
1

Overview of Phylogeny

1 4

3 2 5

1 4 2 3 5

Artiodactyla (pigs, deer, cattle, goats, 
sheep, hippopotamuses, camels, etc.)

Cetacea (whales, dolphins, porpoises) 

Perissodactyla (horses, tapirs, 
rhinoceroses) 

New World monkeys

gibbons

Lagomorpha
(rabbits) 

Tree shrews

Bats

Colugos

Rodentia (mice, 
rats, squirrels)

PrimatesMammals

Triconodonts

Multituberculata

Monotremata
(platypus, 
echidnas) 

Marsupialia
(opossums, 
kangaroos)

Eutheria
(placental 
animals)

Edentata (anteaters, 
sloths, armadillos) 

Carnivora (dogs, cats, 
bears, raccons, weasels, 

mongooses, hyenas) 

Proboscidea (elephants, mammoths) 

Old World monkeys

humans, gorilla, 
chimpanzee, 
orangutan

lemurs, galagos, 
lorises

Phylogenies

Phylogenies are trees that show the history of life

Genes, repeats, etc., are also connected in phylogenies

Orthologs:Orthologs: Two elements that have diverged because of speciation

ParalogsParalogs:: Two elements that have diverged because of duplication

Inferring Phylogenies

Trees can be inferred:

– Morphology of the organisms

– Sequence comparison

Example:

Orc: ACAGTGACGCCCCAAACGT
Elf: ACAGTGACGCTACAAACGT
Dwarf: CCTGTGACGTAACAAACGA
Hobbit: CCTGTGACGTAGCAAACGA
Human: CCTGTGACGTAGCAAACGA

Background on trees

• Each node has three edges (binary)
• Labeled
• Each edge has a length (evolution time)
• Unrooted, or rooted

N leafs  ⇒ 2N – 2 nodes unrooted; 
2N – 1 nodes rooted

1

2

3

4

5

6

7

root
root

8

9

10

12

11

13

Space of possible trees

1 unrooted tree of 3 leaves
3 unrooted trees of 4 leaves
…
3 × 5 × 7 × … × (2N – 5) = (2N – 5)!!  unrooted trees with N leaves

(2N – 3)!!   rooted trees with N leaves

1

2 3

1

2 3

1

2 3

1

2 3

4

4
4



2

Phylogeny and sequence comparison

Basic principles:

• Degree of sequence difference is proportional to length of 
independent sequence evolution

• Only use positions where alignment is pretty certain – avoid areas 
with (too many) gaps

Distance between two sequences

Given (portion of) sequences xi,  xj,

Define 

dij = distance between the two sequences

One possible definition:

dij = fraction f of sites u where xi [u] ≠ xj [u]

Better model (Jukes-Cantor):

dij =  - ¾ log(1 – 4f / 3)

A simple clustering method for building tree

UPGMA(unweighted pair group method using arithmetic averages)

Given two disjoint clusters Ci , Cj of sequences,

1

dij = –––––––––Σ{p ∈Ci , q ∈Cj}dpq

|Ci| × |Cj|

Note that if Ck = Ci ∪ Cj, then distance to another cluster C l is:

di l |Ci| + djl |Cj|
dk l = ––––––––––––––

|Ci| + |Cj |

Algorithm: UPGMA

Initialization:
Assign each xi into its own cluster Ci

Define one leaf per sequence, height 0

Iteration:
Find two clusters Ci , Cj s.t . dij is min
Let Ck = Ci ∪ Cj

Define node connecting Ci , Cj , height dij/2
Delete Ci, C j

Termination:
When all sequences belong to one cluster

1 4

3 2 5

1 4 2 3 5

Ultrametric distances & UPGMA

A distance measure is ultrametric if for any points i, j, k,
Either all three distances are equal: dij =  dik =  djk ,
Or two of them are equal and one is smaller: djk < dij =  dik

UPGMA is guaranteed to build the correct tree if distance is ultrametric

1 4 2 3 5

Weakness of UPGMA

Molecular clock: implied time is constant for all species

However: certain species (e.g., mouse, rat) evolve much faster

Example where UPGMA messes up:

2
3

4
1

1 4 32

Correct tree UPGMA



3

Additivity of distance

Given a tree, a distance measure is additive if the distance between 
any pair of leaves is the sum of lengths of edges connecting them

A maximum likelihood distance measure is additive given a large 
amount of data

1

2

3

4

5

6

7

8

9

10

12

11

13d1,4

Neighbor-joining

• Guaranteed to produce the correct tree if distance is additive
• May produce a good tree even when distance is not additive

Step 1: Finding neighboring leaves

Define

Dij = dij – (r i + r j)

Where
1

r i = –––––Σk dik

|L| - 2

1

2 4

3

0.1

0.1 0.1

0.4 0.4

Algorithm: Neighbor-joining

Initialization:
Define T to be the set of leaf nodes, one per sequence
Let L = T

Iteration:
Pick i, j s.t. D ij is minimal
Define a new node k, and set dk m = ½ (dim + djm – dij) for all m ∈ L

Add k to T, with edges of lengths d ik = ½ (d ij + r i – r j)
Remove i, j from L; 
Add k to L

Termination:
When L consists of two nodes, i, j, and the edge between them of
length dij

Rooting a tree, and definition of outgroup

Neighbor -joining produces an unrooted tree

How do we root a tree between N species using n-j?

An outgroup is a species that we know to be more distantly related to 
all remaining species, than they are to one another

Example: Human, mouse, rat, pig, dog, chicken, whale

Which one is an outgroup?

Outgroup can act as a root

1

2 3

4

Parsimony

• One of the most popular methods

Idea: Find the tree that explains the observed sequences with a 
minimal number of substitutions

Two computational subproblems :

1. Find the parsimony cost of a given tree (easy)

2. Search through all tree topologies (hard)

Traditional parsimony

Given a tree, given a column u of a multiple alignment:

Initialization:
Set cost C = 0; k = 2N – 1

Iteration:
If k is a leaf, set Rk = { xk[u] }

If k is not a leaf,
Let i, j be the daughter nodes;
Set Rk = Ri ∩ Rj if intersection is nonempty
Set Rk = Ri ∪ Rj, and C += 1, if intersection is empty

Termination:
Minimal cost of tree for column u, = C



4

Example

A B A B

{A, B}
C+=1

{A, B}
C+=1

{A}

{A} {B} {A} {B}

Traceback:

1. Choose an arbitrary nucleotide from R2 N  – 1 for the root

2. Having chosen nucleotide r for parent k, 
If r ∈ Ri choose r for daughter i
Else, choose arbitrary nucleotide from Ri

Easy to see that this traceback produces some assignment of cost C

Traceback to find ancestral nucleotides

Example

A B A B

{A, B}

{A, B}

{A}

{A} {B} {A} {B}

A B A B

A

A

A
x

x

A B A B

A

B

A

x

x

A B A B

B

B

B

x
x

Admissible with Traceback

Still optimal, but 
inadmissible with Traceback

Weighted parsimony

Let Sk(a) = minimal cost for the assignment of a to node k

Initialization:
Set k = 2N – 1

Iteration:
If k is a leaf:

Sk(a) = 0 for a = xk[u], Sk(a) = ∞ otherwise
If k is not a leaf:

Sk(a) = minb [S i(b) + s(a,b)]  +  minc[Sj(c)  + s(a,c)]

Termination:
Minimal cost of tree = mina S2N-1(a)

Search through tree topologies: 
Branch and Bound

Observation: adding an edge to an existing tree can only increase the 
parsimony cost

Enumerate all unrooted trees with at most n leaves:

[i3][i5][i7]……[i2N–5]]

where each ik can take values from 0 (no edge) to k

At each point keep C = smallest cost so far for a complete tree

Start B&B with tree [1][0][0]……[0]

Whenever cost of current tree T is > C, then:
– T is not optimal
– Any tree with more edges containing T, is not optimal: 

Increment by 1 the rightmost nonzero counter

Bootstrapping to get the best trees

Main outline of algorithm

1. Select random columns from a multiple alignment – one column 
can then appear several times

2. Build a phylogenetic tree based on the random sample from (1)

3. Repeat (1), (2) many (say, 1000) times

4. Output the tree that is constructed most frequently



5

Modeling Evolution

During infinitesimal time ∆ t, there is not enough time for two 
substitutions to happen on the same nucleotide

So we can estimate P(x | y, ∆t), for x, y ∈ {A, C, G, T}

Then let

P(A|A, ∆ t) …… P(A|T, ∆ t)
S(∆t) = … …

P(T|A, ∆t) …… P(T|T, ∆t)

Modeling Evolution

Reasonable assumption: multiplicative 
(implying a stationary Markov process)

S(t+t’) = S(t)S(t’)

That is, P(x | y, ∆t) = Σz P(x | z, ∆ t) P(z | y, ∆ t)

Jukes-Cantor: constant rate of evolution

1 - 3αε αε αε αε
For short time ε, S(ε) = αε 1 - 3αε αε αε

αε αε 1 - 3αε αε
αε αε αε 1 - 3αε

Modeling Evolution

Jukes-Cantor:

For longer times,

r(t) s(t) s(t) s(t)
S(t) = s(t) r(t) s(t) s(t)

s(t) s(t) r(t) s(t)
s(t) s(t) s(t) r(t)

Where we can derive:

r(t) = ¼ (1 + 3 e-4α t)
S(t) = ¼ (1 – e-4α t)

Modeling Evolution

Kimura:

Transitions: A/G, C/T
Transversions : A/T, A/C, G/T, C/G

Transitions (rate α) are much more likely than transversions (rate β)

r(t) s(t) u(t) s(t)
S(t) = s(t) r(t) s(t) u(t)

u(t) s(t) r(t) s(t)
s(t) u(t) s(t) r(t)

Where s(t) = ¼ (1 – e-4βt)
u(t) = ¼ (1 + e-4βt – e-2(α+β) t)
r(t )  = 1 – 2s(t) – u(t)


