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Module	4:	Overview	and	aims
The	aim	of	this	practical	class	is	to	introduce	you	to	some	of	the	concepts	involved	in	the	
assembly	of	a	eukaryotic	genome.	The	workflow	that	you	will	be	using	is	not	extensive,	nor	
comprehensive,	and	like	many	bioinformatic tasks,	there	are	many	tools	that	do	a	similar	
job.	However,	this	workflow	should	give	you	an	overview	of	how	to	perform	a	genome	
assembly,	and	identify	some	of	the	ways	to	assess	(and	maybe	improve)	the	quality	of	your	
genome	assembly.

The	data	you	will	be	working	with	in	this	tutorial	comes	from	a	species	of	parasitic	blood	
fluke	named	Schistosoma	mansoni.	This	parasite	causes	a	disease	called	schistosomiasis	that	
affects	approximately	200	million	people	who	reside	in	Africa,	the	Middle	East,	the	
Caribbean,	Brazil,	Venezuela	and	Suriname.	The	lifecycle	of	the	parasite	is	shown	in	Figure	1,	
which	illustrates	two	main	life	history	stages:	(1)	the	maturation	into	adulthood	and	sexual	
reproduction	in	the	mammalian	host	(here	a	human),	and	(2)	clonal	reproduction	and	
transmissible	stage	in	an	intermediate	host	(typically	a	snail),	and	in	the	lakes	and	streams	in	
which	the	snail	resides.	The	DNA	for	sequencing	was	derived	from	a	maintained	laboratory	
line	of	S.	mansoni at	the	Wellcome	Sanger	Institute,	in	which	the	mammalian	host	is	a	
mouse	in	the	maintenance	of	the	life	cycle

Figure	1.	Schistosoma	mansoni lifecycle.

The	data	you	will	be	using	was	generated	by	the	Parasite	Genomics	group	at	the	Wellcome	
Sanger	Institute;	a	draft	genome	sequence	was	initially	published	in	2009	(Berriman et	al.	
2009	https://doi:10.1038/nature08160),	followed	by	an	improved	version	in	2013	(Protasio
et	al.	https://doi.org/10.1371/journal.pntd.0001455);	however,	it	has	subsequently	been	the	
focus	of	further	improvement,	particularly	using	long	read	Pacbio data	and	genetic	mapping,	
and	now	is	largely	complete	in	chromosome-scale	scaffolds	(7	autosomes	+	Z/W	sex	
chromosomes)	that	total	approximately	380	Mb	in	length.
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Genome	assembly	of	a	380	Mb	genome	is	a	relatively	big	task	and	is	suited	to	a	computer	
cluster	environment,	and	not	personal	computers.	To	make	things	manageable	in	terms	of	
computer	power	and	run	time,	we	have	selected	data	that	corresponds	to	a	single	S.	
mansoni autosome,	designated	chromosome	IV,	which	is	approximately	47	Mb	in	length.	
While	only	a	fraction	of	the	S.	mansoni genome,	a	single	chromosome	is	comparatively	huge
relatively	to	many	prokaryotic	genomes,	and	still	comes	with	the	complexity	of	an	eukaryotic	
genome	that	is	not	often	present	in	a	prokaryote.

To	assemble	the	47	Mb	chromosome	IV,	we	will	use	the	following	workflow	and	
demonstrate	following	concepts:

Step	1:	Checking	raw	sequencing	data	before	assembly
- Tools	used:	FastQC,	MultiQC,	Kraken

Step	2:	Estimating	your	genome	size	from	raw	sequence	data
- Tools	used:	Jellyfish,	GenomeScope

Step	3:	Performing	a	genome	assembly	using	either	Illumina	short	read	or	Pacbio long	read	
data
- Tools	used:	Canu,	Spades,	Miniasm

Step	4:	Comparison	of	your	assemblies	against	a	known	reference	sequence
- Tools	used:	Nucmer,	Assemblytics

Step	5:	Further	exploration	of	your	genome	assemblies
- Tools	used:	Bandage,	Nucmer,	Genome	Ribbon

# run FastQC for read 1 and read 2
$ fastqc SM_V7_chr4_illumina_R1.fq
$ fastqc SM_V7_chr4_illumina_R2.fq

A	line	stating	with	a	“#”	and	is	blue	is	an	
instruction	– it	does	not	need	to	be	typed

A	line	stating	with	a	“$”	is	a	command	and	needs	to	
be	typed	into	the	command	line	to	run.	Each	line	that	

begins	with	a	$ represents	a	new	command

# your first command – move to the working directory to get 
started!
$ cd /home/manager/Module_4_Assembly

Grey	boxes	contain	instructions	for	running	commands
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Commands	in	BLACK need	to	be	run.	
Commands	in	RED do	not	need	to	be	run	–
they	have	been	run	for	you	to	save	time.
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Step	1:	Checking	raw	sequencing	data	before	assembly

The	first	exercise	of	any	genomics	project	is	to	turn	your	sample	of	interest	into	sequencing	
data.	There	are	many	steps	involved,	including	sample	collection	(and	storage),	DNA	
extraction	(and	storage),	sequencing	library	preparation,	and	then	finally	submitting	and	
having	your	DNA	library	sequenced	on	one	or	more	of	a	number	of	different	sequencing	
platforms.	Not	surprisingly	then	is	that	the	success	of	each	step	will	influence	how	well	your	
sample	will	be	sequenced	and	will	impact	on	the	quality	of	the	data	generated.		Exploring	and	
understanding	the	characteristics	of	the	raw	data	before	any	assembly	is	performed	should	
give	you	some	confidence	in	whether	your	data	is	sufficient	to	undertake	a	genome	assembly,	
and	may	provide	some	insight	into	how	an	assembly	will	proceed.

We	will	use	two	tools	to	assess	different	aspects	of	the	raw	data.	The	first	tool	is	called	FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).	FastQC takes	raw	fastq reads	
and	provides	simple	graphs	and	tables	to	quickly	assess	the	quality	of	the	data.	It	also	
highlights	where	they	may	be	problems	in	different	aspects	of	your	data	(NOTE:	it	is	
parameterised on	human	data,	i.e.,	GC	content,	and	so	may	report	as	“failing”	based	on	
assessing	your	data	[if	not	human]	because	it	does	not	look	like	human	– be	aware	that	not	all	
“fails”	are	bad).	The	features	of	the	raw	data	that	are	being	assessed	is	presented	in	the	left-
hand	panel	of	Figure	2.

Figure	2.	Example	FastQC output.	
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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The	main	panel	of	this	figure	shows	an	example	of	the	comparison	of	the	distribution	of	per	
base	quality	(Phred score,	on	the	y-axis)	per	base	position	in	the	read	(x-axis).	Phred scores	
above	30	are	typically	considered	to	be	good	quality	for	an	Illumina	read.	In	this	case,	it	
shows	higher	quality	bases	toward	the	start	of	the	read	(in	the	green	section),	followed	by	a	
decrease	in	quality	along	the	read,	in	which	the	quality	drops	into	the	yellow	(Phred <	30)	
and	then	into	the	red	(Phred <	20).	Some	examples	of	“good”	and	“bad”	quality	data	is	found	
in	the	“Example	Reports”	section	of	the	FastQC website.	

The	main	features	of	the	data	to	look	out	for	will	be:

Per	base	sequence	quality:		 Good	overall	indicator	of	data	quality.	Should	remain	mostly	in	
the	green,	however,	will	drop	in	quality	over	the	length	of	the	
read.	Longer	reads	will	show	great	drop,	and	R2	will	show	
greater	drop	compared	to	R1.

Per	base	sequence	content: The	base	frequency	of	each	nucleotide	should	reflect	the	GC	
content,	with	f(A)=f(T)	and	f(C)=f(G).	The	expectation	is	that	
these	lines	should	remain	horizontal	and	even	throughout	the	
read.	Are	they	even?	

Per	base	sequence	GC: Abnormal	GC	distribution	is	a	good	indicator	of	contamination.	
Does	the	GC	profile	fit	the	expected	GC	content	for	your	species	
of	interest?	Is	it	a	smooth	distribution,	or	are	their	spikes?	

Per	base	N	content: Is	there	an	excess	of	positions	in	the	reads	for	which	a	“N”	base	
was	called?	Excess	Ns	can	often	indicate	an	issue	with	the	
sequencing.

Sequence	duplication	levels: Is	there	excessive	duplication?	Duplication	may	suggests	
artefacts	generatated during	library	preparation	/	PCR	
amplification

Adapter	content: What	is	the	proportion	of	known	illumina adapters	that	are	
present	in	the	data?

FastQC reports	would	typically	be	generated	for	each	read	set.	However,	if	you	have	a	lot	of	
datasets,	it	can	be	tedious	to	look	at	each	one	individually.	We	are	going	to	use	a	
visualisation tool	called	MultiQC (http://multiqc.info/),	which	can	automatically	detect	the	
FastQC data	once	generated	and	arrange	the	data	into	single	plots	for	all	read	sets.	MultiQC
is	not	only	good	for	visualising FastQC output;	it	supports	the	QC	of	over	60	bioinformatic
tools,	including	mapping,	SNP	calling,	transcriptomic	analyses	etc.	It	it	a	great	way	of	
summarising lots	of	datasets	in	one	place.

5

Module	4:	Helminth	de	novo	genome	assembly	



The	second	tool	to	assess	the	quality	of	your	raw	data	is	Kraken
(https://ccb.jhu.edu/software/kraken/).	Kraken is	a	fast	way	of	assigning	and	approximating	
the	abundance	of	known	species	based	on	short	DNA	sequences	called	kmers.	A	kmer is	
simply	a	short	length	of	nucleotide	sequence	of	a	given	length.	For	example,	in	a	DNA	
sequence:

DNA	sequence:	ATGCGTCATGC

Kmer =	4	:		ATGC,	TGCG,	GCGT,	CGTC,	GTCA,	TCAT,	CATG,	ATGC

Kmer =	4	(n):		ATGC	(2),	TGCG	(1),	GCGT	(1),	CGTC	(1),	GTCA	(1),	TCAT	(1),	CATG	(1)

I.e.	ATGC	was	seen	twice,	while	the	rest	were	seen	only	once.

Kraken works	by	aligning	kmers from	your	DNA	sequence	against	known	kmer frequency	
data	for	different	species	in	a	kraken	database.	It	will	therefore	only	assign	species	that	it	
knows,	else,	it	calls	the	sequence	“unclassified”.	Most	kraken databases	contain	
comprehensive	bacterial	and	viral	species	lists,	however,	it	may	also	contain	human	and	
mouse	profiles.	Kraken databases	can	be	customized	to	include	any	species	with	DNA	
sequence	available.	Therefore,	if	you	are	investigating	one	of	the	species	in	the	kraken	
database,	running	kraken	will	given	you	a	good	estimate	of	the	amount	of	reads	specifically	
from	that	species.	If	your	species	is	not	in	the	database,	then	you	would	expect	most	if	not	
all	reads	to	fall	into	the	“unclassified”	category.	Either	way,	this	approach	can	serve	as	an	
effective	screen	for	contaminants	in	your	sequencing	reads.	

Tasks:

- run	fastqc

- visualise output	of	FastQC using	MultiQC and	check	sequence	quality

- view	the	Kraken	report	to	determine	if	there	are	any	contaminants

# go to the working directory
$ cd /home/manager/Module_4_Assembly/step_1  

# run FastQC for read 1 and read 2
$ fastqc SM_V7_chr4_illumina_R1.fq
$ fastqc SM_V7_chr4_illumina_R2.fq

# Once FastQC has finished running, run MultiQC and visualise
output in web browser
$ multiqc .
$ firefox multiqc_report.html

# Once you have finished exploring FastQC/MultiQC, open the 
kraken report to determine the proportion of the read data 
that is “unclassified”.
$ cat kraken.report
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The	kraken	report

• The	output	of kraken-report is	tab-delimited,	with	one	line	per	taxon.	The	fields	of	the	
output,	from	left-to-right,	are	as	follows:

• Percentage	of	reads	covered	by	the	clade	rooted	at	this	taxon
• Number	of	reads	covered	by	the	clade	rooted	at	this	taxon
• Number	of	reads	assigned	directly	to	this	taxon
• A	rank	code,	indicating	(U)nclassified,	(D)omain,	(K)ingdom,	(P)hylum,	(C)lass,	(O)rder,	(F)amily,	(G)enus,	or	

(S)pecies.	All	other	ranks	are	simply	'-'.
• NCBI	taxonomy	ID
• indented	scientific	name

Questions	you	should	be	asking:

- FastQC /	MultiQC output

- What	are	the	similarities	/	differences	between	read	1	and	read	2?

- Are	the	base	quality	and	nucleotide	frequency	distributions	relatively	level,	or	
are	they	uneven?

- Kraken

- What	proportion	of	the	reads	are	“unclassified”,	and	therefore	potentially	
S.	mansoni reads?

- What	looks	to	be	the	main	contaminant?	Why	might	this	be	so?
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Step	2:	Estimating	your	genome	size	from	raw	
sequence	data

In	this	tutorial,	we	are	in	the	unique	position	to	already	know	what	the	length	of	the	
chromosome	sequence	were	are	trying	to	assemble.	However,	if	sequencing	a	new	species	
for	the	first	time,	we	may	not	know	what	the	genome	size	is.	Knowledge	of	the	genome	size	
can	be	an	important	piece	of	information	in	its	own	right,	however,	it	can	also	be	useful	to	
help	parameterise some	stages	of	the	genome	assembly.

We	can	estimate	the	genome	size	based	a	calculation	of	the	kmer coverage	of	our	reads.	We	
introduced	kmers in	the	last	section	– they	are	simply	a	string	of	nucleotides	of	a	given	
length.	The	relationship	between	kmer coverage	and	genome	size	is	described	by:

Where	Ckmer is	the	average	kmer coverage,	Nreads is	the	number	of	reads,	L is	the	average	
read	length,	k is	the	length	of	the	kmer,	and	G is	the	genome	size	(Vurture et	al	2017;	
https://doi.org/10.1093/bioinformatics/btx153;	supplementary	data).	It	is	not	important	to	
know	this	equation,	however,	we	illustrate	it	to	demonstrate	that	kmer coverage	can	be	
informative	about	genome	size.	

There	are	a	number	of	different	tools	available	to	count	kmers (https://omictools.com/k-
mer-counters-category) and	to	calculate	the	genome	size.	Today,	we	are	going	to	count	
kmers using	Jellyfish (http://www.genome.umd.edu/jellyfish.html ),	and	use	the	output	to	
calculate	the	genome	size	using	a	online	web	tool	called	GenomeScope
(http://qb.cshl.edu/genomescope/info.php).		

You	can	explore	some	examples	of	kmer spectra	and	genome	size	estimates	on	the	
GenomeScope website.	Figure	2	presents	an	example	of	a	Drosophila	dataset	(quick	access	
here:	http://genomescope.org/analysis.php?code=example5);	the	difference	between	the	
two	plots	is	the	scale	on	the	axes,	with	the	first	plot	zoomed	in,	and	the	second	plot	zoomed	
further	out.	In	both	plots,	the	blue	data	represents	the	actual	kmer frequency	data	
generated	by	Jellyfish.	The	dark	black	line	represents	a	model	of	the	kmer spectra,	used	to	
characterise the	number	of	peaks,	which	are	indicated	by	the	black	dashed	line.	The	orange	
line	represents	very	rare	kmers (low	coverage),	which	are	likely	associated	with	sequencing	
errors	and	are	ignored.	This	data	is	used	to	estimate	the	genome	size,	taking	into	account	
the	heterozygosity	and	error	of	the	sequencing	reads.	

𝐶𝑘𝑚𝑒𝑟 = 	
(	)*
(

*	+,-./0	∗(
2
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Figure	3.	Example	GenomeScope output.	Kmer coverage	is	presented	on	the	x-
axis,	and	kmer frequency	on	the	y-axis.

• Tasks
• Run	jellyfish	on	your	raw	sequencing	data
• Upload	your	kmer count	data	to	GenomeScope and	estimate	the	genome	size

# go to the working directory
$ cd /home/manager/Module_4_Assembly/step_2  

# run Jellyfish commands. The first step will take a few 
minutes
$ jellyfish count -C -m 21 -s 1000000000 \

-t 4 ../step_1/*.fq -o reads.jf
$ jellyfish histo -t 4 reads.jf \

> reads.histo

# Once Jellyfish commands have been run and you have the 
“reads.histo” file, open the webpage: 
http://qb.cshl.edu/genomescope/
# Upload reads.histo to GenomeScope
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The	“\”	allow	a	long	
command		to	be	slit	over	
multiple	lines.	They	don’t	
need	to	be	included	if	you	

write	the	whole	command	on	
a	single	line
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Figure	4.	GenomeScope webpage. http://qb.cshl.edu/genomescope/

• NOTE:	if	you	would	like	to	use	your	own	data,	check	the	read	length	and	modify	the	
input	above	accordingly.

Questions	you	should	be	asking:

- what	is	my	predicted	genome	/	chromosome	size?

- how	does	it	compare	to	the	expected	size?

- what	does	changing	the	kmer length	do?

Drag	and	drop	your	
“reads.histo”	file	here

It	is	not	necessary	to	change	any	other	
parameters.	Just	submit!
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Step	3:	Performing	a	genome	assembly	using	either	
Illumina	short	read	or	Pacbio long	read	data

Now	that	you	have	performed	some	QC	on	your	raw	data	and	estimated	your	genome	size,	
it	is	now	time	to	perform	a	genome	assembly.	There	are	a	huge	number	of	tools	dedicated	
to	genome	assembly;	OMICS	tools	describes	163	dedicated	for	de	novo	genome	assembly	
(https://omictools.com/genome-assembly-category),	however,	there	are	likely	others.	
Furthermore,	there	are	likely	to	be	at	least	as	many	tools	that	value-add	to	a	genome	
assembly,	including	but	not	limited	to	scaffolders,	circularisers,	gap	closers	etc.	The	choice	of	
assembler	and	subsequent	add-ons	is	dependent	on	the	type	of	data	available,	type	of	
organism,	i.e.,	haploid,	diploid	etc,	genome	size,	and	complexity	of	the	task	among	other	
variables.		

The	aim	of	this	practical	is	not	to	assess	these	tools	or	promote	any	particular	tool(s)	in	any	
meaningful	way,	but	to	compare	and	contrast	two	technologies	commonly	used	in	genome	
assembly:	Illumina	short-read	and	Pacbio long	read.

Illumina	short	read	sequencing	has	been	the	workhorse	of	genome	assembly	and	
resequencing	studies	for	the	last	few	years,	and	continues	to	be	the	main	technology	for	
high	throughput	genome	sequencing.	This	is	because	it	is	possible	to	sequence	millions	to	
billions	of	short	reads	at	the	same	time.	A	genome	assembly	using	Illumina	short	reads	
begins	by	fragmenting	DNA	into	~300-500	bp lengths	(less	than	1000	bp),	after	which	
universal	sequencing	adapters	are	ligated	to	each	end	to	generate	a	sequencing	library.	
These	adapters	enable	a	site	for	a	sequencing	primer	to	bind,	the	attachment	of	the	library	
read	to	the	sequencer,	and	may	contain	barcoding	indices	to	allow	sample	multiplexing.	
Sequencing	is	typically	performed	using	a	paired-end chemistry,	which	means	that	two	
reads	are	generated	per	library	fragment,	one	from	the	beginning	of	the	fragment,	ie.	read	1,	
and	one	from	the	end,	ie.	read	2.	Depending	on	the	chemistry	and	sequencer	used,	these	
paired-reads	will	each	be	~100-250	bp in	length;	therefore,	some	read	1	and	read	2	pairs	will	
overlap,	whereas	others	will	be	separated	by	a	gap,	dependent	on	the	library	fragment	and	
sequencing	read	lengths.	After	sequencing,	paired-end	reads	(which	maintain	their	
relationship	and	orientation	via	information	coded	in	their	name	in	the	fastq output	files)	are	
assembled,	resulting	in	contigs – contiguous	stretches	of	assembled	sequence	that	do	not	
contain	gaps	- and	scaffolds – which	are	assembled	sequence	that	do	have	gaps,	typically	
generated	by	the	spanning	of	two	contigs by	read	pairs	that	do	not	overlap	and	lack	
nucleotide	coverage	in	the	gap.	The	contiguity	is	therefore	dependent	on	the	ability	to	find	
unique	overlaps	between	read	pairs;	features	of	the	genome,	including	by	not	limited	to	
repetitive	and/or	low	complexity	regions,	or	even	inherent	genetic	diversity	in	the	
sequences,	cause	uncertainty	in	the	assembly	and	often	prevents	further	extension	of	a	
contig or	scaffold.	To	overcome	some	of	these	difficulties,	library	preparation	approaches	to	
produce	mate-pair or	jumping	librariesmay	be	performed,	which	increase	the	gap	distance	
between	the	paired-end	reads,	ie.,	3-kb,	8-kb,	20-kb,	and	in	turn,	may	span	the	difficult	to	
assembly	region;	this	results	in	an	increase	in	the	scaffold- but	not	contig length	overall.
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While	Illumina	library	preparation	aims	to	sequence	from	fragments	of	DNA	that	are	only	a	
few	hundred	base	pairs	long,	Pacbio sequencing	aims	to	sequence	DNA	fragments	that	are	
tens	of	kilobases in	length,	ie.	10s-100s	of	times	longer	than	Illumina	reads.	The	key	
advantage	of	this	approach	is	that	many	short,	complicated	genome	regions	that	would	have	
broken	an	Illumina	assembly	are	spanned	by	Pacbio long	reads,	and	therefore	can	be	
assembled	accurately.	Moreover,	the	longer	read	lengths	increase	the	probability	of	
identifying	unique	overlaps	between	reads.	Both	features	enable	significantly	longer	contig
lengths	from	an	Pacbio assembly	when	compared	to	an	Illumina	assembly	alone.	

One	feature	of	all	sequencing	technologies	is	that	sequence	quality	declines	over	the	read	
length	- you	should	have	observed	this	in	your	FastQC analysis	of	raw	Illumina	reads	(Step	1:	
Checking	raw	sequencing	data	before	assembly).	Pacbio reads	are	not	only	much	longer	than	
Illumina	reads,	but	that	when	sequenced,	the	raw	reads	produced	are	derived	from	a	single	
molecule	of	DNA.	This	differs	from	Illumina	reads,	in	which	a	“raw”	(but	really,	a	consensus	
sequence)	is	generated	from	a	cluster	of	reads	representing	the	original	library	fragment.	For	
these	two	reasons,	Pacbio reads	are	more	error-prone	than	Illumina	reads.	To	overcome	
this,	two	initial	informatic “correction”	steps	are	undertaken	prior	to	assembly	(Figure	5B).	
Raw	DNA	is	fragmented	and	size	selected	to	achieve	fragment	lengths	in	the	10s	of	
kilobases,	before	the	addition	of	barbell	adaptors,	which	provide	sequencing	primer	binding	
sites.	Sequencing	is	performed	by	the	polymerase	attaching	to	the	barbell	adaptor,	and	
processing	around	the	circle	to	produce	a	raw	read,	which	contains	the	library	insert	
sequence	flanked	by	the	adapter	sequences	in	an	array.	In	the	first	correction	step,	the	raw	
read	is	trimmed	to	remove	adapters,	and	the	library	inserts	are	aligned	to	produce	a	
consensus	sequence.		In	the	second	correction	step,	the	longest	of	the	first	round	consensus	
sequences	(~30-40%	of	the	total	reads)	are	used	as	a	template	to	map	the	remaining	
shorter,	more	accurate	reads;	taking	the	consensus	of	the	mapped	reads,	in	turn,	corrects	
the	longer	reads.	In	this	way	the	more	error	prone	long	reads	increase	in	quality,	which	is	
ideal	from	an	assembly	point	of	view.	Only	these	long,	twice	corrected	reads	are	used	for	
the	genome	assembly.	

The	process	of	error	correction	does	take	a	substantial	amount	of	time	and	compute	
resources.	It	has	recently	been	demonstrated	that	the	second	error	correction	step	can	be	
sacrificed	to	significantly	increase	assembly	speed	and	the	cost	of	assembly	base-level
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Figure	5.	Overview	of	Illumina	short	read	(A)	and	Pacbio long	read	assembly	approaches	(B).

A B

Nature	Methods volume10, pages563–569 (2013)
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accuracy,	i.e.,	it	is	uncorrected,	and	so	the	assembly	error	rate	is	similar	to	the	read	error	
rate.	We	will	perform	a	raw	Pacbio assembly	using	Minimap and	Miniasm to	compare	with	
our	other	two	assemblies.

• Tasks
• Run	the	Miniasm command	to	generate	your	first	Pacbio assembly	of	Chromosome	

IV
• The	Canu and	Spades	assemblies	have	been	provided	for	you	– it	would	take	too	

long	to	run	these	here	– however,	we	have	provided	the	commands	for	your	
reference

• Determine	the	assembly	statistics	of	each	genome	assembly

Once	you	have	your	assemblies,	you	will	probably	want	to	know	how	well	they	have	come	
together.	We	will	do	this	in	two	ways,	first	by	generating	and	comparing	basic	statistics	
about	the	assemblies,	and	secondly	from	a	comparative	genomics	perspective	by	visualising
how	well	each	assembly	compares	to	the	known	reference,	and	to	each	other	(next	section:	
Step	4).	
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# go to the working directory
$ cd /home/manager/Module_4_Assembly/step_3  

# run the Miniasm assembly
$ minimap2 -x ava-pb –t4 SM_V7_chr4_subreads.fa \

SM_V7_chr4_subreads.fa > SM_V7_chr4.minimap.paf
$ miniasm -f SM_V7_chr4_subreads.fa \

SM_V7_chr4.minimap.paf > SM_V7_chr4.miniasm.gfa
$ cat SM_V7_chr4.miniasm.gfa | 

awk '$1=="S" { print ">"$2"\n"$3} ‘ \
> MINIASM_SM_V7_chr4.contigs.fasta

# run time: step1 ~ 20 mins, 20 Gb RAM, 4 threads, steps2 and 
3 are quick (< 1 min)

# run the Canu assembly
$ canu genomeSize=43M -pacbio-raw SM_V7_chr4_subreads.fa \

–d PB_SM_V7_chr4 -p PB_SM_V7_chr4 \
java=/software/jdk1.8.0_74/bin/java

# run time: ~ 6h, 30 Gb RAM, 4 threads

# run the Spades assembly
$ dipspades.py -o SPADES_SM_chr4 \

-1 SM_V7_chr4_illumina_R1.fq \
-2 SM_V7_chr4_illumina_R2.fq --threads 4

# run time: ~ 50h, 6 Gb RAM, 4 threads
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Table	1	below	outlines	the	data	we	will	generate	about	each	assembly.	Each	is	relatively	self-
explanatory,	however,	you	may	not	have	been	introduced	to	N50	and	N50(n).	These	
statistics	are	a	measure	of	how	contiguous	a	genome	assembly	is.	Imagine	if	your	assembly	
is	sorted	by	sequence	length,	ie.,	longest	to	shortest;	your	N50	is	defined	as	the	sequence	
length	at	which	50%	of	the	entire	assembly	is	contained	in	contigs or	scaffolds	equal	to	or	
larger	than	this	contig.	It	is	essentially	the	midpoint	of	the	assembly.	The	N50(n)	is	simply	
the	contig number	in	which	the	N50	base	is	found.	More	contiguous	assemblies	will	have	a	
higher	N50	(and	lower	N50(n)),	whereas	more	fragmented	assemblies	will	show	the	
opposite	trend.	Note	that	you	can	artificially	increase	N50	by	randomly	joining	sequences	
together,	and therefore,	misassembly or	overassembly can	inflate	N50	values.	It	is	important	
to	not	completely	rely	of	N50	as	absolute	truth	and	to	perform	other	assembly	validations	if	
possible.

Questions	you	should	be	asking:

- how	do	my	assemblies	compare	to	the	expected	size	of	chomosome IV?

- what	is	the	impact	of	long	reads	versus	short	reads	on	assembly	contiguity?

- how	did	the	uncorrected	(Minimap/miniasm)	assembly	compare	to	the	corrected	Canu
assembly?
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# calculate the assembly statistics for all three assemblies, 
and complete Table 1 below.

$ assembly-stats PB_SM_V7_chr4.contigs.fasta
$ assembly-stats MINIASM_SM_V7_chr4.contigs.fasta
$ assembly-stats SPADES_SM_V7_chr4.consensus_contigs.fasta

Pacbio (Canu) Pacbio (Miniasm) Illumina
(Spades/dispades)

Assembly	size

Number	of	
sequences

Longest sequence

Average	size

N50

N50	(n)

Table	1.	Comparison	of	assembly	stats
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Step	4:	Comparison	of	your	assemblies	against	the	
known	reference	sequence

Now	that	we	have	three	independent	genome	assemblies,	we	would	like	to	see	how	they	
compare	to	the	reference	chromosome	IV	sequence.	This	is	only	possible	because	we	
already	have	a	reference	sequence,	however,	if	you	have	a	closely	related	species	with	a	
more	contiguous	reference,	it	might	be	worth	trying.	If	you	do	not	have	a	good	reference	to	
compare	against,	you	could	simply	compare	different	versions	of	the	de	novo	assembly	to	
see	how	they	compare	(we	would	like	you	to	do	this	if	you	have	time).

There	are	a	number	of	ways	to	compare	genomes.	We	will	be	using	nucmer to	do	the	DNA	
vs	DNA	sequence	comparison,	and	the	web	application	Assemblytics
(http://assemblytics.com/)	to	visualise the	comparison.	Assemblytics is	a	nice	way	
to	visualise this	comparison,	as	it	not	only	allows	a	“zoomed”	out	view	of	how	the	genomes	
compare	(via	the	Interactive	dot	plot),	but	it	also	provides	base-level	and	small	structural	
variant	statistics.	These	can	be	informative	particular	when	comparing	different	sequencing	
technologies,	ie.,	Illumina	versus	Pacbio,	and	may	reveal	inherent	biases	in	each.	

• Tasks
• Run	nucmer of	each	of	the	three	comparisons,	ie.	Ref	vs	PB,	ref	vs	miniasm,	ref	vs	

illumina
• Explore	each	of	the	interactive	dotplots
• Compare	the	base	level	statistics	for	each	comparison	(these	are	the	colour plots)

# go to the working directory
$ cd /home/manager/Module_4_Assembly/step_4  

# run nucmer to generate the comparison between the reference 
and each genome assembly. We have provided one example, but we 
would like you to run all three assemblies against the 
reference.

$ nucmer -maxmatch -l 100 -c 500 SM_V7_chr4.fa \
../step_3/PB_SM_V7_chr4.contigs.fasta -prefix chr4_v_PB 

$ gzip chr4_v_PB.delta

# open the webpage: http://assemblytics.com/
# upload the OUT.delta.gz using the instructions provided
# note that that upload might take a minute or two to analyse
# the raw data and provide the data output / plots

15
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Note:	once	your	analysis	competed	successfully	on	the	website,	it	will	generate	a	http	link	
that	you	can	use	to	visualise your	data	even	after	you	have	closed	your	browser	down.	This	
is	nice,	as	it	means	you	can	easily	share	this	analysis	via	email	of	the	link.	Make	a	note	of	
each	http	link	for	each	comparison	so	you	can	compere	each	comparison.	

To	help	you	visualise and	interpret	the	interactive	dot	plot,	we	have	provided	some	
examples	of	pairwise	DNA	sequence	comparisons	that	are	commonly	observed	(Figure	7).	
Ideally,	we	are	looking	for	a	perfect	match	(a),	however,	there	are	many	feature	of	a	genome	
that	either	complicate,	and	often	break,	assemblies,	including	repeats	(b),	palindromes	(c),	
and	low	complexity	repeats	such	as	microsatellites	(e)	to	name	a	few.	See	what	features	are	
present	in	your	assemblies,	and	if	there	are	features	associated	with	the	ends	of	contigs that	
might	be	associated	with	breaking	your	assemblies.		
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Change	“Minimum	
variant	size”	to	1

Drag	and	drop	your	
“delta.gz”	file	here

Submit!

Take	note	of	this	link	for	
each	comparison!

Figure	6.	Assemblytics hompage and	upload	instructions

Figure	7.	Assemblytics output	– saving	the	http	link	for	future	reference

Link	to	interactive	dot	plots.	Note	
that	you	can	zoom	in	and	out	to	

see	more	detail.
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Questions	you	should	be	asking:

- how	does	each	assembly	compare	against	the	reference?

- particularly	in	the	ref	vs	PB	dot	plot	comparison,	what	sequence	features	are	found	and	
sequence	ends,	and	why	might	they	be	there?

- are	there	base	level	characteristics	found	in	one	assembly	but	not	the	other?	Is	there	
anything	specific	to	the	Pacbio assembly	but	not	Illumina	assembly,	and	vice	versa?

- what	sequence	features	define	the	uncorrected	Miniasm in	particular?
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Figure	8.	Schematic	of	dot	plot	examples.	Originally	from	goo.gl/P4QTFd;	adapted	from	
http://slideplayer.com/slide/10357320/
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Step	5:	Further	exploration	of	your	genome	
assemblies

Now	that	we	have	compared	and	contrasted	our	initial	genome	assemblies,	we	would	now	
want	to	think	about	ways	of	improving	them	to	make	them	more	contiguous	– each	of	our	
assemblies	is	still	some	way	off	being	a	single	sequence,	i.e.,	a	single	chromosome.	One	way	
would	be	to	generate	additional,	complementary	data	that	might	be	used	to	scaffold	the	
existing	contigs together	to	create	much	longer	sequences.	Approaches	include	generating	
mate-pair	libraries,	or	alternate	long	range	sequencing	technologies	such	as	Nanopore,	
optical	mapping,	or	HiC to	name	a	few.	However,	this	is	obviously	outside	the	scope	of	this	
tutorial.	

Our	assemblies	are	currently	represented	in	a	FASTA	file;	each	individual	sequence	is	
presented	separate	from	each	other,	and	there	is	no	information	that	links	each	sequence	to	
each	other.	However,	in	generating	the	assembly,	the	assembler	catalogs	overlaps	between	
sequences	with	the	aim	of	joining	/	extending	existing	sequences;	if	there	is	a	single	overlap,	
a	join	is	made,	however,	if	there	are	two	or	more	overlaps	between	which	the	assembler	
cannot	confidently	make	a	decision,	it	will	not	make	the	join	and	report	multiple	sequences.	
These	multiple	paths	between	sequences	might	be	due	to	genetic	variants,	haplotypes,	
repeats	etc.	Importantly,	some	assemblers	record	these	multiple	paths	in	a	structure	known	
as	a	genome	graph.	These	genome	graphs	are	composed	of:

- nodes	– these	are	the	individual	sequences	presented	in	the	FASTA

- edges	– these	link	two	nodes	together

- paths	– describes	the	linking	of	nodes	via	edges	to	form	a	longer	sequence

We	will	use	the	tool	Bandage (https://rrwick.github.io/Bandage/) to	visualise the	genome	
graphs	produced	by	miniasm and	spades	assemblers,	and	demonstrate	how	to	extract	
extended	sequences	from	these	graphs	to	extend	your	genome	assemblies.	We	will	compare	
your	new	sequence	against	the	reference	using	the	web	tool,	Genome	Ribbon	
(http://genomeribbon.com/),	which	is	similar	to	ACT,	but	is	more	suited	for	larger	genomes.

Tasks

- visualise and	compare	the	Pacbio miniasm and	Illumina	Spades	genome	graphs

- using	the	Pacbio miniasm graph,	construct	a	path	through	the	graph,	making	a	new	
sequence

- compare	your	new	sequence	against	the	reference

18
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The	genome	graph	is	sorted	by	size,	with	the	largest	sequence(s)	in	the	top	left	corner,	which	
get	progressively	smaller	down	the	page.	The	colours represent	difference	sequences	in	the	
genome,	which	are	called	“nodes”	in	the	graph.	These	are	joined	in	some	cases	by	thin	black	
lines	called	“edges”,	which	where	possible,	describe	the	relationship	between	sequences.	
Graphs	therefore	provide	an	additional	level	of	detail	over	the	genome	sequence	alone;	
each	node	is	represented	as	an	independent	sequence	in	a	fasta file,	however,	in	a	genome	
graph,	alternate	paths	that	connect	nodes	can	be	visualised.	These	alternate	paths	typically	
break	assemblies,	as	the	assembler	cannot	reliable	choose	a	single	path	to	extend	the	
assembly.	

Explore	the	genome	graph,	zooming	into	some	of	the	groups	of	sequences.	Some	consist	of	
a	single	node,	i.e.,	a	single	contig sequence,	with	no	relationships	to	other	sequences,	
whereas	other	are	more	complex,	in	which	larger	nodes	may	be	connected	by	two	or	more	
alternate	nodes.	
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# Once finished, load the Illumina (SPADES) graph (made during 
the Illumina assembly) into Bandage, and compare. 

$ Bandage load SM_V7_chr4.spades.gfa

# Note that this file will take longer to load than the 
previous one. 

Once	the	
Bandage	
window	

appears,	click	
on	“Draw	
Graph”

Nodes	=	
Sequences	
”Thick”	lines

Edges	=	
”Thin”	lines	
that	connect	

nodes

# go to the working directory
$ cd /home/manager/Module_4_Assembly/step_5  

# load Pacbio miniasm genome graph into Bandage. This file was 
made during the miniasm assembly

$ Bandage load SM_V7_chr4.miniasm.gfa

# use Bandage to explore the graph
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Once	Bandage	loads,	we	are	going	to	limit	the	amount	of	data	displayed	to	enable	faster	
viewing.	

1.	Under	the	“Graph	drawing”	subheading,	select	“Depth	Range”	in	the	“Scope”	drop-down.

2.	Set	the	”min”	to	5	and	“max”	to	30

3.	Click	on	“Draw	Graph”	

NOTE:	if	the	graph	has	not	appeared	after	2-3	mins,	click	on	“Cancel	layout”,	after	which	the	
graph	should	appear	shortly.

The	Illumina	genome	graph	will	look	*quite*	different	to	the	Pacbio miniasm graph.	

Zoom	out	completely	to	give	you	a	sense	of	the	scale	of	the	graph.	

• If	you	recall	from	the	“assembly-stats”	output	in	step	3,	the	Illumina	assembly	was	in	
many	more	pieces	than	the	Pacbio assemblies.	The	graph	reflects	this	by	the	large	
number	of	unique	nodes	present.	

Move	to	the	top	left	hand	corner	containing	the	largest	collection	of	sequences,	and	take	a	
closer	look	by	zooming	in.	

• The	graph	also	demonstrates	the	reason	for	the	fragmentation	in	the	Illumina	assembly;	
the	relationships	between	nodes	is	often	much	more	complex	with	many	more	paths	
present,	due	to	non-unique	edges	between	sequences.	

• You	should	also	see	in	this	this	graph	(if	you	look	closely)	that	there	are	many	paths	that	
terminate	suddenly.	If	you	looker	closer	still	at	the	direction	of	the	edges	connecting	the	
nodes,	some	look	to	turn	around,	resulting	in	a	duplication	of	the	sequence.	This	might	be	
due	to	repetitive	or	haplotypic sequences	in	the	assembly.	
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if	graph	is	taking	more	than	2-3	mins	to	
draw,	click	“Cancel	layout”	to	stop.	It	
will	draw	a	proportion	of	the	graph.
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Lets	perform	a	basic	improvement	to	our	Pacbio miniasm assembly,	by	trying	to	use	the	
graph	information	to	string	multiple	nodes	(sequences)	together	to	produce	a	longer	
sequence.

1. Reopen	the	Pacbio miniasm graph	as	you	have	done	so	previously.

2. Draw	graph.	Zoom	in	on	the	top	left	hand	corner	on	the	largest	graph

3. Select	a	node,	and	while	continuing	to	hold	the	“ctrl”	key,	select	multiple	nodes	in	a	
linear	path
1. You	can	move	the	nodes	around	if	you	need	to	to	make	it	clearer	/	easier	to	see	the	path	by	clicking	on	one	

and	dragging	it	to	the	side
2. Be	careful	not	to	double	back	on	yourself	– it	will	not	save	if	it	is	not	linear.	For	example:

4. To	save	your	path,	go	to	“Output”,	and	select	“Save	selected	path	sequence	to	FASTA”,	
and	then	save	it	as	“path_sequence.fasta”	and	click	on	“save”
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# make sure you are still in the correct working directory

$ cd /home/manager/Module_4_Assembly/step_5  

$ Bandage load SM_V7_chr4.miniasm.gfa

To	save	path
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is	highlighted	in	

blue.	Look	carefully	
at	the	edges	to	

determine	direction	
of	path



Lets	now	compare	your	new	sequence	back	against	the	reference	to	see	how	you	have	
done.

1. Use	nucmer to	compare	the	reference	sequence	and	your	new	path_sequence

2. Load	your	data	into	Genome	Ribbon.	Scroll	down	the	page	until	you	see	the	“Input	
alignments”	window,	select	the	tab	“coordinates”,	and	then	click	“Browse”

3. A	finder	window	will	appear	– select	your	“out.coords”	file	and	click	“Open”

4. The	comparison	between	your	sequence	and	the	reference	should	now	appear.
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# Compare your new sequence with the reference using nucmer
and show-coords

$ nucmer -maxmatch SM_V7_chr4.fa path_sequence.fasta

$ show-coords -lTH -L10000 out.delta > out.coords

# once completed, load Genome Ribbon (genomeribbon.com) in a 
web browser. 

“Browse"

Reference	
sequnece

Your	sequence	
path

The	nucmer comparison	–
this	is	like	the	ACT	
comparison	view

A	representation	of	
where	your	sequence	is	
found	in	the	reference
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Questions	you	should	be	asking:

- what	are	the	main	differences	between	the	Pacbio and	Illumina	genome	graphs?

- what	is	the	length	of	your	new	sequence?

- how	did	your	new	sequence	compare	to	the	reference?	Was	it	syntenic?

Summary
This	module	aimed	to	introduce	you	to	some	of	the	concepts	involved	in	eukaryotic	genome	
assembly,	from	the	QC	of	your	raw	data,	through	to	assembly,	validation	and	improvement.		
In	reality,	eukaryotic	genomic	assembly	is	a	challenging	task,	often	requiring	multiple	
datasets	and	tools,	each	with	their	own	strengths	and	weaknesses.	It	is	important	to	
understand	or	at	least	be	aware	of	these	differences	to	maximise the	completeness	of	the	
assembly.	Hopefully	it	is	clear	from	the	examples	that	long	read	technologies	such	as	Pacbio
significantly	improve	the	contiguity	of	assemblies	over	Illumina-only	assemblies.	
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