

CMHD Pathology Core Toronto Centre for Phenogenomics 25 Orde St. 3rd fl. Toronto, Ont. M5T 3H7 Tel.(416) 586-8375 Fax (416) 586-5993

contact: Dr. Susan Newbigging email: <u>newbigging@lunenfeld.ca</u>

CMHD Pathology Report

Principle Investigator: Dr. Jacqui White Institute: Wellcome Trust Sanger Institute Address: Attn: Linda Read Wellcome Trust Genome Campus Hinxton Cambridge CB10 1SA, UK

ReportID: Report Date: not completed Pathologist: Dr. H. Adissu

Mouse Genetics Project

Wellcome Trust Sanger Institute Wellcome Trust Genome Campus Hinxton, Cambridge CB10 1SA UK

email: <u>MGPenquiries@sanger.ac.uk</u> <u>Mouse Portal</u> Europhenome

CMHD LabID: N13-916

Relevant History: Phenotypes:

absent pinna reflex abnormal brainstem auditory evoked potential

AnimalID: M00848494 (Male)

Histopathology Findings:

liver (MA:0000358)

Histopath Description:

The overall hepatic lobular architecture is normal. Diffusely, hepatocytes contain intracytoplasmic clear vacuoles (lipid). The lipid vacuoles within the midzonal and periacinar regions are small (2-3 um in diameter) and surround a central nucleus (interpreted as microvesicular lipid). The lipid vacuoles within the portal areas are large (8-12 um in diameter) and displace the nucleus to the margin (macrovesicular lipid).

Morphological Diagnosis:

Distribution: Diffuse; Severity: moderate; MPATH Diagnosis: lipid deposition MPATH:42;

Definitive Diagnosis: Hepatic lipidosis

Histopathology Comments:

Hepatocellular vacuolar change of variable degree suggestive of lipidosis is present in all mice from WTSI, consistent with high lipid diet.

Organ/Tissue Analyzed:

Histopathology examination included the following organs and tissues: brain, trigeminal ganglion, eyes, salivary glands, trachea, lungs, heart, thymus, thyroid gland, parathyroid gland, exocrine and endocrine pancreas, oesophagus, stomach, small intestine, large intestine, liver, gall bladder, spleen, kidneys, adrenal gland, lymph nodes, spinal cord, bone marrow, sternum, femur and tibia with associated skeletal muscles, brown fat, pinna, skin, testis, epididymis, seminal vesicle, and prostate.

AnimalID: M00848492 (Male) Histopathology Findings: brain (MA:0000168) Histopath Description: There is moderate dilation of the fourth ventricle Morphological Diagnosis: Distribution: diffuse; Severity: moderate; MPATH Process Term: degenerative change MPATH: 14 Definitive Diagnosis: Dilation of the brain ventricles

Histopathology Comments:

Mild dilation of the ventricles is a background condition in mice of C57BL/6N background

liver (MA:0000358)

Histopath Description:

The overall hepatic lobular architecture is normal. Diffusely, hepatocytes contain intracytoplasmic clear vacuoles (lipid). The lipid vacuoles within the midzonal and periacinar regions are small (2-3 um in diameter) and surround a central nucleus (interpreted as microvesicular lipid). The lipid vacuoles within the portal areas are large (8-12 um in diameter) and displace the nucleus to the margin (macrovesicular lipid).

Morphological Diagnosis:

Distribution: Diffuse; Severity: moderate; MPATH Diagnosis: lipid deposition MPATH:42;

Definitive Diagnosis:

Hepatic lipidosis

Histopathology Comments:

Hepatocellular vacuolar change of variable degree suggestive of lipidosis is present in all mice from WTSI, consistent with high lipid diet.

mesenteric lymph node (MA:0002829)

Histopath Description: Lymphoma Morphological Diagnosis: MPATH Diagnosis: lymphoid neoplasms MPATH:513; MPATH Process Term: neoplasia MPATH:218 Definitive Diagnosis: Lymphoma

Organ/Tissue Analyzed:

Histopathology examination included the following organs and tissues: brain, trigeminal ganglion, eyes, salivary glands, trachea, lungs, heart, thymus, thyroid gland, parathyroid gland, exocrine and endocrine pancreas, oesophagus, stomach, small intestine, large intestine, liver, gall bladder, spleen, kidneys, adrenal gland, lymph nodes, spinal cord, bone marrow, sternum, femur and tibia with associated skeletal muscles, brown fat, pinna, skin, testis, epididymis, seminal vesicle, and prostate.

AnimalID: M00873340 (Female)

Histopathology Findings:

liver (MA:0000358)

Histopath Description:

The overall hepatic lobular architecture is normal. Diffusely, hepatocytes contain intracytoplasmic clear vacuoles (lipid). The lipid vacuoles within the midzonal and periacinar regions are small (2-3 um in diameter) and surround a central nucleus (interpreted as microvesicular lipid). The lipid vacuoles within the portal areas are large (8-12 um in diameter) and displace the nucleus to the margin (macrovesicular lipid).

Morphological Diagnosis:

Distribution: Diffuse; Severity: moderate; MPATH Diagnosis: lipid deposition MPATH:42;

Definitive Diagnosis:

Hepatic lipidosis

Histopathology Comments:

Hepatocellular vacuolar change of variable degree suggestive of lipidosis is present in all mice from WTSI, consistent with high lipid diet.

Organ/Tissue Analyzed:

Histopathology examination included the following organs and tissues: brain, trigeminal ganglion, eyes, salivary glands, trachea, lungs, heart, thymus, thyroid gland, parathyroid gland, exocrine and endocrine pancreas, oesophagus, stomach, small intestine, large intestine, liver, gall bladder, spleen, kidneys, adrenal gland, lymph nodes, spinal cord, bone marrow, sternum, femur and tibia with associated skeletal muscles, brown fat, pinna, skin, uterus, oviduct, and ovary, and mammary gland.

AnimalID: M00856329 (Female) Histopathology Findings: liver (MA:0000358)

Histopath Description:

The overall hepatic lobular architecture is normal. Diffusely, hepatocytes contain intracytoplasmic clear vacuoles (lipid). The lipid vacuoles within the midzonal and periacinar regions are small (2-3 um in diameter) and surround a central nucleus (interpreted as microvesicular lipid). The lipid vacuoles within the portal areas are large (8-12 um in diameter) and displace the nucleus to the margin (macrovesicular lipid).

Morphological Diagnosis:

Distribution: Diffuse; **Severity:** moderate; **MPATH Diagnosis:** lipid deposition MPATH:42;

Definitive Diagnosis:

Hepatic lipidosis

Histopathology Comments:

Hepatocellular vacuolar change of variable degree suggestive of lipidosis is present in all mice from WTSI, consistent with high lipid diet.

eye (MA:0000261)

Histopath Description:

A 100 stalk of fibrous connective tissue containing a small artery in the center extends from the area of the optic disc towards the posterior vitreous. A small fragment of fibrous tissue is freely present within the vitreous anterior to this stalk (assumed to be extension of the stalk).

Morphological Diagnosis:

MPATH Diagnosis: developmental and structural abnormality MPATH:55; **MPATH Process Term:** developmental and structural abnormality MPATH:55

Definitive Diagnosis:

Persistent hyaloid artery

Histopathology Comments:

hyaloid artery remnant is a rare condition in which there remain some parts of the hyaloid artery. The posterior hyaloid vascular system of mice usually undergoes involution in the first month of life (Richard et al., 2000).

Organ/Tissue Analyzed:

Histopathology examination included the following organs and tissues: brain, trigeminal ganglion, eyes, salivary glands, trachea, lungs, heart, thymus, thyroid gland, parathyroid gland, exocrine and endocrine pancreas, oesophagus, stomach, small intestine, large intestine, liver, gall bladder, spleen, kidneys, adrenal gland, lymph nodes, spinal cord, bone marrow, sternum, femur and tibia with associated skeletal muscles, brown fat, pinna, skin, uterus, oviduct, and ovary, and mammary gland.

Report Summary and Recommendation:

We did not find lesions in the brain to explain absent pinna reflex abnormal brainstem auditory evoked potential. The auricular tissues were not available for examination. Inflammation of the ear canals (otitis interna) is a common cause for these phenotypes. We recommend the inclusion of the auricular tissues in mice with similar phenotypes.

Line summary: none