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Module 5: RNA-seq

Introduction

Module 5 – RNA-seq

Understanding the genome is not simply about understanding which genes are there. 
Understanding when each gene is used helps us to find out how organisms develop and 
which genes are used in response to particular external stimuli. The first layer in 
understanding how the genome is used is the transcriptome. This is also the most 
accessible because like the genome the transcriptome is made of nucleic acids and can 
(indirectly) be sequenced using the same technology. Arguably the proteome is of greater 
relevance to understanding cellular biology however it is chemically heterogeneous 
making it much more difficult to assay. 

Over the past decade or two microarray technology has been extensively applied to 
addressing the question of which genes are expressed when. Despite its success this 
technology is limited in that it requires prior knowledge of the gene sequences for an 
organism and has a limited dynamic range in detecting the level of expression, e.g. how 
many copies of a transcript are made. RNA sequencing technology, using for instance 
Illumina HiSeq machines, can sequence essentially all the genes which are transcribed 
and the results have a more linear relationship to the real number of transcripts generated 
in the cell.

The aim of differential expression analysis is to determine which genes are more or less 
expressed in different situations. We could ask, for instance, whether a bacterium uses its 
genome differently when exposed to stress, such as excessive heat or a drug. 
Alternatively we could ask what genes make human livers different from human 
kidneys. 

In this module we will address the effect of vector transmission on gene expression of 
the malaria parasite. Is the transcriptome of a mosquito-transmitted parasite different 
from one which has not passed through a mosquito? The key reason for asking this 
question is that parasites which are transmitted by mosquito are less virulent than those 
which are serially blood passaged in the laboratory. Figure 1A shows the malaria life 
cycle, the red part highlighting the mosquito stage. Figure 1B shows the difference in 
virulence, measured by blood parasitemia, between mosquito-transmitted and serially 
blood passaged parasites. The data in this exercise, as well as figures 1B and 1C are 
taken from Spence et al. (2013).
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Figure 1. Serial blood passage increases virulence of malaria parasites. (A) The 
lifecycle of plasmodium parasites involves mammalian and mosquito stages. Experiments 
in the lab often exclude the mosquito stage (red) and instead remove parasites from the 
blood of a mouse to infect another mouse (serial blood passage). (B) Serially blood 
passaged parasites (red) are more virulent than mosquito-transmitted parasites (blue) as 
shown by their higher parasitemia over the course of infection. (C) As mosquito transmitted 
parasites are serially blood passaged an increasing number of times, they return to a higher 
level of parasitemia.
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Module Summary
1. Mapping RNA-seq reads to the genome using HISAT2

2. Using Artemis to visualise transcription

3. Using Kallisto and Sleuth to identify differentially expressed genes

4. Using Sleuth to quality check the data

5. Interpreting the results

Figure 1C shows that increasing numbers of blood passage post mosquito transmission 
results in increasing virulence, back to around 20% parasitemia. Subsequent mosquito 
transmission of high virulence parasites renders them low virulence again. We hypothesise 
that parasites which have been through the mosquito are somehow better able to control the 
mosquito immune system than those which have not. This control of the immune system 
would result in lower parasitemia because this is advantageous for the parasite. Too high a 
parasitemia is bad for the mouse and therefore bad for the parasite. Are there any 
differences between the transcriptomes of serially blood passaged parasites and mosquito-
transmitted parasites which might explain how they are able to do this? 
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1. Mapping RNA-seq reads to the genome using 
HISAT2

We have two conditions: serially blood-passaged parasites (SBP) and mosquito 
transmitted parasites (MT). One with three biological replicates (SBP), one with two 
(MT). Therefore we have five RNA samples, each which has been sequenced on an 
Illumina HiSeq sequencing machine. For this exercise we have reduced the number of 
reads in each sample to around 2.5m to reduce the mapping time. However this will be 
sufficient to detect most differentially expressed genes.

Firstly, make a HISAT2 index for the P. chabaudi genome reference sequence.

hisat2-build PccAS_v3_genome.fa PccAS_v3_hisat2idx

Map the reads for the MT1 sample using HISAT2. Each of the following steps will 
take a couple of minutes. 

hisat2 --max-intronlen 10000 -x PccAS_v3_hisat2idx -1 
MT1_1.fastq -2 MT1_2.fastq -S MT1.sam

Convert the SAM file to a BAM.

samtools view -b -o MT1.bam MT1.sam

Sort the BAM file (otherwise the indexing won’t work)

samtools sort -o MT1_sorted.bam MT1.bam

Index the BAM file so that it can be read efficiently by Artemis

samtools index MT1_sorted.bam

Now map, convert SAM to BAM, sort and index with the reads from the MT2 
sample.

Note the BAM files and .bai index files provided for the SBP samples:

ls *bam*
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2. Using Artemis to visualise transcription
Index the fasta file so Artemis can view each chromosome separately

samtools faidx PccAS_v3_genome.fa

Load chromosome 14 into Artemis from the command line, displaying the mapped reads 
from each sample:

art -
Dbam="MT1_sorted.bam,MT2_sorted.bam,SBP1_sorted.bam,SBP2_sorted.
bam,SBP3_sorted.bam" PccAS_v3_genome.fa +PccAS_v3.gff.gz &

Select ”Use index” so Artemis will show individual chromosomes.
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1. Drop-down menus
2. Entry (top line): shows which entries are currently loaded with the default entry

highlighted in yellow You can select different chromosomes to view here.
3. BAM view: Displays reads mapped to the genome sequence. Each little horizontal line

represents a sequencing read. Some reads are blue indicating that they are unique
reads. Green reads represent multiple reads mapped to exactly the same position on
the reference sequence. Grey lines in the middle of reads mean that the read has been
split and this usually means it maps over an intron. If you click a read its mate pair
will also be selected. If you want to know more about a read right-click and select
‘Show details of: READ NAME’.

4. Sequence view panel. The central two grey lines represent the forward (top) and
reverse (bottom) DNA strands. Above and below these are the three forward and three
reverse reading frames (theoretical translations of the genome). Stop codons are
marked as black vertical bars. Genes and other annotated features are displayed as
coloured boxes. We often refer to predicted genes as coding sequences or CDSs.

5. This panel has a similar layout to the main panel but is zoomed in to show nucleotides
and amino acids.

6. Sliders for zooming view panels.
7. Sliders for scrolling along the DNA.
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Right click on the BAM window showing the reads and hover over BAM files. 
This will show you which colours in the coverage plot relate to which samples. 
Scroll through the chromosome and see if you can identify genes which might 
be differentially expressed between SBP and MT parasites. Is looking at the 
coverage plots alone a reliable way to assess differential expression? Hint: what 
is the difference between read count and RPKM? Are the libraries all the same 
size?

Select chromosome PccAS_14_v3 from the drop down box on the Entry line.

Press Ctrl-g and use “Goto Feature With Gene Name” to navigate to the gene 
PCHAS_1402500. 

Right click on the BAM view, select Graph, then Coverage.
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This gene looks to be up-regulated in serially blood passaged parasites; SBP samples 
have RPKMs several times greater than the MT samples. Is it statistically significant? 
In the next section we will find out.

Investigate the coverage for this gene. Does the RNA-seq mapping agree with the 
gene model in blue?

You can determine read counts and RPKMs for individual genes within Artemis.

Click on the blue gene model, right click on the BAMview window, select Analyse, 
then RPKM value of selected features. 

Artemis asks whether you want to include introns in the calculations. We are only 
interested in reads mapping to the spliced transcript, so you should exclude these.  
Select Use reads mapped to all reference sequences. Is this important?

After the analysis is done a window will appear behind Artemis.
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3. Using Kalliso and Sleuth to identify differentially 
expressed genes

Kallisto is a read mapper, but instead of mapping against the genome it is designed to 
map against the transcriptome, i.e. the spliced gene sequences inferred from the genome 
annotation. Rather than tell you where the reads map it’s aim is in quantifying the 
expression level of each transcript. It is very fast because it uses pseudoalignment rather 
than true read alignment. 

Sleuth uses the output from Kallisto to determine differentially expressed genes. It is 
written in the R statistical programming language, as is almost all RNA-seq analysis 
software. Helpfully however it produces a web page that allows interactive graphical 
analysis of the data. However, I would recommend learning R for anyone doing a 
significant amount of RNA-seq analysis.  It is nowhere near as hard to get started with 
as full-blown programming languages such as Perl or Python!

Kallisto needs an index of the transcript sequences.

kallisto index -i PccAS_v3_kallisto PccAS_v3_transcripts.fa

Quantify the expression levels of your transcripts for the MT1 sample.

kallisto quant -i PccAS_v3_kallisto -o MT1 -b 100 
MT1_1.fastq MT1_2.fastq

The results are contained in the file MT1/abundance.tsv

Use the kallisto quant command four more times, for the MT2 sample and the 
three SBP samples.

We have provided a series of R commands which will get Sleuth running. These 
are in the file sleuth.R. Open the file and have a look. It is not as hard as it seems, 
I copied most of this from the manual! To run this R script, you will have to open R:

R

And then copy and paste commands from the file sleuth.R
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4. Using Sleuth to quality check the data

Sleuth provides several tabs which we can use to determine whether the data is of good 
quality and whether we should trust the results we get.

In the web page which has been launched click on Summaries->processed data.

Even though we have used the same number of reads for each sample, there are 
large differences in the number of reads mapping for each one. Why might this be? 
Is it a problem?

Click on map->PCA.

The Principal Components Analysis plot shows the relationship between the 
samples in two dimensions (PC1 and PC2). In this case almost all the variation 
between the samples is captured by just Principal Component 1. The MT samples 
are well separated from the SBP samples, meaning that the replicates are more 
similar to each other than they are to samples from the different condition. This is 
good.

In some cases we identify outliers, e.g. samples which do not agree with other 
replicates and these can be excluded. If we don’t have many replicates, it is hard to 
detect outliers and our power to detect differentially expressed genes is reduced.
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5. Interpreting the results

In the R script we printed out a file of results describing the differentially expressed 
genes in our dataset. This is called “kallisto.results”.

The file contains several columns, of which the most important are:

Column 1: target_id (gene id)
Column 2: pval (p value)
Column 3: qval (p value corrected for multiple hypothesis testing)
Column 4: b (fold change)
Column 12: description (some more useful descriptionof the gene than its id) 

With a little Linux magic we can get the list of differentially expressed genes with 
only the columns of interest as above. The following command will get those 
genes which have an adjusted p value less than 0,01 and a positive fold change. 
These genes are more highly expressed in SBP samples.

cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 > 0’

These genes are more highly expressed in MT samples:

cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 < 0’

How many genes are more highly expressed in each condition?

Do you notice any particular genes that come up in the analysis?

The most highly up-regulated genes in MT samples are from the cir family. This is a 
large, malaria-specific gene family which had previously been proposed to be involved in 
immune evasion (Lawton et al., 2012). Here however we see many of these genes up-
regulated in a form of the parasite which seems to cause the immune system to better 
control the parasite. This suggests that these genes interact with the immune system in a 
more subtle way, preventing the immune system from damaging the host. 
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Remember PCHAS_1402500? Of course you do. It was the gene we looked at in 
Artemis that seemed absolutely definitely differentially expressed.

What does Sleuth think about it?

grep PCHAS_1402500 kallisto.results | cut –f1,3,4,12

Although this gene looked like it was differentially expressed from the plots in Artemis 
our test did not show it to be so. This might be because some samples tended to have 
more reads, so based on raw read counts, genes generally look up-regulated in the SBP 
samples. Alternatively the reliability of only two biological replicates and the strength of 
the difference between the conditions was not sufficient to be statistically convincing. In 
the second case increasing the number of biological replicates would give us more 
confidence about whether there really was a difference. 

In this case, the lower number of reads mapping to MT samples mislead us in the Artemis 
view. Luckily careful normalisation and appropriate use of statistics saved the day!

If you want to read more about the work related to this data it is published: Spence et al. 
2013 (PMID: 23719378).
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Key aspects of differential expression analysis

Replicates and power
In order to accurately ascertain which genes are differentially expressed and by how 
much it is necessary to use replicated data. As with all biological experiments doing 
it once is simply not enough. There is no simple way to decide how many replicates 
to do, it is usually a compromise of statistical power and cost. By determining how 
much variability there is in the sample preparation and sequencing reactions we can 
better assess how highly genes are really expressed and more accurately determine 
any differences. The key to this is performing biological rather than technical 
replicates. This means, for instance, growing up three batches of parasites, treating 
them all identically, extracting RNA from each and sequencing the three samples 
separately. Technical replicates, whereby the same sample is sequenced three times 
do not account for the variability that really exists in biological systems or the 
experimental error between batches of parasites and RNA extractions.

n.b. more replicates will help improve power for genes that are already detected at 
high levels, while deeper sequencing will improve power to detect differential 
expression for genes which are expressed at low levels.

P-values vs. q-values
When asking whether a gene is differentially expressed we use statistical tests to 
assign a p-value. If a gene has a p-value of 0.05 we say that there is only a 5% 
chance that it is not really differentially expressed. However, if we are asking this 
question for every gene in the genome (~5500 genes for Plasmodium), then we 
would expect to see p-values less than 0.05 for many genes even though they are 
not really differentially expressed. Due to this statistical problem we must correct 
the p-values so that we are not tricked into accepting a large number of erroneous 
results. Q-values are p-values which have been corrected for what is known as 
multiple hypothesis testing. Therefore it is a q-value of less than 0.05 that we 
should be looking for when asking whether a gene is differentially expressed.
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Alternative software
If you have a good quality genome and genome annotation such as for model 
organisms e.g. human, mouse, Plasmodium, I would recommend mapping to the 
transcriptome for determining transcript abundance. This is even more relevant if 
you have variant transcripts per gene as you need a tool which will do its best to 
determine which transcript is really expressed. As well as Kallisto (Bray et al. 2016; 
PMID: 27043002), there is eXpress (Roberts & Pachter, 2012; PMID: 23160280) 
which will do this.

Alternatively you can map to the genome and then call abundance of genes, 
essentially ignoring variant transcripts. This is more appropriate where you are less 
confident about the genome annotation and/or you don’t have variant transcripts 
because your organism rarely makes them or they are simply not annotated. 
Tophat2 (Kim et al., 2013; PMID: 23618408), HISAT2 (Pertea et al. 2016; PMID: 
27560171), STAR (Dobin et al., 2013; PMID: 23104886) and GSNAP (Wu & Nacu, 
2010; PMID: 20147302) are all splice-aware RNA-seq read mappers appropriate 
for this task. You then need to use a tool which counts the reads overlapping each 
gene model. HTSeq (Anders et al., 2015; PMID: 25260700) is a popular tool for 
this purpose. Cufflinks (Trapnell et al. 2012; PMID: 22383036) will count reads and 
determine differentially expressed genes.

There are a variety of programs for detecting differentially expressed genes from 
tables of RNA-seq read counts. DESeq2 (Love et al., 2014; PMID: 25516281), 
EdgeR (Robinson et al., 2010; PMID: 19910308) and BaySeq (Hardcastle & Kelly, 
2010; PMID: 20698981) are good examples.

What do I do with a gene list?
Differential expression analysis results is a list of genes which show differences 
between two conditions. It can be daunting trying to determine what the results 
mean. On one hand you may find that that there are no real differences in your 
experiment. Is this due to biological reality or noisy data? On the other hand you 
may find several thousands of genes are differentially expressed. What can you say 
about that?

Other than looking for genes you expect to be different or unchanged, one of the 
first things to do is look at Gene Ontology (GO) term enrichment. There are many 
different algorithms for this, but you could annotate your genes with functional 
terms from GO using for instance Blast2GO (Conesa et al., 2005; PMID: 
16081474) and then use TopGO (Alexa et al., 2005; PMID: 16606683) to determine 
whether any particular sorts of genes occur more than expected in your 
differentially expressed genes.


