Zebrafish Open Door Workshop – Madison 2018

Module 2: Using Ensembl to explore zebrafish data

Toby Hunt Vertebrate Genomics (Ensembl-HAVANA)

Using Ensembl to explore zebrafish data – overview

2a: Comparative Genomics

2b: Sequence Variation and Disease



Havana: Human and vertebrate analysis and annotation

The goal of GENCODE

"Our goal is to identify and classify all gone features in the human and mouse genomes with high accuracy based on biological evidence, and to release these annotations for the benefit of biomedical research and genome interpretation".

https://www.aencodeaenes.ora/

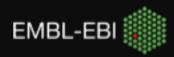
The HAVANA team

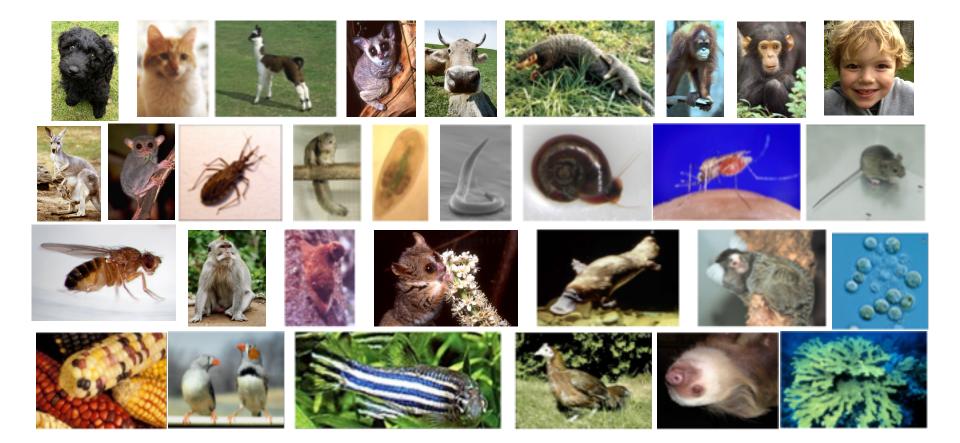
GENCODE

Whole Genome or chromosome

Targeted regions or genes

Community projects





Comparative Sequence Analysis

Comparative Sequence Analysis

A tool for decoding genomic information as it is based upon the tenet that:

Functional sequences evolve more slowly than non-functional sequences, therefore sequences that remain conserved throughout evolution *may* perform a biological function.

"Conservation as a proxy for function"

Identify Conserved Regions

Aligning genome sequences

- Functionally conserved units may be conserved at the sequence level
- Evolutionary Conserved Regions (ECRs)

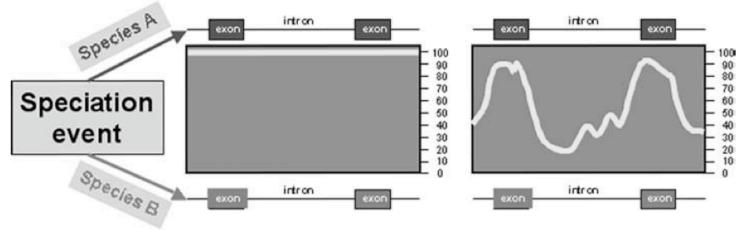
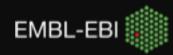
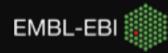
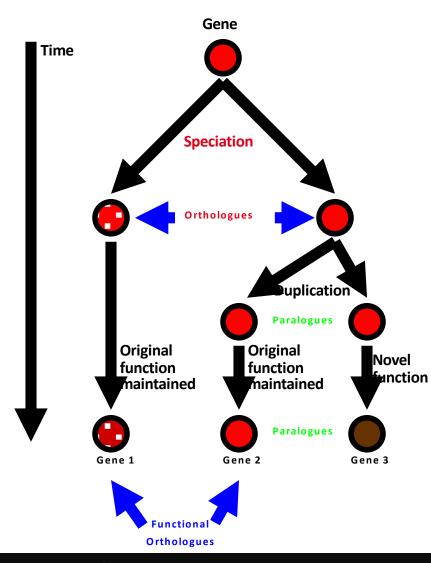



Fig 1. Miller et al, 2004. Ann Rev Genomics Hum Gen

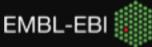

Why Comparative Sequence Analysis?

 allows us to achieve a greater understanding of vertebrate evolution

 tells us what is common and what is unique between different species at the genome level


 the function of human genes and other regions may be revealed by studying their counterparts in lower organisms

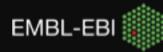
 helps identify both coding and non-coding genes and regulatory elements


Homology, Orthology, Paralogy

Homologues - Genes derived from common ancestral gene

Orthologues – Genes in different species that are derived from the same gene in last common ancestor

Paralogues – Gene families that have diverged within a single species, often by duplication


Identifying Orthologous Genes

Orthologue Prediction at Ensembl:http://www.ensembl.org/

Show All 🗾 entries		Show/hide columns		Filter					
Species	Туре	dN/dS	Ensembl identifier & gene name		Compare	Location		Target %id	Query %id
Alpaca (<i>Vicugna pacos</i>)	1-to-1	n/a	ENSVPAG0000001369 MITF microphthalmia-associated transcription factor [Source:HGI Symbol;Acc:7105]	NC	Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (image)	GeneScaffold 2364:880354-1101487:1		82	79
Anole lizard (Anolis carolinensis)	1-to-1	n/a	ENSACAG00000013586 MITF Uncharacterized protein [Source UniProtKB/TrEMBL; acc: G1KP		Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (image)	<u>2:181602837-181633021:-1</u>		86	69
Armadillo (Dasypus novemcinctus)	1-to-1	n/a	ENSDNOG0000017544 MITF microphthalmia-associated transcription factor [Source:HGI Symbol;Acc:7105]		Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (image)	GeneScaffold_6638:36209-296923:1		79	79
Bushbaby (Otolemur garnettii)	1-to-1	0.18451	ENSOGAG000000043 MITF microphthalmia-associated transcription factor [Source:HGI Symbol;Acc:7105]		Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (image)	<u>GL873534.1:17118302-17213018:-1</u>		90	87
Caenorhabditis elegans (<i>Caenorhabditis</i> <i>elegans</i>)	1-to-many	n/a	W02C12.3 hlh-30 Protein HLH-30, isoform b [Source:RefSeq		Region Comparison Alignment (protein) Alignment (CDNA)	<u>IV:4015486-4028129:-1</u>		20	21

Links to the closest putative orthologous genes in other species

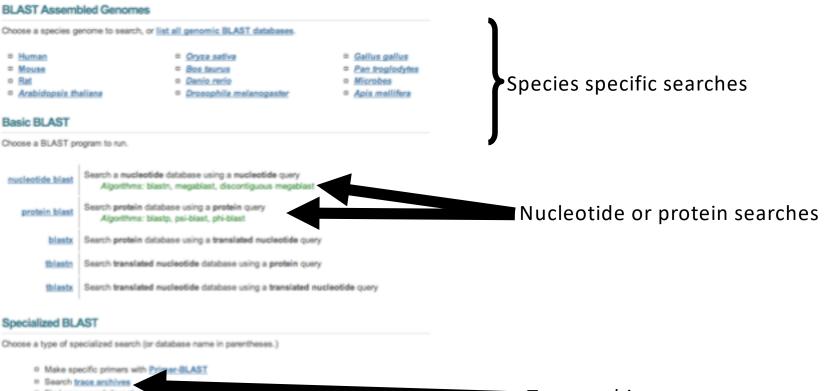
Hyperlinks to view alignments & positional information

Identifying Orthologous Genes

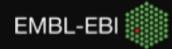
NCBI Homologene

http://www.ncbi.nlm.nih.gov/sites/entrez?db=homologene&cmd

Search HomoloCen	re for	Prof	*	Gerone	Structure Map Viewer Dene			
allell Homolocen		~	~		Crear			
	Limits Preview/Index Histor	y Clipboard	Details					
out Entrez	HomoloGene is a system for autom	ated detection	of homologs	among the annotat	ted genes of several completely sequenced eukar			
	HomoloGene Release 62 St							
	Initial numbers of genes from comp		numbers of a	enes placed	What's New			
omoloGene ome	in a homology group, and the numb							
very Tips	Species		r of Genes	HomoloGene	HomoloGene release 62 is now			
alid Procedure		Input	Grouped	groups	public. It incorporates updated annotation for Danio rerio Zv7 release			
P Site	Homo sapiens	22,849	19,964	19,351	(NCBI release 3.1, Jun. 12, 2008).			
	Pan troglodytes	25,096	17,398	16,913				
enome Resources omo sapiens	Canis lupus familiaris	19,766	16,732	16,294	Tip of The Day			
us musculus	Bos taurus	23,797	18,112	16,639	TIP OF THE Day			
itus norvegicus	Mus musculus	25,388	21,538	19,410				
anio rerio	Rattus norvegicus	21,991	19,092	17,865	You can use 'Details' in the tool bar			
	Gallus gallus	17,959	12,988	12,279	to see how your query was translated and other query details.			
	Danio rerio	26,288	17,789	15,288	[More Tips]			
	Drosophila melanogaster	14,085	8,190	7,977	1			
	Anopheles gambiae	13,909	8,479	7,921				
	Caenorhabditis elegans	20,077	5,299	5,070	Deleted Decourses			
	Schizosaccharomyces pombe	5,043	3,211	3,175	Related Resources			
	Saccharomyces cerevisiae	5,880	4,744	4,593				
	Kluyveromyces lactis	5,335	4,458	4,427	Entrez Genomes			
	Eremothecium gossypii	4,722	3,949	3,940				
	Magnaporthe grisea	12,832	6,843	6,403	A collection of complete genome sequences that includes more than 1000 viruses and			
	Neurospora crassa	10,079	6,128	6,122	over hundred microbes			
	Arabidopsis thaliana	26,981	13,374	13,041	 Archaea 			
	Oryza sativa	26,887	12,973	12,603	 Bacteria 			
	Plasmodium falciparum	5,266	990	965	 Eukaryota 			
	Indicates organisms where new genome annotation data is used in this build. Viruses							
	We have recently adopted a new bu	id nenonduro ti	at makes us	onime lo au				
	acid sequence searching (blastp) to	find more dista	ant relationsh	hips, but the	COGs			
	procedure still refers to the DNA se	quence for com	putation of s	ome of the	Phylogenetic classification of proteins			
	statistics. The matching strategy is more closely related organisms are				encoded in complete			
	more closery related organisms are		woreover, r	101101003010	genomes.			


entries now include paralogs in addition to orthologs.

alth of information about homologous genes and links to other resourc


Identifying Orthologous Genes BLAST searches

http://www.ncbi.nlm.nih.gov/BLAST/

- a Find <u>conserved domains</u> and ar se
- P Find sequences with similar <u>conserved domain architecture</u> (ofart)
- o Search sequences that have gene expression profiles (GEO)
- o Search immunoglobulina (igBLAST)
- B Search for SNPs (snp)
- B Screen sequence for <u>vector contamination</u> (vecscreen)
- 8 Align two sequences using BLAST (bi2seq)
- o Search protein or nucleotide targets in PubChem BioAssay

Trace archives: A good place to look If you species of interest doesn't have a browser

Paralogues in Ensembl:

Paralogues 🕑

🕹 Download paralogues

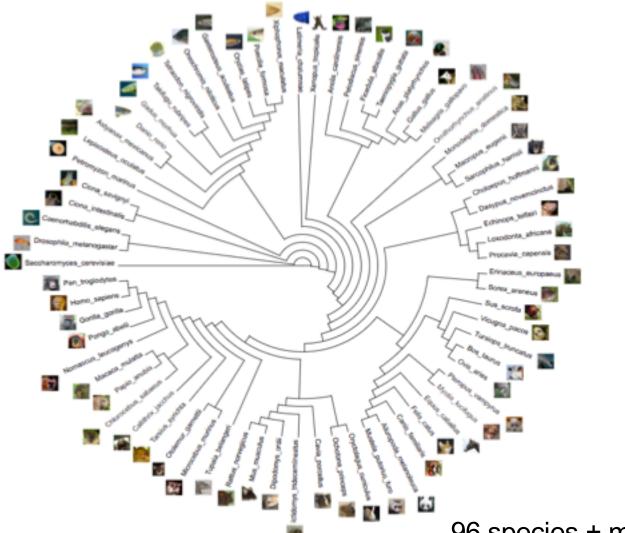

Show/hide colu	mns				Filter		
Туре	Ancestral taxonomy	Ensembl identifier & gene	Compare	Location		Target %id	Query %id
Paralogues	Vertebrates (Vertebrata)	ENSG00000187098 MITF melanogenesis associated transcription factor [Source:HGNC Symbol:Acc:HGNC:7105]	 Region Comparison Alignment (protein) Alignment (cDNA) 	<u>3:69,739,435-69,968,337:1</u>	ł	53.27 %	48.17 %
Paralogues	Vertebrates (Vertebrata)	ENSG00000112561 TFEB transcription factor EB [Source:HGNC Symbol:Acc:HGNC:11753]	 Region Comparison Alignment (protein) Alignment (cDNA) 	<u>6:41,683,978-41,736,259:-1</u>		45.10 %	38.43 %
Paralogues	Vertebrates (Vertebrata)	ENSG00000105967 TFEC transcription factor EC [Source:HGNC Symbol:Acc:HGNC:11754]	 Region Comparison Alignment (protein) Alignment (cDNA) 	<u>7:115,935,148-116,159,896:-1</u>	4	44.67 %	26.96 %

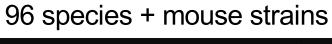
How best to ensure that you have identified an orthologous gene

- Percentage identity (protein and nucleotide) (e.g. ClustalOmega, MUSCLE, sometimes Homologene)
- Compare the size and number of exons in orthologous genes (EST/cDNA to genomes – Splign , Ensembl ExonView)
- Positional information neighbouring genes (Ensembl- SyntenyView, UCSC, Genomicus)
- Confirm that no other paralogous genes are present in your species of interest (BLAST, self-chain @UCSC, paralogues Ensembl)



Comparative Genome Analysis: Where to Start?


To identify conserved regions, you must:

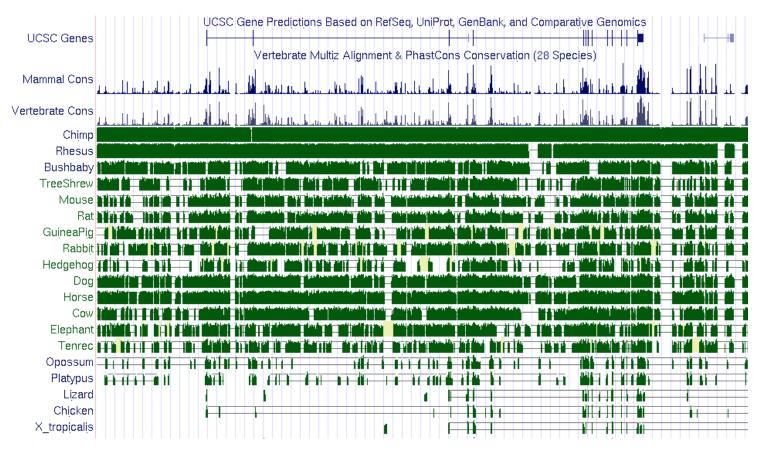

- Decide which species you would like to compare
- Identify and extract the relevant genome sequences
- Annotate genes and other features found in the genome sequences
- Ensure that repetitive sequences are masked

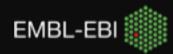
How many vertebrate genomes are available?



Selection of Species for DNA comparisons

Human vs.	Chimpanzee	Mouse	Opossum	Pufferfish
Size (Gbp)	3.0	2.5	4.2	0.4
Time since divergence	~6 MYA	~ 90 MYA	~150 MYA	~450 MYA
Sequence conservation (in coding regions)	>99%	~80%	~70-75%	~65%
Aids identification of	Recently changed sequences and genomic rearrangements	Both coding and non-coding sequences	Both coding and non- coding sequences	Primarily coding sequences
Background noise	High	Moderate	Low	Lower

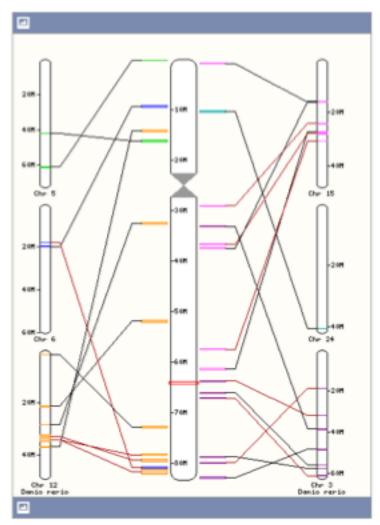


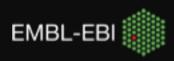


Aligning genomic sequence

• Pair-wise genome sequence alignments combined with additional phylogenetic information

(eg PhastCons@UCSC, RankVista,)

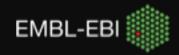



Aligning genome sequences - synteny

Synteny @

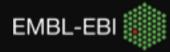
• Syntenic regions are calculated where possible from pairwise (twospecies) whole genome alignments.(e.g. Compara@Ensembl)

•The centre chromosome represents the species of interest, and the smaller chromosomes show syntenic regions with a second species. Blocks are coloured according to the chromosome number on the second species. Synteny between Human chromosome 17 and Zebrafish



Worked Demos and Exercises

Exploring sequence variation and disease



Human v Fish

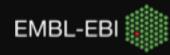
- Disease resources are very human-centric
- More variation information is available for humans

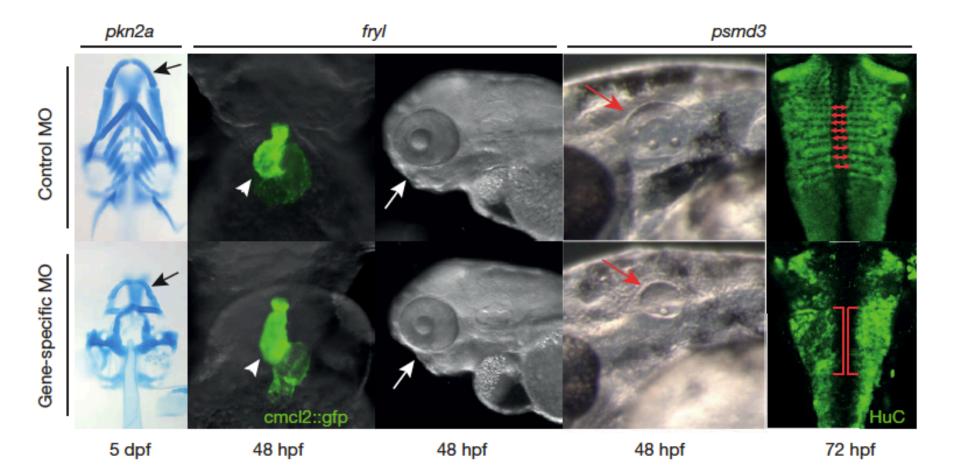

Gene Expression Databases

GEO profiles (NCBI)

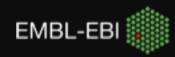
- Gene expression profiles
- Derived from GEO (Gene Expression Omnibus)

Expression Atlas (EBI)

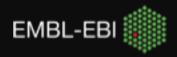

- Baseline Atlas: which gene products and their abundance in "normal" conditions
- Differential Atlas: genes that are up or down regulated in a variety of different experimental Conditions
- Derived from Array Express



Examining phenotypic effect of Mutations


- OMIM
 - Ω nline <u>M</u>endelian Inheritance in <u>M</u>an
 - Catalogue of all known diseases with a genetic component
- COSMIC
 - Catalogue Of Somatic Mutations In Cancer
- DECIPHER
 - DatabasE of genomiC variation and Phenotype in Humans using Ensembl Besources
 - Database of genomic variation data from analysis of patient DNA

Zebrafish as a model for DDD


The Deciphering Developmental Disorders Study (2014) Nature

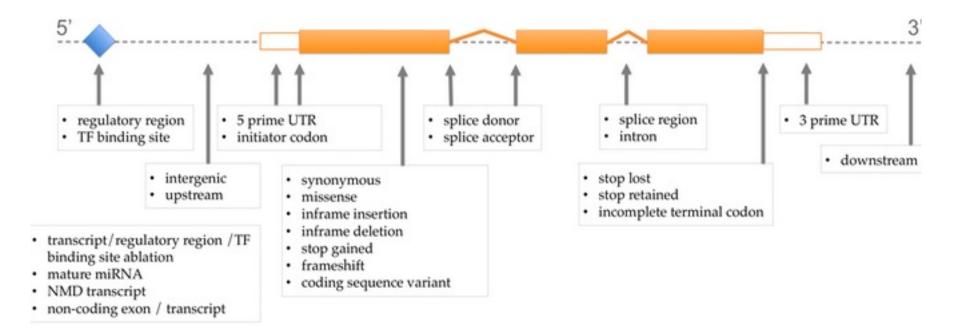
Variation is useful

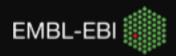
- Determine disease risk
- Predict reactions to environmental triggers
- Predict responsiveness to drug treatments
- Forensics
- Genetic and physical mapping
- Evolution

Variation Types

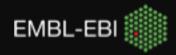
- Cytological level:
 - Chromosome numbers
 - Segmental duplications, rearrangements, and deletions
- Molecular level:
 - Transposable Elements
 - Short Deletions/Insertions, Tandem Repeats
- Sequence level:
 - Single Nucleotide Polymorphisms (SNPs)
 - Small Nucleotide Insertions and Deletions (Indels)

AACA<mark>C</mark>GCCA.... TTCG<mark>G</mark>GGTC.... AGTC<mark>G</mark>ACCG.... AACA<mark>C</mark>GCCA.... TTCG<mark>A</mark>GGTC.... AGTC<mark>A</mark>ACCG.... AACA<mark>T</mark>GCCA.... TTCG<mark>G</mark>GGTC.... AGTC<mark>A</mark>ACCG.... AACA<mark>C</mark>GCCA.... TTCG<mark>G</mark>GGTC.... AGTC<mark>G</mark>ACCG....



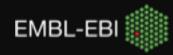


Types of SNPs


Genic, coding SNPs; Genic, non-coding SNPs; Intergenic, regulatory

Variant predictor programs

- PolyPhen and SIFT
 - Provides a scoring for a SNP/Mutation and effect on phenotype
- Variant effect predictor VEP (Ensembl)
- Variant Annotation Integrator (UCSC)


Variant Effect Predictor (VEP)

Predicts:

- Functional consequences of known and unknown variants
- Substitutions, insertions, deletions and structural variants

Output:


- Åffected genes / transcripts / regulatory features / motifs
- Gene symbols
- IDs from Ensembl, CCDS, UniProt, HGVS
- Consequence (missense, stop gained etc)
- Location of variant
- Co-located known variant (s)
- Minor allele frequencies fròm 1000 Genomes Project
- PolyPhen and SIFT scores

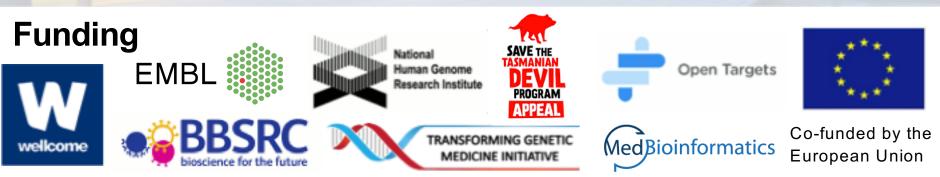
Colour-coding in Ensembl


* SO term	SO description	SO accession	Display term
transcript_ablation	A feature ablation whereby the deleted region includes a transcript feature	<u>SO:0001893</u>	Transcript ablation
splice_acceptor_variant	A splice variant that changes the 2 base region at the 3' end of an intron	SO:0001574	Splice acceptor variant
splice_donor_variant	A splice variant that changes the 2 base region at the 5' end of an intron	SO:0001575	Splice donor variant
stop_gained	A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript	<u>SO:0001587</u>	Stop gained
frameshift_variant	A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three	SO:0001589	Frameshift variant
stop_lost	A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript	SO:0001578	Stop lost
start_lost	A codon variant that changes at least one base of the canonical start codon	SO:0002012	Start lost
transcript_amplification	A feature amplification of a region containing a transcript	SO:0001889	Transcript amplification
inframe_insertion	An inframe non synonymous variant that inserts bases into in the coding sequence	SO:0001821	Inframe insertion
inframe_deletion	An inframe non synonymous variant that deletes bases from the coding sequence	SO:0001822	Inframe deletion
missense_variant	A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved	SO:0001583	Missense variant
protein_altering_variant	A sequence_variant which is predicted to change the protein encoded in the coding sequence	SO:0001818	protein altering variant
splice_region_variant	A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron	SO:0001630	Splice region variant
incomplete_terminal_codon_variant	A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed	SO:0001626	Incomplete terminal codon variant
stop_retained_variant	A sequence variant where at least one base in the terminator codon is changed, but the terminator remains	SO:0001567	Stop retained variant
synonymous_variant	A sequence variant where there is no resulting change to the encoded amino acid	SO:0001819	Synonymous variant
coding_sequence_variant	A sequence variant that changes the coding sequence	SO:0001580	Coding sequence variant
mature_miRNA_variant	A transcript variant located with the sequence of the mature miRNA	SO:0001620	Mature miRNA variant
5_prime_UTR_variant	A UTR variant of the 5' UTR	SO:0001623	5 prime UTR variant
3_prime_UTR_variant	A UTR variant of the 3' UTR	SO:0001624	3 prime UTR variant
non_coding_transcript_exon_variant	A sequence variant that changes non-coding exon sequence in a non-coding transcript	SO:0001792	Non coding transcript exon variant
intron_variant	A transcript variant occurring within an intron	SO:0001627	Intron variant
NMD_transcript_variant	A variant in a transcript that is the target of NMD	SO:0001621	NMD transcript variant
non_coding_transcript_variant	A transcript variant of a non coding RNA gene	SO:0001619	Non coding transcript variant
upstream_gene_variant	A sequence variant located 5' of a gene	SO:0001631	Upstream gene variant
downstream_gene_variant	A sequence variant located 3' of a gene	SO:0001632	Downstream gene variant
TFBS_ablation	A feature ablation whereby the deleted region includes a transcription factor binding site	SO:0001895	TFBS ablation
TFBS_amplification	A feature amplification of a region containing a transcription factor binding site	SO:0001892	TFBS amplification
TF_binding_site_variant	A sequence variant located within a transcription factor binding site	SO:0001782	TF binding site
regulatory_region_ablation	A feature ablation whereby the deleted region includes a regulatory region	SO:0001894	Regulatory region ablation
regulatory_region_amplification	A feature amplification of a region containing a regulatory region	SO:0001891	Regulatory region amplification
feature_elongation	A sequence variant that causes the extension of a genomic feature, with regard to the reference sequence	<u>SO:0001907</u>	Feature elongation
regulatory_region_variant	A sequence variant located within a regulatory region	SO:0001566	Regulatory region variant
feature_truncation	A sequence variant that causes the reduction of a genomic feature, with regard to the reference sequence	SO:0001906	Feature truncation
intergenic_variant	A sequence variant located in the intergenic region, between genes	SO:0001628	Intergenic variant

Warning!

- All these tools make predictions
- Findings should always be confirmed experimentally

Worked Demos and Exercises



Ensembl Acknowledgements

The Entire Ensembl Team

Daniel R. Zerbino¹, Premanand Achuthan¹, Wasiu Akanni¹, M. Ridwan Amode¹, Daniel Barrell^{1,2}, Jyothish Bhai¹, Konstantinos Billis¹, Carla Cummins¹, Astrid Gall¹, Carlos García Giroń¹, Laurent Gil¹, Leo Gordon¹, Leanne Haggerty¹, Erin Haskell¹, Thibaut Hourlier¹, Osagie G. Izuogu¹, Sophie H. Janacek¹, Thomas Juettemann¹, Jimmy Kiang To¹, Matthew R. Laird¹, Ilias Lavidas¹, Zhicheng Liu¹, Jane E. Loveland¹, Thomas Maurel¹, William McLaren¹, Benjamin Moore¹, Jonathan Mudge¹, Daniel N. Murphy¹, Victoria Newman¹, Michael Nuhn¹, Denye Ogeh¹, Chuang Kee Ong¹, Anne Parker¹, Mateus Patricio¹, Harpreet Singh Riat¹, Helen Schuilenburg¹, Dan Sheppard¹, Helen Sparrow¹, Kieron Taylor¹, Anja Thormann¹, Alessandro Vullo¹, Brandon Walts¹, Amonida Zadissa¹, Adam Frankish¹, Sarah E. Hunt¹, Myrto Kostadima¹, Nicholas Langridge¹, Fergal J. Martin¹, Matthieu Muffato¹, Emily Perry¹, Magali Ruffier¹, Dan M. Staines¹, Stephen J. Trevanion¹, Bronwen L. Aken¹, Fiona Cunningham¹, Andrew Yates¹ and Paul Flicek^{1,3}

¹European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK, ²Eagle Genomics Ltd., Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK and ³Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK

