Module 9: Non-coding RNA resources

Aims

- Introduce several non-coding RNA databases
- Focus on regulatory microRNAs and resources that catalogue their genomic targets
- Human annotated nc-RNAs
- Outline the use of RNACentral, a database of non-RNA sequences

Introduction

The central paradigm of molecular biology is that DNA is transcribed into RNA and RNA is translated to protein. However, biology is never that simple! There has been tremendous growth in the number of reported sequences of non-coding RNAs (ncRNAs). Large-scale genome sequencing has enabled the identification of new representatives of well-known functional classes and many new types of ncRNA to be defined, including piRNAs and circRNAs. Consequently, the role of RNA in regulatory and functional processes has received an increasing amount of attention. Notably microRNAs have been found to have important roles in development and cancer. Due to the increase in experimentation, several database have emerged that catalogue non-coding RNAs, but typically with a single resource dedicated to a particular type/class of ncRNA. In this module we will investigate some of these resources that describe different non-coding RNAs.

To achieve their function, most functional non-coding RNAs adopt a defined structure. Unlike protein sequences, the secondary structure (formed by base pairings) can be more conserved than the primary sequence. This is illustrated below for a series of stem loops (modified from Chapter 9, Annotating functional RNAs in genomes using Infernal, by Eric Nawrocki, in RNA Sequence, Structure and Function: Computational and Bioinformatic Methods).

In the highlighted alignment section (orange box) the sequences show little sequence conservation. However, in all cases the secondary is conserved (shown on the right panel), with the standard Watson-Crick base pairing present. Covariance models, similar to profile HMMs, model the sequence conservation and additionally any secondary structure. Below shows a graph (taken from the same book chapter) that indicates how different RNA families benefit from modelling the secondary structure.

7.1 Non-Coding RNA Families

Rfam – The largest collection of non-coding RNAs families is Rfam, which is produced by the same laboratory as the Pfam database. Rfam contains a wide-ranging catalogue of non-coding RNA families, with each entry containing an alignment, consensus secondary structures that are used to construct a co-variance model. The co-variance model is used to identify new instances of the Rfam entry on new sequences. Rfam has similar concepts to Pfam and is available on the web at the following URL: http://rfam.xfam.org

Rfam can allow you to:

- 1) Find out the function of RNA genes and elements
- Identify secondary structure and sequence variation of RNA genes and elements

EMBL-EBI HOME | SEARCH | BROWSE | FTP | BLOG | HELP Rfam 12.0 (July 2014, 2450 families) The Rfam database is a collection of RNA families, each represented by multiple sequence alignments, consensus secondary structures and covariance models (CMs). More... QUICK LINKS YOU CAN FIND DATA IN RFAM IN VARIOUS WAYS... SEQUENCE SEARCH Analyze your RNA sequence for Rfam matches VIEW AN RFAM FAMILY View Rfam family annotation and alignments VIEW AN RFAM CLAN View Rfam clan details KEYWORD SEARCH Query Rfam by keywords TAXONOMY SEARCH Fetch families or sequences by NCBI taxonomy MP TO enter any accession or ID GO Example Enter any type of accession or ID to jump to the page for a Rfam family, sequence or parameters STEP 1 sequence or Or view the help pages for more information Go to the Rfam homepage, click 'view an rfam family'. Enter "yybP-ykoY" into the textfield

Exploring an Rfam entry

		keyword sea
Family: yybP Description: yybP-	-ykoY (RF00080) *koY leader 1006 sequences	885 species 0 struct
Summary	Summary	
Alignment Secondary structure Species	The Rfam group coordinates the annotation of Rfam families in <u>Wikipedia</u> t ^g . This family is described by a Wikipedia entry entitled yybP-y page for this family <u>here</u> t ^g . More	koY leader. You can see the Wikip
Structures Motif matches Database references	The yybP-ykoY leader RNA element was originally discovered in E. coli during a large scale screen and was named Srafi-11 This family was later found to exist upstream of related families of protein genes in many bacteria, including the yybP and ykoY genes in B. subtilis. The specific functions of these proteins are unknown, but this structured RNA element may be involved in their genetic regulation as a riboswitch. ^[2] References	yybP-ykoY leader
Curation Jump to enter ID/acc Go	 ^ Argaman, L; Hershberg R; Vogel J; Bejerano G; Wagner EG; Margalit H; Altuvia S (2001). "Novel small RNA-encoding genes in the intergenic regions of Escherichia coli". Curr Biol 11 (12): 941–950. doi:10.1016/S0960-9822(01)00270-6 & PMID 11448770 & ^ Barrick, JE; Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR (2004). "New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control" & Proc Natl Acad Sci USA 101 (17): 6421-6426. doi:10.1073/pnas.0308014101 & PMC 404060 & PMID 15096624 & External links 	
	Page for yybP-ykoY leader at Rfam	Predicted secondary structure a
	This molecular or cell biology article is a stub. You can help Wikipedia by expanding it P.	Identifiers
		Symbol yypp-ykor

The sequences tab contains up-to the first 300 hits in the family, with the complete list of full hits downloadable. If you want to align all of these sequences you will have to download the CM and Internal and run *cmalign*.

Now we will see how to get the *seed* multiple sequence alignment for the RNA family, to help understand the sequence variation present in the family.

Seed sequence alignment for RF00080

« < 1 > »			
Nitresements surgers among 10710s		Link to EMBI	
Nitrosomonas europaea ATCC 19/18			CAGGUCAUGGCGUAAGC.GGUUCUAAGCC.uG
Herminitimonas arsenicoxydans		entrv	
Hylemonella gracilis ATCC 19624 G.		0,	
samma protochastorium udula			
Jontothriv cholodnii SP-65			
Agoarque en BH7267			
Habella chejuensis KCTC 2396 K		GUCAACAUACUUGGCC	ACA
freshwater sediment metagenomer	AGGGCUUGC	GUCAACAUACUUGACC	AUUGGUCAUGGCGCAAGC, GGUUUCCUAGC
Methylibium petroleiphilum PM167.	GCAGGG-GCUCGC	GUCAACA	.GGCCAUGGUGCGAGC, AGCUUCCACAg., C
Dechloromonas aromatica RCB	GAAGAGGCUUGC	gucaaca Base pa	ITS .GACCAUGGCGUAAGC.GGUUUCUGCUuG
Nitrosomonas eutropha C91┎	AAGAGGCUUAC	AUCAACA are colou	.GGUCAUGGUGUAGGC.AGCCCUUCGCc.uG
Advenella kashmirensis WT001 🗗 🛛 .	<mark>UGA</mark> G <mark>GUUUAC</mark>	GUCAACA are colou	.CAUCAUGGCGUAAAC.AGCGAUAUCGc.uU
Burkholderia sp. Ch1-1	GA <mark>AGG</mark> A <mark>GAACGC</mark>	GUCAACA	aGGUCAUGGCGCGUUC.GACCGUGUCGG
compost metagenome 다 a	cgcCGC <mark>C</mark> -GG <mark>GCUUA</mark> C	AUCAACACACUUGGCCG	GUU
Limnobacter sp. MED105┎	AAAGG <mark>GCUUGC</mark>	AUCAACAUACUUGGCCC.	AAAAGCCAUGGUUCAAGC.GGUUUCCACAC
Burkholderia xenovorans LB400 岱_ ·	· · · – GA <mark>AGG</mark> AGAACGC	GUCAACAUACUUGGCCU	UGCa <mark>GGUCAUGGCGCGUUC</mark> .GGCCG <mark>UG</mark> UCGG
Burkholderia phytofirmans PsJNG	· · · – GA <mark>AGG</mark> AGAGCGC	GUCAACAUACUUGGCC U	GCGGGUCAUGGCGCGUUC.GACCGGGUCGG
Aromatoleum aromaticum EbN1 🗗 🛛	ccuUCG <mark>CAG</mark> GGACCAC	GUCAACAGACUUGCGCG	UcGCGCAUGGCGUGGCCaGCCUUCGGGCcugG
Thiomonas intermedia K12	AGA <mark>GGG</mark> -ACCUGC	GUCAACAUACUUGCCUC.	ACAAGGCAUGGCGCUGGU.GAUUCCAUA
marine metagenome G4 a	cagAAGAU-GGCUUAC	AUCAACAUACUUGAGC U	UAGGCUUAUGGUGUAAGC.GGUUUAAAU
Tolumonas auensis DSM 9187 C4 54	cucCUUUAGGGUUUGC	AUCAACAGACUUGACC C	
Rubrivivax benzoatilyticus JA2 C4.	···GCG-CCCGCA	CUCGUCAUCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
Nitrosospira multiformis ATCC 251	AGAAGG-GCUUGC		CGUGGUCGUGGUGCAAGG.AGUUCGUGCCU.gG
Staphylococcus epidermidis [4 1	ANUCACCAUAAA		
Bagillug mogatoriums	···-AAUCAGGAUAAA	GOCGOCAUGACAUGAU aG.	
Staphylococcus aureus	Mouse	over to reveal	
Listeria innocuard	ind induse		
historia innocad	locat	ion and score.	
\ll $<$ 1 $>$ $>$		ogla' button to	
	Use I		
Toggle labels between species names	and alter	nate between	
roggie labels between species names	and area		
SClose window	specie	s and sequence	

Note the letter coding on these structures. This is because they use the IUPAC ambiguity codes. The following table provided you with the designation of the different letters.

Symbol	Meaning	Origin of designation
G	G	Guanine
А	A	Adenine
Т	Т	Thymine
С	С	Cytosine
R	G or A	puRine
Y	T or C	pYrimidine
Μ	A or C	aMino
K	G or T	Keto
S	G or C	Strong interaction (3 H bonds)
W	A or T	Weak interaction (2 H bonds)
Н	A, C or T	not-G, H follows G in the alphabet
В	G, T or C	not-A, B follows A
V	G ,C or A	not-T (not-U), V follows U
D	G, A or T	not-C, D follows C
Ν	G, A,T or C	aNy

Compare the predicted secondary structure with that on the Wikipedia page. Do they differ? Are they the same?

These larger secondary structures can often be broken down into smaller structural components, or motifs. Rfam now tries to show these motifs on the

secondary structure. However, due to their small size, they can be very difficult to predict in the absence of a known 3D structure.

This will list three different motif matches. None of these matches are particularly strong, so should be treated with caution, however, they do provide clues to how the secondary structure element function.

MBL-EBI								Reynord dearen
amily: yybF escription: yybF-	P-ykoY (RF000 ykoY leader	080)				1006 sequences	885 species	o structures
ummary	Motif matches							
quences								
gnment	There are 3 motifs which	match this family.						
ondary structure	This section shows the Ri necessarily conform to ta	fam motifs that match sequent exonomic boundaries in the wa	ces within the seed al of that Rfam families of	ignment of this family. do. More	Users should be av	vare that the motifs	are structural construe	ts and do not
cies	Motif Accession 🗘	Motif Description 🗘	Number of Hits	Fraction of Hits 🗘	Sum of Bits 🗘	Image÷		
es	RM00008	GNRA tetraloop	8	0.276	71.3			
uctures	RM00023	ho independent terminator 2	5	0.172	66.4			
if matches	RM00029	UNCG tetraloop	5	0.172	58.2			
abase references		\mathbf{i}						
ation								
np to								
ID/acc Go		STEP	6 -					
				, –				
			tetralo					
	Sei		tetralo	op				
	Sel	noti	tetralo if	op				
		moti	tetralo if	op				
BL-EBI	(RM00008)	HOME SEA		e FTP BLO	G HELP	167773 177771	c	Rfg keyword search
BL-EBI	(RM00008) tetraloop	HOME SEA		E FTP BLO	G HELP	Apgross Traccos O sequences	C Q species	Keyword search
BL-EBI	(RM00008) tetraloop	HOME SEA	I tetralo	0 0 ' E FTP BLO	G HELP	Morra Turra Turra Morra Morra Sequences	C 0 species	Li Raca Legword search
BL-EBI	(RM00008) tetraloop Summary Wikinedia anno	HOME SEA	RCH BROWS	e FTP BLO	G HELP	ASTOR HITCO HITCO Requences	C 0 spaces	Li Raca keyword search coso 46 structure
BL-EBI	(RM00008) tetraloop Summary Wikipedia anno	HOME SEA	RCH BROWS	e FTP BLO	G HELP	Notes Notes Requerces	C Q species	Li Regueration keyword search
BL-EBI cription: GNRA scription: GNRA nmary gnments uctures nily matches	(RM00008) tetraloop Summary Wikipedia anno The Rfam group coordina	HOME SEA	Itetralo if IRCH BROWS	E FTP BLO	G HELP	testing € sequences nutified Tetraloope?	C Q apodes More	Li Regueration Regword search
BL-EBI	(RM00008) tetraloop Summary Wikipedia anno The Rfam group coordina Tetraloops are a type of	HOME SEA	I tetralo	E FTP BLO	G HELP	و عمریاسمده همریاسمده entitled <u>Tetraloop</u> &. There are many	C species More	keyword search c c c c 46 structure
BL-EBI	(RM00008) tetraloop Summary Wikipedia anno The Rfam group coordina Tetraloops are a type of variants of the tetraloop	HOME SEA	Itetralou if IRCH BROWS Itelo ta in <u>Wikipedia</u> 6 ⁰ . Thi is in RNA secondary st	E FTP BLO	G HELP a Wikipedia entry (double helices, ^[2]	میں بین عمور میں entitled <u>Tetraloop</u> er. There are many	C 0 spodes More	Keyword search
BL-EBI	(RM00008) tetraloop Summary Wikipedia anno The Rfam group coordina Tetraloops are a type of variants of the tetraloop Three types of tetraloop	HOME SEA	rtclo ta in <u>Wikipedia</u> G ⁰ . This in RNA secondary st Sin RNA secondary st Sin RNA (JUC) Sin Charles Sin RNA (JUC) Sin RNA	E FTP BLO	G HELP a Wikipedia entry o double helices. ^[2] INCG. ^[8]	محتری و sequences antified <u>Tetraloop</u> e? There are many adenine base-	0 species	Keyword search
BL-EBI	(RM00008) tetraloop tetraloop Wikipedia anno The Rfam group coordina Tetraloops are a type of variants of the tetraloop Thee where the guanine	HOME SEA	Itele IRCH BROWS IRCH BR	E FTP BLO s motif is described by i ructure that cap many NRA/G UMAC ^[7] and L Paralogs with the seg	G HELP a Wikipedia entry o double helices. ^[2] NICG. ^[8] loop has a guaninh uence UMAC have	• sequences	0 spaces	Keyword search
BL-EBI otif: GNRA scription: GNRA mmary gnments uctures nily matches rerences ation mp to ID/acc Co	(RM00008) tetraloop Summary Wikipedia anno The Rfam group coordina Tetraloops are a type of variants of the tetraloop pher where the guarnie same backbone fold as i a better choice for donids	HOME SEA	Itcle Itcle It I BROWS Itcle Ita in Wikipedia ⁽³⁾ . This Is in RNA secondary st INYA, [3](4] CUYG, [3] C IAI: GNAA, UNCG and IS 33 to the felix. I y be less likely to forr cia RNAA.	E FTP BLO s motif is described by i ructure that cap many SNRA, ^[6] UMAC ^[7] and L CUUG. The GNRA tetra tetraloops with the sequ n tetraloop-receptor int	G HELP a Wikipedia entry o double helices, ^[2] INCG. ^[8] loop has a guanine uence UMAC have eractions. They m	• sequences	More	Keyword search
BL-EBI	(RMO00008) tetraloop Summary Wikipedia anno The Rfam group coordina Tetraloops are a type of variants of the tetraloop pair where the guarine same backbone fold as t a better choice for closis	HOME SEA	Iter BROWS	E FTP BLO s motif is described by i cructure that cap many NRA. ^[6] UMAC ^[7] and L CUUG. The GNRA tetra Fetraloops with the seq in tetraloop-receptor int	G HELP a Wikipedia entry o double helices. ^[2] NCG. ^[8] loop has a guanine uence UMAC have erractions. They m	و معید intitled <u>Tetraloop</u> e ² . There are many -adenine base- sesentially the ay therefore be	More	Keyword search
BL-EBI scription: GNRA mary gnments uctures mily matches ferences ration mp to	(RM00008) tetraloop Summary Wikipedia anno The Rfam group coordina Tetraloops are a type of variants of the tetraloop Three types of tetraloop pair where the guanine same backbone foid as a e better choice for closin See a Iso	HOME SEA HOME SEA Detation Edit Wikipoola a tes the annotation of Rfam dal of four-base hairpin loop motif to the published ones include A is are common in ribosomal RM is 5' to the helix and the adeni the GWRA tetracoj. ⁹¹ but ma ng stems when designing artifi	rticle ta in <u>Wikipedia</u> 6 ² . Thi s in RNA secondary si s in RNA secondary si vA: GNRA, UNCG and ine is 31 to the heix. "; y be less likely to forr cial RNAs.	E FTP BLO s motif is described by i, ructure that cap many insta ₁ (6) UMA(²⁷) and L CUUG. The GNRA tetra fetraloops with the seq in tetraloop-receptor int	G HELP a Wikipedia entry of double helices. ^[2] loop has a guaning uence UMAC have erractions. They m	o sequences o sequences entitled <u>Tetraloop</u> e ² . There are many endenine base- essentially the ay therefore be	C D appedes More	Rfg Legword search
BL-EBI	(RM00008) tetraloop Summary Wikipedia anno The Rfam group coordina Tetraloops are a type of variants of the tetraloop Three kralops of tetraloop Three types of tetraloop Three trobies for closis See also • RNA Tertiary Structu	HOME SEA HOME SEA	ttetralo if IRCH BROWS ta in <u>Wikipedia</u> G ⁰ . This is in RNA secondary st is in RNA secondary st wrxp, ^[3] (4) cury; ^[3] of uxra, ^[3] (4) cury; ^[3] (4) cury; ^[3] (4) uxra, ^[3] (4) cury; ^[3] (4) cur	E FTP BLO s motif is described by , ructure that cap many INRA.[C ¹] and L MAC ^[2] and L MCUG. The GNRA tetra Fetraloops with the seq n tetraloop-receptor int	G HELP a Wikipedia entry of double helices. ^[2] NNCG. ^[8] loop has a guaninh uence UMAC have eractions. They m	• Sequences • sequences • thitled Tetraloop 47. There are many • addnine base- essentially the sy therefore be	C D species	RFG Leyword sarch
IBL-EBI	(RM00008) tetraloop Summary Wikipedia anno The Rfam group coordina Tetraloops are a type of variants of the tetraloop pher where the guanine same backbone fold as t a better choice for closin See also • RNA Tertiary Structu References	HOME SEA	Itele Itele In RCH BROWS Itele	E FTP BLO	G HELP a Wikipedia entry o double helices. ^[2] INCG. ^[8] loop has a guanine uence UMAC have eractions. They m	0 sequences	C D species More	Keyword search 46 structure 1000 proma a grou- letone (11)
IBL-EBI	(RM000008) tetraloop Summary Wikipedia anno The Rfam group coordina Tetraloops are a type (variants of the tetraloop Three types of tetraloop pair where the guanine same backbone fold as i a better choice for closic See also • RNA Tertiary Structu References 1. ^ Cate, J.H., Goo structure of a gro ds:10.1126/scient	HOME SEA HOME SEA HOME SEA Detation Edit Wikipedia e tes the annotation of Riam dati of four-base hairpin loop motifi , the published ones include A so are common in ribosomal Ri- is 5' to the helix and the adeni the GNAR Letrationg, ^[1] but ma- ing stems when designing artifi- re (section Tetraloop-receptor ding, A.R., Podell, E., Zhou, K. up I ribozyme Idons 40, Pinot	Iteration If Iteration Iterati	E FTP BLO s motif is described by i rructure that cap many INRA[6] UMAC ^[2] and L CUUG. The GNRA tetra Fetraloops with the sequ n tetraloop-receptor int ot, C.E., Cech, T.R., DC Science 273 (5282): 1	G HELP a Wikipedia entry of double helices. ^[2] NGG. ^[8] uence UMAC have eractions. They m	• sequences • sequences • ntitled Tetraloop 4. There are many -adenine base- essentially the ay therefore be • 'Crystal	More	RFGG keyword soarch 46 structure

The page above describes the motif and contains the alignment used to build the CM for the motif prediction, know 3D structures, references and curation details, similar to a family page. It also lists all 'Family matches', which contains all Rfam entries that contain the GNRA tetraloop.

MBL-EBI		HOME SEARCH BROWSE FT	P BLOG HELP			keyword searc
Motif: GNRA (Description: GNRA te	RM00008) etraloop			Action Nicrae Uncou	0 species	c.∮ ≎ 46 structu
ummary	Family matches					
ignments ructures mily matches	There are 343 Rfam familie This section shows the fami taxonomic boundaries in the	s which match this motif. ies which have been annotated with this motif. Users shoul way that Rfam families do. <u>More</u>	d be aware that the motifs ar	e structural constructs a	and do not necessa	irily conform to
eferences	Family Accession 🗘	Family Description	Number of Hits	Fraction of Hits 🗧	Sum of Bits	Image
ration	RF00001	5S ribosomal RNA	279	0.392	2678.1	2
	RF00004	U2 spliceosomal RNA	18	0.087	162.3	1
mp to	RF00007	U12 minor spliceosomal RNA	11	0.177	125.0	2
r ID/acc Go	RF00008	Hammerhead ribozyme (type III)	8	0.098	81.7	
	RF00009	Nuclear RNase P	49	0.422	580.3	*
	RF00010	Bacterial RNase P class A	453	0.989	17762.2	2
	RF00011	Bacterial RNase P class B	102	0.895	2028.5	2
	RF00012	Small nucleolar RNA U3	16	0.184	174.1	1
	RF00013	65 / SsrS RNA	33	0.221	312.3	2
	RF00014	DsrA RNA	3	0.600	24.0	2
	RF00017	Metazoan signal recognition particle RNA	71	0.780	1144.2	2
	RF00018	CsrB/RsmB RNA family	23	0.605	261.7	
	RF00021	Spot 42 RNA	11	0.579	103.0	2
	RF00022	GcvB RNA	8	0.296	98.0	X
	RF00023	transfer-messenger RNA	153	0.321	1591.1	

In your own time, go to the secondary structure page for Rfam entry RF00005, tRNA. Compare the sequence conservation (seqcons) and base pair conservation (bpcons). Where is the region of strongest sequence conservation (colours closer to red are more strongly conserved)? Does this correlate with the base pair conservation? Why do think this is?

7.2 Long non-coding RNAs

LncRNA are non-coding transcripts (>200 bp) thought to be involved in various aspects of gene regulation. The precise number of lncRNAs is still of much debate, as the definition is largely arbitrary and the evidence limited to sequence data. To date, it appears that most lncRNAs have **little sequence or secondary conservation**, with typically only a few patches of sequence conservation. Consequently, database such as Rfam do not model lncRNAs very well. The lncRNADB curates lncRNAs from the literature, to provide details about their function.

STEP 1 - Go to the IncRNADB home page: http://Incrnadb.org

Incrna db	🎢 🖽 🛱 🗶 😨 🖂 🍳 Search Incrnadb
Long Noncoding R The Reference Data	NA Database v2.0: base For Functional Long Noncoding RNAs
Search Incrnadb	
XIST	ĸ
Set filter Any Species Search	Output Per Page 10 0
Blast Incrnadb Enter Sequence	Enter the term "XIST" in the search box
BLAST	
The IncRNAdb - Database that provide	es comprehensive annotations of eukaryotic long non-coding RNAs (IncRNAs).
Entries are manually curated from refere	nced literature. Each entry contains references information about the RNA including:
nucleotide sequences genemic context	, , , , , , , , , , , , , , , , , , , ,
 gene expression data derived from structural information 	the Illumina Body Atlas

From the search results, find the XIST entry and click on it to produce the following entry page.

incrnaub	
Xist	
ENA TPA Accession :	Download 📠 Print 🚍
Name Characteristics Expression Associated Components Sequences Contents are displayed Contents are diden (click to show)	Acknowledgement BodyAtlasData Species Literature
Entry Name Alias	This details the characteristics
Xist ENSG0000229807	expression, function etc. of the
Name ⊿	XIST Inc-RNA
Xist: X inactive-specific transcript	
Characteristics 🔺	
Spliced, polyadenylated, ~17kb in mice, ~19kb in humans.	
Contains repeated sequence motifs A-F that are critical for	its function.
Xist is located on the X chromosome in the X-inactivation of	center (Xic), an approximately 100-kb region in the mouse
containing (as of June 2012) live other incrives, many of v	which play crucial roles in X-chromosome inactivation

Go through the IncRNA database entry for XISTs and write a brief summary about the function of this IncRNA. How many functionally important regions does it have? What is the taxonomic distribution?

Another major source of non-coding RNAs come from human annotation of genomes (e.g. HAVANA team), which identify non-coding RNAs. These normally arise when there is excellent transcript evidence, yet no apparent

protein coding evidence. Some ncRNAs are supported by literature; others are not and are annotated based on the sequnec/transcript evidence.

Use the VEGA website to investigate the non-coding RNA of TSIX.

STEP 2 – Enter **TSIX** onto the Vega search box and select the human gene: OTTHUMG00000184725

Vega			Login/Register
BLAST/BLAT H	lelp & Documentation	₩ - Vega search	Q,
Human (VEGA57) V Location: X:	73,792,205-73,829,231 Gene: TSD	Transcript: TSIX-001	
Gene-based displays			
- Summary	Gene: TSIX оттнимдоооо	00184725	
- Transcript comparison	Description	TSIX transcript. XIST antisense BNA	
- Supporting evidence	Synonyms	LINC00013 NCBNA00013 XIST-AS1	
- External references	Location	Chromosome X: 73 792 205-73 829 231 forward strand	
E- Comparative Genomics	INSDC coordinates	chromosome:VEGA57:CM000685 2:73792205:73829231:1	
- Orthologues	Transcripts		
Alt. alleles	nunoonpro		
External data Personal annotation		This gene has 1 transcript (splice variant) Hide transcript table	
Other genome browsers		-	
	Show/hide columns	Filter	
Configure this page	Name Transcript ID 🍦	♦ bp ♦ Protein ♦ Biotype ♦ CCDS ♦ Flags ♦	
Add your data	TSIX-001 OTTHUMT00000469120	20 37027 No protein LincRNA -	
da Evoort data			
	Summary		
H Bookmark this page	Curated Locus	TSIX (HGNC Symbol)	
< Share this page	Synonyms	LINC00013, NCRNA00013, XIST-AS1 [To view all genes linked to the name click here.]	
	Gene type	Known lincRNA [Definition]	
	Author	This gene was annotated by Havana <vega@sanger.ac.uk></vega@sanger.ac.uk>	
	Version & date	Version 1, last modified on 28/02/2014 (Created on 11/01/2013)	
	Other assemblies	This gene maps to 73,792,205-73,829,231 in GRCh38 (Ensembl) coordinates.	
		Jump to this stable ID in Ensembl	
	Curation Method	Manual annotation from Havana	
	Alternative genes	Ensembl gene: ENSG00000270641	
	🌣 📩 < 🕀 🖻		
			ward strand
	Havana gene	73.79Mb 73.80Mb 73.81Mb 73.82Mb 73.83Mb	
	LIGENTIAL APRILA	TSIX-001 > incRNA	
	Contigs	AL356513.15.1.180619 > AL633895.5.1.12377 > AL353804.22.1.167668 >	
	Havana gene	< XIST-005 < XIST-007	
		lincRNA lincRNA	
		< XIST-006 < XIST-004	
			H
		< XIST-002 < XIST-008 lincRNA lincRNA	
			P

TSIX is the antisense counter part to XIST. Use the Vega website to investigate the supporting and external references. Which publication is associated with this Vega entry?

Use the Vega website to produce an alignment of the human and mouse XIST genes.

STEP 3 – Click on 'Genomic alignments' (left side menu)

Vega									Log	gin/Register
BLAST/BLAT H	Help & Documentation							▼ Vega search…		Q,
Human (VEGA57) V Location: X:	73,792,205-73,829,231	Gene: TSIX	Transcript: TSIX	-001						
Gene-based displays - Summary - Splice variants (1) - Transcript comparison - Supporting evidence - Sequence - External references - Comparative Genomics - Orthologues - Att. alleles E: External and tata - Personal annotation	Gene: TSIX OTT Description Synonyms Location INSDC coordinates Transcripts	HUMG0000018	34725 TSIX transcript, LINC00013, NC Chromosome X chromosome:V This gene has	XIST antisens RNA00013, X : 73,792,205-7 EGA57:CM000	se RNA IIST-AS1 73,829,231 0685.2:737 lice variant	forward s 92205:738	trand. 329231:1 anscript table			
Configure this page Configure this page A Add your data C Export data C Export data	Show/hide columns Name Transc TSIX-001 OTTHUMT Genomic align	ript ID 🔶 L 00000469120 3 ments Ø	pp ♦ Protein ♦ 17027 No protein	Filter Biotype 🔶 🛛 LincRNA	CCDS 🔶 -	Flags 🔶				
Share this page	Alignment: Select a	an alignment	Co Go							
	A No alignment sp Please select the alig Go to a graphical view	ecified inment you wish v of this alignme	to display from the	e box above.						

From the drop down list of alignments, select Mouse (Mus_musculus).

Vagat						Login/Register
BLAST/BLAT H	Help & Documentation				🐺 🕶 Vega search	Q
Human (VEGA57) V Location: X	73.792.205-73.829.231	Gene: TSIX	Transcript: TSIX-001			
Gene-based displays	,,,,					
- Summary	Gene: TSIX OTT	HUMG000001	84725			
 Splice variants (1) 						
 Supporting evidence 	Description		TSIX transcript, XIST antise	ense RNA		
- Sequence	Synonyms		LINC00013, NCRNA00013	, XIST-AS1		
External references Comparative Genomics	Location		Chromosome X: 73,792,20	5-73,829,231 forward strand.		
Genomic alignments (3)	INSDC coordinates		chromosome:VEGA57:CM	000685.2:73792205:73829231:1		
- Orthologues	Transcripts					
Alt. alleles External data						
Personal annotation			This gene has 1 transcript (splice variant) Hide transcript t	table	
Other genome browsers Ensemble						
Lindemon	Show/hide column	6	Filter			
Configure this page	Name Transc	ript ID 💧	bp Protein 🛊 Biotype 🛊	CCDS Flags 🔶		
👌 Add your data	TSIX-001 OTTHUMT	00000469120	37027 No protein LincRNA			
Export data	Genomic align	ments 0				
R+ Bookmark this page	Allowments					
< Share this page	Alignment. Mus_mus	culus chromosom				
	년 Download alignme	ont of this alignm	nent			
	A total of 7 alignment b	locks				
	Show/hide column	s S1	rep 4 – Clic	<mark>k on 'graphi</mark> e	cal view' of the	alignment
	Alignment (click to v	iew)	V-73930631-73939000	X-102460245-102467421		
	Block 1	1010	X:73820631-73628099	X-103400340-103407421		
	Block 2	1072	X:/302/303-/36292/1	X-103407303-103409009		
	BIOCK 3	1073	X:/38118/4-/3812946	X:103451662-103452672		
	BIOCK 4	541	X:/3/95000-73795540	X:103450594-103451060		
	Block 5	495	X:73794506-73795000	X:103450004-103450415		
	Block 6	232	X:73819990-73820221	X:103459464-103459675		
	Block 7	115	X:73820664-73820778	X:9262829-9262941		
	Vega Genome Browser re View in Vega release 57	lease 58 - Nov 20	014 © WTSI / EBI		Privacy p	olicy I Contact Us I Help

From the graphical view, zoom out to see both the XIST and TSIX genes in human. Are both genes syntenic between human and mouse?

7.3 MicroRNAs and their targets

miRBase, TarBase and mircoCOSM

MicroRNAs are short regulatory RNAs that affect gene expression and translation. Currently miRBase lists nearly 700 human microRNAs, each of which might regulate tens or hundreds of protein coding transcripts (stored in microCOSM). Clearly microRNAs are important and so it is useful to understand how to get the latest information about known and predicted microRNAs and the genes that they target. MiRBase, TarBase and microCOSM are great starting places for analysis.

STEP 1 – Go to the mirBase home page http://www.mirbase.org

miRBase	miRBase	MANCHESTER.
tome Search Browse Help Download Blog Subn	nit.	Search
Latest miRBase blog posts miRBase web site down time, Oct 22nd-23rd Essential network and electrical work in our server room work mean 23rd October. Apologies for any inconvenience. miRBase 19 released miRBase 19 is now available, brought to you from the Benasque RNA extended time, we have added more than the usual number of new 21264 []	By <u>sam</u> (October 17, 2012) is that the web site is at risk of intermittent down time on Monday 22nd and Tuesday By <u>sam</u> (August 1, 2012) A meeting in the sunny Pyrenees, and with a slightly larger time gap than usual. In that sequences — 3171 new hairpins and 3625 novel mature products, bringing the total to	miRNA count: 21264 entries Release 19: August 2012 Search by miRNA name or keyword Go Example Download published miRNA data
miRBase: the microRNA database miRBase provides the following services: • The <u>miRBase database</u> is a searchable databa Sequence database represents a predicted hat information on the location and sequence of	STEP 2 Type in mir-34 and press go	Download page FTP site This site is featured in: NetWatch - Science 303:1741 (2004) Highlights, Web watch - Nature Reviews Genetics 5:244 (2004)

sequences are available for <u>searching</u> and <u>browsing</u>, and entries can also be retrieved by name, Keyword, references and annotation. All sequence and annotation data are also <u>available for download</u>. The <u>miRBase Registry</u> provides miRNA gene hunters with unique names for novel miRNA genes prior to publication of results. Visit the <u>help pages</u> for more information about the naming service.

To receive email notification of data updates and feature changes please subscribe to the miRBase announcements mailing list. Any queries about the website or naming service should be directed at mirbase@manchester.ac.uk.

miRBase is hosted and maintained in the Faculty of Life Sciences at the University of Manchester with funding from the BBSRC, and was previously hosted and supported by the Wellcome Trust Sanger Institute.

Search Results

We found 615 unique results for your query ("mir-34"), in 5 sections of the database.

Section	Description	Number of hits
miRNA name	match the accession or ID of a hairpin precursor entry	272
Previous ID	match the previous ID of a hairpin precursor entry	14
Mature name	match the accession or ID of a mature miRNA sequence	342
Previous Mature ID	match the previous mature ID of a mature entry	77
Dead entry	match the accession or ID of a dead entry	1
Dead entry previous ID	match the accession or ID of a dead entry	0
Gene symbol	find miRNA entries based on gene symbols	0
Description	search miRNA entry description	0
Comments	search miRNA entry comments	0
PubMed ID	find miRNA entries based on literature reference PubMed ID	0
Literature reference	search title and authors of associated literature references	0

The above key shows a brief description of each of the database sections, along with the number of hits found in each one. Only unique miRNA entries are shown in the results table below. Click the column headings to sort the results table, or restore to the original order.

Accession	ID⇔	miRNA name⊖	Previou	s ID∂	Mature name⊖	Previous Mature	Dead entry⊖	Links	
<u>MI0000268</u>	hsa-mir-34a	✓		ст		ick on link	for the m		
MI0000403	mmu-mir-34c	1		51					
<u>MI0000584</u>	mmu-mir-34a	1		In	iterest, hs	a-mir-34b	(half way	down)	
MI0000629	rno-mir-344a-1	4							,

Stem-loop sea	juence hsa-mir-34b
Accession	MI0000742
Symbol	HGNC:MIR34B
Description	Homo sapiens miR-34b stem-loop
Gene family	MIPF0000039; <u>mir-34</u>
	This text is a summary paragraph taken from the Wikipedia entry entitled mir-34 microRNA precursor family, miRBase and Rfam are facilitating community annotation of microRNA families and entries in Wikipedia, Read more
Community annotation	The mir-34 microRNA precursor family are non-coding RNA molecules that, in mammals, give rise to three major mature miRNAs. The miR-34 family members were discovered computationally and later verified experimentally. The precursor miRNA stem-loop is processed in the cytoplasm of the cell, with the predominant miR-34 mature sequence excised from the 5' arm of the hairpin. The mature miR-34 is a part of the p53 tumor suppressor network of proteins; therefore, it is hypothesized that miR-34 dysregulation is involved in the development of some cancers.
	Show Wikipedia entry View @ Wikipedia Edit Wikipedia entry Predicted structure of miRNA precursor
Stem-loop	cg -gla uca c - g gugcu guuu ggcagug uuag ugaugua cu u lili lili lili lili lili li g cacgg caaa cogucac anc acuacau gg g aa acta cuc - u u Get sequence
Deep sequencing	249 reads, 19 experiments
Comments	Houbaviy et al. cloned 3 closely related sequences from mouse embryonic stem cells [1], and named them miR-34a, miR-34b and miR-172. These names have been remapped to miR-34c (MI0000403), miR-34b (MI0000404) and miR-34a (MI0000584) to clarify homology with human sequences. The predominant mature miRNA in human is expressed from the 3' arm (in contrast to previous annotation) [2]. Both arms express mature products in mouse.
Genome context	Coordinates (GRCh37.p5) Overlapping transcripts chr11: 111383663-111383746 [+] sense ENST00000540312; AP002008.1-201; intron 1
Clustered miRNAs	< 10kb from hsa-mir-34b hsa-mir-34b hsa-mir-34c chr11: 111383663-111 hsa-mir-34c chr11: 111384164-111384240 [+]
Database links	ENTREZGENE: 407041; MIR34B See related miRNAs and make alignments HGNC: 31636; MIR34B
Mature seque	nce hsa-miR-34b-5p
Accession	MIMAT0000685
Previous IDs	hsa-miR-34b;hsa-miR-34b*
Sequence	13 - uaggoagugucauuagougauug - 35 Get sequence
Deep sequencing	127 reads, 10 experiments
Evidence	by similarity; <u>MI0000404</u>
Validated targets	TARBASE: <u>hsa-miR-34b-5p</u>
Predicted targets	DIANA-MICROT: hsa-miR-34b-5p MICRORNA.ORG: hsa-miR-34b-5p MIRDB: hsa-miR-34b-5p RNA22-HSA: hsa-miR-34b-5p TARGETMINER: hsa-miR-34b-5p PICTAR-VERT: hsa-miR-34b

The top two sections contain a wide variety of information on the microRNA including comments on previous nomenclature of the sequences. You can

also see what the predicted targets are for this miRNA with a variety of software systems.

The two mature sequence sections show that there is evidence that a mature miRNA is expressed on the miR* strand, which means both arms of the precursor might become mature miRNAs.

Finally a wide variety of useful search options are provided linked from the search tab at the top of the page.

Home Search	Browse Help Download	Blog Submit hsa-mir-34b
Search miRBase By miRNA identifier or keyword Enter a miRNA accession, name or keyword Geten (sect) (sample)	STEP 4 Click on sea	rch tab
By genomic location Select organism, chromosome and start and Choose species:	end coordinates. Leave the start/end boxes blank to retrieve all miRNAs on the se	lected chromosome.
For clusters Select organism and the desired inter-miRN Choose species: By tissue expression Select organism and tissue. Choose species: Select tissue:	A distance. RNA distance: 10000 Cer clusters Cer experiments	
By sequence Single sequence searches: Paste a sequence here to search against mi	RNA sequences. You can choose to search against the intact precursor sequences c	r just the mature miRNAs. This search may take a few minutes. (Max size 1000bps)
	Search sequences:	Mature miRNAs :
	Search method: Choose BLASTN to search for a miRNA in a longer sequence. SSEARCH i instance, find a short motif in a miRNA or precursor stem-loop, or find n E unline acted	LASTN 8 suseful for finding a short sequence within the library of miRNAs (for nature sequences that are related to your query).
Or: Select the sequence file you wish to	Maximum no. of hits:	100
Choose File no file selected	Show results only from specific organisms:	human mouse worm fly Arabidopsis
Search miRNAs Reset Example		or choose a taxonomic classification:

This interface allows you to carry out several useful analyses quickly, such as find all the microRNAs on human chromosome 1. You can also find clusters of

microRNAs that are close on a genome and might be expressed from a single transcript.

From the mirBase example shown above, there can be both validated and predicted targets. In the following worked examples, we will look at two resources, one that contains validated targets and one that provides computational predictions. TarBase contains validated targets, where as MicroCOSM has computational predictions.

TarBase worked example – in this example, find the genes that are regulated by mmu-miR-20a-5p.

an half a

 million miRNA:gene interactions types from 24 species. DIANA-Ta aset is freely available for downloa

STEP 2 – enter mmu-miR-20a-5p in the search textfield.

ist be logged in) ple

Meth

DIANA TOOLS		Gar	Menter of Eccasion and Religious Africe 1. Management and regimentation Agercy for	Courter 4 Sports Courter 4 Sports RTD and Innovation Activities	ALEXAN FLEM Bignedical Research		
Software » TarBase v7.0 Jsername *	IMPORTANT NOTE: DIANA tools may be not available and <u>VIMa</u> hosting service. We apol	between 07:00 EET and 23	30 EET on Saturday, Deck	ember 13 because of po	wer upgrade	works of GRNET's <u>okea</u>	nos
Password *	Q mmu-miR-20a-5p		Mathada	Pred Coore		_	?
Remember me next time	Stat3 (mmu)	mmu-miR-20a-5p	RS QP WB O	0.906	•	Related Pathways	
Login	Mapk14 (mmu) 🁔	mmu-miR-20a-5p 🍈	RS QP WB O	0.735	•	Filters Species	
orgot your password?	Pten (mmu) 🌘	mmu-miR-20a-5p 🌘	IP qP WB O	0.882	•		
 Sign up for free! or take a tour 	Bmp4 (mmu) 🌘	mmu-miR-20a-5p 🌒	qP	-	•	Method Type	
Available features for registered	E-Cadherinl(mmu) (mmu)	mmu-miR-20a-5p 🌘	qP	-	•	Method	
Download databases History	Fgfr2b(mmu) (mmu) 🌒	mmu-miR-20a-5p 🌒	 		•	Regulation type	
Bookmarks	beta-catenin(mmu) (mmu)	mmu-miR-20a-5p 🍈	0	-	•	Validation type	
ogin is not required to ccess the site!						Validated as	
						Source	

The resulting page indicates the different genes that are regulated by the miRNA and the methods that have been used to establish the target of the microRNA. Uses the filters to determine which gene is 'up' regulated by this microRNA (Regulation type)?

STEP 3 – Select the Stat3 gene (right down arrow)

Stat3 (mmu)	mmu	-miR-20a-5p 🌘	RS QP WB	0	0.906		•
Publication		Methods	Tissue	Cell line	Tested cell line	Exp. condition	
Gianni Carraro et al. 2009		RS	Breast Cancerous Tissues	NA	N/A	N/A	•
Location		Method	Result	Regulatio	n Valid. type	Source	
3UTR	0	Luciferase Reporter Assay	POSITIVE	\downarrow	DIRECT	Tarbase 7.0	D
3UTR	0	Luciferase Reporter Assay	POSITIVE	\downarrow	DIRECT	Tarbase 7.0	D
<u>Gianni Carraro et al. 2009</u>		ad MB O	NA	NA	N/A	N/A	•
Location		Method	Result	Regulatio	n Valid. type	Source	
UNKNOWN	0	qPCR	POSITIVE	\downarrow	INDIRECT	Tarbase 7.0	D
UNKNOWN	0	Western Blot	POSITIVE	\downarrow	INDIRECT	Tarbase 7.0	D
UNKNOWN	0	Other	POSITIVE	\downarrow	INDIRECT	Tarbase 7.0	D

This lists the details of the publication and method uses to establish the microRNA target.

MicroCOSM worked example - In this example you will be identifying microRNAs that might regulate your protein of interest. In this case we'll look at the important cancer gene P53.

Two ensembl transcripts are found.

The results of the microCOSOM predictions are shown above. The prediction of microRNA target sites remains a difficult problem and all prediction methods are prone to false positives. So these require extensive manual inspection to decide if they are likely to be important. There are a small number of known microRNA binding sites Recently David Corney *et al.* published a paper in Cancer Research suggesting that miR34b and miR34c are regulated by P53. These two microRNAs were not predicted to regulate P53.

7.4 A database of non-coding RNA sequences

Up until 2014, there was no centralised repository for RNA sequences. Prior to this, researches would have to go to each individual specialist database to get the information. However, these databases do not reflect all non-coding information and further information may have been directly deposited in the ENA database (part of the INSDC). To provide help to this situation, RNACentral was set up to bring non-coding RNA sequence data from different databases. To avoid duplication of sequences in RNACentral, the database groups identical sequences into a single entry, and assign an **U**nique **R**NA **S**equence identifier, regardless of source database or organism.

This shows the RNACentral page for URS00000478B7.

• A unique RNA from.	sequence entry in RNAcentral groups together all in	dentical RNA sequences no matter what	species they are
Overview Ta	xonomy 2D 3D		🕹 Download 👻
Overview			
Description: H 299 nucleotides	omo sapiens SRP_RNA 5 5 databases (ENA, IncRNAdb, RefSeq, Rfam, SRPDB)	1 organism first seen 29 May 2014 last u	odated 25 Jul 2014
Annotatio	NS 1-5 of 5		Filter table
Database 🔶	Description	\$	Species 🔶
SRPDB	Homo sapiens (human) signal recognition part > SRPDB: Homo.sapiX01037 @ > Source ENA entry: HG323706.1:1299:ncRNA @	icle RNA	Homo sapiens ₪
🖈 IncRNAdb	Homo sapiens (human) Small nucleolar RNA 75 > IncRNAdb: 75L @ > Source ENA entry: HG975378.1:1299:ncRNA @	SL	Homo sapiens 🖻
🖈 Rfam	Homo sapiens Metazoan signal recognition par > RFAM family: RF00017 @ (Metazoa_SRP), seed alig > Source ENA entry: X01037.1 @ (nucleotides 5:303)	ticle RNA inment 0)	Homo sapiens 🕈
🖈 Rfam	Homo sapiens Metazoan signal recognition par > RFAM family: RF00017 @ (Metazoa_SRP), seed alig > Source ENA entry: X04248.1 @ (nucleotides 1:299)	ticle RNA Inment 🛛	Homo sapiens ය
🗙 RefSeq	Homo sapiens RNA, 7SL, cytoplasmic 1 (RN7S > RefSeq: NR_002715.1 @ > NCBI GeneID: 6029 @ > HGNC gene RN7SL1 @	This shows the SRP I from 5 different sourc	RNA from huma e databases. Ii
Sequence) ©	URS identifier can co	e. Note, a singi ntain more thar

But if you did not know the URS identifier for the human how might you find all SRP RNAs where these five databases agree? RNACentral has a very powerful faceted search interface, where you can select different features to quickly drill down to the sequences of interest.

STEP 3 – Enter "RNA" in the search text box

This will provide a list of *all* sequences contained in RNAcentral.

RNA cent	RNA Examples: RNA, Homo sapiens, miRBase, HOTAIR, Escherichia	٩					
v1.0 Expert databases - API -	Sequence search Downloa	ds Help Contact					
Q Results 15 or	ut of 8,102,559 sequences	Search help					
Expert databases	Prochlorococcus marinus subsp. misc RNA/RNase P RNA URS0000532385						
□ FNA (6 984.057)	308 nucleotides						
□ Rfam (2,493,782)	Prochlorococcus marinus subsp. misc RNA/RNase P RNA UBS0000560E5A						
RefSeq (30,900)	333 nucleotides						
□ gtRNAdb (10,625)	Synechococcus sp. misc RNA/RNase P RNA UB5000004F88D						
miRBase (8,795) RDP (4,779)	305 nucleotides						
□ tmRNA Website (2,857)	mice DNA/DNace D DNA/other from 070 apprice Upperso (ppppp						
SRPDB (503) IncRNAdb (62)	misc RNA/RNase P RNA/other from 270 species URS00004BB8BB						
	377 nucleotides						
RNA types	Prochlorococcus marinus subsp. misc RNA/RNase P RNA URS00005CC4EE						
□ rRNA (5,612,511)	311 nucleotides						
misc RNA (1,111,150) tRNA (818,026)	Dickeya dadantii RNase P RNA URS00002070F6						
piRNA (208,933)	381 nucleotides						
other (129,140) miRNA (92,000)	Prochlorococcus marinus str. PAC1A misc RNA/RNase P RNA URS000042D6	60B					
snRNA (90,503)	333 nucleotides						
snoRNA (80,526) siRNA (45.059)	Prochlorococcus marinus str. PAC1B misc BNA/BNase P BNA UPsono0457	206					
hammerhead ribozyme (40,210)		.00					
IncRNA (40,139) SRP RNA (14,375)							
precursor RNA (13,014)	Prochlorococcus marinus str. TAK9803-2 misc RNA/RNase P RNA URS0000)18913C					
	308 puelestides						

Use the left panel to refine the search

There is only on sequence in RNACentral where these 5 databases all agree on an SRP RNA annotation.

For some organisms, it is possible to view the non-coding RNAs in genomic context. Using the search interface, search for the following:

STEP 5 – Enter 'HOTAIR' into the search box and select the expert database VEGA

Uniqu	ue RNA Sequence URS000011D1F0	6	nteractive tour
• A unique from.	RNA sequence entry in RNAcentral groups together all identical RNA sequences no matter what sp	ecies tł	ney are
Overview	Taxonomy 2D 3D	🕹 D	ownload 🗸
Overvi	ew		
Annota	ations 1-1 of 1	Filter	table
Annota Database 🗧	Description	Filter	Species
Annota Database 🖨 Vega (GENCODE)	Description Homo sapiens (human) long non-coding RNA OTTHUMT00000328665.1 (HOTAIR gene) > Vega transcript OTTHUMT00000328665 @ from gene OTTHUMG00000152934 @ > 4 alternative transcripts: URS0000513030 (560 nts), URS000019A694 (572 nts), URS00001A335C (918 nts), URS0000301B08 (2,421 nts). > Source ENA entry: HG504802.1:1562:ncRNA @ ? View genomic location 12:53,963,901-53,967,355	Filter	table Species ♦ Homo sapiens

This launches a basic genome browser and allows the RNACentral annotations to be displayed along side the gene annotations and transcript data from Ensembl.

Use this browser to identify the genes either side of the long HOTAIR gene.

To illustrate how RNACentral groups identical sequences in a single entry go to the URS000047C79B entry.

How many species have been grouped together in this entry? Click on the taxonomy tab to show the distribution of these species.

Overview Taxonomy	2D 3D				🕹 Download 👻
This tree displays the lineage croll around to explore the end	of all taxonomic gro tire tree. Click the t	ups in which this sequen ree nodes to collapse or (ce has been found. expand them. Hove	er over taxon na	ames to display full names.
Primates O Haplorrhin	Platyrrhin O	Cebidae O Califi Saimi Hylobatida O Non Hominidae O	trich O Calliti rilna O Sair nascus O Pongo O Gorilla O Homo O Pan O	hrix O miri O O Nomascu: O Pongo ab O Gorilla go O Homo sap O Pan trogle	Callithrix jacchus (1 cross-referer Saimiri boliviensis boliviensis leucogenys (1 cross-references) elii (1 cross-references) piens (11 cross-references) piens (11 cross-references) piets (1 cross-references)
Hyracoidea O Procaviida	O Procavia O	Cercopithe O Cercop O Procavia	oithe O Mac capensis (1 cross-re	aca O eferences)	8 Macaca mulatta (2 cross-referen Macaca fascicularis (2 cross-refe
Proboscide O Elephantid Perissodac O Equid Ruminant Cetartioda O	ia O Loxodonta O Equus O	O Loxodon O Equus ç Bovidae O Ca	ita africana (1 cross-r aballus (1 cross-refer ovinae O prinae O	references) rences) Bos O Ovis O	 Bos taurus (2 cross-references) Ovis aries (1 cross-references)
Suin Feliform	ia O Suidae O ia O Felidae O Capidae O	Sus O Felinae O	O Sus scrofa Felis O	(2 cross-reference) Felis catu	ces) s (1 cross-references) scs-references)
Carrivora	ia O Ursidae O Mustelidae O	Ailuropoda O Mustelinae O M	 Canis lupus Ailuropoda Iustela () 	melanoleuca (2	ross-references) cross-references) utorius furo (1 cross-references)
		_			

Finally, it is also possible to search RNACentral using a query sequence. Click on 'Sequence search' in the menu:

*RNA central	organism, expert database, <i>Examples:</i> RNA, Homo sapiens, mi			۹	
Expert databases - API - Sequence sea Q Sequence search Local alignment using the Exonerate C ² search algor AGTTACGGCCATACCTCAGAGAATATACCGTA GTTAAGCTCTGAAGGGCGTCGTCAGTACTATA ATACGACGTGCTGTAGCTT Examples: miRNA hsa-let-7f-5p (URS00003B7674),	rch Done ithm. TCCCGTTCGATCTGCGAA GTGGGTGACCATATGGGA 55 rRNA (URS0000049E57)	Q Search	Downloads	Help	Contact

Paste the following sequence into the sequence search box:

>Query

AGTTACGGCCATACCTCAGAGAATATACCGTATCCCGTTCGATCTGCGAA GTTAAGCTCTGAAGGGCGTCGTCAGTACTATAGTGGGTGACCATATGGGA ATACGACGTGCTGTAGCTT

How many alignments are returned? What ncRNA does this sequence represent?