Hidden Markov Models
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Time Warping

Definition: a(u), b(u) are connected by an approximate
continuous time warping (ug, V), if:

Uy, Vg are strictly increasing functions on [0, T], and
a(Ug(t) @b (vo(t) forOEtE£T

a(t)

Uo()

b(1)
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Review of Last Lecture

Lecture 2, Thursday April 3, 2003

Time Warping

Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)

< Alphabet S ={by,by, ..., by}

* Setofstates Q={1,..,K}

« Transition probabilities between any two states
a; = transition prob from state i to state
a, +..+a, =1, forallstatesi=1..K

« Start probabilities ay
agy +... tagc=1

« Emission probabilities within each state

e(b)=P(x;=b|p=k)

e(b,) + ... +e(by) =1, forallstatesi=1.K
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The three main questions on HMMs
1. Evaluation
GIVEN aHMM M, and a sequence x,
FIND Prob[x|M]
2. Decoding
GIVEN aHMM M, and a sequence x,
FIND the sequence p of states that maximizes P[x,p| M ]
3. Learning
GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence X,
FIND parametersq = (¢(.), a;) that maximize P[x|q ]
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Today

* Decoding

« Evaluation
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Decoding

GIVEN X = X;X, ...... Xy N S
s [
We wantto findp=p,, ... ... ) P
such that P[ x, p] is maximized P
. | | |
p= argmax, P[x, p] v v v
*1 X2 X3

We can use dynamic programming!
Let Vi (i) = maxp, iy PXp- Xiqs Py oy Pups X A =K]

= Probability of most likely sequence of states ending at
state p= k
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Problem 1: Decoding

Find the best parse of a sequence

Decoding — main idea

Given that for all states k,
and for a fixed position i,

V(i) = maXg, iy PG Xigs Pryees P X P= K]
What is V,(i+1)?

From definition,

Vi(i+1) = max;  yPIX; Xy By ey P Xins Prg =11

Maxgs pPuss B = | [ X B) PO X, By,
maXp;, ‘\)P(lev Rer=1IR) PXpXig, Py ey Puas X;0 P

€(Xiy1) max, ay Vi (i)
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The Viterbi Algorithm

Input: X = X;... ... Xy

Initialization;
Vo(0) =1 (0 is the imaginary first position)
V(0) =0, forall k >0

Iteration:

lteration: . )
Vi) =gx;) " max, a; V(1)
Ptri(i) =argmax, a,; V(-1)

P(x, p) = max, V\(N)

Traceback:
= argmax, Vi (N)
.1t =P ()
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The Viterbi Algorithm

T2 s 1T -"1T"T"TF T T N
\
State 1 N
2 [, |
<71
»/l
K >

Similar to “aligning” a set of states to a sequence

Time:

O(K2N)

Space:
O(KN)
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Viterbi Algorithm — a practical detail

Underflows are a significant problem

P[Xy ooy Xy By -y P = A1 Ayipoeeeees ay ep1(><1) ...... ep‘(x‘)

These numbers become extremely small — underflow

Solution: Take the logs of all values

V(i) = log (x) + max, [ Vi(i-1) + log a]
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Example

Let x be a sequence with a portion of ~ 1/6 6's, followed by a portion of ~ %2
6's...

X =123456123456...123456626364656...1626364656
Then, it is not hard to show that optimal parse is (exercise):

6 nucleotides “123456” parsed as F, contribute .95 (1/6)¢ =1.6"105
parsed as L, contribute .95%" (1/2)'" (1/10)5 = 0.4 105

“162636" parsed as F, contribute .95%" (1/6)8 =1.6105
parsed as L, contribute .95%" (1/2)3" (1/10)3 = 9.0° 105
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Problem 2: Evaluation

Find the likelihood a sequence is
generated by the model

A couple of questions

Given a sequence X,
* What is the probability that x was generated by the model?
« Given a position i, what is the most likely state that emitted x;?

Example: the dishonest casino
Say x = 12341623162616364616234161221341

Most likely path: p= FF... ... F
However: marked letters more likely to be L than unmarked letters
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Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Startat state p, according to prob &,
2. Emit letter x, according to probe,,(x,)
3. Go to state p, according to prob a,;,,
4. ... until emitting x,,
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Evaluation

We will develop algorithms that allow us to compute:
P(x) Probability of x given the model
P(x;...x) Probability of a substring of x given the model
P(p=k|x) Probability that the i® state is k, given x

A more refined measure of which statesx may be in
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The Forward Algorithm

We want to calculate
P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:
PO = S,Px, B = S,Px| P PP

To avoid summing over an exponential number of paths p, define

f (i) = P(X,...x, p=k) (the forward probability)
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The Forward Algorithm

The Forward Algorithm — derivation

Define the forward probability:
f(i)) = P(xy..x, p=1)
= Spl... p-1 P(Xy...Xi1, Proeees Poys B= 1) €(X)
=S, Sy 2P0 Xiay Py Py R = K) 8 (%)

=e(x) Sy f(i-1)
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We can compute f, (i) for all k, i, using dynamic programming!

Initialization;
fo(0) =1
f(0) =0, for allk > 0

Iteration:

i) = e () Sk (-1 ay

Termination:

P(x) = Sy ,(N) a,

Where, a,, is the probability that the terminating state is k (usually = ag,)
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Relation between Forward and Viterbi

VITERBI FORWARD

Initialization; Initialization;

Vo(0) =1 0 =1

V(0) =0, forallk>0 (0)=0, forallk >0
Iteration: Iteration;

Vi) = ex) max Vi(i-1)ay; () = e(x) Sy f€-1) &
Termination: Termination:;

P(x, pf) = max, Vi (N) P(x) =S f(N)a,
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Motivation for the Backward Algorithm

We want to compute
P(R=k[x),
the probability distribution on the i position, given x
We start by computing
P(p=Kk, x) = P(X; ..., P = K, X,q1...Xy)

= "r(xl---x.v B=K) “(Xui---xw X% p=k)
=P % PEK) PG Xy TR=K)

Forward, f, (i) Backward, b, (i)
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The Backward Algorithm — derivation

Define the backward probability:

Be(i) = P(Xisy-- X | P, = K)
= Spat N PXas Xz - X Beas s Pyl P= K)
=S Spist N PEe1Xezs X Bex =l Bzs o BT R= K)
=S| @(1) 8 Spir1. N PMiar o X Pz woor Pl Bt =)
=S e(x.1) a, b(i+1)
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The Backward Algorithm

We can compute b, (i) for all k, i, using dynamic programming

Initialization;

b (N) = a,, for all k

Iteration:

b) = S €(isy) ay by (i+1)

Termination:

PX) =Sy 8y (x,) (1)
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Posterior Decoding

We can now calculate

(i) by (i)

P(R=k|X) =
P()

Then, we can ask
What is the most likely state at position i of sequence x:
Define p* by Posterior Decoding:

p’ =argmax, P@;i=k|x)
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Computational Complexity

What is the running time, and space required, for Forward, and Backward?

Time: O(K2N)
Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs
Forward/Backward: rescaling at each position by multiplying by a
constant

Lecture 5, Tuesday April 15, 2003

Posterior Decoding

For each state,

Posterior Decoding gives us a curve of

likelihood of state for each position

That is sometimes more informative than Viterbi path p
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Example: CpG Islands

e— v— Vit | ] —
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CpG nucleotides in the genome are frequently methylated
(Write CpG not to confuse with CG base pair)
C® methyl-C® T

Methylation often suppressed around genes, promoters
® CpGislands
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Example: CpG Islands

e P | [re— p— —1 Pacssme |
i 4 Poacoss SN [ T
PR g e bl o P PR ﬂ“ﬂ .
i P 1 T st
ke 1 et "‘""h = n 0
InCpG islands,

CG is more frequent
Other pairs (AA, AG, AT...) have different frequencies

Question: Detect CpG islands computationally
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A model of CpG Islands - (1) Architecture

CpG Island

\ «'» <'

Not CpGlsland
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