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Abstract

Metformin, a biguanide derivate, has pleiotropic effects beyond glucose reduction, including improvement of lipid profiles
and lowering microvascular and macrovascular complications associated with type 2 diabetes mellitus (T2DM). These effects
have been ascribed to adenosine monophosphate-activated protein kinase (AMPK) activation in the liver and skeletal
muscle. However, metformin effects are not attenuated when AMPK is knocked out and intravenous metformin is less
effective than oral medication, raising the possibility of important gut pharmacology. We hypothesized that the
pharmacology of metformin includes alteration of bile acid recirculation and gut microbiota resulting in enhanced
enteroendocrine hormone secretion. In this study we evaluated T2DM subjects on and off metformin monotherapy to
characterize the gut-based mechanisms of metformin. Subjects were studied at 4 time points: (i) at baseline on metformin,
(ii) 7 days after stopping metformin, (iii) when fasting blood glucose (FBG) had risen by 25% after stopping metformin, and
(iv) when FBG returned to baseline levels after restarting the metformin. At these timepoints we profiled glucose, insulin,
gut hormones (glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY) and glucose-dependent insulinotropic
peptide (GIP) and bile acids in blood, as well as duodenal and faecal bile acids and gut microbiota. We found that metformin
withdrawal was associated with a reduction of active and total GLP-1 and elevation of serum bile acids, especially cholic acid
and its conjugates. These effects reversed when metformin was restarted. Effects on circulating PYY were more modest,
while GIP changes were negligible. Microbiota abundance of the phylum Firmicutes was positively correlated with changes
in cholic acid and conjugates, while Bacteroidetes abundance was negatively correlated. Firmicutes and Bacteroidetes
representation were also correlated with levels of serum PYY. Our study suggests that metformin has complex effects due to
gut-based pharmacology which might provide insights into novel therapeutic approaches to treat T2DM and associated
metabolic diseases.
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Introduction

Metformin, a biguanide derivate, is the first line of treatment in
patients with type 2 diabetes mellitus (T2DM), in conjunction with
lifestyle modification, as indicated in the guidelines issued by the
American Diabetes Association and European Association for the
Study of Diabetes [1]. Metformin enters hepatocytes through the
organic cation transporter-1 (OCT-1) transporter, and there it is
thought to alter mitochondrial function and AMP kinase (AMPK)
activity [2], resulting in decreased hepatic glucose production and
glucose lowering, while AMPK activation in skeletal muscle may
increase glucose utilization [3]. In addition, metformin improves
the lipid profile [4], restores ovarian function in polycystic ovary
syndrome [5], reduces fatty infiltration of the liver [6], and lowers

microvascular and macrovascular complications associated with
T2DM. Recently, metformin has been proposed as an adjuvant
treatment for cancer [7], as a treatment for gestational diabetes
and for the prevention of T2DM in pre-diabetic individuals [8].

Mitochondrial function and AMPK activity in liver and skeletal
muscle have received much attention as potential mechanisms by
which metformin has its beneficial effects. In contrast to oral
dosing, intravenously-administered metformin does not improve
glucose metabolism [9], suggesting that other organs, such as the
gastrointestinal tract, may be the principal site of action of this
drug, although those mechanisms are unclear at present.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulino-
tropic peptide (GIP), secreted by enteroendocrine cells in the gut,
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Host–microbe interactions have shaped the genetic
architecture of inflammatory bowel disease
A list of authors and their affiliations appears at the end of the paper.

Crohn’s disease and ulcerative colitis, the two common forms of
inflammatory bowel disease (IBD), affect over 2.5 million people of
European ancestry, with rising prevalence in other populations1.
Genome-wide association studies and subsequent meta-analyses of
these two diseases2,3 as separate phenotypes have implicated prev-
iously unsuspected mechanisms, such as autophagy4, in their
pathogenesis and showed that some IBD loci are shared with other
inflammatory diseases5. Here we expand on the knowledge of
relevant pathways by undertaking a meta-analysis of Crohn’s dis-
ease and ulcerative colitis genome-wide association scans, followed
by extensive validation of significant findings, with a combined
total of more than 75,000 cases and controls. We identify 71 new
associations, for a total of 163 IBD loci, that meet genome-wide
significance thresholds. Most loci contribute to both phenotypes,
and both directional (consistently favouring one allele over the
course of human history) and balancing (favouring the retention
of both alleles within populations) selection effects are evident.
Many IBD loci are also implicated in other immune-mediated dis-
orders, most notably with ankylosing spondylitis and psoriasis. We
also observe considerable overlap between susceptibility loci for
IBD and mycobacterial infection. Gene co-expression network ana-
lysis emphasizes this relationship, with pathways shared between
host responses to mycobacteria and those predisposing to IBD.

We conducted an imputation-based association analysis using auto-
somal genotype-level data from 15 genome-wide association studies
(GWAS) of Crohn’s disease and/or ulcerative colitis (Supplementary
Fig. 1 and Supplementary Table 1). We imputed 1.23 million single-
nucleotide polymorphisms (SNPs) from the HapMap3 reference set
(Supplementary Methods 1a), resulting in a high-quality data set with
reduced genome-wide inflation (Supplementary Figs 2 and 3) com-
pared with previous meta-analyses of subsets of these data2,3. The
imputed GWAS data identified 25,075 SNPs that were associated
(P , 0.01) with at least one of the Crohn’s disease, ulcerative colitis,
or combined IBD analyses. A meta-analysis of GWAS data with
Immunochip6 validation genotypes from an independent, newly gen-
otyped set of 14,763 Crohn’s disease cases, 10,920 ulcerative colitis
cases and 15,977 controls was performed (Supplementary Fig. 1 and
Supplementary Table 1). Principal-components analysis resolved
geographic stratification, as well as Jewish and non-Jewish ancestry
(Supplementary Fig. 4), and reduced inflation to a level consistent with
residual polygenic risk, rather than other confounding effects (from a
median test statistic inflation (lGC) 5 2.00 to lGC 5 1.23 when ana-
lysing all IBD samples; Supplementary Fig. 5 and Supplementary
Methods 1b).

Our meta-analysis of the GWAS and Immunochip data identified
193 statistically independent signals of association at genome-
wide significance (P , 5 3 1028) in at least one of the three analyses
(Crohn’s disease, ulcerative colitis, IBD). Because some of these signals
(Supplementary Fig. 6) probably represent associations to the same
underlying functional unit, we merged these signals (Supplementary
Methods 1b) into 163 regions, 71 of which are reported here for the
first time (Table 1 and Supplementary Table 2). Fig. 1a shows the
relative contributions of each locus to the total variance explained in

ulcerative colitis and Crohn’s disease. We have increased the total
disease variance explained (variance being subject to fewer assump-
tions than heritability7) from 8.2% to 13.6% in Crohn’s disease and
from 4.1% to 7.5% in ulcerative colitis (Supplementary Methods 1c).
Consistent with previous studies, our IBD risk loci seem to act inde-
pendently, with no significant evidence of deviation from an additive
combination of log odds ratios.

Our combined genome-wide analysis of Crohn’s disease and ulcera-
tive colitis enables a more comprehensive analysis of disease specificity
than was previously possible. A model-selection analysis (Supplemen-
tary Methods 1c) showed that 110 out of 163 loci are associated with
both disease phenotypes; 50 of these have an indistinguishable effect
size in ulcerative colitis and Crohn’s disease, whereas 60 show evidence
of heterogeneous effects (Table 1). Of the remaining loci, 30 are classified
as Crohn’s-disease-specific and 23 as ulcerative-colitis-specific. However,
43 of these 53 loci show the same direction of effect in the non-associated
disease (Fig. 1b; overall P 5 2.83 1026). Risk alleles at two Crohn’s
disease loci, PTPN22 and NOD2, show significant (P , 0.005) pro-
tective effects in ulcerative colitis, exceptions that may reflect biological
differences between the two diseases. This degree of sharing of genetic
risk suggests that nearly all of the biological mechanisms involved in
one disease have some role in the other.

The large number of IBD associations, far more than reported for
any other complex disease, increases the power of network-based ana-
lyses to prioritize genes within loci. We investigated the IBD loci using
functional annotation and empirical gene network tools (Supplemen-
tary Table 2). Compared with previous analyses that identified can-
didate genes in 35% of loci2,3 our updated GRAIL8 -connectivity
network identifies candidates in 53% of loci, including increased statis-
tical significance for 58 of the 73 candidates from previous analyses.
The new candidates come not only from genes within newly identified
loci, but also integrate additional genes from previously established
loci (Fig. 1c). Only 29 IBD-associated SNPs are in strong link-
age disequilibrium (r2 . 0.8) with a missense variant in the 1000
Genomes Project data, which reinforces previous evidence that a large
fraction of risk for complex disease is driven by non-coding variation.
By contrast, 64 IBD-associated SNPs are in linkage disequilibrium with
variants known to regulate gene expression (Supplementary Table 2).
Overall, we highlighted a total of 300 candidate genes in 125 loci, of
which 39 contained a single gene supported by two or more methods.

Seventy per cent (113 out of 163) of the IBD loci are shared with
other complex diseases or traits, including 66 among the 154 loci
previously associated with other immune-mediated diseases9, which
is 8.6-times the number that would be expected by chance (P , 10216;
Fig. 2a and Supplementary Fig. 7). Such enrichment cannot be attri-
buted to the immune-mediated focus of the Immunochip (Sup-
plementary Methods 4 and Supplementary Fig. 8), as the analysis is
based on our combined GWAS–Immunochip data. Comparing over-
laps with specific diseases is confounded by the variable power in
studies of different diseases. For instance, although type 1 diabetes
shares the largest number of loci (20 out of 39; tenfold enrichment)
with IBD, this is partially driven by the large number of known type 1
diabetes associations. Indeed, seven other immune-mediated diseases
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Abstract

Relapsing C. difficile disease in humans is linked to a pathological imbalance within the intestinal microbiota, termed
dysbiosis, which remains poorly understood. We show that mice infected with epidemic C. difficile (genotype 027/BI)
develop highly contagious, chronic intestinal disease and persistent dysbiosis characterized by a distinct, simplified
microbiota containing opportunistic pathogens and altered metabolite production. Chronic C. difficile 027/BI infection was
refractory to vancomycin treatment leading to relapsing disease. In contrast, treatment of C. difficile 027/BI infected mice
with feces from healthy mice rapidly restored a diverse, healthy microbiota and resolved C. difficile disease and
contagiousness. We used this model to identify a simple mixture of six phylogenetically diverse intestinal bacteria, including
novel species, which can re-establish a health-associated microbiota and clear C. difficile 027/BI infection from mice. Thus,
targeting a dysbiotic microbiota with a defined mixture of phylogenetically diverse bacteria can trigger major shifts in the
microbial community structure that displaces C. difficile and, as a result, resolves disease and contagiousness. Further, we
demonstrate a rational approach to harness the therapeutic potential of health-associated microbial communities to treat C.
difficile disease and potentially other forms of intestinal dysbiosis.
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Introduction

Clostridium difficile is an anaerobic, Gram-positive bacterium that
is the major cause of antibiotic-associated diarrhea and a
significant healthcare-associated pathogen [1]. C. difficile challenges
hospital infection control measures by exploiting an infection cycle
involving the excretion of highly transmissible and resistant spores
that act as an environmental transmission reservoir [2–4].
Antibiotic treatment of hospitalized patients is the major risk
factor for C. difficile colonization and disease that are characterized
by a toxin-mediated neutrophil response [5] and a spectrum of
outcomes from asymptomatic carriage, severe diarrhea, fulminant
pseudomembranous colitis, toxic megacolon and occasionally
death [6]. First line treatments for C. difficile disease are
vancomycin or metronidazole, although in 20–35% of these cases
a recurrent disease (relapse or re-infection) follows cessation of
antibiotic therapy [7]. More recently, a narrow-spectrum antibi-
otic, Fidaxomicin, has been shown to cause less damage to the
microbiota and lower rates of recurrence compared to vancomycin
[8,9]. This has led to the proposal that C. difficile disease is linked to
a general imbalance of the intestinal microbiota, often referred to

as dysbiosis [10,11]. Alternatively, probiotic-based approaches that
restore intestinal homeostasis are viewed as promising therapies for
recurrent C. difficile infection [12,13].

During the past decade distinct genetic variants of C. difficile
have emerged that are responsible for epidemics within North
America and Europe and continue to disseminate globally
[14,15]. Most notable is the ‘‘epidemic’’ variant, genotypically
referred to as PCR-ribotype 027 or REA group BI, which is
associated with high-level toxin production [16](Figure S1), high
rates of recurrence and mortality, and severe hospital outbreaks
[17–19]. We have recently used whole genome sequencing to
demonstrate that isolates within the epidemic C. difficile 027/BI
clade are genetically distinct from other human virulent C.
difficile, such as the 017/CF and 012/R variants that are
endemic in many hospitals throughout Europe [20], and have
likely emerged and spread globally within the past decade [21–
23]. Although the epidemic C. difficile 027/BI variant is now the
most common type causing disease in many parts of the world
[24] it is not known how this particular variant transmits so
effectively and outcompetes other C. difficile disease-causing
variants [25].
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Structure, function and diversity of the
healthy human microbiome
The Human Microbiome Project Consortium*

Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that
occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet,
environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the
ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort
and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s
signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among
individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community
configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was
stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of
the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range
of structural and functional configurations normal in the microbial communities of a healthy population, enabling future
characterization of the epidemiology, ecology and translational applications of the human microbiome.

A total of 4,788 specimens from 242 screened and phenotyped adults1

(129 males, 113 females) were available for this study, representing the
majority of the target Human Microbiome Project (HMP) cohort of
300 individuals. Adult subjects lacking evidence of disease were
recruited based on a lengthy list of exclusion criteria; we will refer
to them here as ‘healthy’, as defined by the consortium clinical
sampling criteria (K. Aagaard et al., manuscript submitted).
Women were sampled at 18 body habitats, men at 15 (excluding three
vaginal sites), distributed among five major body areas. Nine specimens
were collected from the oral cavity and oropharynx: saliva; buccal
mucosa (cheek), keratinized gingiva (gums), palate, tonsils, throat
and tongue soft tissues, and supra- and subgingival dental plaque (tooth
biofilm above and below the gum). Four skin specimens were collected
from the two retroauricular creases (behind each ear) and the two
antecubital fossae (inner elbows), and one specimen for the anterior
nares (nostrils). A self-collected stool specimen represented the micro-
biota of the lower gastrointestinal tract, and three vaginal specimens
were collected from the vaginal introitus, midpoint and posterior
fornix. To evaluate within-subject stability of the microbiome, 131
individuals in these data were sampled at an additional time point
(mean 219 days and s.d. 69 days after first sampling, range 35–404 days).
After quality control, these specimens were used for 16S rRNA gene
analysis via 454 pyrosequencing (abbreviated henceforth as 16S profil-
ing, mean 5,408 and s.d. 4,605 filtered sequences per sample); to assess
function, 681 samples were sequenced using paired-end Illumina
shotgun metagenomic reads (mean 2.9 gigabases (Gb) and s.d. 2.1 Gb
per sample)1. More details on data generation are provided in related
HMP publications1 and in Supplementary Methods.

Microbial diversity of healthy humans
The diversity of microbes within a given body habitat can be defined as
the number and abundance distribution of distinct types of organisms,
which has been linked to several human diseases: low diversity in the
gut to obesity and inflammatory bowel disease2,3, for example, and high
diversity in the vagina to bacterial vaginosis4. For this large study

involving microbiome samples collected from healthy volunteers at
two distinct geographic locations in the United States, we have defined
the microbial communities at each body habitat, encountering 81–99%
of predicted genera and saturating the range of overall community
configurations (Fig. 1, Supplementary Fig. 1 and Supplementary
Table 1; see also Fig. 4). Oral and stool communities were especially
diverse in terms of community membership, expanding prior observa-
tions5, and vaginal sites harboured particularly simple communities
(Fig. 1a). This study established that these patterns of alpha diversity
(within samples) differed markedly from comparisons between
samples from the same habitat among subjects (beta diversity,
Fig. 1b). For example, the saliva had among the highest median alpha
diversities of operational taxonomic units (OTUs, roughly species level
classification, see http://hmpdacc.org/HMQCP), but one of the lowest
beta diversities—so although each individual’s saliva was ecologically
rich, members of the population shared similar organisms. Conversely,
the antecubital fossae (skin) had the highest beta diversity but were
intermediate in alpha diversity. The vagina had the lowest alpha diversity,
with quite low beta diversity at the genus level but very high among
OTUs due to the presence of distinct Lactobacillus spp. (Fig. 1b). The
primary patterns of variation in community structure followed the
major body habitat groups (oral, skin, gut and vaginal), defining as a
result the complete range of population-wide between-subject variation
in human microbiome habitats (Fig. 1c). Within-subject variation over
time was consistently lower than between-subject variation, both in
organismal composition and in metabolic function (Fig. 1d). The
uniqueness of each individual’s microbial community thus seems to
be stable over time (relative to the population as a whole), which may be
another feature of the human microbiome specifically associated with
health.

No taxa were observed to be universally present among all body
habitats and individuals at the sequencing depth employed here,
unlike several pathways (Fig. 2 and Supplementary Fig. 2, see below),
although several clades demonstrated broad prevalence and relatively
abundant carriage patterns6,7. Instead, as suggested by individually

*Lists of participants and their affiliations appear at the end of the paper.
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The human body harbours trillions of
microbes, known collectively as the
“human microbiome.” By far the highest

density of commensal bacteria is found in the
digestive tract, where resident microbes outnumber
host cells by at least 10 to 1. Gut bacteria play a
fundamental role in human health by promoting
intestinal homeostasis, stimulating development of
the immune system, providing protection against
pathogens, and contributing to the processing of
nutrients and harvesting of energy.1,2 The disruption
of the gut microbiota has been linked to an increas-
ing number of diseases, including inflammatory
bowel disease, necrotizing enterocolitis, diabetes,
obesity, cancer, allergies and asthma.1 Despite this
evidence and a growing appreciation for the inte-
gral role of the gut microbiota in lifelong health,
relatively little is known about the acquisition and
development of this complex microbial commu-
nity during infancy.3

Two of the best-studied determinants of the
gut microbiota during infancy are mode of deliv-
ery and exposure to breast milk.4,5 Cesarean deliv-
ery perturbs normal colonization of the infant gut
by preventing exposure to maternal microbes,
whereas breastfeeding promotes a “healthy” gut
microbiota by providing selective metabolic sub-
strates for beneficial bacteria.3,5 Despite recom-
mendations from the World Health Organization,6

the rate of cesarean delivery has continued to rise
in developed countries and rates of breastfeeding
decrease substantially within the first few months
of life.7,8 In Canada, more than 1 in 4 newborns
are born by cesarean delivery, and less than 15%
of infants are exclusively breastfed for the recom-
mended duration of 6 months.9,10 In some parts of
the world, elective cesarean deliveries are per-
formed by maternal request, often because of
apprehension about pain during childbirth, and
sometimes for patient– physician convenience.11

Gut microbiota of healthy Canadian infants:
profiles by mode of delivery and infant diet at 4 months
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Background: The gut microbiota is essential
to human health throughout life, yet the
acquisition and development of this microbial
community during infancy remains poorly
understood. Meanwhile, there is increasing
concern over rising rates of cesarean delivery
and insufficient exclusive breastfeeding of
infants in developed countries. In this article,
we characterize the gut microbiota of healthy
Canadian infants and describe the influence
of cesarean delivery and formula feeding.

Methods: We included a subset of 24 term
infants from the Canadian Healthy Infant
Long itudinal Development (CHILD) birth
cohort. Mode of delivery was obtained from
medical records, and mothers were asked to
report on infant diet and medication use. Fecal
samples were collected at 4 months of age,
and we characterized the microbiota composi-
tion using high-throughput DNA sequencing.

Results: We observed high variability in the
profiles of fecal microbiota among the in -
fants. The profiles were generally dominated
by Actinobacteria (mainly the genus Bifi-
dobacterium) and Firmicutes (with diverse
representation from numerous genera). Com-
pared with breastfed infants, formula-fed
infants had increased richness of species, with
overrepresentation of Clostridium difficile.
Escherichia– Shigella and Bacteroides species
were underrepresented in infants born by
cesarean delivery. Infants born by elective
cesarean delivery had particularly low bacter-
ial richness and diversity.

Interpretation: These findings advance our
understanding of the gut microbiota in
healthy infants. They also provide new evi-
dence for the effects of delivery mode and
infant diet as determinants of this essential
microbial community in early life.

Abstract

© 2013 Canadian Medical Association or its licensors CMAJ, March 19, 2013, 185(5) 385

See related commentary by Song and colleagues on page 373 and at www.cmaj.ca/lookup/doi/10.1503/cmaj.130147
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Submitting to EBI Metagenomics

• EBI Metagenomics want to encourage people to supply as much 
detailed metadata as possible, but with the lowest possible 
overhead

• Development of intuitive web-based tools : ENA Webin and ISA tools
• Use of templates and check-lists (MIGS/MIXS standards)
• Tutorial and direct support

where, when, what howwho



• Provide robust sequence 
analysis services to all 
metagenomic researchers 

➢ Understand species diversity and 
functional potential of a 
communityData analysis using 

selected EBI and 
external software tools

Overview: EMG Portal analysis



• Metagenomics: Not clear how you avoid assembling  
sequences from different species together : chimaera

• No reference sequence to align against

Metagenomics assembly? 
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EMG portal does not used blast based homology methods 

Instead reads are compared to models (signatures) generated from multi-
sequences alignments: 

• more specific and meaningful annotations 
• faster annotation 

• rRNASelector identify 5, 16 and 28s rRNA (profile HMM models) 
=> 16s-based Qiime taxonomy annotations 

• FragGenScan predict CDSs (HMM models) 
=> InterProScan functional annotations (profiles and models) 
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QC processes

• Clipping - low quality ends trimmed and adapter sequences removed 

• Quality filtering - sequences with > 10% undetermined nucleotides removed 

• Read length filtering - short sequences (< 100 nt) are removed 

• Duplicate sequences removal – clustered (99% identity UCLUST or 50 nt 
similarity Prefix) and representative sequence chosen 

• Repeat masking - RepeatMasker (open-3.2.2), removes reads with 50% or 
more nucleotides masked (low complexity regions)



QC effects by sequencing platform 

Roche 454

Illumina

Ion Torrent



EBI Metagenomics: taxonomic analysis

rRNAselector

reads 
with 

rRNA

Amplicon-based data

processed 
reads
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Taxonomic 
analysis



Common approaches to taxonomic analysis

• Identification of reads with 16S sequence (e.g. using rRNASelector) and 
closed-reference OTU picking in QIIME

• Blast-based analysis. 
• E.g. blasting reads against the NCBI non-redundant nucleotide or protein 

data databases and inferring taxonomic lineage from the best hit
• The tool MEGAN requires Blast output. A major drawback is that without 

preprocessing of NGS datasets and access to a major computational 
resource, this is not an option for most.

• MetaPhlAn approach 
• (http://huttenhower.sph.harvard.edu/metaphlan)
• relies on unique clade-specific marker genes identified from 3,000 

reference genomes
• fast, but limited to certain types of study (mainly human microbiome)

http://huttenhower.sph.harvard.edu/metaphlan


Taxonomic analysis

Currently only taxonomy analysis for Prokaryotes 

 rRNA sequences are identified using rRNASelector: 
• hidden Markov models to identify rRNA sequences 

• 60 bp minimum overlap with curated HMM model 

• E-value < 10-5 

Annotations are associated using Qiime: 
• rRNA are annotated using the Greengenes reference database 



EBI Metagenomics: functional analysis
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EBI Metagenomics: functional annotation

The pipeline uses FragGeneScan  to predict CDSs directly from the 
reads: 

• hidden Markov models to correct frame-shift using codon usage 
• probabilistic identification of start and stop codons 
• 60 bp minimum ORF

Annotation is carried out using InterProScan with a subset of InterPro’s 
databases 

• analysis speed 
• ability to cope with sequence fragments 



The benefits of InterPro

Structural 
domains 

Functional annotation of families/domains Protein features  
(sites) 

Hidden Markov Models Fingerprints Profiles Patterns 

HAMAP 



Using InterPro for annotation

• Underlies automated systems that annotate UniProtKB/TrEMBL 

• Provides matches to 90 million proteins - over 80% of UniProtKB  

• Source of ~ 170 million GO mappings for ~ 50 million distinct 

UniProtKB sequences

Annotation consistency 
• Using InterPro and GO allows direct comparison with proteins in 

UniProtKB



InterPro in the Metagenomics Portal

Structural 
domains 

Functional annotation of families/domains Protein features  
(sites) 

Hidden Markov Models Fingerprints Profiles Patterns 



Annotations without assembly  
Re-analysis of Hess et al, Science (2011) 331:463 
Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen

Comparison of the normalised number of genes / reads corresponding to CAZy 
Glycoside Hydrolase Family from the Hess et al paper and from the EMG pipeline. 

Hess et al: genome assembly then gene prediction using a subset of Pfam. 
EMG pipeline: no assembly and gene prediction using InterPro. 

Discrepancies are due to the different ways in which significance cut-off are calculated.

Hess

EMG



Visualising data: GO Slims

• Cut-down versions of the GO containing a subset of terms 

• Give a broad overview of the ontology content without the detail 

of the specific fine-grained terms



GO Slims



GO Slims

Slimmed term:



Metagenomics - Big Data

• Speed is really important! MAY

• Submitted nucleotide sequences: 27,509,856,436 
• Average length per sequence: 120 nt 
• Predicted CDS: 8,167,600,355 
• Total InterProScan matches: 1,866,871,818 
• Number of different samples: 2,808 

• 99.8% of this data arrived and was processed in the last two years. 
96.5% of it is publicly available via the website.



Metagenomics - Big Data

• Speed is really important! MONDAY

• Submitted nucleotide sequences: 43,315,534,332 
• Average length per sequence: 120 nt 
• Predicted CDS: 17,301,862,307 
• Total InterProScan matches: 3,276,195,744 
• Number of different samples: 4,330 

• 99.8% of this data arrived and was processed in the last two years. 
96.5% of it is publicly available via the website.



Downstream analysis: download options

relatively small result files: can be used for 
downstream analysis with other tools



• Assist laboratory researchers 
handle and make sense of 
massive volumes of sequence 
data

➢ Do this by designing intuitive, user-
friendly web interfaces

➢ Browse, visualise and download

Data presentation and 
visualisation through 

web interface

Visualisation

Overview: EMG Portal output



Public projects can be 
browsed  and 

searched using 
names and keywords



Project-
associated 

publication(s)
Overall 
project 

description

Samples in the 
study

Direct link to 
analysis results



Data in related 
resources

                      Descriptive 
                       meta-data

QC, analysis results 
and download tabs



Sequence 
counts

EBI Metagenomics: QC tab



EBI Metagenomics: taxonomy analysis tab

Google charts 
dynamic 
representation

Switch to bar chart, 
column or Krona 
interactive views

Export 
charts



Google charts 
dynamic 
representation

EBI Metagenomics: functional analysis tab

Switch to bar 
chart, view

Links to InterPro 
website

Export 
charts



Sample Comparisons
• https://www.ebi.ac.uk/metagenomics/compare

https://www.ebi.ac.uk/metagenomics/compare


Sample Comparisons
• https://wwwdev.ebi.ac.uk/metagenomics/compare

https://wwwdev.ebi.ac.uk/metagenomics/compare


Sample Comparisons
• https://wwwdev.ebi.ac.uk/metagenomics/compare

https://wwwdev.ebi.ac.uk/metagenomics/compare


Comparison of two Marine Biomes -
Taxonomic distributions

Larger  
archaeal 
proportion 

Cyanobacteria

25m Depth 500m Depth



EBI Metagenomics: application of taxonomy 
analysis

Sutton et al, Appl. Environ. Microbiol (2013), 79(2):619
Impact of Long-Term Diesel Contamination on Soil Microbial Community Structure.

Alpha diversity analysis

polluted

clean

clean (outlier)



Comparison tool



Show much of the microbial community has 
been sequenced?
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Figure 2 Comparison of diversity and coverage in available metagenomic data sets using Nonpareil curves. The abundance-weighted
average coverage is presented as a function of sequencing effort in the form of Nonpareil curves (Rodriguez-R and Konstantinidis, 2013)
for selected available metagenomic data sets. Note that more diverse communities require larger sequencing efforts to achieve the same
level of coverage, hence located rightward in the plot. Four samples of the Human Microbiome Project are shown that represent
communities in the human microbiome of varying diversity, all of which are less diverse than selected environmental samples. Soil
(Tibet soil and Peru tropical forest) and marine (Baltic sea, 21 m depth) samples are the most diverse among those selected. The Sequence
Read Archive identifier of each sample is provided within squared brackets, except for the Peru tropical forest sample obtained from
Fierer et al. (2012).
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Metagenomics - Human gut microbiome

Susceptibility to inflammatory bowel disease (IBD) :
Friedreich ataxia (frataxin; fxn)

YdjC-like (unpublished data from Lawley Lab)



Homology and evolution
•  YdjC gene from E.coli  

• Chitooligosaccharide deacetylase



Homology and evolution



Homology and evolution



PANTHER - YdjC
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