Module 7 — Genome Annotation and Differential Expression

Module 7

Genome Annotation and
Differential Expression

Introduction to Genome Annotation

One of the key goals of producing a draft genome is to define the genes encoded in it. This is
the first step in answering many important questions. How many genes does this organism
have? What metabolic pathways are present? Are there novel gene families encoded in the
genome? Subsequent uses of the genome, such as proteomics and transcriptomics experiments
rely on accurate gene models. We concentrate here on protein coding genes, however one would
also try to identify non-protein coding RNAs such as tRNAs, rRNAs, miRNAs, transposons etc.

Producing accurate gene models is just as hard as producing a good assembly. You have seen
that one way of producing a set of gene models is to transfer them from a closely related
organism. However, if there is not a closely related genome, or the most closely related genome
is not well annotated, this may not be an option. Furthermore, even if there is a closely related,
well annotated reference genome as in the case of the malaria parasite - Plasmodium falciparum
strain 3D7 and P. falciparum strain IT, there may be regions of your genome of interest which
are not syntenic to the reference. Indeed, this is the case here, as the subtelomeric regions of
Plasmodium chromosomes are highly variable and cannot be used to transfer gene models, even
between strains of the same species.

When there is no reference genome, or for regions which are not syntenic to the reference, we
can use ab initio gene finding methods. These identify genes based on properties of the genome
sequence independent of whether they show homology to known genes. They can be trained
and it is common to identify the most well conserved genes by homology, then to train an ab
inito gene finding algorithm using these well conserved genes so that it can learn what a gene
looks like in the particular genome you are interested in. In this module we will use the program
Augustus to predict gene models ab initio.

Another approach to identifying gene models is to determine those regions of the genome which
are transcribed. Prior to the advent of second generation sequencing technologies Sanger
capillary sequencing was used to sequence mRNAs and generate Expressed Sequence Tags
(ESTs). These could be used to identify the most highly expressed genes and improve some
gene models. With second generation sequencing technologies we are able to sequence mRNA
transcripts from essentially all the genes which are expressed. This is known as RNA
sequencing or RNA-seq (Mortazavi et al., 2008; Wang et al, 2009) and the resulting data
provides incredible resolution of gene structure. This method is not biased by which genes are
present in previously sequenced genomes (as with RATT) or by how much their structure
reflects that of other genes in the genome (as with Augustus), but rather by how highly
expressed they are and how extensively we sequence the transcriptome.
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In this module you will generate a set of gene models ab initio using the gene prediction
tool Augustus. It has been trained using the highly accurate, manually curated gene
models of P. falciparum 3D7. These gene models will be used to fill in those regions of
the P. falciparum IT assembly which could not be annotated using RATT because they
are not syntenic to P. falciparum 3D7. You will then map RNA-seq data to your
assembly and use this to improve the gene models. There will be inaccuracies from the
RATT transfer due to technical error and due to real differences in the gene structures.
There will be inaccuracies in the Augustus predictions due to gene models which do not
follow the expected pattern of a Plasmodium gene and due to inaccuracies in the
genome assembly. These can be addressed using the RNA-seq mapping.

Below is a model of the eukaryotic protein-coding gene highlighting features relevant to
their annotation. Note that compared to bacteria, eukaryotic genes frequently have
multiple exons, separated by un-translated introns and 5" and 3* Un-Translated Regions
(UTRs) which do not encode part of the protein sequence.

>

Direction of transcription

Start codon Splice donor Splice acceptor Stop codon

Figure showing the key features of a eukaryotic gene. The exact DNA
sequence of the splice sites may vary.

Module Summary

1. Generating an initial set of gene models (merging RATT and
Augustus)

Mapping RNA-seq data to a reference

Viewing RNA-seq mapping in Artemis

Correcting gene models by hand

Automatically generating gene models based on RNA-seq data

o g A 0D

Using RNA-Seq to improve annotation
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1. Generating an initial set of gene models

A. Generate gene models ab initio

The ab initio gene prediction algorithm Augustus has already been trained with
gene models from Plasmodium falciparum 3D7. You will now run it on your
Plasmodium falciparum 1T strain chromosome to predict a set of gene models.

~

)

Navigate to the module 7 data directory. On the command line, type:
augustus --species=pfalciparum IT.genome.fa > augustus.gtf
The file augustus.gtf now contains your predicted gene models

Next we are going to convert the Augustus GFF to EMBL format. On the command line,
type:

cat augustus.gtf | augustus2embl.pl > augustus.embl

you can also try loading the gff file into Artemis).

Although Artemis can display gff files, the visualization is better for embl files (if you want

-

It is typically much more challenging to train an ab initio gene finder than to run it.
Most ab initio gene finders require a set of very accurate models to train them,
which may be predicted from highly conserved genes, RNA-Seq and typically
manual curation of a few hundred gene models. The chosen training set can
influence which types of gene models get better or worse predictions, so should
be carefully chosen.

\_

~
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B. Examine gene model predictions

We will open some gene models which we transferred from P. falciparum 3D7
using the tool RATT. We can compare them to the gene models predicted de
novo by Augustus.

On the command line, type:

art Transfer.ordered Pf3D7 05.final.embl &
Load in Augustus models. In Artemis:

File -> Read An Entry and select the file augustus.embl.
Right click in genome window, select “One Line Per Entry”.

The transferred models have different colours and annotation, while the newly predicted
genes have the default colour (blue), and are named g1, g2, g3...

Check out different loci in this chromosome to appreciate the difference in the annotation
files

® 00 X\ Artemis Entry Edit: Transfer.ordered_Pf3D7_05.final.embl

File Entries Select View Goto Edit Create Run Graph Display

sntry: [v]Transfer.ordered_Pf3D7_05.final.embl [v]augustus.embl

Selected feature: bases 1332 amino acids 443 PF3D7 0502200 (/previous systematic id="PFE011Gw:exon:2;current=false"/previous systemat

I o1 b
PF3D7_0502200
P
q36
RMAZID: 3307 RMAZID: 3308
' [104000 |104800 |165600 [106400 |167200 |108000 [108800 |109600 [110400 [111200 [112
I
35 37
PF3D7 0502100 PF3D7 0502300
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Have a look at the gene PF3D7_0515600. Does Augustus perform better than
RATT? What has gone wrong with the prediction? Go to the gene by Goto ->
Navigator -> “Goto Feature With Gene Name”. Tip: you don’t have to type in the

complete gene name.

g | 1)1 —
PF3D7_0515600
[ 1 [ [ 0=
q171
|653500 |s54400 |655200 |s56000 |s56800 ls57600 |s58400 |659200 |s60000 |ss6800 |ss1600 66240
{ —
172
GAP40
]
— 1 — —1
1 L
3 655000 |s55100 |s58200 |s58300 |6s5400 |s58500 |ss8600 |ss8700 655800 |s58900
6 00 X/ Artemis Navigator |
ﬁ © Goto Base: —I—
659006 5 = 0515600
662238 ¢ term=annotati( @ Goto Feature With Gene Name: 40, putative;qualifier=added_gene
665278 665532 ¢ iprscan;PANTHI [
667002 667988 ¢ belongs to th{ O Goto Feature With This Qualifier Value:
670456 673828 This domain i [ uch as Plasmodium falciparum, wher
674507 681367 squery 2381-2{ , N S—
665045 657974 Signal peptid] - Goto Feature With This Key:
690235 691242 ¢ ;query 318-31f _
692482 694644  tmhmm;;query | ) Find Base Pattern:
695672 700492 ¢ Signal peptid %
703376 707652 iprscan;Intert (O Find &mino Acid String: Pfam:PFO0443; ; score=2, 4E-89; query
708988 716136 ¢ Contains 2 AP
721632 722622 ¢ Putative cyto: - o _ . ftween Plasmodium falciparum erythr
724627 725545 ¢ This modified| Start search at: (O beginning (or end) @ selection
727306 728736 ¢ gene model al!
729585 731522 ¢ 1prscan;Inter [] overlaps With Selection ry 135-607;description=WD40 repeat
733520 734580 ¢ Barrell, Febr
740221 743981 iprscan;Inter 7 7 B12;;score=9.6E-28;query 937-1078;
113 744174 744242 ¢ present in re -
744707 747220 ¢ gene model al;
748948 749826 ¢ ;query 268-26{ [ | Search Backward [v]Ignore Case [v]Allow Substring Matches
751917 754067 iprscan; Interd gion;Pfam:PFE8662; ;score=1.8E-11;¢
754537 755373 ¢ gene model al! |
756528 758412 ¢ 1prscan;Inter Sote AL ‘ ‘ ose B-333;description=Zinc finger, B-t
759384 761162 iprscan; InterPraw H 4 TEcore=8.9E-141; query 1-270;descripti
761999 766144 Sianal anchor

Look at the gene PF3D7_0504800. Perhaps due to the low GC content of this
region Augustus decided that it is intronic (Graph -> GC content (%) ). How could

you verify the prediction?

e AN N I —"
Vo thhi M_, Ty [B V i ki \.U_I U
9700 |199508 [199900 200000 |200100 |200200 |200300 |2¢
[
g6l
o
0
[191400 |193500 |195800 |198000 |ze0200 |202400 |204600 |zes500 |ze000:
la61 ]

{
{PE3D7 0504800
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C. Combine RATT and Augustus gene models

Ca

@to EMBL format.

ugustus is able to predict gene models in regions of the IT genome which have
no synteny with the 3D7 genome, principally the subtelomeres. However, on the
whole, the RAT T-transferred gene models ought to be more accurate because
the IT and 3D7 genome are otherwise very similar. Therefore it is perhaps most
useful to add in only those Augustus gene models which do not overlap RATT-
transferred models. To do this, the Augustus gene models must be converted

~

J

@@ Artemis Entry Edit: Transfer.ordered_Pf3D7_05.final.embl
File Entries Select View Goto Edit Create Run Graph Display

Entry: [v|Transfer.ordered_Pf3D7_05.final.embl [v]augygtus.embl [v]ambiguous bases
MNothing selected {

no
gG

T

9819

| I—

gll

wo BDp0obDOPPR DODD 3 1 Db
9ap 3p ga 9ap gap 3D gap gaf g gap Jap gap gap gap
|sS00 13000 l1o9500 |26800 |32500 |30000 las500 |52800

a aaaaaa

4 aMmam @ I
g1z g3 gla_gl' cgl7 gl8
-

<anmn
gl2 g3 g4 g5 97 gle

RIF F PF3D7 0500700 .

FIKKS

Unselect the
“augustus.embl” entry.

D [~
FF3D7_050160( F
> I

921 ¢

B P

/

Go to Select -> All CDS features

9ap  gap
[EEE] |ss000

20 q22

HSP4G

\

Re-select the
“augustus.embl” entry.

vtr intron  intr intron  stop_codon start_codon ron ror stop_codon
[1214400 l1215200 (1216000 [1216800 [1217600 |1218400 |1219200 1220000 1220800 *
transcript
E really delete 2311 features? VR —— GO tO SeleCt -> FeatureS
o e Overlapping Selection
[ir]

FKFYFFFFLFFFFFGRY#NNTIPSWEKTITILR

@ ® @ Artemis Entry Edit: Transfer.ordered_Pf3D7_05.final.embl
Goto Edit Create Run Graph Display

File Entries Select View
Entry: [v|Transfer.ordered_PfaD7_05.final.enbl [v]augustus.embl ] ambiguous bases

MNothing selected

nw
a6

o

E—
819 qll

17

gap
|32500

W ®peoeb2OPDR DODD g

93p 3p 93 93p Qap 3p gap gap g gap 3ap
lss500 13000 |1500

3

9ap
|z6000 |30000

na  amam a0l

gl 2 g3 g4 g5 97

Ao 10 12 13(]:] 14
) 9 9 ) @

RIF F PF3D7 0500700

9ap 9ap_ gap
|assee |52000 |ses00

I FSQKRVLY

v

n.b. deselect any augustus
(blue) gene models which you
have edited and want to keep

by shift-clicking that model.

y

D I-
PF3D7_050100(

The Augustus gene models which
overlap RATT models should now
be selected. Delete them! Edit ->
Selected Features -> Delete

B P

|s5000

FIKKS HSP4Q &=

If you want to keep any augustus gene model you have edited, then delete the
overlapping RATT model. How does the annotation look? How many extra gene
models do we have compared to using the RAT T-transferred ones alone? Use the
function View -> Overview to see some stats. In the next section we are going to
show how RNA-Seq data can be used to correct gene models.

~

)
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We need to save the merged annotation:
File -> Save An Entry As -> New File -> augustus.embl
Save to ... “augustus_keep.embl”

Now merge it into the original file:
File -> Read Entry Into -> Transfer... Transfer.ordered Pf3D7 05.final.embl
Select a file ... “augustus_keep.embl”

And now save the merged file:
File -> Save An Entry As -> New File -> Transfer.ordered Pf3D7 05.final.embl
Save to ... “Merged annotation.embl”

This file “Merged_annotation.embl” can now be used as a basis for further annotation.
Always remember to save your work!

e 00 X| Artemis Entry Edit: Transfer.ordered_Pf3D7_05.final.embl

iéffgq Entries Select View Goto Edit Create Run Graph Display

Show File Manager ... .embl [v]augustus_keep.embl

Read &n Entry ...

Read Entry Into >

Read BAM / VCF ...

Save Default Entry ctrl-s

Save An Entry »

Save &n Entry As » New File ¥ Transfer.ordered_Pf3D7_05.final.embl
Save All Entries EMBL Format »| augustus_keep.embl

Write »| GENBANK Format » HOO 655600 bSSSOO
pe Sequin Table Format »

Clone This Window

GFF Format »
EMBL Submission Formatb‘

Save As Image Files (png/svg)...

Print...
Print Preview 7
[i]
Open in DNAPlotter
ErOrar s [ 78 | poocC/
ize D

Close
3200 (675400 [677600 [679800 |sa2000 |sa4200 |sa6400 |seE600 |soea00 |s93000 |

A

8 O 0O X/ Save to ...

Save In: ’ﬁ Module_7_Annotation2 ‘V‘ E"}j Tl ;o
(] backup

[ augustus. embl

[ augustus_keep.embl

[y 17.genome . fa

[y Transfer.ordered_Pf3D7_05.final.embl

File Mame: [Merged_annntatlon.embl |
Files of Type: lArtemis files \v‘

o ot |

Gene models can also be merged/overlapped/removed bioinformatically using
custom scripts or the free command-line software BEDtools
http://bedtools.readthedocs.org/en/latest/ . The most convenient formats for
manipulating annotation are GFF/GFF3/GTF and BED.

-
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D. Functional annotation

ﬁor those gene models transferred by RATT, you will have a range of functional\
information which will help you identify the types of genes present in your

genome. This functional information has been manually curated for P. falciparum
3D7 based on the literature. For those genes predicted de novo by Augustus
there is no such information. It is beyond the scope of this module to present a
solution for assigning functional annotation for all these extra genes, but you can
annotate a few of them yourself. Product calls for genes are usually defined by
looking for orthologues or best BLAST hits in other organisms for which a gene
has been annotated with a useful name. Many annotation databases exist for
different purposes; Pfam for functional domains pfam.sanger.ac.uk, Gene
Ontology for GO-terms http://www.geneontology.org/ and KAAS for enzymes

\www.genome.jp/tools/kaas/. There are often specialized databases for specific/
cl

asses of genes/organisms you might be particularly interested in.

For Plasmodium annotation, the best place to look is PlasmoDb, a large resource of
comparative genomics data for these species.

Right click on an augustus gene model (blue ones), View -> Amino Acids of Selection
as Fasta -> Ctrl-A -> Ctrl-C

In a web browser, navigate to http://plasmodb.org/

Under the Tools menu, select BLAST. In the web form, select “Proteins”, “blastp”,
select all Target Organisms, paste in your sequence (Ctrl-V) and “Get Answer”. It is
essential that your BLAST-search parameters match the search you are trying to do
(protein versus protein in this case).

If the top hit has a good E-value (e.g. less than 1e-20), select it and copy the description.
Then select the gene model, press “Ctrl+e”, and add a new line as below. In the
example below Augustus prediction g17 is a gene from the rifin (RIF) family.
/product=“rifin (RIF)"

Click OK to save the annotation.

|20400 |20700 |z0000 |30300 |z0600 |z0900 |31200 |3150
{ | |
gql7
___ 18006 x| Artemis Feature Edit: g17 |
| —
e Key: |CDS v Add Qualifier: ‘rmte V)*
D Location: |complement(join(29781..30641,30803. . 30856)) }
|| Complement | Grab Range | Remove Range | Goto Feature | Tidy | TAT | ObjectEdit | User Qualifiers|
[198a 400 ]
flocus_tag="gl7" = ‘

IO0 10 |/product=rifin (RIF} il

1 0K Cancel apply L

AR Taa o Rl i
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2. Mapping RNA-Seq data to a reference

We will use the program TopHat, part of the Tuxedo suite, to map RNA-Seq reads
to our references genome, chromosome 5 of P. falciparum IT. In this case we are
mapping single-end reads generated from RNA extracted during the blood stage of
malaria.

TopHat requires an index of the reference. Create the index:
bowtie2-build IT.genome.fa IT.genome
Now run TopHat (n.b. this may take several minutes depending on computer):

tophat -o 30h map -I 10000 IT.genome
blood stage 30h.fastqg.gz

To read the BAM file:

samtools view 30h map/accepted hits.bam | head

TopHat will generate several files in the new “30h_map” directory you have
specified. The most important is accepted_hits.bam. This contains the mapping.
Briefly read through the file if you like. For some reads, there are Ns in the Cigar
line (column 6, see below). What do these mean? N

/lustre/scratchl@8/parasites/mz3/Malawi2014/Module_7_Annotation2 >samtools vieM3Gh_map/accepted_hits.bam |

M | head

SOLEXAWS1:1:6:103:907:1848.F 0 Transfer.ordered_Pf3D7_05.final 47852 5@ 7M568N69M %
CTATCACATTATCTTTTCTTTCATTCTTATTATTTCTTTTTTTTACTCTTTTTTTAACTTTTTTTTTTACTTCTTT ABBCCARACCCAABCCB?BCBAACBA?C
A<A7@3@CCBC@;BB/+A<CCACBB7@7=@9@BC AS:i:-8 XN:i:@ XM:i:1 X0:i:0 XG:1:0 NM:i:1 MDNE:60C15 YT:2
SRIER)

SOLEXAWS1:1:6:110:10:502.F 0 Transfer.ordered_Pf3D7_05.final 47852
CTATCACATTATCTTTTCTTTCATTCTTATTATTTCTTTTTTTTACTCTTTTTTTAACTTTTTTTTTTACTTCTTC o<o
CCCACCCCBCCCBCB@CCCCBCCCCCB=CCAC@% AS:i:-11 XN:1:0 XM:i:2 X0:1:0 XG:1:@ NM:i:2 MD:Z:60C14TE
ST NH:i:1

SOLEXAWS1:1:6:113:1017:1915.F @ Transfer.ordered_Pf3D7_05.final 47852 50 7M568N69M &
CTATCACATTATCTTTTCTTTCATTCTTATTATTTCTTTTTTTTACTCTTTTTTTAACTTTTTTTTTTACTTCTTT 9CCccccecccecccecceee>cecccec
CCCCcceccececcccececcccccccceseAcc AS:i:-9 XN:i:@ XM:i:1 X0:i:@ XG:1:@ NM:i:1 MD:Z:60C15 YT:2
3l

SOLEXAWS1:1:6:114:1418:1525.F @ Transfer.ordered_Pf3D7_05.final 47852 50 7M568N69M -

CTATCACATTATCTTTTCTTTCATTCTTATTATTTCTTTTTTTTACTCTTTTTTTAACTTTTTTTTTTACTTCTTC BCCCBC@BCBCCBCACCCCCCCCCCCAC

el et e T T S Vol T T L Vol L L VY el VM.I.T VALELA VO LE LA MALT.OACTATA MMLELY vO LA

We have to index the bam using SAMtools, in order to view the data in Artemis.
samtools index 30h map/accepted hits.bam

The output index file is called 30h_map/accepted hits.bam.bai

The reads you just mapped do not cover the whole genome, so that the mapping would go
faster. We will instead view the much larger pre-computed file which does cover the whole
genome:

blood stage 30h.bam
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3. Viewing RNAseq mapping in Artemis

We will now examine the read mapping in Artemis using the BAM view feature.

If you have closed the Artemis window, then first type:

art Merged annotation.embl &

the RNAseq data:

Create -> Mark Ambiguities

Load the BAM file:

File -> Read BAM / VCF -> Select, “blood_stage 30h.bam”

> coverage.

In Artemis, highlight gaps in the assembly which might mislead you about the meaning of

This opens a new window at the top. Right click on the BAMview window, select Graph -

_> ‘6OK,’

@ ® @ Artemis Entry Edit: Merged_annotation.embl

View Goto Edit Create Run Graph

File Entries Select Display
v|Merged_annotation.embl [v|ambiguous bases

bases 540 amino acids 179 302 (/locus tag="g302")

Entry:
Selected feature:

S |,

-

9302

|1216800 1217100 [1217400 [1217700 [1218000 |1218300 [121860¢

d

4 »
Y KLTHMCTLFFFLFLEKLY#SRYNYSWEKS* s F T F {a

T N #F F I T ¥ R T FF F FF 4 1Ty H v T T T | G N N F | | F_F
v ¢ INPYVYVIFFSFFEVYLTITLGO OQLTFLTETIMSTFTYFF
TATAAATTAACCCATATGTGTACGTTATTTTTTTTTCTTTTTTTGAAGTATT AATCACGTTACAATT ATTCTTGGAAAT AATGAGCTTTTATTTTTT
217450 [1217500 [1217520 [1217540 1217560
ATATTTAATTGGGTATACACATGCAAT ARAAAAAAAGAAAAAAACTTCAT ARTTAGTGCARTGTTARTAAGAACCTTTATTACTCGAAAAT ARAAAA
Y LNV WTIHVYMNMNEKTEKEREKTEKTFY®#DRGELS#ET QFTYHA aEKTIEKE

I F# GMHTRGS#KEKEKEKEK GLTILH*TVYITIRPFLTSSEKHNEK

Y I L GYTYTIKEKETKEKSTHNTIVYMNCNHNEKSTITILEKS $KEKI >

4 »

—

© Coverage Options

l-, Zoom level before switching
= to coverage view (in bases): 26000
Window size:[l
[J Automatically set window size

BAM |

o] [cnent

/

/Right click on the coverage plot\
and select Options... Set the
window size to 1 to see the

exon boundaries (You have to

\_ disable “Automatically...”) .

view

(" Examine the exon boundaries )

of a couple of genes. How well
are splice sites identified by

kgene predictors vs. RNA-Seq?

J

What do the grey lines in the middle of some of the mapped reads mean? Right
click on one of these reads, select “Show details of” and examine the cigar string.
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4. Correcting gene models by hand

@roll along the chromosome and examine the read coverage. How well does it\
correlate with the gene models? Notice how different genes have different depths

of coverage. Why do some genes have little or no coverage? What does this

mean for annotation?

a good example.

Why do some reads map where there are no genes?

Scroll along the chromosome. Can you see any gene models which might be
incorrect based on the RNAseq data? Find one and correct it. PF3D7_0529900 is

wnus question: Can you figure out why RATT got this gene model so wrong! /

!
|

Can you see why this
model isn’ t correct?
The reads should map over
exons and not introns.

L P

gap
|1230400 |1231200

|1232000

4 Next, select the gene N
* model. Right-click on the
'} BAMview -> Analyse ->
Read count of selected
features. Write the value

u“““ K dOWﬂ /

|1232500

.
.
.

.
o
.
.

PF3D7 0529900

ﬂ\low correct the last exon. You can move gene-boundaries by left-clicking at the edge
of a gene-model and dragging it to the right position. If you are very zoomed out and
the model is hard to catch, try shift + left-click instead. You can add exons/introns to a
model by selecting the model and then clicking “e” to open the Feature editor. Left-click
and highlight the region on the genome where you want to add an exon. Then switch to
the Feature editor box again, and click the button “Grab range” or “Remove range”.
Click “Apply” and you can straight away see the gene-model change. Under Edit ->
Trim../Extend... there are some useful short-cuts for adjusting gene-boundaries.
Look again at read counts/RPKM values. Have they changed?
Q.b. Don’t forget to save any changes you make!

/

Optional: Is the start of the gene model correct? There seem to be spliced reads
confirming another exon.
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5. Automatically generating gene models based on
RNA-seq data

~
Cufflinks is another program in the Tuxedo suite. It can be used to generate gene
models based on the RNA-seq mapping. Rather than fix each gene model by
hand, we could replace them with RNA-seq based predictions if these are better.

/

Run Cufflinks:
cufflinks blood stage 30h.bam

The key results file from Cufflinks is transcripts.gtf. When the output file
transcripts.gtf hasbeen created, change the format to display better in Artemis:

Read this into Artemis and compare the results to the RNAseq coverage plots and to the

existing gene predictions. In Artemis,
File -> Read An Entry, select “Files of type: All files”, select “transcripts.gtf”

Look through the annotation. Does cufflinks confirm the Augustus predictions? What can
we say where a gene model has no coverage? How can we remedy this?

400 |383700 |354000 |384300 |354600 |354900 |385200 |
I | I [ [ I T [ ]
exon: CUFF, 158

transcript

— . /3 /=
T T

PF3D7 0509000

Why are the Cufflinks predictions often longer than the gene model predictions?
Remember we are examining a eukaryote. Why does this make it difficult to
incorporate these models directly into our gene set? Would this explain the spliced
reads of the gene PF3D7_0529900 on page 117

| 157100 l1157400 l1157700 |1158000 |1158300 l1158600 l1158900 |1159200 |1159500 l1159800

|1156800

] q
Transfer.ordered Pfam 05 final.CUFF.547.t1 05.final.CUFF.5d8.11
nsfer.ordered_Pf307_05. final.CUFF.548. 12

q ] [

O /. O | L nal . [F. 548 [kon: BD 5. final. c[Cb48. t1. Exonl
Transfer.ordef }5. finat [ hd 307 n. ld:l tl E

Transfer.ordered Pf3D7 05

Optional: Can cufflinks help us to find alternative splicing? Maybe check the gene
PF3D7 0527600 — Cufflinks has predicted two splice forms for this gene. Right-click in
the genome window and choose “Feature Stack View” to see both splice forms.
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6. Using RNA-seq to improve predictions

Perhaps the best option would be to use the RNA-seq to guide the ab initio )
predictions? Augustus allows you to to create hints-files from RNA-seq. You can

read more about how to create your own hints on augustus help pages:
augustus.gobics.de/binaries/readme.rnaseq.html )

On the command line, you first have to copy a suitable configuration-file from the augustus
folder:

cp
/usr/local/augustus.2.7/config/extrinsic/extrinsic.M.RM.E.W.cC
fg .

Make hints from the bam-file. On the command-line, type:
bam2augustusHints.pl blood stage 30h.bam > hints.introns.gff

Now predict new models using RNA-seq hints, you’ll notice it takes a bit longer than
running without hints, expect a few minutes. On the command-line, type (as one line).

augustus --species=pfalciparum
--extrinsicCfgFile=extrinsic.M.RM.E.W.cfg
—--hintsfile=hints.introns.gff IT.genome.fa >
augustus.hints.gtf

Convert the Augustus GFF to EMBL format, so you can look at it in Artemis. On the
command line, type:

cat augustus.hints.gtf | augustus2embl.pl >
augustus.hints.embl

Load the new predictions into Artemis like you did before, and compare this prediction to
your earlier prediction without hints, to see which one you think is better. Try for instance to
look at model PF3D7 0523600 and PF3D7 _0528500.

Tip: if you want to see the difference between the models more clearly, you can in Artemis
un-tick all files except for augustus.hints.embl at the bar at the top, choose Select -> “All
CDS features”. Click Edit -> “Qualifier of selected feature(s)” -> Change. In the drop-down
menu in the pop-up box choose “colour”, and then click “Insert qualifier:”. Change the text
in the box to /colour=3 and click “Add”. All your models predicted using hints are now
green.
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Optional 1: Learn more augustus; a) learn how to train augustus with your favorite species
from the online manual, b) check out the useful scripts that come with augustus;
/usr/local/augustus.2.7/scripts/ , ¢) What does the Augustus option --alternatives-from-
evidence do?

Optional 2: Try to look at all the differences between augustus predictions with and
without hints: 1. using programming, 2. in Artemis. How would you choose which
predictions are the best? If you had to write a script to automatically choose between the
models, what would that script contain?
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ﬁey aspects of genome annotation \

Quality

The better the genome prediction is, the better the gene-models will be. If the
genome is miss-assembled that can lead to partial or chimeric gene-models. The
gold standard for gene-models is manual gene-model curation, but for draft
genomes there often not resources available to do this. So for draft genomes you
may have to accept that you will not have a perfect set of genes. Ten years of
annotating the malaria genome by hand using all possible lines of evidence has not
resulted in a perfect annotation (although it is a very good one)! How do you think
the quality of the gene-models affect the analysis you can do, and the conclusions
you can draw?

Several lines of independent evidence are best

Predicting gene-models, you will find that one of the hardest things to do is to
choose which set of models are the best; all methods are good at some types of
genes and bad at others. Augustus has a built-in quality check, in which you can
compare your training models with your predicted models. Use a variety of
prediction approaches, as you have done here, to capture as many of the genes as
possible and to improve their accuracy. It is always a good idea to try different
programs for any particular problem in computational biology: if they all produce the
same answer you can be more certain it is correct. In the case of gene model
predictions they will frequently disagree. If several predictions are of similar high
quality, perhaps the best option is to combine different sets of gene using tools such
as Jigsaw (Allen & Salzberg, 2005) and EVM (Haas et al., 2008)?

Over-prediction

There is a balance to strike between having almost all the genes and lots of
erroneous ones as well, or to miss some genes but have relatively few incorrect
ones. It may be important to find as many of the real genes as possible. However
once you have published an erroneous model to the public sphere, for instance by
submitting it to GenBank, it can be very hard to retract it later, and it may cause
problems for other people using that gene for their analyses.

Bacteria are simpler

If you work on bacteria you will encounter fewer problems with accurately predicting
gene models as they almost always have single-exon genes. The program
Glimmer3 (Delcher et al., 1999) is an alternative to Augustus for ab initio gene
prediction in bacteria, but since version 2.7 Augustus has improved its prediction
methods for bacterial genomes. Another alternative for both gene prediction and
functional annotation for bacteria is Prokka
www.vicbioinformatics.com/software.prokka.shtml

Alternative splicing

Many genes in more complex organisms have several alternative splice-forms,
including/excluding different UTRs and exons. Predicting alternative splicing is much
harder than predicting a “canonical”; most complete, gene-model (like the ones you
have just predicted). It is currently only possible to predict alternative transcripts
reliably for model genomes which already are very well assembled and annotated,

\iw have a wealth of supporting evidence (like human and C. elegans). /
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ﬁey aspects of RNA-seq mapping \
Non-unique/repeat regions

A sequence read may map equally well to multiple locations in the reference
genome. Different mapping algorithms have different strategies for this problem, so
be sure to check the options in the mapper. Alow GC content, such as in
Plasmodium falciparum (81% AT) means that reads are more likely to map to
multiple locations in the genome by chance.

Insert size

When mapping paired reads, the mapper (e.g. TopHat) takes the expected insert
size into account. If the fragments are expected to on average be 200bp, and the
reads are 50bp, then the insert between the paired reads should be ~100bp. If the
paired reads are significantly further apart than expected, we can suspect that the
reads have not mapped properly and discard them. Removing poorly mapping
reads can produce a more reliable mapping.

Spliced mapping

Eukaryotic mRNAs are processed; after transcription introns are spliced out.
Therefore some reads (those crossing exon boundaries) should be split when
mapped to the reference genome sequence in which intron sequences are still
present. TopHat is one of few mappers which can split reads while mapping them,
making it very suitable for mapping RNA-seq. Beware that TopHat cannot recognize
donor and acceptor splice-sites so it will split reads only based on optimizing the
mapping, and you will occasionally see a couple of bases of the read having ended
up on the wrong side of the intron.

Alternative mappers

Alternative short read mappers which do not split reads include SOAP (Li et al.,
2008b), SSAHA (Ning et al., 2001), BWA (Li et al., 2009) and Bowtie2 (Langmead
B, Salzberg S. 2012), SMALT (Ponstingl, unpublished). All of these may be
appropriate for bacterial RNA-seq. Where introns are an issue RUM (Grant et al.,
2011) is one alternative to TopHat (Trapnell et al., 2009).

New tools for mapping sequence reads are continually being developed. This
reflects improvements in mapping technology, but it is also due to changes in the
sequence data to be mapped. The sequencing machines we are using now (e.g.
lllumina HiSeq, 454 GS FLX etc) will perhaps not be the ones we are using in a few
years time, and the data the new machines produce may not be best mapped with
current tools.

Beware of the genes!

In spite of our very best efforts, it is not always possible to predict genes accurately.
There are many phenomena which can throw both automatic and manual
predictions off track. For instance (but not limited to): seleno-proteins containing
“stop-codons” as part of the coding sequence, polycistronic genes, splice-leader
trans-splicing, long non-coding RNAs, repetitive genomic regions and
\pseudogenes. Before publishing, it is always a good idea to try to estimate how/

correct the models are, and doing some sanity-checking of the gene-models.
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Differential Expression

Introduction to Differential Expression analysis

Understanding the genome is not simply about understanding which genes are there.
Understanding when each gene is used helps us to find out how organisms develop and
which genes are used in response to particular external stimuli. The first layer in
understanding how the genome is used is the transcriptome. This is also the most
accessible because like the genome the transcriptome is made of nucleic acids and can
be sequenced using the same technology. Arguably the proteome is of greater relevance
to understanding cellular biology however it is chemically heterogeneous making it
much more difficult to assay.

Over the past decade or two microarray technology has been extensively applied to
addressing the question of which genes are expressed when. Despite its success this
technology is limited in that it requires prior knowledge of the gene sequences for an
organism and has a limited dynamic range in detecting the level of expression, e.g. how
many copies of a transcript are made. RNA sequencing technology, using for instance
[NIlumina HiSeq machines, can sequence essentially all the genes which are transcribed
and the results have a more linear relationship to the real number of transcripts generated
in the cell.

The aim of differential expression analysis is to determine which genes are more or less
expressed in different situations. We could ask, for instance, whether a bacterium uses its
genome differently when exposed to stress, such as excessive heat or a drug.
Alternatively we could ask what genes make human livers different from human
kidneys.

In this module we will address the effect of vector transmission on gene expression of
the malaria parasite. Is the transcriptome of a mosquito-transmitted parasite different
from one which has not passed through a mosquito? The key reason for asking this
question is that parasites which are transmitted by mosquito are less virulent than those
which are serially blood passaged in the laboratory. Figure 1A shows the malaria life
cycle, the blue part highlighting the mosquito stage. Figure 1B shows the difference in
virulence, measured by blood parasitemia, between mosquito-transmitted and serially
blood passaged parasites. The data in this exercise, as well as figures 1B and 1C are
taken from Spence et al. (2013).
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Figure 1. Serial blood passage increases virulence of malaria parasites. (A) The
lifecycle of plasmodium parasites involves mammalian and mosquito stages. Experiments
in the lab often exclude the mosquito stage (red) and instead remove parasites from the
blood of a mouse to infect another mouse (serial blood passage). (B) Serially blood
passaged parasites (red) are more virulent than mosquito-transmitted parasites (blue) as
shown by their higher parasitemia over the course of infection. (C) As mosquito transmitted

parasites are serially blood passaged an increasing number of times, they return to a higher
level of parasitemia.
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Figure 1C shows that increasing numbers of blood passage post mosquito transmission
results in increasing virulence, back to around 20% parasitemia. Subsequent mosquito

transmission of high virulence parasites renders them low virulence again. We hypothesise
that parasites which have been through the mosquito are somehow better able to control the

mosquito immune system than those which have not. This control of the immune system

would result in lower parasitemia because this is advantageous for the parasite. Too high a

parasitemia is bad for the mouse and therefore bad for the parasite. Are there any

differences between the transcriptomes of serially blood passaged parasites and mosquito-
transmitted parasites which might explain how they are able to do this?

2
3
4,
5

/ Module Summary

l.

Mapping RNA-seq reads to the genome using HISAT2

Using Artemis to visualise transcription

Using Kallisto and Sleuth to identify differentially expressed genes
Using Sleuth to quality check the data

Interpreting the results

~
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1. Mapping RNA-seq reads to the genome using
HISAT2

Cw

e have two conditions: serially blood-passaged parasites (SBP) and mosquito
transmitted parasites (MT). One with three biological replicates (SBP), one with two
(MT). Therefore we have five RNA samples, each which has been sequenced on an
[Mlumina HiSeq sequencing machine. For this exercise we have reduced the number of
reads in each sample to around 2.5m to reduce the mapping time. However this will be
sufficient to detect most differentially expressed genes.

o j

Firstly, make a HISATZ2 index for the P. chabaudi genome reference sequence.
hisat2-build PccAS v3 genome.fa PccAS v3 hisat2idx

Map the reads for the MT1 sample using HISAT2. Each of the following steps will
take a couple of minutes.

hisat2 --max-intronlen 10000 -x PccAS v3 hisat2idx -1
MT1 1l.fastqg -2 MT1_2.fastqg -S MTl.sam

Convert the SAM file to a BAM.

samtools view -b -o MTl.bam MTl.sam

Sort the BAM file (otherwise the indexing won’t work)
samtools sort -o MT1l sorted.bam MT1.bam

Index the BAM file so that it can be read efficiently by Artemis
samtools index MT1 sorted.bam

Now map, convert SAM to BAM, sort and index with the reads from the MT2
sample.

Note the BAM files and .bai index files provided for the SBP samples:

ls *bam*
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2. Using Artemis to visualise transcription

Index the fasta file so Artemis can view each chromosome separately
samtools faidx PccAS v3 genome.fa

Load chromosome 14 into Artemis from the command line, displaying the mapped reads
from each sample:

art -
Dbam="MT1 sorted.bam,MT2 sorted.bam,SBP1 sorted.bam,SBP2 sorted.
bam, SBP3_sorted.bam" PccAS v3 genome.fa +PccAS v3.gff.gz &

Select "Use index” so Artemis will show individual chromosomes.
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2. Entry (top line): shows which entries are currently loaded with the default entry
highlighted in yellow You can select different chromosomes to view here.

3. BAM view: Displays reads mapped to the genome sequence. Each little horizontal line

represents a sequencing read. Some reads are blue indicating that they are unique
reads. Green reads represent multiple reads mapped to exactly the same position on
the reference sequence. Grey lines in the middle of reads mean that the read has been
split and this usually means it maps over an intron. If you click a read its mate pair
will also be selected. If you want to know more about a read right-click and select
‘Show details of: READ NAME’.

4. Sequence view panel. The central two grey lines represent the forward (top) and
reverse (bottom) DNA strands. Above and below these are the three forward and three
reverse reading frames (theoretical translations of the genome). Stop codons are
marked as black vertical bars. Genes and other annotated features are displayed as
coloured boxes. We often refer to predicted genes as coding sequences or CDSs.

5. This panel has a similar layout to the main panel but is zoomed in to show nucleotides

and amino acids.

6. Sliders for zooming view panels.
&Sliders for scrolling along the DNA. /
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Right click on the BAM view, select Graph, then Coverage.

Right click on the BAM window showing the reads and hover over BAM files.
This will show you which colours in the coverage plot relate to which samples.
Scroll through the chromosome and see if you can identify genes which might
be differentially expressed between SBP and MT parasites. Is looking at the
coverage plots alone a reliable way to assess differential expression? Hint: what
is the difference between read count and RPKM? Are the libraries all the same

size?
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Select chromosome PccAS_14_v3 from the drop down box on the Entry line.

Press Ctrl-g and use “Goto Feature With Gene Name” to navigate to the gene
PCHAS_1402500.
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Investigate the coverage for this gene. Does the RNA-seq mapping agree with the

gene model in blue?

You can determine read counts and RPKMs for individual genes within Artemis.

Click on the blue gene model, right click on the BAMview window, select Analyse,

then RPKM value of selected features.

Artemis asks whether you want to include introns in the calculations. We are only
interested in reads mapping to the spliced transcript, so you should exclude these.
Select Use reads mapped to all reference sequences. Is this important?

After the analysis is done a window will appear behind Artemis.
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CDS 100916 105512 ¢ -~
cDS 107977 108699 ¢ [
cos 110797 111477 ¢
Ccos 112822 114227 c¢
DS 115268 123611 c
cos 125426 126460 c
CDS 127387 132260
cDS 132077 133732 ¢
oS 136572 138956
CDS 139763 140337
— CDS 140588 141455
DS 142119 143326 ¢
CoS 144365 145378 . =

This gene looks to be up-regulated in serially blood passaged parasites; SBP samples
have RPKMs several times greater than the MT samples. Is it statistically significant?
In the next section we will find out.
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3. Using Kalliso and Sleuth to identify differentially
expressed genes

-

Kallisto 1s a read mapper, but instead of mapping against the genome it is designed to
map against the transcriptome, i.e. the spliced gene sequences inferred from the genome
annotation. Rather than tell you where the reads map it’s aim is in quantifying the
expression level of each transcript. It is very fast because it uses pseudoalignment rather
than true read alignment.

\_

~

)

Kallisto needs an index of the transcript sequences.
kallisto index -i PccAS v3_kallisto PccAS_v3_ transcripts.fa
Quantify the expression levels of your transcripts for the MT1 sample.

kallisto quant -i PccAS v3 kallisto -o MT1 -b 100
MT1 1.fastqg MT1 2.fastg

The results are contained in the file MT1/abundance.tsv

Use the kallisto quant command four more times, for the MT2 sample and the
three SBP samples.

Sleuth uses the output from Kallisto to determine differentially expressed genes. It is
written in the R statistical programming language, as is almost all RNA-seq analysis
software. Helpfully however it produces a web page that allows interactive graphical
analysis of the data. However, I would recommend learning R for anyone doing a
significant amount of RNA-seq analysis. It is nowhere near as hard to get started with
Cs full-blown programming languages such as Perl or Python!

)

We have provided a series of R commands which will get Sleuth running. These
are in the file sleuth.R. Open the file and have a look. It is not as hard as it seems,
| copied most of this from the manual! To run this R script, you will have to open R:

R

And then copy and paste commands from the file sleuth.R

5.
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4. Using Sleuth to quality check the data

-
Sleuth provides several tabs which we can use to determine whether the data is of good
quality and whether we should trust the results we get.
o
In the web page which has been launched click on Summaries->processed data.
Even though we have used the same number of reads for each sample, there are
large differences in the number of reads mapping for each one. Why might this be?
Is it a problem?
Welcome to Shiny Server! x NG B +
| welcome toshinyserver! x JEINEY ~ 127001 PPN =
127.0.0.1 *Ea ¢ A9 = == =
PCA projections of sample abundances onto any pair of components.
SloUle ey i - x-axis PC: y-axis PC: color by: size: units:
LLAL 1 e 2 h condition v 3 = est_counfs
processed data
::Irlni:‘soa:::::):n:j:: of mapped reads, number of boostraps performed by kallisto, and sample to covariate mappings. @ filter @ text labels

Show| 25 ~|entries Search

sample reads_mapped reads_proc frac_mapped bootstraps
MT1 67266 500000 0.1345 100 MT
MT2 136556 500000 02731 100 MT

SBP1 407544 500000 0.8151 100 SBP

PC2

SBP2 381387 500000 0.7628 100 SBP

SBP3 386637 500000 0.7733 100 SBP

Showing 110 5 of 5 entries Previo: Nex

& Download Plot

Click on map->PCA.

The Principal Components Analysis plot shows the relationship between the
samples in two dimensions (PC1 and PC2). In this case almost all the variation
between the samples is captured by just Principal Component 1. The MT samples
are well separated from the SBP samples, meaning that the replicates are more

similar to each other than they are to samples from the different condition. This is
good.

In some cases we identify outliers, e.g. samples which do not agree with other
replicates and these can be excluded. If we don’t have many replicates, it is hard to
detect outliers and our power to detect differentially expressed genes is reduced.

26-




Module 7 — Genome Annotation and Differential Expression

5. Interpreting the results

In the R script we printed out a file of results describing the differentially expressed \
genes in our dataset. This is called “kallisto.results”.

The file contains several columns, of which the most important are:

Column 1: target _id (gene id)

Column 2: pval (p value)

Column 3: qval (p value corrected for multiple hypothesis testing)

Column 4: b (fold change)

Qlumn 12: description (some more useful descriptionof the gene than its id) /

With a little Linux magic we can get the list of differentially expressed genes with
only the columns of interest as above. The following command will get those
genes which have an adjusted p value less than 0,01 and a positive fold change.
These genes are more highly expressed in SBP samples.

cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 > 0’
These genes are more highly expressed in MT samples:

cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 < 0’

How many genes are more highly expressed in each condition?

Do you notice any particular genes that come up in the analysis?

The most highly up-regulated genes in MT samples are from the cir family. This is a
large, malaria-specific gene family which had previously been proposed to be involved in
immune evasion (Lawton et al., 2012). Here however we see many of these genes up-
regulated in a form of the parasite which seems to cause the immune system to better
control the parasite. This suggests that these genes interact with the immune system in a
more subtle way, preventing the immune system from damaging the host.

\_ /
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Remember PCHAS 14025007 Of course you do. It was the gene we looked at in
Artemis that seemed absolutely definitely differentially expressed.

What does Sleuth think about it?

grep PCHAS 1402500 kallisto.results | cut —f1,3,4,12

Ghough this gene looked like it was differentially expressed from the plots in Artemh
our test did not show it to be so. This might be because some samples tended to have

more reads, so based on raw read counts, genes generally look up-regulated in the SBP
samples. Alternatively the reliability of only two biological replicates and the strength of
the difference between the conditions was not sufficient to be statistically convincing. In
the second case increasing the number of biological replicates would give us more
confidence about whether there really was a difference.

In this case, the lower number of reads mapping to MT samples mislead us in the Artemis
view. Luckily careful normalisation and appropriate use of statistics saved the day!

If you want to read more about the work related to this data it is published: Spence et al.
&013 (PMID: 23719378). /
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4 N

Key aspects of differential expression analysis

Replicates and power

In order to accurately ascertain which genes are differentially expressed and by how
much it is necessary to use replicated data. As with all biological experiments doing
it once is simply not enough. There is no simple way to decide how many replicates
to do, it is usually a compromise of statistical power and cost. By determining how
much variability there is in the sample preparation and sequencing reactions we can
better assess how highly genes are really expressed and more accurately determine
any differences. The key to this is performing biological rather than technical
replicates. This means, for instance, growing up three batches of parasites, treating
them all identically, extracting RNA from each and sequencing the three samples
separately. Technical replicates, whereby the same sample is sequenced three times
do not account for the variability that really exists in biological systems or the
experimental error between batches of parasites and RNA extractions.

n.b. more replicates will help improve power for genes that are already detected at
high levels, while deeper sequencing will improve power to detect differential
expression for genes which are expressed at low levels.

P-values vs. g-values

When asking whether a gene is differentially expressed we use statistical tests to
assign a p-value. If a gene has a p-value of 0.05 we say that there is only a 5%
chance that it is not really differentially expressed. However, if we are asking this
question for every gene in the genome (~5500 genes for Plasmodium), then we
would expect to see p-values less than 0.05 for many genes even though they are
not really differentially expressed. Due to this statistical problem we must correct
the p-values so that we are not tricked into accepting a large number of erroneous
results. Q-values are p-values which have been corrected for what is known as
multiple hypothesis testing. Therefore it is a g-value of less than 0.05 that we
should be looking for when asking whether a gene is differentially expressed.

" /
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/ Alternative software \

If you have a good quality genome and genome annotation such as for model
organisms e.g. human, mouse, Plasmodium, 1 would recommend mapping to the
transcriptome for determining transcript abundance. This is even more relevant if
you have variant transcripts per gene as you need a tool which will do its best to
determine which transcript is really expressed. As well as Kallisto (Bray et al. 2016;
PMID: 27043002), there is eXpress (Roberts & Pachter, 2012; PMID: 23160280)
which will do this.

Alternatively you can map to the genome and then call abundance of genes,
essentially ignoring variant transcripts. This is more appropriate where you are less
confident about the genome annotation and/or you don’t have variant transcripts
because your organism rarely makes them or they are simply not annotated.
Tophat2 (Kim et al., 2013; PMID: 23618408), HISAT2 (Pertea et al. 2016; PMID:
27560171), STAR (Dobin et al., 2013; PMID: 23104886) and GSNAP (Wu & Nacu,
2010; PMID: 20147302) are all splice-aware RNA-seq read mappers appropriate
for this task. You then need to use a tool which counts the reads overlapping each
gene model. HTSeq (Anders et al., 2015; PMID: 25260700) is a popular tool for
this purpose. Cuftlinks (Trapnell et al. 2012; PMID: 22383036) will count reads and
determine differentially expressed genes.

There are a variety of programs for detecting differentially expressed genes from
tables of RNA-seq read counts. DESeq2 (Love et al., 2014; PMID: 25516281),
EdgeR (Robinson et al., 2010; PMID: 19910308) and BaySeq (Hardcastle & Kelly,
2010; PMID: 20698981) are good examples.

What do | do with a gene list?

Diftferential expression analysis results is a list of genes which show differences
between two conditions. It can be daunting trying to determine what the results
mean. On one hand you may find that that there are no real differences in your
experiment. Is this due to biological reality or noisy data? On the other hand you
may find several thousands of genes are differentially expressed. What can you say
about that?

Other than looking for genes you expect to be different or unchanged, one of the
first things to do is look at Gene Ontology (GO) term enrichment. There are many
different algorithms for this, but you could annotate your genes with functional
terms from GO using for instance Blast2GO (Conesa et al., 2005; PMID:
16081474) and then use TopGO (Alexa et al., 2005; PMID: 16606683) to determine

whether any particular sorts of genes occur more than expected in your

\differentially expressed genes. /
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