
1

Computational Genomics

Lecture 1, Tuesday April 1, 2003
Lecture 1, Tuesday April 1, 2003

Biology in One Slide

Lecture 1, Tuesday April 1, 2003

High Throughput Biology

1. DNA Sequencing

…ACGTGACTGAGGACCGTG
CGACTGAGACTGACTGGGT
CTAGCTAGACTACGTTTTA
TATATATATACGTCGTCGT
ACTGATGACTAGATTACAG
ACTGATTTAGATACCTGAC
TGATTTTAAAAAAATATT…

Lecture 1, Tuesday April 1, 2003

High Throughput Biology

2. Sequencing of expressed genes
(EST sequencing)

mRNA sequence
protein sequence

Lecture 1, Tuesday April 1, 2003

High Throughput Biology

3. Gene Expression: Microarrays

Lecture 1, Tuesday April 1, 2003

High Throughput Biology

4. Gene Regulation:
CH.IP.

2

Lecture 1, Tuesday April 1, 2003

The goals of genomics

• Study organisms at the DNA level

– Identify “parts” (genes, etc)
– Figure out “connections” between “parts”

• Study evolution at the DNA level

– Compare organisms
– Uncover evolutionary history

Lecture 1, Tuesday April 1, 2003

The role of CS in Biology

Essential
– DNA sequencing and assembly
– Microarray analysis
– Protein 3D reconstruction

Complementary
– Gene finding, genome annotation
– Protein fold prediction
– Phylogeny, comparative genomics

Lecture 1, Tuesday April 1, 2003

Syllabus

• Tools

– Alignment algorithms
– Hidden Markov models
– Statistical algorithms

• Applications

– DNA sequencing and assembly
– Sequence analysis (comparison, annotation)
– Microarray analysis
– Evolutionary analysis

Lecture 1, Tuesday April 1, 2003

Course responsibilities

• Homeworks [80%]
– 4 challenging problem sets, 4 -5 problems/pset
– Collaboration allowed
– 5 late days total
– Televised students required to do 75%

• Final [20%]
– Takehome, 1 day
– Collaboration not allowed
– Easy!

• Scribing
– “Mandatory”
– Grade replaces lowest 2 problems
– Due one week after the lecture

Lecture 1, Tuesday April 1, 2003

Reading material

• Books
– “Biological sequence analysis” by Durbin,

Eddy, Krogh , Mitchinson

• Chapters 1-4, 6, (7-8), (9-10)
– “Algorithms on strings, trees, and

sequences” by Gusfield

• Chapters (5-7), 11-12, (13), 14, (17)

• Papers
• Lecture notes

Topic 1. Sequence Alignment

3

Lecture 1, Tuesday April 1, 2003

Complete genomes

Lecture 1, Tuesday April 1, 2003

Evolution

Lecture 1, Tuesday April 1, 2003

Evolution at the DNA level

…ACGGTGCAGTCACCA…

…ACGTTGCAGTCCACCA…

C

SEQUENCE EDITS REARRANGEMENTS
Lecture 1, Tuesday April 1, 2003

Evolutionary Rates

OK

OK

OK

X
X

Still OK?

next generation

Lecture 1, Tuesday April 1, 2003

Sequence conservation implies function

Interleukin region in human and mouse
Lecture 1, Tuesday April 1, 2003

Sequence Alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition
Given two strings x = x1x2...xM, y = y1y2…yN,

an alignment is an assignment of gaps to positions
0,…, N in x, and 0,…, N in y, so as to line up each
letter in one sequence with either a letter, or a gap
in the other sequence

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

4

Lecture 1, Tuesday April 1, 2003

What is a good alignment?

Alignment:
The “best” way to match the letters of one sequence with those
of the other

How do we define “best”?

Alignment:
A hypothesis that the two sequences come from a common
ancestor through sequence edits

Parsimonious explanation:
Find the minimum number of edits that transform one sequence
into the other

Lecture 1, Tuesday April 1, 2003

Scoring Function

• Sequence edits:
AGGCCTC

– Mutations
AGGACTC

– Insertions
AGGGCCTC

– Deletions
AGG.CTC

Scoring Function:
Match: +m
Mismatch: -s
Gap: -d

Score F = (# matches) × m - (# mismatches) × s – (#gaps) × d

Lecture 1, Tuesday April 1, 2003

How do we compute the best alignment?

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

AGTGACCTGGGAAGACCCTGACCCTGGGTCACAAAACTC

Too many possible
alignments:

O(2M+N)

Lecture 1, Tuesday April 1, 2003

Alignment is additive

Observation:
The score of aligning x1……xM

y1……yN
is additive

Say that x1…xi xi+1…xM
aligns to y1…yj yj+1…yN

The two scores add up:

F(x[1:M], y[1:N]) = F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])

Lecture 1, Tuesday April 1, 2003

Dynamic Programming

• We will now describe a dynamic
programming algorithm

Suppose we wish to align
x1……xM
y1……yN

Let
F(i,j) = optimal score of aligning

x1……xi
y1……yj

Lecture 1, Tuesday April 1, 2003

Dynamic Programming (cont’d)

Notice three possible cases:

1. xi aligns to yj

x1……xi-1 xi
y1……yj-1 yj

2. xi aligns to a gap
x1……xi-1 xi

y1……yj -

3. yj aligns to a gap
x1……xi -
y1……yj-1 yj

m, if xi = yj

F(i,j) = F(i-1, j-1) +
-s, if not

F(i,j) = F(i-1, j) - d

F(i,j) = F(i, j-1) - d

5

Lecture 1, Tuesday April 1, 2003

Dynamic Programming (cont’d)

• How do we know which case is correct?

Inductive assumption:
F(i, j-1), F(i-1, j), F(i-1, j-1) are optimal

Then,
F(i-1, j-1) + s(xi , yj)

F(i, j) = max F(i-1, j) – d
F(i, j-1) – d

Where s(xi, yj) = m, if xi = y j; -s, if not

Lecture 1, Tuesday April 1, 2003

Example

x = AGTA m = 1
y = ATA s = -1

d = - 1

20-1-1-3A

0100-2T

-2-101-1A

-4-3-2-10

ATGA
F(i,j) i = 0 1 2 3 4

j = 0

1

2

3

Optimal Alignment:

F(4,3) = 2

AGTA
A - TA

Lecture 1, Tuesday April 1, 2003

The Needleman-Wunsch Matrix

x1 ……………………………… x M

y 1
…

…
…

…
…

…
…

…
…

…
…

…
 y

N

Every nondecreasing
path

from (0,0) to (M, N)

corresponds to
an alignment
of the two sequences

Can think of it as a
divide-and-conquer algorithm

Lecture 1, Tuesday April 1, 2003

The Needleman-Wunsch Algorithm

1. Initialization.
a. F(0, 0) = 0
b. F(0, j) = - j × d
c. F(i, 0) = - i × d

2. Main Iteration. Filling-in partial alignments
a. For each i = 1……M

For each j = 1……N
F(i-1,j) – d [case 1]

F(i, j) = max F(i, j-1) – d [case 2]
F(i-1, j-1) + s(x i, y j) [case 3]

UP, if [case 1]
Ptr(i,j) = LEFT if [case 2]

DIAG if [case 3]

3. Termination. F(M, N) is the optimal score, and
from Ptr(M , N) can trace back optimal alignment

Lecture 1, Tuesday April 1, 2003

Performance

• Time:
O(NM)

• Space:
O(NM)

• Later we will cover more efficient
methods

Lecture 1, Tuesday April 1, 2003

A variant of the basic algorithm:

• Maybe it is OK to have an unlimited #
of gaps in the beginning and end:

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG--------------

• Then, we don’t want to penalize gaps
in the ends

6

Lecture 1, Tuesday April 1, 2003

Different types of overlaps

Lecture 1, Tuesday April 1, 2003

The Overlap Detection variant

Changes:

1. Initialization
For all i, j,

F(i, 0) = 0
F(0, j) = 0

2. Termination
maxi F(i, N)

FOPT = max
maxj F(M, j)

x1 ……………………………… x M

y 1
…

…
…

…
…

…
…

…
…

…
…

…
 y

N

Lecture 1, Tuesday April 1, 2003

Next Lecture

• Local alignment

• More elaborate scoring function

• Memory-efficient algorithms

Reading:
Durbin, Chapter 2
Gusfield, Chapter 11

