 sequenced samples overlapping HapMap 2. 

Figure 5: An illustrative example of a coalescent tree for 4 samples (8 haplotypes).  Given a value at the 

root, A in this example, and a mutation from A to C in this example, we can infer genotypes for the 4 

samples and hence compute the probability of data D conditional on this configuration.  We estimate 

the likelihood of D  given a tree t , )|( tDp , by summing over all possible root values and mutations in 

t . 

Figure 6: Two mutations at two edges of a singleton (edges connected to haplotypes 4
th

 or 8
th

)
 
lead to 

the same genotype configuration 
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TABLES 

Table 1: Distribution of false positives as a function of distance from the nearest indel. 

Distance 

50 

samples 

100 

samples 

200 

samples 

266 

samples 

400 

samples 

0 419 457 468 473 472 

1 275 313 320 323 334 

2 49 71 81 80 77 

3 18 23 28 28 34 

4 3 4 5 5 5 

5 5 5 4 3 7 

6 1  1 1 1 

7 2 1 1 2 2 

8 1  1 1 1 

9    1 1 

14    1 1 

60     1 

>200 1 3 7 4 6 

Total 774 877 916 922 942 
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Table 2: Discovery rates with different sequencing strategies 

 Samples 50 100 200 266 400 

 #SNP 32x 16x 8x 6x 4x 

100 Haps 24289 24029 23842 23438 23267 23148 

200 Haps 28181  27470 26521 26156 25942 

400 Haps 31674   28877 28251 27891 

532 Haps 32807    28793 28353 

800 Haps 34807     28880 

 

Table 3: Average genotype error rates according to HapMap2 genotypes of 5 Mbp on chromosome 

20 (20:43000000-48000000) of 43 samples that are the overlapped samples between the 60 CEU 

samples and HapMap2 samples. Error rates are calculated on 2711 QCALL sites that are in HapMap2 but 

not in HapMap3. 

   QCALL   

  Hom Het Hom-nonref error rate 

 Hom 55277 766 28 0.014 

HapMap2 Het 876 32107 411 0.038 

 Hom-Nonref 334 681 23141 0.042 
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