Module 4: Working with ENCODE Data

Aim

Learn how to explore data from the ENCODE (<u>En</u>cyclopedia <u>of</u> <u>DNA</u> <u>Elements</u>) project using:

- the ENCODE portal
- the ENCODE Roadmap Browser and the IHEC Data Portal
- the UCSC Genome Browser
- the Ensembl Genome Browser

Introduction

The ENCODE (<u>Enc</u>yclopedia <u>of</u> <u>DNA</u> <u>E</u>lements) Consortium is an international collaboration of research groups funded by the National Human Genome Research Institute (NHGRI). The goal of ENCODE is to build a comprehensive parts list of functional elements in the human genome, including elements that act at the protein and RNA levels, and regulatory elements that control cells and circumstances in which a gene is active.

ENCODE investigators employ a variety of assays and methods to identify functional elements. The discovery and annotation of gene elements is accomplished primarily by sequencing a diverse range of RNA sources, comparative genomics, integrative bioinformatic methods, and human curation. Regulatory elements are typically investigated through DNA hypersensitivity assays, assays of DNA methylation, and immunoprecipitation (IP) of proteins that interact with DNA and RNA, i.e., modified histones, transcription factors, chromatin regulators, and RNA-binding proteins, followed by sequencing.

Data from the ENCODE project can be accessed in a variety of ways.

The ENCODE portal

The primary source for data and information about the ENCODE project is the ENCODE portal at <u>https://www.encodeproject.org/</u>. The portal contains tools for browsing and searching data generated by the ENCODE consortium via assays, biological samples, and experimental reagents used.

Worked example 1: the ENCODE portal

In this worked example we will look whether there are any ENCODE data sets available containing ChIP-seq data for human kidney tissue.

(1) Go to the ENCODE website (https://www.encodeproject.org).

(2) Click on the "Data" drop-down menu in the toolbar.

Data can be browsed via assays, biosamples, and antibodies used.

(3) Select "Assays".

ODE Data - Methods -	About ENCODE -	Help -	Search ENCODE	Q Si
Assav	Show	ng 25 of 4661	Eliter to 500 to viewelize 🖓 🛛 Dovusion	
ChIP-seg	2467	19 20 01 1001	Filter to 500 to visualize 🖸 Download	I VIEW AI
RNA-seq	696			
DNase-seg	268			
shRNA knockdown followed by	245 RNA B	ind-n-Seq		Experimer
RNA-seq	Targ	et: SRSF8		ENCSR929OL
RNA profiling by array assay	180 Lab:	Chris Burge, MIT		release
+ S	ee more	ect: ENCODE		
Experiment status	RNA B	ind-n-Seq		Experimer
released	4648 Targ	et: RBM23		ENCSR525PN
revoked	13 Lab: Proj	Chris Burge, MIT ect: ENCODE		release
Genome assembly (visualizati	on)			
hg19	2782 RNA B	ind-n-Seq		Experimer
mm9	559 Targ	et: No protein target control		ENCSR755VE
dm3	108 Lab:	Chris Burge, MIT		release
mm10	45 Proj	ect: ENCODE		
Organism	RNA B	ind-n-Seq		Experimer
Homo sapiens	3511 Targ	et: No protein target control		ENCSR693HG
Mus musculus	980 Lab:	Chris Burge, MIT		release
Drosophila melanogaster	108 Proj	ect: ENCODE		
Target of assay	RNA B	ind-n-Seg		Experimer
transcription factor	1199 Targ	et: No protein target control		ENCSR065EM
histone	871 Lab:	Chris Burge, MIT		release
histone modification	844 Proj	ect: ENCODE		
control	450			
RNA binding protein	310 RNA B	ind-n-Seq		Experimer
+ S	ee more Targ	et: No protein target control		ENCSR259BL
	Lab:	Chris Burge, MIT		release
Biosample type	Proj	ect: ENCODE		
immortalized cell line	2628			
tissue	799 RNA B	ind-n-Seq		Experimer
primany cell	774 Targ	et: No protein target control		ENCSR015TO

The "Assays" page lists all assays that have been used to generate ENCODE data. The results can be narrowed and filtered by selecting one or more values in a metadata category on the left hand side of the page. Multiple values from each facet can be selected at any one time.

(4) Select "ChIP-seq", "Homo sapiens", "tissue" and "kidney".

ODE Data - Met	hods - About E	ENCODE + Help + Search ENC	ODE Q Sig
Assay		Showing 2 of 2	alize 🖓 🛛 Download
RNA-seq	3		
ChIP-seq	2 🛞		
DNA methylation profiling	by array assay 2	ChIP and of kidney (Home conjone, adult)	Experimen
FAIRE-seq	1	Tamet CTCE	Experimen
RAMPAGE	1	anget. Or OF	release
	+ See more	Project: ENCODE	
Experiment status			
released	2	ChIP-seq of kidney (Homo sapiens, adult 27 year)	Experimen
		Target: Control	ENCSR000DMI
Genome assembly (vis	ualization)	Lab: Vishwanath Iyer, UTA	release
hg19	2	Project: ENCODE	
Organism			
Mus musculus	32		
Homo sapiens	2 🛞 🏾		
Target of assay			
control	1		
transcription factor	1		
Biosample type			
primary cell	8		
tissue	2 🛞 🛛		
Organ			
kidney	2 🐵		
lung	2		
pancreas	2		
spleen	2		
heart	1		
	Con more		

The results show that there are two datasets that match our search criteria, one containing CTCF binding data, and a control dataset. CTCF is a transcriptional repressor (<u>http://en.wikipedia.org/wiki/CTCF</u>).

(5) Click on the link for the CTCF dataset, "ChIP-seq of kidney (*Homo sapiens*, adult)".

ENCODE Data - Methods	s - About ENCODE -	Help -	Search ENCODE	Q	Sign in
Experiment / ChIP-seq					
Experiment sun	nmary for El	NCSR000DMD			
Status: released	,				
Assay:	ChIP-seq				
Accession:	ENCSR000DMD				
Biosample summary:	kidney (Homo sapiens, a	dult 27 year)			
Туре:	tissue				
Target:	Control				
Description:	Control ChIP-seq on hun	nan kidney			
Lab:	Vishwanath Iyer, UTA				
Project:	ENCODE				
External resources:	UCSC-ENCODE-hg19:w	gEncodeEH003451 🕝 GEO:GSM1006868 🖉			
Date released:	2012-08-27				
Assay details					
Nucleic acid type:	DNA				
Lysis method:	see document				
Extraction method:	see document				
Fragmentation method:	see document				
Size selection method:	see document				

Documents

General protocol	
Description: Track description for UCSC Geno composite track hg19/wgEncode(me Browser DpenChromChip
& wgEncodeOpenChromChip.re	ease2.html.pdf
1	Vlore
Diele <i>r</i> ieel verlieete	4
biological replicate	- 1
Technical replicate:	1
Library:	ENCLB169REG
Biosample	ENCBS349444 - kidney
biosampie.	ENODOUTOPORT Riding

Details about the dataset are shown. At the bottom of the page data can be downloaded in various formats.

Files linke	iles linked to ENCSR000DMD														
Accession \$	File type ≎	Output type \$	Paired end	 Biologica replicate 	al \$	Technical replicate	\$	Mapping assembly	\$	Genome annotation	Lab \$	Date added \$	File size \$	File download	
ENCFF000RXD	bam	alignments						hg19			Vishwanath Iyer, UTA	2012-07-26	634 MB	🛓 Download	
ENCFF000RXF	bigWig	signal						hg19			Vishwanath Iyer, UTA	2012-07-26	3.97 GB	🛓 Download	
ENCFF000RXR	fastq	reads		1		1					Vishwanath Iyer, UTA	2012-07-26	1.02 GB	🛓 Download	

(6) Click on "UCSC-ENCODE-hg19:wgEncodeEH003451".

í	n G	enomes	Genome Browser	Tools	Mirrors	Downloads	My Data	Help	About Us
Sea	arch for	Tracks ir	n the Human Fel	o. 2009 (G	RCh37/hg	19) Assembly	у		
	Search	Adv	vanced						
		Track	k Name: con	tains				1	
		and Desc	ription: con	tains					
		and Grou	ip:	is Any			\$		
		and Data	Format:	is Any					÷
									ENCODE terms
	+ and	UCSC Acc	ession	‡ is amor	ng wgEncod	eEH003451			
(search	clear c	ancel						
	Visibi		aale Nama						
-			ack Name				O'mail from	ENGODE	
e	🔊 full	Kidi	ney input DS Kid	aney OC Inj	out TEBS C	niP-seq Density	y Signal from	ENCODE	UpenChrom-UIA
R	eturn to Br	owser (1 of 1 selected)						

This links to the UCSC Genome Browser.

(7) Select "Visibility: full" and click on [Return to Browser].

I.	0.1 _	Kidney OC Input TFBS ChIP-seq Density Signal from ENCODE/OpenChrom-UTA	
	Kidney Input DS		
	8 _ 1		

A track containing the kidney CTCF ChIP-seq data has been added to the browser view.

Data can also be searched using the "Search ENCODE" search box present in the tool bar on the ENCODE portal pages.

(8) Go back to https://www.encodeproject.org.

(9) Type "ChIP-seq human tissue kidney" in the "Search ENCODE" search box".

)DE Data √ Met	ods	ChiP-seq human tissu Q
Data Tima	Showing 2 of 2	
Experiments	2	
	ChIP-seq of kidney (Homo sapiens, adult)	Experimer
	Target: CTCF Lab: Vishwanath Iyer, UTA	ENCSR000DM release
	Project: ENCODE	
	ChIP-seq of kidney (Homo sapiens, adult 27 year)	Experimen
	Target: Control	ENCSR000DM release
	Lau. Visitwanau riye, UTA	

This gives the same result as we got by browsing by assay.

More information about how to access data via the ENCODE portal can be found at <u>https://www.encodeproject.org/help/getting-started</u>.

The ENCODE Roadmap Browser and the IHEC Data Portal

ENCODE data can also be searched along with data from other consortia.

The ENCODE Roadmap browser (<u>http://www.encode-roadmap.org</u>) allows searching of ENCODE data and data from the Roadmap Epigenomics project (<u>http://www.roadmapepigenomics.org</u>).

Data can be selected by selecting boxes from a matrix. The matrix is organised by data types (columns) and cell types (rows). After the data have been selected they subsequently can be visualised in the UCSC genome browser.

Using this page													_							_				_			
o onig into pago														Ho	adm	ар	t	=NC	DDE		Co	ombi	ned		Se	lecte	d
The tables below she default all, cell type r above shows what th	row which rows ar the colo	ch ce e col rs of	ll typ lapse differ	es ha e into rent so	ve br funct quare	rows iona es m	er tra I groi ean.	acks ups.	for c Clicl	differ king	ent d on th	ata t e gro	ypes oup r	in th ame	ne co e wil	mbi exp	ne E and	out	de l all t	Roa he c	dma ell t	ap b type	row: s. T	ser. he l	By lege	nd	
Data can be viewed types in an expande	l by click ed cell ty	king o ype g	on da roup	ita typ , or in	es at divid	the ual c	top o ell ty	of the /pe a	e tab nd d	ole, ti lata	ne so type	uare squa	s for res.	cell	type	gro	ıps	and	dat	a ty	oes,	the	nar	nes	of	ell	
After selecting data,	, go to ti	he bo	ttom	of the	e pag	e to	revie	ew wi	hat i	is se	lecte	d an	d the	n clio	ck o	the	"Go	o to	Bro	vse	r" bu	uttor	۱.				
								Cas	Cal	o oto i	Dei	~															
								266	Sele	ected	Da	a															
Expand All	ſ											П					Г	П	Т			Т				T	
Expand All ☐ Collapse All	Data Types	DNase RNA-Seq	DGF	MeDIP Motion DDDC	Methyl-seq	ChIP-Input USE-1	USF-2	H2A.Z H2AK5ac	H2AK9ac	H2BK120ac H2BK12ac	H2BK15ac	H2BK5ac	H3K14ac H3K18ac	H3K23ac	H3K23mez H3K27ac	H3K27me3	H3K4ac	H3K4me1	H3K4me2 H3K4me3	H3K56ac	H3K79me1	H3K79me2 H3K9ac	H3K9me1	H3K9me3	H3T11ph H4K20me1	H4K5ac	H4K8ac
Expand All Collapse All Adrenal	Data Types	DNase RNA-Seq	DGF	MeDIP	Methyl-seq	ChIP-Input USE-1	USF-2	H2A.Z H2AK5ac	H2AK9ac	H2BK120ac H2BK12ac	H2BK15ac	H2BK5ac	H3K14ac H3K18ac	H3K23ac	H3K23mez H3K27ac	H3K27me3	H3K4ac	H3K4me1	H3K4me2 H3K4me3	H3K56ac	H3K79me1	H3K79me2 H3K9ac	H3K9me1	H3K9me3	H3T11ph H4K20me1	H4K5ac	H4K8ac
Expand All Collapse All ADRENAL Blood	Data Types	DNase RNA-Seq	DGF	MeDIP Media	Methyl-seq	ChIP-Input USE-1	USF-2	H2A.Z H2AK5ac	H2AK9ac	H2BK120ac H2BK12ac	H2BK15ac	H2BK5ac	H3K18ac H3K18ac	H3K23ac	H3K23me2 H3K27ac	H3K27me3	H3K4ac	H3K4me1	H3K4me2 H3K4me3	H3K56ac	H3K79me1	H3K79me2 H3K9ac	H3K9me1	H3K9me3	H3T11ph H4K70me1	H4K5ac	H4K8ac
Expand All Collapse All ADRENAL Blood Bone	Data Types	DNase RNA-Seq	DGF	MAC MeDIP Mathur DDDC	Methyl-seq	ChIP-Input USF-1	USF-2	H2A.Z H2AK5ac	H2AK9ac	H2BK120ac H2BK12ac	H2BK15ac	H2BK5ac	H3K18ac H3K18ac	H3K23ac	H3K23me2 H3K27ac	H3K27me3	H3K4ac	H3K4me1	H3K4me2 H3K4me3	H3K56ac	H3K79me1	H3K79me2 H3K9ac	H3K9me1	H3K9me3	H3T11ph	H4K5ac	H4K8ac
Expand All Collapse All Bood Bood Bone BRAIN	Data Types	DNase RNA-Seq	DGF	MeDIP	Methyl-seq	ChIP-Input USE-1	USF-2	H2A.Z H2AK5ac	H2AK9ac	H2BK120ac H2BK12ac	H2BK15ac	H2BK5ac	H3K14ac H3K18ac	H3K23ac	H3K23mez H3K27ac	H3K27me3	H3K4ac	H3K4me1	H3K4me2 H3K4me3	H3K56ac	H3K79me1	H3K79me2 H3K9ac	H3K9me1	H3K9me3	H3T11ph	H4K5ac	H4K8ac
Expand All Collapse All Bood Booe BRAST BREAST	Data Types	DNase RNA-Seq	DGF	MeDIP	Methyl-seq	ChIP-Input USF-1	USF-2	H2A.Z H2AK5ac	H2AK9ac	H2BK120ac H2BK12ac	H2BK15ac	H2BK5ac	H3K14ac H3K18ac	H3K23ac	H3K27ac	H3K27me3	H3K4ac	H3K4me1	H3K4me2 H3K4me3	H3K56ac	H3K79me1	H3K79me2 H3K9ac	H3K9me1	H3K9me3	H3T11ph	H4K5ac	H4K8ac
Expand All Collapse All Collapse All Blood Bone BRAIN BRAIN BRAIN BRAIN BRAIN BRAIN	Data Types	DNase RNA-Seq	DGF	MINE	Methyl-seq	ChIP-Input USE-1	USF-2	H2A.Z H2AK5ac	H2AK9ac	H2BK120ac H2BK12ac	H2BK15ac	H2BK5ac	H3K14ac H3K18ac	H3K23ac	H3K27ac	H3K27me3	H3K4ac	H3K4me1	H3K4me2 H3K4me3	H3K56ac	H3K79me1	H3K79me2 H3K9ac	H3K9me1	H3K9me3	H3T11ph	H4K5ac	H4K8ac
ADRENAL ADRENAL Bone Bone BRAIN BRAST Endothelia Epthelial	Data Types	DNase RNA-Seq	DGF	MALE MeDIP	Methyl-seq	ChIP-Input USE-1	USF-2	H2A.Z H2AK5ac	H2AK9ac	H2BK120ac H2BK12ac	H2BK15ac	H2BK5ac	H3K14ac H3K18ac	H3K23ac	H3K27ac	H3K27me3	H3K4ac	H3K4me1	H3K4me2 H3K4me3	H3K56ac	H3K79me1	H3K79me2 H3K9ac	H3K9me1	H3K9me3	H3T11ph	H4K5ac	H4K8ac
E Expand All Collapse All ADRENAL B Blood B Bone B BRAN B BRAN B BRAST D BREAST E Endthelia E SE clerule cells E SE derived cells	Data Types	DNase RNA-Seq	DGF	MeDIP	Methyl-seq	ChIP-Input USF-1	USF-2	H2AK5ac	H2AK9ac	H2BK120ac H2BK12ac	H2BKI5ac	H2BK5ac	H3K14ac H3K18ac	H3K23ac	H3K27ac	H3K27me3	H3K4ac	H3K4me1	H3K4me2 H3K4me3	H3K56ac	H3K79me1	H3K79me2 H3K9ac	H3K9me1	H3K9me3	H3T11ph	H4K5ac	H4K8ac

The IHEC (International Human Epigenome Consortium) Data Portal (<u>http://epigenomesportal.ca/ihec/index.html</u>) allows searching of ENCODE data and data from multiple other epigenomics projects.

The UCSC Genome Browser

UCSC coordinated data for the ENCODE Consortium from its inception in 2003 (Pilot phase) to the end of the first 5 year phase of whole-genome data production in 2012. All data produced by ENCODE investigators and the results of ENCODE analysis projects from this period are hosted in the UCSC Genome Browser and database.

All the ENCODE data that are hosted as browser tracks in the UCSC Genome Browser are visually summarised in the ENCODE Experiment Matrix (http://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixHuman.html).

Worked example 2: the UCSC Genome Browser

In this worked example we will explore the region of the *TP53* (Tumor protein p53) gene for transcription factor binding data and histone marks that are often found near active regulatory elements. We will also determine if these histone marks are indicated in human embryonic stem cells.

(1) Go to the UCSC Genome Browser homepage (<u>http://genome.ucsc.edu/</u>).

UCSC	Genome Bioinformatics
Genomes -	Blat - Tables - Gene Sorter - PCR - VisiGene - Session - FAQ - Help
Genome	About the UCSC Genome Bioinformatics Site
Browser	Welcome to the UCSC Genome Browser website. This site contains the reference sequence and working draft assemblies for a large collection of
Ebola	genomes. It also provides portals to ENCODE data at UCSC (2003 to 2012) and to the Neandertal project. Download or purchase the Genome Browser source code, or the Genome Browser in a Box (GBiB) at our online store.
Blat	We encourage you to explore these sequences with our tools. The Genome Browser zooms and scrolls over chromosomes, showing the work of
Table	annotators worldwide. The Gene Sorter shows expression, homology and other information on groups of genes that can be related in many ways. Blat
	through a large collection of <i>in situ</i> mouse and frog images to examine expression patterns. Genome Graphs allows you to upload and display
Gene Sorter	genome-wide data sets.
In Silico PCR	The UCSC Genome Browser is developed and maintained by the Genome Bioinformatics Group, a cross-departmental team within the <u>UC Santa Cruz</u>
Genome Graphs	feedback or questions concerning the tools or data on this website, feel free to contact us on our <u>public mailing list</u> .
Galaxy	The Genome Browser project team relies on public funding to support our work. Donations are welcome we have many more ideas than our funding supports! If you have ideas, drop a comment in our suggestion box.
VisiGene	

(2) From the blue navigation links on the left side of the page, click the "Genome Browser" link.

Â	Genomes	Genome Browser	Tools	Mirrors	Downloads	My Data	Help	About Us		
Human	Homo sapi	ens) Genome Bro	wser G	ateway						
			The L	ICSC Genome Br Software Copyri	rowser was crea ght (c) The Reg	ated by the <u>Genon</u> ents of the Univer	ne Bioinform sity of Calife	natics Group of UC Santa Cruz. rrnia. All rights reserved.		
	grou	p genome		assembly		position		search term		
	Mammal	‡ Human	‡ Feb	. 2009 (GRCh37/h	g19) ÷ chr2	1:33,031,597-	33,041,57	O enter position, gene symbol or search terms	submit	
				Click here to track search	add custom t	wser user inter racks track hub	face setti	ngs to their defaults. ure tracks and display		

(3) On the "Human Genome Browser Gateway" interface, click the "Click here to reset the browser user interface settings to their defaults." link. This will ensure that any prior activity on the browser has been cleared out and that everyone is starting with default settings.

(4) Choose the "Human" genome and the "Feb. 2009 (GRCh37/hg19)" assembly. Enter the text "tp53" in the "search term" box. Choose "TP53 (Homo sapiens tumor protein p53 (TP53), transcript variant 1, mRNA.)" from the resulting drop down list. Click the [submit] button.

Note that we are using the GRCh37/hg19 assembly, because the ENCODE data haven't been mapped to the GRCh38/hg38 assembly.

(5) In the TP53 region on the browser, examine the features briefly. Then click the "zoom out [1.5x]" button near the top. Assess the features again.

(6) Click the [hide all] button in the middle of the resulting page. (We want to reduce what's in the display to reduce the burden on the servers, and to focus on our features of interest.)

	UCSC Ge	nome Brows	er on Human	Feb. 2009 (G	RCh37/hg19) Assembly						
move <<< << >> >>> zoom in 1.5x 3x 10x base zoom out 1.5x 3x 10x 100x												
	obs17:7 E6	000 7 EOE 6EE 00	724 hp									
	Chi 17.7,50	0,932-7,595,655 20	enter position,	gene symbol or search ter	ms	go						
chri7 (pi	3.1) p13.3 p13.2 1 p13.	17012 17011.2	17011.2 17018	21.2 021.31 21.	55 17q22 q q23.2	q24.217q24.517q25.1 17q25	.3					
Scale chr17:	7,578,888	7,575,000	k0	300	7,585,999	g19 7,598,888	7,595,000					
move start Click	on a feature for deta	ils. Click or drag in t	he base position tracl	k to zoom in. Click si	de bars for track op	tions. Drag side bars or	move end					
< 2.0 > labels	up or down to reord	ler tracks. Drag tracl	ks left or right to new	position.			< 2.0 >					
	track search	default tracks default o	rder hide all add cus	stom tracks track hubs	configure reverse	resize refresh						
	collapse all	Use drop-down Tracks with lots of	controls below and p items will automatical	ress refresh to alter ly be displayed in m	tracks displayed. ore compact modes	expand all						
	*		Mapping and	Sequencing		refresh						
	-		Genes and Gen	e Predictions		refresh						
	UCSC Genes	RefSeq Genes	AceView Genes	CCDS	Ensembl Genes	1 EvoFold						
	hide 💌	hide 💌	hide 🔻	hide 💌	hide 💌	hide 💌						
	Exoniphy	GENCODE	Geneid Genes	Genscan Genes	H-Inv 7.0	IKMC Genes						
	hide 🔻	hide 💌	hide 🔻	hide 💌	hide 🔻	hide						

(7) Add the "GENCODE ..." track (from the "Genes and Gene Predictions" group) and the "ENCODE Regulation ..." track (from the "Regulation" group) by choosing "show" in the respective pull down menus and clicking a [refresh] button.

	UCS	C Genome Browser	on Human Feb. 2	009 (GRCh37/h	g19) Assembly	
	ma	ove <<< < > >> >> >>	>> zoom in 1.5x 3x 1	0x base zoom out 1.5	x 3x 10x 100x	
	ch	-17:7 566 033 7 505 655 39 734	hn			
	Chi	17.7,500,952-7,595,655 28,724	up. enter position, gene symbol	or search terms	go	
	chr17 (p13.1) p13.3 p18	8.21 p13.1 17p12 17p11.2	17011.2 17012 21.2 021	.31 21.33 17922	g23.2 g24.217g24.317g25.	1 17q25.3
Scale		18 kp			l hota	
	7,578,888	7,575,000	7,588,888 Baric Gene Apportation Set	7,585,999	7,598,888	7,595,000
TPS3	40	********			RF11-199F11.2	NRAP53
		TP53				# #
		TP53			***************************************	
			TP53 (WKHP53	53
100 _		H3K27Ac Mark	(Often Found Near Active Regula	atory Elements) on 7 cell lin	es from ENCODE	NRA-53
Layered H3K27Ac						
DNase Clusters		DNa	seI Hypersensitivity Clusters i	n 125 cell types from ENCODE	(V3)	
Txn Factor ChIP		Transcrip	ation Factor ChIP-seq (161 facto	ors) from ENCODE with Factorb	ook Motifs	

Examine the display. Note that the "Txn Factor ChIP" track shows data blocks, but not individual transcription factors. Also note that the "Layered H3K27Ac" track appears to contain multiple data sets of various colours.

(8) Click the "ENCODE Regulation ..." hyperlink (in the "Regulation" section) to look at the component tracks of this super-track.

ENCODE Regulation Super-tr	ENCODE Regulation Super-track Settings			
Integrated Regulation from ENCODE Tracks (* <u>All Regulation tracks</u>)				
Display mode: show Submit				
* - All				
hide <u>Iranscription</u>	Transcription Levels Assayed by RNA-seq on 9 Cell Lines from ENCODE			
hide I Layered H3K4Me1	H3K4Me1 Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE			
hide I Layered H3K4Me3	H3K4Me3 Mark (Often Found Near Promoters) on 7 cell lines from ENCODE			
full Layered H3K27Ac	H3K27Ac Mark (Often Found Near Active Regulatory Elements) on 7 cell lines from ENCODE			
dense DNase Clusters	DNasel Hypersensitivity Clusters in 125 cell types from ENCODE (V3)			
dense Txn Factor ChIP	Transcription Factor ChIP-seq (161 factors) from ENCODE with Factorbook Motifs ENCODE Mar 2012 Freeze			
hide • Txn Fac ChIP V2	Transcription Factor ChIP-seq from ENCODE V2			

(9) By default the "Txn Factor ChIP" track is visible in "dense" mode. Change this to "full". Click the [Submit] button.

Examine the display again. Note that individual transcription factors can be identified by name using the labels on the left. Note that the letter codes near the blocks correspond to cell lines that have been used in experiments for this data. Click some of the blocks to note the cell lines and signal levels observed in them. Return to the viewer for the next steps.

(10) Click the grey bar to the left of the "Layered H3K27Ac" track to go to the controls for that track.

Layered H3K27Ac Track Settings ENCOD	DE Downloads Subtracks1 Description1 Contact1
H3K27Ac Mark (Often Found Near Active Regulato	ry Elements) on 7 cell
lines from ENCODE (* <u>ENCODE Regulation</u>)	
Display mode: full _ Submit Cancel Reset to defaults	
Overlay method: transparent = Type of graph: bar Track height: 30 pixels (range: 11 to 100) Vertical viewing range: min: 0 max: 100 (range: 0 to 3851) Data view scaling: use vertical viewing range setting Transform function: Transform data points by: NONE = Windowing function: mean+whiskers Negate values: Draw y indicator lines: at y = 0.0; orf = at y = Graph configuration help	
List subtracks: Only selected/visible I (7 of 7 selected) GM12878 H3K27Ac Mark (Often Found Near Regulatory Elements) on GM12878 Cells from ENCODE * schema H1-hESC H3K27Ac Mark (Often Found Near Regulatory Elements) on H5MM Cells from ENCODE * schema H3K27Ac Mark (Often Found Near Regulatory Elements) on HSMM Cells from ENCODE * schema HUVEC H3K27Ac Mark (Often Found Near Regulatory Elements) on HUVEC Cells from ENCODE * schema NHEK H3K27Ac Mark (Often Found Near Regulatory Elements) on NHEK Cells from ENCODE * schema NHEK H3K27Ac Mark (Often Found Near Regulatory Elements) on NHEK Cells from ENCODE * schema NHEK H3K27Ac Mark (Often Found Near Regulatory Elements) on NHEK Cells from ENCODE * schema NHEK H3K27Ac Mark (Often Found Near Regulatory Elements) on NHEK Cells from ENCODE * schema NHEK H3K27Ac Mark (Often Found Near Regulatory Elements) on NHEK Cells from ENCODE * schema	Restricted Until 2009-10-05 2011-03-21 2010-09-16 2009-10-06 2009-10-05 2009-10-07 2010-06-28

On this histone mark page, note that there are various cell line data sets, which have colour codes. One of the lines is H1-hESC, which is a human embryonic stem cell line.

(11) Uncheck all cell line boxes except H1-hESC. Click the [Submit] button.

Note that we can now see that there is signal associated with this histone mark in stem cells in this region. This was difficult to examine before because of the other colour overlays.

(12) Return to the histone mark page by clicking the grey bar to the left of the "Layered H3K27Ac" track. Turn on or off various cell lines to view the data. Return to the viewer each time by clicking the [Submit] button.

The various data types in this region should help you to understand possible features of regulation of the genes in this area.

The Ensembl Genome Browser

The Ensembl project (<u>http://www.ensembl.org</u>) uses data from the ENCODE project, as well as data from other projects/publications, to predict sequences potentially involved in gene regulation. The regulatory features resulting from this Regulatory Build as well as the data on which they are based can be explored in the browser.

Worked example 3: the Ensembl Genome Browser

In this worked example we're going to have a look for regulatory features in the region of a gene and investigate their activity in different cell types.

We'll start by searching for the human *LIMD2* (LIM domain containing 2) gene on the Ensembl homepage (<u>http://www.ensembl.org</u>) and jumping to the "Location" tab. Zoom out a little to see the gene plus some of the flanking regions.

The "MultiCell Regulatory Features" are shown by default. In this region we can see a large red promoter, two turquoise CTCF binding sites and a lilac transcription factor binding site (don't worry if you have zoomed out further or not as far and can see more/less). Refer to the legend at the bottom to see what the different colours mean.

You can also click on the regulatory features to learn more. Click on the red promoter to get a pop-up.

Regulatory	Feature - MultiCell	
Stable ID	ENSR00001537344	Stable ID of the
Туре	Promoter	feature
Core bp	17:63697964-63702563	
Attributes		
Motif Inform	mation	
Name	PWM ID Score	TF binding
CTCF	MA0139.1 12.214	motifs within
Egr1	MA0341.1 6.44	the feature
Egr1	MA0341.1 6.44	
NFKB	MA0105.3 11.411	
Gabp	PB0020.1 7.539	

Click on the stable ID, ENSR00001537344, to jump to the "Regulation" tab.

We can see that this promoter is active in six out of the 18 cell types currently in Ensembl. We can explore more detailed data in "Details by Cell type" - click on the icon at the top.

Details by cell type 0

At the moment, this page is only displaying data in HUVEC cells and only for a limited amount of evidence. Click on the [Select cells] button to add more.

Select cells (showing 1/18)

	type to filter options	
	ALL ON ALL OFF	Cell type
Cell Cell type turned on		turned off
HUVEC HeLa	-S3 HepG2 IMR90 K562 Monocytes	HSMMtube -CD14+ NH-A
NHDF-AD NH	EK NHLF Osteobl	

We can add cell types by clicking on them. If the cell type is turned on it's blue, if it's off it's grey. You can turn them on or off by clicking on them, or turn everything on or off using the [ALL ON] and [ALL OFF] buttons at the top.

Let's add a cell type where the promoter is inactive – HeLa-S3. Now close the menu.

We can change which evidence we can see, using the [Select evidence] button.

m Select evidence (showing 8/99)
type to filter options
ALL ON ALL OFF
Histone
H2A/B: H2AK5ac H2AZ H2BK5ac H2BK12ac H2BK15ac H2BK20ac H2BK120ac
H3:
H3K4ac H3K4me1 H3K4me2 H3K4me3 H3K9ac H3K9me1 H3K9me3 H3K14ac
H3K18ac H3K23ac H3K23me2 H3K27ac H3K27me3 H3K36me3 H3K56ac H3K79me1
H3K79me2
Transcription Factor
ATF3 BAF155 BAF170 BATF BCL3 BCL11A BCLAF1 BHLHE40 Bra1 Cfos Ciun
Cmvc CTCF CTCFL E2F6 EBF1 Eqr1 ELF1 ETS1 FOSL1 FOSL2 FOXA1
FOXA2 Gabp Gata2 GTF2B HDAC2 HDAC8 HEY1 HNF4A HNF4G Ini1 IRF4
Junb Jund Max MEF2A MEF2C Nanog Nfe2 NFKB NR4A1 Nrf1 Nrsf p300
Pax5 Pbx3 POU2F2 POU5F1 PU1 Rad21 RXRA Sin3Ak20 SIX5 SP1 SP2 Srf
TAF1 TAF7 Tcf12 THAP1 Tr4 USF1 XRCC4 Yy1 ZBTB7A ZBTB33 ZEB1
Polymerase
PolIII PolIII
Onen Chrometin
Open Chromaun
DNase1

Choose [ALL ON] to get all the possible evidence, then close the menu.

Lastly, we are currently only seeing the peaks. In order to see the signal too, select the [Signal] button.

Peaks	M Signal
-------	----------

Now we can see the active feature in HUVEC compared to the inactive feature in HeLa-S3. In HUVEC, we can see peaks of Max and PolII binding across the promoter, plus H3K4me3 and H3K4me1 modifications and DNasel sensitivity, whereas there is no such activity in HeLa-S3. In contrast, the CTCF binding site at the left is active, and shows CTCF binding and DNasel sensitivity in both cell types.

If you would like to see these data in table format, click on the "Source data" icon.

Source data 0

Show All 🗾 entries	Show/hide col	umns	Filter	
Cell type	Evidence type	Feature name	Location	
A549	DNase1 & TFBS	CTCF	17:63697693-63698411	
A549	DNase1 & TFBS	CTCF (MA0139.1)	17:63698077-63698095	
A549	Hists & Pols	H3K4me2	17:63699121-63699728	
A549	Hists & Pols	H3K4me3	17:63699177-63700726	
A549	Hists & Pols	H3K36me3	17:63702300-63702560	

If you're interested in looking at regulatory features in detail across a region, you can do so in the "Location" tab.

Now click on [Configure this page]. Go to "Regulatory features" in the left hand menu.

Regulation				
Enable/disable all Regulatory features				
Reg. Feats	*0			
Reg. Feats: A549	* 0			
Reg. Feats: DND-41	* 0			
Reg. Feats: GM12878	* 0			
Reg. Feats: H1ESC	* 0			
Reg. Feats: HMEC	* 0			
Reg. Feats: HSMM	* 0			
Reg. Feats: HSMMtube	* 0			
Reg. Feats: HUVEC	* 0			
Reg. Feats: HeLa-S3	* 0			

The "MultiCell Reg. Feats" are already on. Turn on the tracks for the "Reg. Feats: HUVEC" and "Reg. Feats: HeLa-S3".

We can also turn on the evidence tracks. There are two menus for this: "Open chromatin & TFBS" and "Histones & polymerases". Open the menu for "Histones & polymerases".

You can turn on a single track by clicking on the box in the matrix. Note that certain tracks are already selected for all cell lines by default (PolII, PolIII, H3K27me3, H3K36me3, H3K4me3, H3K9me3). However, these will appear in the "Region in detail" view only if you specify a track style for the cell lines.

Turn on all the tracks for HUVEC and HeLa-S3. Hover over the cell line name then select "All".

Select features for GM12878 Opfault			
None			

Now choose the track style for the tracks you've switched on. Click on the track style box for HUVEC and HeLa-S3 and select "Both".

Ch	ange track style 🥙
	Off
	Peaks
$\lambda_{\rm TI}$	Signal
Δp_1	Both

There is a similar matrix for "Open chromatin & TFBS". Use this to turn on all tracks for "HeLa-S3" and "HUVEC" in "Both" track style. Now close the configuration page.

We can now see regulatory activity across the region in both cell types.

You can also get regulation data in the "Gene" tab, by clicking on "Regulation" in the left-hand menu.

The Ensembl Regulatory Build incorporates data from sources such as ENCODE, Blueprint and the Roadmap Epigenomics project. To see the data directly from these sources, you can add so-called track hubs

Worked example 4: the Ensembl Genome Browser track hubs

Click on "Trackhubs" on the Ensembl homepage (http://www.ensembl.org).

Ensembl supports data from external projects through Trackhubs

This page lists various track hubs that can be added to Ensembl.

The table contains a brief description of each hub, plus the assembly that the hub is based on, as a link. Click on the link to turn on the hub. If the hub is based on a genome assembly which is not the current assembly in Ensembl, the link will also jump you to an archive with the previous assembly.

Track hubs often contain vast amounts of data, which can slow Ensembl down, so only add them if you need them, and trash them when you are finished with them. Click on the link "Human (GRCh37)" for the "ENCODE Analysis Hub".

This will take you directly to the "Region in detail" view. Because this is a GRCh37 track hub, this has taken you to our dedicated GRCh37 site (http://grch37.ensembl.org).

Select the "Configure Region Image" tab on the configuration page to see that a new category, named "ENCODE Analysis Hub", has been added to your left hand menu.

Click on the various links under "ENCODE Analysis Hub" to find the ENCODE configuration matrices, which work in the same way as the "Open chromatin & TFBS" and "Histones & polymerases" matrices, except that some have multiple options (indicated by numbers within the boxes). If you click on these boxes, you can choose which of these options to add.

Exercises

UCSC Genome Browser

The *HLA-DRB1* and *HLA-DQA1* genes are part of the human major histocompatibility complex class II (MHC-II) region and are located about 44 kb from each other on chromosome 6. In the paper 'The human major histocompatibility complex class II HLA-DRB1 and HLA-DQA1 genes are separated by a CTCF-binding enhancer-blocking element' (Majumder *et al.* J Biol Chem. 2006 Jul 7;281(27):18435-43) a region of high acetylation located in the intergenic sequences between *HLA-DRB1* and *HLA-DQA1* is described. This region, termed XL9, coincided with sequences that bound the insulator protein CCCTC-binding factor (CTCF). Majumder *et al.* hypothesise that the XL9 region may have evolved to separate the transcriptional units of the *HLA-DR* and *HLA-DQ* genes.

Go to the region from bp 32,540,000 to 32,620,000 on human chromosome 6 (use the GRCh37/hg19 assembly). Hide all tracks and then add the "GENCODE …" and "ENCODE Regulation …" tracks. Go to the configuration page for the "Txn Factor ChIP" track by clicking on the grey bar in front of it, and use the "Filter by factor" option to only show "CTCF" binding sites.

(a) Does the intergenic region between the *HLA-DRB1* and *HLA-DQA1* genes contain any CTCF binding sites? Is it a region of high acetylation? Do any of the CTCF binding sites colocate with a region of high acetylation?

Turn on the "Genome Segments" track in "dense" mode. Go to its configuration page and turn on all available genome segmentation tracks.

(b) What colour are "CTCF enriched elements" in the "Genome Segments" tracks? Is any of the CTCF binding sites reflected in the "Genome Segments" tracks?

Ensembl Regulatory Build

(a) Go to the "Region in detail" view for the human *STX7* (Syntaxin 7) gene. Are there any predicted enhancers in this gene region? If so, where in the gene do they appear?

(b) Open the Configuration page and turn on "Regulatory features" for HUVEC, HeLa-S3, and HepG2 cell types. Are the predicted enhancers active in any of these cell types?

(c) Add DNAse1 hypersensitivity data (a mark of open chromatin) for the HeLa-S3 cell type. Are there any DNAse1 hypersensitive sites in the *STX7* gene in HeLa-S3 cells?

(d) Add histone modification data for the HeLa-S3 cell type. Which ones are present at the 5' end of *STX7*?

(e) Turn on the "CpG island" track. Are there any CpG islands in the *STX7* gene region?

Exercises answers

UCSC Genome Browser

(a) Yes, the intergenic region between the *HLA-DRB1* and *HLA-DQA1* genes contains four CTCF binding sites of varying length. It is also a region of high acetylation, as shown by the peaks in the "Layered H3K27Ac" track. Two of the CTCF binding sites colocate with a region of high acetylation.

(b) "CTCF enriched elements" are coloured blue in the "Genome Segments" tracks. Two of the CTCF binding sites are reflected in the "Genome Segments" tracks, but only in a subset of cell types.

Ensembl Regulatory Build

(a) Yes, there are five enhancers (coloured in dark yellow) predicted in the region of the *STX7* gene, two near the 3' end, two near the middle and one near the 5' end.

(b) Two of the five predicted enhancers are active in HUVEC cells, while none of the five are active in HeLa-S3 and HepG2 cells.

(c) Yes, there's a DNase1 hypersensitive site at the 5' end of the *STX7* gene. Clicking on the coloured block shows that the source of this information is the ENCODE project.

(d) Several histone modifications are found at the 5' end of the *STX7* gene in HeLa-S3 cells, i.e. H3K27ac, H3K36me3, HsK4me2, H3K4me3 and H3K9ac.

(e) Yes, there is a CpG island at the 5' end of the STX7 gene.

🌣 🛃 < 🖽 🖂	\$6 ₹3								
	132.45Mb		132.46Mb	132.47Mb	67.33 kb 132.48Mb	132.49Mb	132.50Mb	Forward strand Forward strad Forward strand Forward strand Forward strad Forward	
Chromosome bands					q23.2	11			
Human cDNAs (R	Constrained element	s for 39 euthe	rian mammals EPO_	LOW_COVERAGE					
Contigs CpG islands		AL357034.1	8 >		AL589691.4 >		AL589691	4 >	
Genes (Comprehensive	< STX7-003						·	· · · · · · · · · · · · · · · · · · ·	
			4+		L	<u> </u>	<u> </u>		
			protein codi	ng	<u></u>	<u></u>			
				< STX7-001 processed tra	nscript				
					< STX7-004		+		
CCD S set			< CCDS5153	-+++++	etained intron				
Human cDNAs (R			protein coding						
Variant - 1KG - All				No All phenotypes		te (SNRe and indele) di	I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
SV - 1KG - High q				No 1000 Gend	omes - High quality (stru	ctural variants) data fo	or this region		
MultiCell									
Regulatory Features							• •		
1.0.0.0									
Regulatory Features		×.	1	ſ					
					-				
HeLa-S3									
Regulatory Features		1		1			1		
2/15 features turned or CTCF	1								
CTCF DNase1					•				
DNasel & TFBS									
Legend & More ▼ 0.11					h.				
0.00									
Hists & Pols									
H3K27 ac H3K36 me3			•	10 C					
H3K4me2 H3K4me3									
H3K4me3 H3K9ac									
Polli Polli									
Hists & Pols									
Legend & More ▼ 0.10 0.00	- Justimatica Provinsion das Armani						1		
HepG2									
Regulatory Features						1.1	2		
%GC	m. Myslum	www.	m_h/vmm	manna		wwwwwwww	mannon	mmm	
	132.45Mb 		132.46Mb	132.4/Mb	132.48Mb 	132.49МБ	132.50MB	132.51M	
Variation Legend	Splice region 3 prime UTR	Splice region variant Sprime UTR variant Sprime UTR variant Sprime UTR variant Sprime UTR variant							
Gene Legend	Protein Coding	Protein Coding Non-Protein Coding							
	Ensembl prot	ein coding		processed t	ranscript				
	CCDS set	nomavaña							
Regulation Legend	CTCF Enhancer Heterochromatin Open Chromatin Promoter Promoter Flank								
	Transcription Factor Binding Site Unclassified								
	Predicted Weak enhancer/Cis-reg element / but inactive in this cell line								
	Inere are currently Ensembl Homo sap	59/trackst iensversion	umed off. 78.38 (GRCh38) C	nromosome 6: 132,44	5,867 - 132,513,198				
🌣 🛃 < 🖽 🖃 '	® 5								

Literature:

The ENCODE Project Consortium (2012) "An integrated encyclopedia of DNA elements in the human genome". *Nature* **489** (7414): 57–74. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439153/)

The ENCODE Project Consortium (2007). "Identification and analysis offunctional elements in 1% of the human genome by the ENCODE pilotproject".Nature447(7146):(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212820/)