
The caTools Package
November 15, 2005

Version 1.5

Date Nov 10 2005

Title Miscellaneous tools: I/O, moving window statistics, etc.

Author Jarek Tuszynski <jaroslaw.w.tuszynski@saic.com>

Maintainer Jarek Tuszynski <jaroslaw.w.tuszynski@saic.com>

Depends R (>= 2.2.0), bitops

SuggestsMASS, rpart, verification, ROC, ROCR, Epi, limma

Description Contains several basic utility functions including: moving (rolling, running) window
statistic functions, read/write for GIF and ENVI binary files, fast calculation of AUC, LogitBoost
classifier, base64 encoder/decoder, round-off error free sum and cumsum, etc.

License The caMassClass Software License, Version 1.0 (See COPYING file or
“http://ncicb.nci.nih.gov/download/camassclasslicense.jsp”)

URL http://ncicb.nci.nih.gov/download/index.jsp

R topics documented:

ENVI . 2
read.gif & write.gif . 4
LogitBoost .8
base64 .10
bin2raw & raw2bin .12
colAUC .14
combs .16
predict.LogitBoost .17
runfunc .18
sample.split .23
sum.exact .24
trapz .26

Index 28

1

2 ENVI

ENVI Read and write binary data in ENVI format

Description

Read and write binary data in ENVI format, which is supported by most GIS software.

Usage

X=read.ENVI(filename, headerfile=paste(filename, ".hdr", sep=""))
write.ENVI (X, filename, interleave = c("bsq", "bil", "bip"))

Arguments

X data to be saved in ENVI file. Can be a matrix or 3D array.

filename character string with name of the file (connection)

headerfile optional character string with name of the header file

interleave optional character string specifying interleave to be used

Details

ENVI binary files use a generalized raster data format that consists of two parts:

• binary file - flat binary file equivalent to memory dump, as produced bywriteBin in R or
fwrite in C/C++.

• header file - small text (ASCII) file containing the metadata associated with the binary file.
This file can contain the following fields, followed by equal sign and a variable:

– samples - number of columns

– lines - number of rows

– bands - number of bands (channels, planes)

– data type - following types are supported:

* 1 - 1-byte unsigned integer

* 2 - 2-byte signed integer

* 3 - 4-byte signed integer

* 4 - 4-byte float

* 5 - 8-byte double

* 9 - 2x8-byte complex number made up from 2 doubles

* 12 - 2-byte unsigned integer

– header offset - number of bytes to skip before raster data starts in binary file.

– interleave - Permutations of dimensions in binary data:

* BSQ- Band Sequential (X[col,row,band])

* BIL - Band Interleave by Line (X[col,band,row])

* BIP - Band Interleave by Pixel (X[band,col,row])

– byte order - the endian-ness of the saved data:

ENVI 3

* 0 - means little-endian byte order, format used on PC/Intel machines

* 1 - means big-endian (aka IEEE, aka "network") byte order, format used on UNIX
and Macintosh machines

Fieldssamples , lines , bands , data type are required, whileheader offset , interleave ,
byte order are optional. All of them are in form of integers exceptinterleave which is a
string.

This generic format allows reading of many raw file formats, including those with embedded header
information. Also it is a handy binary format to exchange data between PC and UNIX/Mac ma-
chines, as well as different languages like: C, Fortran, Matlab, etc. Especially since header files are
simple enough to edit by hand.

File type supported by most of GIS (geographic information system) software including: ENVI
software, Freelook (free file viewer by ENVI), ArcGIS, etc.

Value

Functionread.ENVI returns either a matrix or 3D array. Functionwrite.ENVI does not return
anything.

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

See Also

Displaying of images can be done through functions:image , image.plot andadd.image
from fieldsor plot.im from spatstat.

ENVI files are practically C-style memory-dumps as performed byreadBin and writeBin
functions plus separate meta-data header file.

GIF file formats can also store 3D data (seeread.gif andwrite.gif functions).

Packages related to GIS data:shapefiles, maptools, sp, spdep, adehabitat, GRASS, PBSmap-
ping.

Examples

X = array(1:60, 3:5)
write.ENVI(X, "temp.nvi")
Y = read.ENVI("temp.nvi")
stopifnot(X == Y)
readLines("temp.nvi.hdr")

d = c(20,30,40)
X = array(runif(prod(d)), d)
write.ENVI(X, "temp.nvi", interleave="bil")
Y = read.ENVI("temp.nvi")
stopifnot(X == Y)
readLines("temp.nvi.hdr")

file.remove("temp.nvi")
file.remove("temp.nvi.hdr")

4 read.gif & write.gif

read.gif & write.gif
Read and Write Images in GIF format

Description

Read and write files in GIF format. Files can contain single images or multiple frames. Multi-frame
images are saved as animated GIF’s.

Usage

read.gif(filename, frame=0, flip=FALSE, verbose=FALSE)
write.gif(image, filename, col="gray", scale=c("smart", "never", "always"),

transparent=NULL, comment=NULL, delay=0, flip=FALSE, interlace=FALSE)

Arguments

filename Character string with name of the file. In case ofread.gif URL’s are also
allowed.

image Data to be saved as GIF file. Can be a 2D matrix or 3D array. Allowed formats
in order of preference:

• array of integers in [0:255] range - this is format required by GIF file, and
unlessscale=’always’ , numbers will not be rescaled. Each pixeli
will have associated colorcol[image[i]+1] . This is the only format
that can be safely used with non-continuous color maps.

• array of doubles in [0:1] range - Unlessscale=’never’ the array will
be multiplied by 255 and rounded.

• array of numbers in any range - will be scaled or clipped depending on
scale option.

frame Request specific frame from multiframe (i.e., animated) GIF file. By default all
frames are read from the file (frame=0). Settingframe=1 will ensure that
output is always a 2D matrix containing the first frame. Some files have to be
read frame by frame, for example: files with subimages of different sizes and
files with both global and local color-maps (palettes).

col Color palette definition. Several formats are allowed:

• array (list) of colors in the same format as output of palette functions like
rainbow or heat.colors (ex. ’col=rainbow(256) ’). Prefered
format for precise color control.

• palette function itself (ex. ’col=rainbow ’). Prefered format if not sure
how many colors are needed.

• character string with name of internally defined palette. At the moment
only "gray" and "jet" (Matlab’s jet palette) are defined.

• character string with name of palette function (ex. ’col="rainbow" ’)

Usually palette will consist of 256 colors, which is the maximum allowed by
GIF format. By default, grayscale will be used.

scale There are three approaches to rescaling the data to required [0, 255] integer
range:

read.gif & write.gif 5

• "smart" - Data is fitted to [0:255] range, only if it falls outside of it. Also, if
image is an array of doubles in range [0, 1] than data is multiplied by 255.

• "never" - Pixels with intensities outside of the allowed range are clipped to
either 0 or 255. Warning is given.

• "always" - Data is always rescaled. Ifimage is a array of doubles in range
[0, 1] than data is multiplied by 255; otherwise it is scaled to fit to [0:255]
range.

delay In case of 3D arrays the data will be stored as animated GIF, anddelay controls
speed of the animation. It is number of hundredths (1/100) of a second of delay
between frames.

comment Comments in text format are allowed in GIF files. Few file viewers can access
them.

flip By default data is stored in the same orientation as data displayed byprint
function: row 1 is on top, image x-axis corresponds to columns and y-axis cor-
responds to rows. However functionimage adopted different standard: column
1 is on the bottom, image x-axis corresponds to rows and y-axis corresponds to
columns. Setflip to TRUEto get the orientation used byimage .

transparent Optional color number to be shown as transparent. Has to be an integer in
[0:255] range. NA’s in theimage will be set to transparent.

interlace GIF files allow image rows to beinterlace d, or reordered in such a way as to
allow viewer to display image using 4 passes, making image sharper with each
pass. Irrelevant feature on fast computers.

verbose Display details sections encountered while reading GIF file.

Details

Palettes often contain continuous colors, such that swapping palettes or rescaling of the image date
does not affect image apperance in a drastic way. However, when working with non-continuous
color-maps one should always provide image in [0:255] integer range (and setscale="never"),
in order to prevent scaling.

If NAor other infinite numbers are found in theimage by write.gif , they will be converted to
numbers given bytransparent . If transparent color is not provided than it will be created,
possibly after reshretching.

There are some GIF files not fully supported byread.gif function:

• "Plain Text Extension" is not supported, and will be ignored.

• Multi-frame files with unique settings for each frame have to be read frame by frame. Possible
settings include: frames with different sizes, frames using local color maps and frames using
individual transparency colors.

Value

Functionwrite.gif does not return anything. Functionread.gif returns a list with following
fields:

image matrix or 3D array of integers in [0:255] range.

col color palette definitions with number of colors ranging from 1 to 256. In case
whenframe=0 only the first (usually global) color-map (palette) is returned.

comment Comments imbedded in GIF File

6 read.gif & write.gif

transparent color number corresponding to transparent color. If none was stated than NULL,
otherwise an integer in [0:255] range. In order forimage to display transparent
colors correctly one should usey$col[y$transparent+1] = NA .

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉. Encoding Algorithm adapted from code
by Christoph Hohmann, which was adapted from code by Michael Mayer. Parts of decoding algo-
rithm adapted from code by David Koblas.

References

Ziv, J., Lempel, A. (1977)An Universal Algorithm for Sequential Data Compression, IEEE Trans-
actions on Information Theory, May 1977.

Copy of official file format descriptionhttp://www.danbbs.dk/%7Edino/whirlgif/
gif89.html

Nicely explained file format descriptionhttp://semmix.pl/color/exgraf/eeg11.htm

Christoph Hohmann code and documentation of encoding algorithmhttp://members.aol.
com/rf21exe/gif.htm

Michael A, Mayer codehttp://www.danbbs.dk/%7Edino/whirlgif/gifcode.html

Discussion of GIF file legal status can be found inhttp://www.cloanto.com/users/mcb/
19950127giflzw.html .

Interesting page on one way of doing animations in R (with help of outside calls) can be found at
http://pinard.progiciels-bpi.ca/plaisirs/animations/index.html .

See Also

Displaying of images can be done through functions:image (part of R), image.plot and
add.image from fieldsor plot.im from spatstatpackage, and possibly many other functions.

Displayed image can be saved in GIF, JPEG or PNG format using several different functions:GDD
from packageGDD, HTMLplot from packageR2HTML and functionsjpeg andpng .

Functions for directly reading and writing image files:

• read.pnm andwrite.pnm from pixmap package can process PBM, PGM and PPM im-
ages (file types supported by ImageMagic software)

• read.ENVI andwrite.ENVI from this package can process files in ENVI format. ENVI
files can store 2D images and 3D data (multi-frame images), and are supported by most GIS
(Geographic Information System) software including free "freelook".

• read.jpeg from rimage package can read JPEG files

There are many functions for creating and managing color palettes:

• R provides functions for creating palettes of continuous colors:rainbow , topo.colors ,
heat.colors , terrain.colors.colors , gray

• tim.colors in packagefieldscontains palette similar to Matlab’s jet palette (see examples
for simpler implementation)

• rich.colors in packagegplotscontains two palettes of continuous colors.

• Functionsbrewer.pal fromRColorBrewer package andcolorbrewer.palette from
epitoolspackage contain tools for generating palettes

• rgb andhsv creates palette from RGB or HSV 3-vectors.

• col2rgb translates palette colors to RGB 3-vectors.

http://www.danbbs.dk/%7Edino/whirlgif/gif89.html
http://www.danbbs.dk/%7Edino/whirlgif/gif89.html
http://semmix.pl/color/exgraf/eeg11.htm
http://members.aol.com/rf21exe/gif.htm
http://members.aol.com/rf21exe/gif.htm
http://www.danbbs.dk/%7Edino/whirlgif/gifcode.html
http://www.cloanto.com/users/mcb/19950127giflzw.html
http://www.cloanto.com/users/mcb/19950127giflzw.html
http://pinard.progiciels-bpi.ca/plaisirs/animations/index.html

read.gif & write.gif 7

Examples

visual comparison between image and plot
write.gif(volcano, "volcano.gif", col=terrain.colors, flip=TRUE,

scale="always", comment="Maunga Whau Volcano")
y = read.gif("volcano.gif", verbose=TRUE, flip=TRUE)
image(y$image, col=y$col, main=y$comment, asp=1)
browseURL("file://volcano.gif") # inspect GIF file on your hard disk

test reading & writing
col = heat.colors(256) # choose colormap
trn = 222 # set transparent color
com = "Hello World" # imbed comment in the file
write.gif(volcano, "volcano.gif", col=col, transparent=trn, comment=com)
y = read.gif("volcano.gif")
stopifnot(volcano==y$image, col==y$col, trn==y$transparent, com==y$comment)
browseURL("file://volcano.gif") # inspect GIF file on your hard disk

create simple animated GIF (using image function in a loop is very rough,
but only way I know of displaying 'animation" in R)
x <- y <- seq(-4*pi, 4*pi, len=200)
r <- sqrt(outer(x^2, y^2, "+"))
image = array(0, c(200, 200, 10))
for(i in 1:10) image[,,i] = cos(r-(2*pi*i/10))/(r^.25)
write.gif(image, "wave.gif", col="rainbow")
y = read.gif("wave.gif")
for(i in 1:10) image(y$image[,,i], col=y$col, breaks=(0:256)-0.5, asp=1)
browseURL("file://wave.gif") # inspect GIF file on your hard disk

Another neat animation of Mandelbrot Set
jet.colors = colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F",

"yellow", "#FF7F00", "red", "#7F0000")) # define "jet" palette
m = 400
C = complex(real=rep(seq(-1.8,0.6, length.out=m), each=m),

imag=rep(seq(-1.2,1.2, length.out=m), m))
C = matrix(C,m,m)
Z = 0
X = array(0, c(m,m,20))
for (k in 1:20) {

Z = Z^2+C
X[,,k] = exp(-abs(Z))

}
image(X[,,k], col=jet.colors(256))
write.gif(X, "Mandelbrot.gif", col=jet.colors, delay=100)
browseURL("file://Mandelbrot.gif") # inspect GIF file on your hard disk
file.remove("wave.gif", "volcano.gif", "Mandelbrot.gif")

Display interesting images from the web
Not run:
url = "http://www.ngdc.noaa.gov/seg/cdroms/ged_iib/datasets/b12/gifs/eccnv.gif"
y = read.gif(url, verbose=TRUE, flip=TRUE)
image(y$image, col=y$col, breaks=(0:length(y$col))-0.5, asp=1,

main="January Potential Evapotranspiration mm/mo")
url = "http://www.ngdc.noaa.gov/seg/cdroms/ged_iib/datasets/b01/gifs/fvvcode.gif"
y = read.gif(url, flip=TRUE)
y$col[y$transparent+1] = NA # mark transparent color in R way
image(y$image, col=y$col[1:87], breaks=(0:87)-0.5, asp=1,

8 LogitBoost

main="Vegetation Types")
url = "http://talc.geo.umn.edu/people/grads/hasba002/erosion_vids/run2/r2_dems_5fps(8color).gif"
y = read.gif(url, verbose=TRUE, flip=TRUE)
for(i in 2:dim(y$image)[3])

image(y$image[,,i], col=y$col, breaks=(0:length(y$col))-0.5,
asp=1, main="Erosion in Drainage Basins")

End(Not run)

LogitBoost LogitBoost Classification Algorithm

Description

Train logitboost classification algorithm using decision stumps (one node decision trees) as weak
learners.

Usage

LogitBoost(xlearn, ylearn, nIter=ncol(xlearn))

Arguments

xlearn A matrix or data frame with training data. Rows contain samples and columns
contain features

ylearn Class labels for the training data samples. A response vector with one label for
each row/component ofxlearn . Can be either a factor, string or a numeric
vector.

nIter An integer, describing the number of iterations for which boosting should be
run, or number of decision stumps that will be used.

Details

The function was adapted from logitboost.R function written by Marcel Dettling. See references
and "See Also" section. The code was modified in order to make it much faster for very large data
sets. The speed-up was achieved by implementing a internal version of decision stump classifier
instead of using calls torpart . That way, some of the most time consuming operations were
precomputed once, instead of performing them at each iteration. Another difference is that training
and testing phases of the classification process were split into separate functions.

Value

An object of class "LogitBoost" including components:

Stump List of decision stumps (one node decision trees) used:

• column 1: feature numbers or each stump, or which column each stump
operates on

• column 2: threshold to be used for that column
• column 3: bigger/smaller info: 1 means that if values in the column are

above threshold than corresponding samples will be labeled aslablist[1] .
Value "-1" means the opposite.

If there are more than two classes, than several "Stumps" will becbind ’ed

lablist names of each class

LogitBoost 9

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

References

Dettling and Buhlmann (2002),Boosting for Tumor Classification of Gene Expression Data, avail-
able on the web pagehttp://stat.ethz.ch/~dettling/boosting.html .

http://www.cs.princeton.edu/~schapire/boost.html

See Also

• predict.LogitBoost has prediction half of LogitBoost code

• logitboost function fromboost library

• logitboost function from logitboost library (not in CRAN or BioConductor but can be
found athttp://stat.ethz.ch/~dettling/boosting.html) is very similar but
much slower on very large datasets. It also perform optional cross-validation.

Examples

data(iris)
Data = iris[,-5]
Label = iris[, 5]

basic interface
model = LogitBoost(Data, Label, nIter=20)
Lab = predict(model, Data)
Prob = predict(model, Data, type="raw")
t = cbind(Lab, Prob)
t[1:10,]

two alternative call syntax
p=predict(model,Data)
q=predict.LogitBoost(model,Data)
pp=p[!is.na(p)]; qq=q[!is.na(q)]
stopifnot(pp == qq)

accuracy increases with nIter (at least for train set)
table(predict(model, Data, nIter= 2), Label)
table(predict(model, Data, nIter=10), Label)
table(predict(model, Data), Label)

example of spliting the data into train and test set
mask = sample.split(Label)
model = LogitBoost(Data[mask,], Label[mask], nIter=10)
table(predict(model, Data[!mask,], nIter=2), Label[!mask])
table(predict(model, Data[!mask,]), Label[!mask])

http://stat.ethz.ch/~dettling/boosting.html
http://www.cs.princeton.edu/~schapire/boost.html
http://stat.ethz.ch/~dettling/boosting.html

10 base64

base64 Convert R vectors to/from the Base64 format

Description

Convert R vectors of any type to and from the Base64 format for encrypting any binary data as
string using alphanumeric subset of ASCII character set.

Usage

z = base64encode(x, size=NA, endian=.Platform$endian)
x = base64decode(z, what, size=NA, signed = TRUE, endian=.Platform$endian)

Arguments

x vector or any structure that can be converted to a vector byas.vector func-
tion. Strings are also allowed.

z String with Base64 code, using [A-Z,a-z,0-9,+,/,=] subset of characters

what Either an object whose mode will give the mode of the vector to be created,
or a character vector of length one describing the mode: one of ’"numeric",
"double", "integer", "int", "logical", "complex", "character", "raw". Same as
variablewhat in readBin functions.

size integer. The number of bytes per element in the byte stream stored inr . The
default, ’NA’, uses the natural size. Same as variablesize in readBin func-
tions.

signed logical. Only used for integers of sizes 1 and 2, when it determines if the quan-
tity stored as raw should be regarded as a signed or unsigned integer. Same as
variablesigned in readBin functions.

endian If provided, can be used to swap endian-ness. Using ’"swap"’ will force swap-
ping of byte order. Use ’"big"’ (big-endian, aka IEEE, aka "network") or ’"lit-
tle"’ (little-endian, format used on PC/Intel machines) to indicate type of data
encoded in "raw" format. Same as variableendian in readBin functions.

Details

The Base64 encoding is designed to encode arbitrary binary information for transmission by elec-
tronic mail. It is defined by MIME (Multipurpose Internet Mail Extensions) specification RFC
1341, RFC 1421, RFC 2045 and others. Triplets of 8-bit octets are encoded as groups of four
characters, each representing 6 bits of the source 24 bits. Only a 65-character subset ([A-Z,a-z,0-
9,+,/,=]) present in all variants of ASCII and EBCDIC is used, enabling 6 bits to be represented per
printable character.

Defaultsize s for different types ofwhat : logical - 4, integer - 4, double - 8 , complex
- 16,character - 2, raw - 1.

Value

Functionbase64encode returns a string with Base64 code. Functionbase64decode returns
vector of appropriate mode and length (seex above).

base64 11

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

References

• Base64 description inConnected: An Internet Encyclopediahttp://www.freesoft.
org/CIE/RFC/1521/7.htm

• MIME RFC 1341http://www.faqs.org/rfcs/rfc1341.html

• MIME RFC 1421http://www.faqs.org/rfcs/rfc1421.html

• MIME RFC 2045http://www.faqs.org/rfcs/rfc2045.html

• Portions of the code are based on Matlab code by Peter Acklamhttp://home.online.
no/~pjacklam/matlab/software/util/datautil/

See Also

xmlValue from XML package reads XML code which sometimes is encoded in Base64 format.

readBin , writeBin

Examples

x = (10*runif(10)>5) # logical
for (i in c(NA, 1, 2, 4)) {

y = base64encode(x, size=i)
z = base64decode(y, typeof(x), size=i)
stopifnot(x==z)

}
print("Checked base64 for encode/decode logical type")

x = as.integer(1:10) # integer
for (i in c(NA, 1, 2, 4)) {

y = base64encode(x, size=i)
z = base64decode(y, typeof(x), size=i)
stopifnot(x==z)

}
print("Checked base64 encode/decode for integer type")

x = (1:10)*pi # double
for (i in c(NA, 4, 8)) {

y = base64encode(x, size=i)
z = base64decode(y, typeof(x), size=i)
stopifnot(mean(abs(x-z))<1e-5)

}
print("Checked base64 for encode/decode double type")

x = log(as.complex(-(1:10)*pi)) # complex
y = base64encode(x)
z = base64decode(y, typeof(x))
stopifnot(x==z)
print("Checked base64 for encode/decode complex type")

x = "Chance favors the prepared mind" # character
y = base64encode(x)
z = base64decode(y, typeof(x))
stopifnot(x==z)

http://www.freesoft.org/CIE/RFC/1521/7.htm
http://www.freesoft.org/CIE/RFC/1521/7.htm
http://www.faqs.org/rfcs/rfc1341.html
http://www.faqs.org/rfcs/rfc1421.html
http://www.faqs.org/rfcs/rfc2045.html
http://home.online.no/~pjacklam/matlab/software/util/datautil/
http://home.online.no/~pjacklam/matlab/software/util/datautil/

12 bin2raw & raw2bin

print("Checked base64 for encode/decode character type")

bin2raw & raw2bin OBSOLETE. Convert R vectors to/from the raw binary format.

Description

OBSOLETE FUNCTIONS TO BE RETIRED IN THE NEXT VERSION OF THE LIBRARY.
Convert R vectors of any type to and from the raw binary format, stored as vector of type "raw".

Usage

r = bin2raw(x, size=NA, endian=.Platform$endian)
x = raw2bin(r, what, size=NA, signed = TRUE, endian=.Platform$endian)

Arguments

x vector or any structure that can be converted to a vector byas.vector func-
tion. Strings are also allowed.

r vector of type "raw"

what Either an object whose mode will give the mode of the vector to be created,
or a character vector of length one describing the mode: one of ’"numeric",
"double", "integer", "int", "logical", "complex", "character", "raw". Same as
variablewhat in readBin andbase64decode functions.

size integer. The number of bytes per element in the byte stream stored inr . The
default, ’NA’, uses the natural size. See details.

signed logical. Only used for integers of sizes 1 and 2, when it determines if the quantity
stored as raw should be regarded as a signed or unsigned integer.

endian If provided, can be used to swap endian-ness. Using ’"swap"’ will force swap-
ping of byte order. Use ’"big"’ (big-endian, aka IEEE, aka "network") or ’"lit-
tle"’ (little-endian, format used on PC/Intel machines) to indicate type of data
encoded in "raw" format.

Details

In R-2.2.0 versionreadBin functionswriteBin were modified, makingbin2raw andraw2bin
functions mostly obsolete. As a result both function will be removed in the next version. Func-
tion writeBin(x, raw(), ...) does exactly the same asbin2raw(x, ...) . Func-
tion raw2bin(r, what, size=size, ...) is implemented asreadBin(r, what,
n=length(r)%/%size, size=size, ...) , assuming size is notNA.

Value

Functionbin2raw returns vector of raw values (seer above), where each 1-byte raw value cor-
respond to 1-byte of 1-byte of the binary form of other types. Length of the vector is going to be
"number of bytes of a single element in arrayx" times length(x) .

Functionraw2bin returns vector of appropriate mode and length (seex above), where each 1-
byte raw value correspond to 1-byte of the binary form of other types. Length of the vector is going
to be number of bytes per element in arrayx times length(x) . If parameterwhat is equal to
"character" than a string (of length 1) is returned instead of vector f characters.

bin2raw & raw2bin 13

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

See Also

readBin , writeBin

Examples

print(x <- (1:5)*pi)
print(y <- bin2raw(x))
print(z <- raw2bin(y,"double"))

x = (10*runif(10)>5) # logical
for (i in c(NA, 1, 2, 4)) {

y = bin2raw(x, size=i)
z = raw2bin(y,typeof(x), size=i)
stopifnot(x==z)

}
print("Checked bin2raw and raw2bin conversion for logical type")

x = as.integer(1:10) # integer
for (i in c(NA, 1, 2, 4)) {

y = bin2raw(x, size=i)
z = raw2bin(y,typeof(x), size=i)
stopifnot(x==z)

}
print("Checked bin2raw and raw2bin conversion for integer type")

x = (1:10)*pi # double
for (i in c(NA, 4, 8)) {

y = bin2raw(x, size=i)
z = raw2bin(y,typeof(x), size=i)
stopifnot(mean(abs(x-z))<1e-5)

}
print("Checked bin2raw and raw2bin conversion for double type")

x = log(as.complex(-(1:10)*pi)) # complex
y = bin2raw(x)
z = raw2bin(y,typeof(x))
stopifnot(x==z)
print("Checked bin2raw and raw2bin conversion for complex type")

x = "Chance favors the prepared mind" # character
y = bin2raw(x)
z = raw2bin(y,typeof(x))
stopifnot(x==z)
print("Checked bin2raw and raw2bin conversion for character type")

x=(1:10000000)*pi
system.time(raw2bin(bin2raw(x),typeof(x)))
system.time(readBin(writeBin(x, raw()), typeof(x), length(x)))

14 colAUC

colAUC Columnwise Area Under ROC Curve (AUC)

Description

Calculate Area Under the ROC Curve (AUC) for every column of a matrix. Also, can be used to
plot the ROC curves.

Usage

auc = colAUC(X, y, plotROC=FALSE, alg=c("Wilcoxon","ROC"))

Arguments

X A matrix or data frame. Rows contain samples and columns contain features/variables.

y Class labels for theX data samples. A response vector with one label for each
row/component ofX. Can be either a factor, string or a numeric vector.

plotROC Plot ROC curves. Use only for small number of features. IfTRUE, will set alg
to "ROC".

alg algorithm to use: "ROC" integrates ROC curves, while "Wilcoxon" uses Wilcoxon
Rank Sum Test to get the same results. Default "Wilcoxon" is faster. This argu-
ment is mostly provided for verification.

Details

AUC is a very useful measure of similarity between two classes measuring area under "Receiver
Operating Characteristic" or ROC curve. In case of data with no ties all sections of ROC curve are
either horizontal or vertical, in case of data with ties diagonal sections can also occur. Area under
the ROC curve is calculated usingtrapz function. AUC is always in between 0.5 (two classes
are statistically identical) and 1.0 (there is a threshold value that can achieve a perfect separation
between the classes).

Area under ROC Curve (AUC) measure is very similar to Wilcoxon Rank Sum Test (seewilcox.test)
and Mann-Whitney U Test.

There are numerous other functions for calculating AUC in other packages. Unfortunatelly none
of them had all the properties I needed for use as classification preprocessing, to lower the dimen-
tionality of the data (from tens of thousands to hundreds) before applying standard classification
algorithms.

The main properties of this code are:

• Ability to work with multi-dimentional data (X can have many columns).

• Ability to work with multi-class datasets (y can have more than 2 different values).

• Speed - this code was written to calculate AUC’s of large number of features, fast.

• Returned AUC is always bigger than 0.5, which is equivalent of testing for each feature
colAUC(x,y) andcolAUC(-x,y) and returning the value of the bigger one.

If those properties do not fit your problem, see "See Also" and "Examples" sections for AUC func-
tions in other packages that might be a better fit for your needs.

colAUC 15

Value

An output is a single matrix with the same number of columns asX and "n choose 2" (n!
(n−2)!2!)

number of rows, where n is number of unique labels iny list. For example, ify contains only two
unique class labels (length(unique(lab))==2) than output matrix will have a single row
containing AUC of each column. If more than two unique labels are present than AUC is calculated
for every possible pairing of classes ("n choose 2" of them).

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

References

• Mason, S.J. and Graham, N.E. (1982)Areas beneath the relative operating characteristics
(ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation,
Q. J. R. Meteorol. Soc. textbf30 291-303.

• Seehttp://www.medicine.mcgill.ca/epidemiology/hanley/software/ to
find articles below:

– Hanley and McNeil (1982),The Meaning and Use of the Area under a Receiver Operating
Characteristic (ROC) Curve, Radiology 143: 29-36.

– Hanley and McNeil (1983),A Method of Comparing the Areas under ROC curves derived
from same cases, Radiology 148: 839-843.

– McNeil and Hanley (1984),Statistical Approaches to the Analysis of ROC curves, Medi-
cal Decision Making 4(2): 136-149.

• Seehttp://rocr.bioinf.mpi-sb.mpg.de/evaluation_literature.html
for bibliography ofROCR package.

See Also

• wilcox.test andpwilcox

• AUCfrom ROC package

• performance from ROCR package

• auROCfrom limma package

• ROCfrom Epi package

• roc.area from verification package

• rcorr.cens from Hmisc package

Examples

Load MASS library with "cats" data set that have following columns: sex, body
weight, hart weight. Calculate how good weights are in predicting sex of cats.
2 classes; 2 features; 144 samples
library(MASS); data(cats);
colAUC(cats[,2:3], cats[,1], plotROC=TRUE)

Load rpart library with "kyphosis" data set that records if kyphosis
deformation was present after corrective surgery. Calculate how good age,
number and position of vertebrae are in predicting succesful operation.
2 classes; 3 features; 81 samples
library(rpart); data(kyphosis);
colAUC(kyphosis[,2:4], kyphosis[,1], plotROC=TRUE)

http://www.medicine.mcgill.ca/epidemiology/hanley/software/
http://rocr.bioinf.mpi-sb.mpg.de/evaluation_literature.html

16 combs

Example of 3-class 4-feature 150-sample iris data
data(iris)
colAUC(iris[,-5], iris[,5], plotROC=TRUE)

Compare calAUC with other functions designed for similar purpose
auc = matrix(NA,10,3)
rownames(auc) = c("colAUC(alg='ROC')", "colAUC(alg='Wilcox')", "wilcox.test",

"sum(rank)", "roc.area", "AUC", "performance", "ROC", "auROC", "rcorr.cens")
colnames(auc) = c("AUC(x)", "AUC(-x)", "AUC(x+noise)")
X = cbind(cats[,2], -cats[,2], cats[,2]+rnorm(nrow(cats)))
y = ifelse(cats[,1]=='F',0,1)
for (i in 1:3) {

x = X[,i]
x1 = x[y==1]; n1 = length(x1); # prepare input data ...
x2 = x[y==0]; n2 = length(x2); # ... into required format
auc[1,i] = colAUC(x, y, alg="ROC")
auc[2,i] = colAUC(x, y, alg="Wilcox")
auc[3,i] = wilcox.test(x1, x2, exact=0)$statistic / (n1*n2)
r = rank(c(x1,x2))
auc[4,i] = (sum(r[1:n1]) - n1*(n1+1)/2) / (n1*n2)
if (require("verification"))

auc[5,i] = roc.area(y, x)$A.tilda
if (require("ROC"))

auc[6,i] = AUC(rocdemo.sca(y, x, dxrule.sca))
if (require("ROCR"))

auc[7,i] = performance(prediction(x, y),"auc")@y.values[[1]]
if (require("Epi")) auc[8,i] = ROC(x,y,grid=0)$AUC
if (require("limma")) auc[9,i] = auROC(y, x)
if (require("Hmisc")) auc[10,i] = rcorr.cens(x, y)[1]

}
print(auc)
stopifnot(auc[1,]==auc[2,]) # results of 2 alg's in colAUC must be the same
stopifnot(auc[1,1]==auc[3,1]) # compare with wilcox.test results

time trials
x = matrix(runif(100*1000),100,1000)
y = (runif(100)>0.5)
system.time(colAUC(x,y,alg="ROC"))
system.time(colAUC(x,y,alg="Wilcox"))

combs All Combinations of k Elements from Vector v

Description

Finds all unordered combinations ofk elements from vectorv .

Usage

combs(v,k)

predict.LogitBoost 17

Arguments

v Any numeric vector

k Number of elements to choose from vectorv . Integer smaller or equal than
length ofv .

Value

combs(v,k) (wherev has lengthn) creates a matrix with n!
(n−k)!k! (n choosek) rows andk

columns containing all possible combinations ofn elements takenk at a time.

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

See Also

I discovered recently that R packages already have two functions with similar capabilities:combinations
from gTools package andnchoosek from vsn package. Also similar to Matlab’snchoosek
function (http://www.mathworks.com/access/helpdesk/help/techdoc/ref/nchoosek.
html)

Examples

combs(2:5, 3) # display examples
combs(c("cats", "dogs", "mice"), 2)

a = combs(1:4, 2)
b = matrix(c(1,1,1,2,2,3,2,3,4,3,4,4), 6, 2)
stopifnot(a==b)

predict.LogitBoost Prediction Based on LogitBoost Classification Algorithm

Description

Prediction or Testing using logitboost classification algorithm

Usage

predict.LogitBoost(object, xtest, type = c("class", "raw"), nIter=NA, ...)

Arguments

object An object of class "LogitBoost" see "Value" section ofLogitBoost for details

xtest A matrix or data frame with test data. Rows contain samples and columns con-
tain features

type See "Value" section

nIter An optional integer, used to lower number of iterations (decision stumps) used
in the decision making. If not provided than the number will be the same as the
one provided inLogitBoost . If provided than the results will be the same as
runningLogitBoost with fewer iterations.

... not used but needed for compatibility with generic predict method

 http://www.mathworks.com/access/helpdesk/help/techdoc/ref/nchoosek.html
 http://www.mathworks.com/access/helpdesk/help/techdoc/ref/nchoosek.html

18 runfunc

Details

Logitboost algorithm relies on a voting scheme to make classifications. Many (nIter of them)
week classifiers are applied to each sample and their findings are used as votes to make the final
classification. The class with the most votes "wins". However, with this scheme it is common for
two cases have a tie (the same number of votes), especially if number of iterations is even. In that
case NA is returned, instead of a label.

Value

If type = "class" (default) label of the class with maximal probability is returned for each sample.
If type = "raw", the a-posterior probabilities for each class are returned.

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

See Also

LogitBoost has training half of LogitBoost code

Examples

See LogitBoost example

runfunc Moving Window Analysis of a Vector

Description

A collection of functions to perform moving window (running, rolling window) analysis of vectors

Usage

runmean(x, k, alg=c("C", "R", "exact"),
endrule=c("NA", "trim", "keep", "constant", "func"))

runmin (x, k, alg=c("C", "R"),
endrule=c("NA", "trim", "keep", "constant", "func"))

runmax (x, k, alg=c("C", "R"),
endrule=c("NA", "trim", "keep", "constant", "func"))

runmad (x, k, center=runmed(x,k,endrule="keep"), constant=1.4826,
endrule=c("NA", "trim", "keep", "constant", "func"))

runquantile(x, k, probs, type=7,
endrule=c("NA", "trim", "keep", "constant", "func"))

EndRule(x, y, k,
endrule=c("NA", "trim", "keep", "constant", "func"), Func, ...)

runfunc 19

Arguments

x numeric vector of length n

k width of moving window; must be an odd integer between three and n

endrule character string indicating how the values at the beginning and the end, of the
data, should be treated. Only first and lastk2 values at both ends are affected,
wherek2 is the half-bandwidthk2 = k %/% 2.

• "trim" - trim the ends output array length is equal tolength(x)-2*k2
(out = out[(k2+1):(n-k2)]) . This option mimics output ofapply
(embed(x,k),1,FUN) and other related functions.

• "keep" - fill the ends with numbers fromx vector (out[1:k2] =
x[1:k2])

• "constant" - fill the ends with first and last calculated value in output
array(out[1:k2] = out[k2+1])

• "NA" - fill the ends with NA’s(out[1:k2] = NA)

• "func" - applies the underlying function to smaller and smaller sections of
the array. For example in case of mean:for(i in 1:k2) out[i]=mean(x[1:i]) .
This option is not optimized and could be very slow for large windows.

Similar to endrule in runmed function which has the following options:
“c("median", "keep", "constant") ” .

alg an option allowing to choose different algorithms or implementations, if pro-
vided. Default is to use of code written in C. Optionalg="R" will use slower
code written in R. Usefull for debugging and allows extentions in the future.

center moving window center used byrunmad function defaults to running median
(runmed function). Similar tocenter in mad function.

constant scale factor used byrunmad , such that for gaussian distribution X,mad(X) is
the same assd (X). Same asconstant in mad function.

probs numeric vector of probabilities with values in [0,1] range used byrunquantile .
For exampleProbs=c(0,0.5,1) would be equivalent to runningrunmin ,
runmed andrunmax . Same asprobs in quantile function.

type an integer between 1 and 9 selecting one of the nine quantile algorithms, same
as type in quantile function. Another even more readable description
of nine ways to calculate quantiles can be found athttp://mathworld.
wolfram.com/Quantile.html .

y numeric vector of length n, which is partially filled output of one of therun
functions. FunctionEndRule will fill the remaining beginning and end sections
using method chosen byendrule argument.

Func Function name thatEndRule will use in case ofendrule="func" .

... Additional parameters toFunc thatEndRule will use in case ofendrule="func" .

Details

Apart from the end values, the result of y = runFUN(x, k) is the same as “for(j=(1+k2):(n-k2))
y[j]=FUN(x[(j-k2):(j+k2)]) ”, where FUN stands for min, max, mean, mad or quantile
functions.

The main incentive to write this set of functions was relative slowness of majority of moving
window functions available in R and its packages. With exception ofrunmed , a running win-
dow median function, all functions listed in "see also" section are slower than very inefficient
“apply (apply (x,k),1,FUN) ” approach. Relative speeds of above functions are as follow:

http://mathworld.wolfram.com/Quantile.html
http://mathworld.wolfram.com/Quantile.html

20 runfunc

• runmin , runmax , runmean run at O(n)

• runmean(..., alg="exact") can have worst case speed of O(n2) for some small data
vectors, but average case is still close to O(n).

• runquantile andrunmad run at O(n*k)

• runmed - related R function run at O(n*log(k))

Functionsrunquantile and runmad are using insertion sort to sort the moving window, but
gain speed by remembering results of the previous sort. Since each time the window is moved, only
one point changes, all but one points in the window are already sorted. Insertion sort can fix that in
O(k) time.

Functionrunquantile when run in single probability mode automatically recognizes proba-
bilities: 0, 1/2, and 1 as special cases and return output from functions:runmin , runmed and
runmax respectively.

All run* functions are written in C, butrunmin , runmax andrunmean also have fast R code
versions (see argumentalg="R"). Those were included for debugging purposes, and as a fallback
in hard-to-port situations. See examples.

FunctionEndRule applies one of the five methods (seeendrule argument) to process end-points
of the input arrayx .

In case ofrunmean(..., alg="exact") function a special algorithm is used (see references
section) to ensure that round-off errors do not accumulate. As a resultrunmean is more accurate
thanfilter (x, rep(1/k,k)) andrunmean(..., alg="C") functions.

All of the functions in this section do not work with infinite numbers (NA,NaN,Inf ,-Inf) except
for runmean(..., alg="exact") which omits them.

Value

Functionsrunmin , runmax , runmean andrunmad return a numeric vector of the same length
asx . Functionrunquantile returns a matrix of size [n× length(probs)]. In additionx contains
attr ibutek with (the ’oddified’)k .

Note

Functionrunmean(..., alg="exact") is based by code by Vadim Ogranovich, which is
based on Python code (see last reference), pointed out by Gabor Grothendieck.

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

References

• About quantiles: Hyndman, R. J. and Fan, Y. (1996)Sample quantiles in statistical packages,
American Statistician, 50, 361.

• About quantiles: Eric W. Weisstein.Quantile. From MathWorld– A Wolfram Web Resource.
http://mathworld.wolfram.com/Quantile.html

• About insertion sort used inrunmad andrunquantile : R. Sedgewick (1988):Algorithms.
Addison-Wesley (page 99)

• About round-off error correction used inrunmean : Shewchuk, JonathanAdaptive Precision
Floating-Point Arithmetic and Fast Robust Geometric Predicates, http://www-2.cs.
cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps

http://mathworld.wolfram.com/Quantile.html
http://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps
http://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps

runfunc 21

• More on round-off error correction can be found at:http://aspn.activestate.com/
ASPN/Cookbook/Python/Recipe/393090

See Also

Links related to each function:

• runmean - mean, kernapply , filter , runsum.exact , decompose , stl , rollMean
from fSerieslibrary, rollmean from zoo library, subsums from magic library,

• runmin - min , rollMin from fSerieslibrary

• runmax - max, rollMax from fSerieslibrary, rollmax from zoo library

• runquantile - quantile , runmed , smooth , rollmedian from zoo library

• runmad - mad, rollVar from fSerieslibrary

• generic running window functions:apply (embed(x,k), 1, FUN) (fastest),rollFun
from fSeries(slow),running fromgtoolspackage (extremely slow for this purpose),rapply
from zoo library, subsums from magic library can perform running window operations on
data with any dimensions.

• EndRule - smoothEnds (y,k) function is similar toEndRule(x,y,k,endrule="func",
median)

Examples

test runmin, runmax and runmed
k=15; n=200;
x = rnorm(n,sd=30) + abs(seq(n)-n/4)
col = c("black", "red", "green", "blue", "magenta", "cyan")
plot(x, col=col[1], main = "Moving Window Analysis Functions")
lines(runmin(x,k), col=col[2])
lines(runmed(x,k), col=col[3])
lines(runmax(x,k), col=col[4])
legend(0,.9*n, c("data", "runmin", "runmed", "runmax"), col=col, lty=1)

#test runmean and runquantile
y=runquantile(x, k, probs=c(0, 0.5, 1, 0.25, 0.75), endrule="constant")
plot(x, col=col[1], main = "Moving Window Quantile")
lines(runmean(y[,1],k), col=col[2])
lines(y[,2], col=col[3])
lines(runmean(y[,3],k), col=col[4])
lines(y[,4], col=col[5])
lines(y[,5], col=col[6])
lab = c("data", "runmean(runquantile(0))", "runquantile(0.5)",
"runmean(runquantile(1))", "runquantile(.25)", "runquantile(.75)")
legend(0,0.9*n, lab, col=col, lty=1)

#test runmean and runquantile
k =25
m=runmed(x, k)
y=runmad(x, k, center=m)
plot(x, col=col[1], main = "Moving Window Analysis Functions")
lines(m , col=col[2])
lines(m-y/2, col=col[3])
lines(m+y/2, col=col[4])
lab = c("data", "runmed", "runmed-runmad/2", "runmed+runmad/2")
legend(0,1.8*n, lab, col=col, lty=1)

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090

22 runfunc

numeric comparison between different algorithms
numeric.test = function (n, k) {

eps = .Machine$double.eps ^ 0.5
x = rnorm(n,sd=30) + abs(seq(n)-n/4)
numeric comparison : runmean
a = runmean(x,k)
b = runmean(x,k, alg="R")
d = runmean(x,k, alg="exact")
e = filter(x, rep(1/k,k))
stopifnot(all(abs(a-b)<eps, na.rm=TRUE));
stopifnot(all(abs(a-d)<eps, na.rm=TRUE));
stopifnot(all(abs(a-e)<eps, na.rm=TRUE));
numeric comparison : runmin
a = runmin(x,k, endrule="trim")
b = runmin(x,k, endrule="trim", alg="R")
c = apply(embed(x,k), 1, min)
stopifnot(all(a==b, na.rm=TRUE));
stopifnot(all(a==c, na.rm=TRUE));
numeric comparison : runmax
a = runmax(x,k, endrule="trim")
b = runmax(x,k, endrule="trim", alg="R")
c = apply(embed(x,k), 1, max)
stopifnot(all(a==b, na.rm=TRUE));
stopifnot(all(a==c, na.rm=TRUE));
numeric comparison : runmad
a = runmad(x,k, endrule="trim")
b = apply(embed(x,k), 1, mad)
stopifnot(all(a==b, na.rm=TRUE));
numeric comparison : runquantile
a = runquantile(x,k, c(0.3, 0.7), endrule="trim")
b = t(apply(embed(x,k), 1, quantile, probs = c(0.3, 0.7)))
stopifnot(all(abs(a-b)<eps));

}
numeric.test(50, 3) # test different window size vs. vector ...
numeric.test(50,15) # ... length combinations
numeric.test(50,49)
numeric.test(49,49)

speed comparison
x=runif(100000); k=991;
system.time(runmean(x,k))
system.time(runmean(x,k, alg="R"))
system.time(runmean(x,k, alg="exact"))
system.time(filter(x, rep(1/k,k), sides=2)) #the fastest alternative I know
k=91;
system.time(runmad(x,k))
system.time(apply(embed(x,k), 1, mad)) #the fastest alternative I know

numerical comparison of round-off error handling
test.runmean = function (x, k) {

a = k*runmean(x,k, alg="exact")
b = k*runmean(x,k, alg="C")
d = k*runmean(x,k, alg="R")
e = k*filter(x, rep(1/k,k))
f = k* c(NA, NA, apply(embed(x,k), 1, mean), NA, NA)
x = cbind(x, a, b, d, e, f)

sample.split 23

colnames(x) = c("x","runmean(alg=exact)","runmean(alg=C)",
"runmean(alg=R)","filter","apply")

return(x)
}
a = rep(c(1, 10, -10, -1, 0, 0, 0), 3) # nice-behaving array
b = rep(c(1, 10^20, -10^20, -1, 0, 0, 0), 3) # round-off error prone array
d = rep(c(1, 10^20, 10^40, -10^40, -10^20, -1, 0), 3)
test.runmean(a, 5) #all runmean algorithms give the same result
test.runmean(b, 5) #runmean(alg=R) gives wrong result
test.runmean(d, 5) #only runmean(alg=exact) gives correct result

sample.split Split Data into Test and Train Set

Description

Split data from vector Y into two sets in predefined ratio while preserving relative ratios of different
labels in Y. Used to split the data used during classification into train and test subsets.

Usage

sample.split(Y, SplitRatio = 2/3, group = NULL)

Arguments

Y Vector of data labels. If there are only a few labels (as is expected) than relative
ratio of data in both subsets will be the same.

SplitRatio Splitting ratio:

• if (0<=SplitRatio<1) thenSplitRatio fraction of points from Y
will be set toTRUE

• if (SplitRatio==1) then one random point from Y will be set to TRUE

• if (SplitRatio>1) thenSplitRatio number of points from Y will
be set to TRUE

group Optional vector/list used when multiple copies of each sample are present. In
such a casegroup contains unique sample labels, marking all copies of the
same sample with the same label, and the function tries to place all copies in
either train or test subset. If provided than has to have the same length asY.

Details

Functionmsc.sample.split is the old name of thesample.split function. To be retired
soon.

Value

Returns logical vector of the same length as Y with randomSplitRatio*length(Y) elements
set to TRUE.

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

24 sum.exact

See Also

• Similar tosample function.

• Variablegroup is used in the same way asf argument insplit andINDEX argument in
tapply

Examples

library(MASS)
data(cats) # load cats data
Y = cats[,1] # extract labels from the data
msk = sample.split(Y, SplitRatio=3/4)
table(Y,msk)
t=sum(msk) # number of elements in one class
f=sum(!msk) # number of elements in the other class
stopifnot(round((t+f)*3/4) == t) # test ratios

example of using group variable
g = rep(seq(length(Y)/4), each=4); g[48]=12;
msk = sample.split(Y, SplitRatio=1/2, group=g)
table(Y,msk) # try to get correct split ratios ...
split(msk,g) # ... while keeping samples with the same group label together

test results
print(paste("All Labels numbers: total=",t+f,", train=",t,", test=",f,

", ratio=", t/(t+f)))
U = unique(Y) # extract all unique labels
for(i in 1:length(U)) { # check for all labels

lab = (Y==U[i]) # mask elements that have label U[i]
t=sum(msk[lab]) # number of elements with label U[i] in one class
f=sum(!msk[lab]) # number of elements with label U[i] in the other class
print(paste("Label",U[i],"numbers: total=",t+f,", train=",t,", test=",f,

", ratio=", t/(t+f)))
}

use results
train = cats[msk,2:3] # use output of sample.split to ...
test = cats[!msk,2:3] # create train and test subsets
z = lda(train, Y[msk]) # perform classification
table(predict(z, test)$class, Y[!msk]) # predicted & true labels

see also LogitBoost example

sum.exact Basic Sum Operations without Round-off Errors

Description

Functions for performing basic sum operations without round-off errors

Usage

sum.exact(..., na.rm = FALSE)
cumsum.exact(x)
runsum.exact(x,k)

sum.exact 25

Arguments

x numeric vector

... numeric vector(s), numbers or other objects to be summed

na.rm logical. Should missing values be removed?

k width of moving window; must be an odd integer between one and n

Details

All three functions use full precision summation using multiple doubles for intermediate values.
The sum of numbers x & y is a=x+y with error term b=error(a+b). That way a+b is equal exactly
x+y, so sum of 2 numbers is stored as 2 or fewer values, which when added would under-flow. By
extension sum of n numbers is calculated with intermediate results stored as array of numbers that
can not be added without introducing an error. Only final result is converted to a single number

Value

Functionsum.exact returns single number. Functioncumsum.exact returns vector of the
same length asx . Functionrunsum.exact returns vector of lengthlength(x)-k and attribute
"count" containing number of finite (as inis.finite) elements in each window.

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉 based on code by Vadim Ogranovich,
which is based on algorithms described in references, pointed out by Gabor Grothendieck.

References

Round-off error correction is based on: Shewchuk, Jonathan,Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predicates, http://www-2.cs.cmu.edu/afs/cs/
project/quake/public/papers/robust-arithmetic.ps and its implementation found
at: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090

McCullough, D.B., (1998)Assessing the Reliability of Statistical Software, Part I, The American
Statistician, Vol. 52 No 4,http://www.amstat.org/publications/tas/mccull-1.
pdf

McCullough, D.B., (1999)Assessing the Reliability of Statistical Software, Part II, The American
Statistician, Vol. 53 No 2http://www.amstat.org/publications/tas/mccull.pdf

NIST Statistical Reference Datasets (StRD) websitehttp://www.nist.gov/itl/div898/
strd

See Also

• sum.exact - is equivalent tosum

• cumsum.exact - is equivalent tocumsum

• runsum.exact - is similar torunmean (x,k,endrule="trim")

Examples

x = c(1, 1e20, 1e40, -1e40, -1e20, -1)
a = sum(x); print(a)
b = sum.exact(x); print(b)
stopifnot(b==0)

http://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps
http://www-2.cs.cmu.edu/afs/cs/project/quake/public/papers/robust-arithmetic.ps
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090
http://www.amstat.org/publications/tas/mccull-1.pdf
http://www.amstat.org/publications/tas/mccull-1.pdf
http://www.amstat.org/publications/tas/mccull.pdf
http://www.nist.gov/itl/div898/strd
http://www.nist.gov/itl/div898/strd

26 trapz

a = cumsum(x); print(a)
b = cumsum.exact(x); print(b)
stopifnot(b[6]==0)

trapz Trapezoid Rule Numerical Integration

Description

Computes the integral of Y with respect to X using trapezoid rule integration.

Usage

trapz(x, y)

Arguments

x Sorted vector of x-axis values.

y Vector of y-axis values.

Details

The function has only two lines:

idx = 2:length(x)
return (as.double((x[idx] - x[idx-1]) %*% (y[idx] + y[idx-1])) / 2)

Value

Integral of Y with respect to X or area under the Y curve.

Note

Trapezoid rule is not the most accurate way of calculating integrals (it is exact for linear functions),
for example Simpson’s rule (exact for linear and quadratic functions) is more accurate.

Author(s)

Jarek Tuszynski (SAIC)〈jaroslaw.w.tuszynski@saic.com〉

References

D. Kincaid & W. Chaney (1991),Numerical Analysis, p.445

See Also

• intg from PROcesspackage

• trapezint from ROC package

• integrate

• Matlab’strapz function (http://www.mathworks.com/access/helpdesk/help/
techdoc/ref/trapz.html)

 http://www.mathworks.com/access/helpdesk/help/techdoc/ref/trapz.html
 http://www.mathworks.com/access/helpdesk/help/techdoc/ref/trapz.html

trapz 27

Examples

integral of sine function in [0, pi] range suppose to be exactly 2.
lets calculate it using 10 samples:
x = (1:10)*pi/10
trapz(x, sin(x))
now lets calculate it using 1000 samples:
x = (1:1000)*pi/1000
trapz(x, sin(x))

Index

∗Topic array
runfunc , 18
sum.exact , 24

∗Topic classif
LogitBoost , 7
predict.LogitBoost , 17
sample.split , 22

∗Topic file
base64 , 9
bin2raw & raw2bin , 11
ENVI, 1
read.gif & write.gif , 3

∗Topic math
trapz , 25

∗Topic models
combs, 16

∗Topic smooth
runfunc , 18
sum.exact , 24

∗Topic ts
runfunc , 18
sum.exact , 24

∗Topic univar
colAUC , 13

∗Topic utilities
runfunc , 18
sum.exact , 24

add.image , 3, 6
apply , 18–20
as.vector , 10, 12
AUC, 15
auROC, 15

base64 , 9
base64decode , 10, 12
base64decode (base64), 9
base64encode , 10
base64encode (base64), 9
bin2raw (bin2raw & raw2bin), 11
bin2raw & raw2bin , 11
brewer.pal , 6

col2rgb , 6

colAUC , 13
colorbrewer.palette , 6
combinations , 16
combs, 16
cumsum, 25
cumsum.exact (sum.exact), 24

decompose , 20

embed, 18, 20
EndRule (runfunc), 18
ENVI, 1

filter , 19, 20

GDD, 6
gray , 6

heat.colors , 4, 6
hsv , 6
HTMLplot , 6

image , 3–6
image.plot , 3, 6
integrate , 26
intg , 26
is.finite , 24

jpeg , 6

kernapply , 20

LogitBoost , 7, 17
logitboost , 9

mad, 19, 20
max, 20
mean, 20
min , 20
msc.sample.split (sample.split),

22

nchoosek , 16

performance , 15
plot.im , 3, 6

28

INDEX 29

png , 6
predict.LogitBoost , 9, 17
print , 4
pwilcox , 15

quantile , 19, 20

rainbow , 4, 6
rapply , 20
raw2bin (bin2raw & raw2bin), 11
rcorr.cens , 15
read.ENVI , 6
read.ENVI (ENVI), 1
read.gif , 3
read.gif (read.gif & write.gif), 3
read.gif & write.gif , 3
read.jpeg , 6
read.pnm , 6
readBin , 3, 10–12
rgb , 6
rich.colors , 6
ROC, 15
roc.area , 15
rollFun , 20
rollMax , 20
rollmax , 20
rollMean , 20
rollmean , 20
rollmedian , 20
rollMin , 20
rollVar , 20
rpart , 8
runfunc , 18
runmad (runfunc), 18
runmax (runfunc), 18
runmean , 25
runmean (runfunc), 18
runmed , 18–20
runmin (runfunc), 18
running , 20
runquantile (runfunc), 18
runsum.exact , 20
runsum.exact (sum.exact), 24

sample , 23
sample.split , 22
sd , 19
smooth , 20
smoothEnds , 20
split , 23
stl , 20
subsums , 20
sum, 25

sum.exact , 24

tapply , 23
terrain.colors.colors , 6
tim.colors , 6
topo.colors , 6
trapezint , 26
trapz , 14, 25

wilcox.test , 14, 15
write.ENVI , 6
write.ENVI (ENVI), 1
write.gif , 3
write.gif (read.gif & write.gif),

3
write.pnm , 6
writeBin , 2, 3, 11, 12

xmlValue , 11

	ENVI
	read.gif & write.gif
	LogitBoost
	base64
	bin2raw & raw2bin
	colAUC
	combs
	predict.LogitBoost
	runfunc
	sample.split
	sum.exact
	trapz
	Index

