
Object-Oriented v s Waterfall
Software Development

Thomas J. Cheatham
Middle Tennessee State University

John H. Crenshaw
Western Kentucky University

Introduction.

The classical waterfall methodology for software
development is a phased approach consisting of analysis,
design, implementation, testing and maintenance. It has
been successful in developing software with structured
programming principles. Object-oriented programming
(OOP) has been around since the development of
SmallTalk in the early '70s. In 1990 there is still no widely
accepted "life-cycle" that uses OOP. Yet grandiose claims
have been made about the benefits of OOP. First,
object-oriented programming is embedded in a software
development methodology modeled after the classical
waterfall approach. Then the relative merits of the
object-oriented and structured programming paradigms
are studied in a multi-project student experiment.

An Object-Oriented Software Development
(OOSD) Methodology.

Object-oriented programming was pioneered in the
SmallTalk language [5]. The main features are
abstraction, encapsulation, inheritance and reuse. An
entity in the problem domain is abstracted as an object.
The object encapsulates related data (in the form of
instance variables) and its operations (called methods).
An object can be inherited by another object to provide
reuse. The reuse is "flexible" in that the "child" object can
add new operations (and data) and/or modify existing
ones. In addition to SmallTalk, several other languages

Permission to copy without fee all or part of this matertial is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1991 A C M 0 8 9 7 9 1 - 3 8 2 - 5 / 9 1 / 0 0 0 3 / 0 5 9 5 $ 1 . 5 0 595

provide varying levels of support for OOP: Ada, C + +,
Objective-C, Object Pascal, Turbo Pascal 5.5, Clue,
Eiffel, Actor, LOOPS, and FLAVORS to name a few.

An early OOSD approach that is losing favor with
software developers begins with classical (functional)
analysis and design followed by OO implementation.
This method requires essentially two decompositions of
the system-- first into functions and again into objects. It
does not take full advantage of the object abstraction. To
do so requires the use of objects earlier in the software
life-cycle. Booch [3] describes a method of object-
oriented design (OOD) and Bailin [1] suggests an
approach to object-oriented analysis (OOA). Neither is
easy to apply or widely accepted. When objects are being
developed for reuse, the software life-cycle is often
applied to an object (class). That is, analysis, design,
implementation, and testing are performed on an
individual object (class). In the OOSD methodology
discussed in this paper, the goal was not to develop
reusable components, though reuse of existing software
was encouraged in both paradigms. An OO software life-
cycle was defined that mimics the waterfall (WF)
methodology except it is object centered instead of
function centered. The proposed OOSD focuses on
objects during analysis, design, implementation and
testing. The deliverables at the end of each phase
parallel those of the WF methodology. Tables 1-4 outline
this OOSD methodology and contrast the deliverables for
the two methods. The WF deliverables followed
Pressman[6].

Table 1 - Analysis Document

W F A n a l y s i s O O A n a l y s i s
.

* Problem description

* Functional and non-functional
requirements

* Diagrams of the system (high
level data-flow, etc)

* Data dictionary

* Prologue describing each
major function

* Black box system validation
test cases

Problem description

Functional and non-functional
requirements

Entity-Relationship Diagrams

Entity dictionary

Prologue describing each entity

Black box entity validation
test cases

c

T a b l e 2 - D e s i g n D o c u m e n t

WF Design OO Design
. o . . .

*Decomposesystemintomodules

* Determine data structures

* Develop algorithms

* Develop pseudo-code and/or
flow<harts

* Develop cross-reference
showing how reqs met by design

* Develop test strategies/classes
for integration

Develop object diagram

Determine data structures

Develop specifications for
each object

Develop pseudo-code for
each operation

Develop cross-reference
mapping functions to objects

Develop test strategies for
for class integration

T a b l e 3 - I m p l e m e n t a t i o n D e l i v e r a b l e s

Structured Programming OO Programming
.

* Develop source code in
VAX Pascal
Turbo Pascal
C-language or other

* Debug source code including
any reused (library) code

* Clean compile of source

Develop source code in
Turbo Pascal 5.5
Zortech C + +
AT&T C+ + or other

Debug source code including
any reused objects

Clean compile of source

T a b l e 4 - T e s t i n g D o c u m e n t

WF Testing OO Testing
.

* Unit test each function

* Integration test

* Validation test

* Black-box system test

* Regression test as needed

* Log all tests

Unit test each class

Integration test

Validation test

Black-box system test

Regression test as needed

Log all tests

In the W F methodo logy unit testing proceeds as follows.
For each function, calculate the McCabe Cyclomatic
Complexity, de te rmine a set of basis paths, a set of test

cases/data, and expec ted as well as actual results. As a
rule functions with a complexi ty grea te r than 10 should be
decomposed .

In the O O S D methodology, unit testing focuses on a class
of objects. For each class, test its m e m b e r functions as
above. Test all cons t ruc tors /des t ruc tors and over loaded
opera tors . Calculate the class cyclomatic complexity as
the sum of the complexi ty of its me thods excluding
inheri ted methods . As a rule, if a class has a complexi ty
grea ter than 100, it should be d e c o m p o s e d using
inheritance. In tegra t ion test all me thods within the class.
Be sure the class specif icat ions are met .

The object diagram of Seidewitz and Stark[7] provides a
guide to object integrat ion in the O O S D methodology as
descr ibed in Chea tham and Mellinger[4].

In bo th methodologies , a "test log" entry should specify
who, what, when, inputs, outputs bo th expec ted and
actual, and conclusions.

C l a i m e d A d v a n t a g e s o f O O S D .

Every new idea in comput ing genera tes more "media
hype" than the last, of ten promis ing m o r e than it can
deliver. Assoc ia ted with the "object-oriented" buzz words
are familiar claims such as

- OOSD offers increased productivity
- OOSD provides reduced complexity
- OOSD requires fewer lines of code
- OOSD produces reusable software
- OOSD is faster
- OOS is easier to debug
- OOS is easier to maintain

An exper iment involving seniors and g radua te students,
descr ibed in the next section, was conduc ted to test some
of these claims. T h e exper iment is mode led , in part , af ter
the mult i -project exper iment ofBoehm, et al [2].

T h e E x p e r i m e n t .

Six teams were selected f rom a senior /graduate level
projects class of 18 students. T h e t eams were selected by
a p r o g r a m that ma t ched pairs o f t eams based on the least
team difference in

(1) Credit hours of Computer Science (CS) course work,

(2) Cumulative GPA (undergraduate or graduate) in CS,

(3) Number of months since first learned to program,

596

(4) Number of months since first learned Pascal,

(5) Number of months since first learned Turbo Pascal,

(6) Number of months since first used a micro-computer.

That is, a pair of 3-member teams was chosen from the
remaining pool of N students such that

(Xl-~"1) 2 + (X2-V-/2)2 + (X3-"Y3) 2 -k

(~4-V/4)2 + (Y(5-Y5) 2 + (Y~-'Y'6) 2

is minimal over all pairs of teams (X, Y). Here Xi and Yi
represent the average of (1) to (6) for team X and Y
respectively.

Thus, three pairs of 3-member teams were created:
Teams 1 and 2, Teams 3 and 4, and Teams 5 and 6. Even
though no attempt was made to guarantee that there was
no significant difference among all six teams, the
differences in the six teams turned out to be statistically
insignificant (with ANOVA at the 10% level). Instead,
the intention was to guarantee that, within each of the
three pairs of teams, both teams were essentially
equivalent.

Table 5 below presents the scores for the six teams on the
selection criteria.

T a b l e 5 - T e a m S e l e c t i o n

Selection Criteria
Team/Paradigm .

1 2 3 4 5 6
.

1. WF1 27 3.4 64 43 29 78

2. OO1 30 3.4 59 39 23 73

3. WF2 33 2.9 93 36 28 73

4. 0 0 2 31 3.1 93 38 27 73

5. WF3 32 3.1 90 53 29 76

6. 0 0 3 40 3.5 100 51 31 67

Average of WF 31 3.1 83 44 29 76

Average of OO 33 3.3 84 43 27 71
.

The two teams in a pair of teams were assigned the same
problem. Based as much as possible on the preference of
the team members, one team was asked to use the
traditional WF methodology while the other used the
OOSD methodology described in the previous section.
During the first six weeks of the course all students were
exposed to both methodologies. This was the first time
many of the students had studied OOSD. Very few
students had written a program using objects. A student
who knows the C-language can certainly make a
contribution to implementation in C + + even if he has
no experience with C + + per se. A similar statement is
true for Turbo Pascal and objects in Turbo Pascal 5.5.

In a projects class, choosing problems of the correct size
and level of difficulty is not easy. It was complicated by
working in two paradigms. Our philosophy was to err on
the "too difficult" side and if necessary, reduce or relax the
requirements. We felt the experiment would be more
meaningful if we had three pairs of teams working on
three different problems:

Problem (1) which favors a WF solution,

Problem (2) which is middle-of-the-road, and

Problem (3) which favors an OO solution.

This is not an easy assignment and at best is subjective.
Even after solving a problem using both methods, it may
be debatable which is better, easier, etc. (for that
problem). It is generally agreed that the "user interface" is
a natural place for objects. So a system with a heavy
emphasis on the user interface may favor the OO
approach. Of course the user interface is a significant
portion of most interactive systems.

The following three problems were chosen to match 1 - 3
above.

Problem (1): a system to track graduate student progress.

Problem (2): a simulation of a 24.hour automatic teller.

Problem (3): a full-screen editor modeled after VAX/EDT.

Teams 1 and 2 (WF1 and 001) were assigned Problem 1.
Teams 3 and 4 (WF2 and 002) were assigned Problem 2
and Teams 5 and 6 (WF3 and 003) were assigned
Problem 3.

The easy way out for the professors would be to select the
problems, assign the teams and leave the rest to them.
This would not be fair to either methodology. During the
first six weeks, each phase of the life cycle was discussed,
a brief lab was assigned, and the project deliverable for
the phase was def'med. The students did not know which
paradigm they would be assigned so they were motivated
to understand both. Extra time was spent on the OOSD

597

methodology since it was not as well defined or
understood.

The teams had nine weeks to complete their project with
two weeks each allocated to analysis, design,
implementation and testing. This left one week for
(external) documentation. Table 6 shows the schedule of
deliverables.

Table 6 - S c h e d u l e o f DeUverab le s

. .

Date Activity Completed Deliverable
.

Mon 3/12 Analysis Analysis Document
Wed 3/14 Our Reactions
Mon 3/26 Design
Wed 3/28 Our Reactions
Mon 4/9 Implementation
Wed 4/11 Our Reactions
Mon 4/23 Tested System
Mort 4/23 Acceptance Test
Wed 4/25 Acceptance Test
.

Design Document

Executable & Source

Test Document & System
Classroom Demo
Classroom Demo

Due to time constraints, documents were not updated by
the teams to reflect our suggestions. However, it was
expected that our suggestions would be reflected in the
next deliverable. Every Monday at 4:00 pro, each group
was required to submit a single time sheet signed by all
three team members.

Both professors read and commented on all deliverables.
The amount of reading required between a Monday
delivery deadline and our reactions on the following
Wednesday was horrendous. And, often, the flood of red
ink was unappreciated.

Resul t s .

There is general agreement that a solution to a problem
may be easier to implement in one language than another.
For instance, a problem solution involving set
manipulation is easier to implement using Pascal than it is
in COBOL because Pascal has a built-in set data type and
corresponding operations. COBOL has neither. More
research needs to be done to determine if some problems
are easier to solve in one paradigm or another.
Specifically, which problem types are easier to solve in
the OO paradigm? This study reveals some insight as
seen in the comparison of total development man-hours
for the three problems in Table 7.

Table 7 - M a n - H o u r s

Total Man-Hours
Problem Conjecture

WF OO
.

1. Grad. Tracking Favors WF 199 597
2. ATM Simulation Middle 260 397
3. Editor Favors OO 451 242

Average 303 412

The larger average for the OO teams does not support
the claim that OOSD is '~'aster." The three-to-one ratio of
man-hours in Problem 1, can be partially explained. This
team (OO1) wanted to debate every issue in a group
setting, so took four times (323 hours verses 89) longer in
analysis and design than their counterpart (WF1). It is
noteworthy that the OO solution to this problem in a
typical WF domain required fewer lines of code (1850
verses 2325).

The lack of experience with OOSD is another factor that
must be considered. It takes experience to become
efficient at solving problems with objects. Our students
lacked this experience. On the other hand,
implementation of the solution took the same amount of
time in OOSD and WFSD (334 man-hours verses 321, on
the average) in spite of the lack of experience with
object-oriented programming. Table 8 gives the
man-hours by phase. Using analysis of variance (ANOVA,
10% level) the differences are not statistically significant.

Table 8 - M a n - H o u r s by Phase

Team
Phase ..

WF1 WF2 WF3 WFavg OO1 002 003 OOavg

.

Analysis 32 60 69 54 131 86 45 87
Design 57 46 59 53 192 38 43 91
Implement 29 25 267 107 59 205 70 111
Debug 32 77 8 39 95 19 23 46
Test 32 33 39 36 88 37 54 60
Document 17 19 9 15 32 11 7 17

Total 199 260 451 303 597 396 242 412

598

The OO solutions were, on the average, 10% smaller in
delivered source instructions (DSI) -- 15% if
(unmodified) "reused' code is not Counted. That is, the
OO solution required 15% less original (or modified)
code. But the OO teams showed lower productivity
regardless of how it is measured. See Table 9 below.
None of the differences were statistically significant.

T a b l e 9 - P r o d u c t i v i t y

.

Team

Measure .

WF1 WF2 WF3 WFavg OO1 0 0 2 0 0 3 OOavg

DSI 2325 1063 2706 2031 1850 1345 2353 1849

DSIfFotal Hrs 12 4 6 7 3 3 10 5

DSI/Impl. Hrs 80 43 10 40 31 7 34 24

(*)DSI-Reus¢1961 1063 2706 1910 1850 1345 1691 1629

(*)fFotalHrs 10 4 6 7 3 3 7 4

(*)/ImpI. Hrs 67 43 10 40 31 7 24 21

Doeumen Pgs 94 167 151 137 210 143 94 149

Pg/(Hr-Imp-Db) .7 1.1 .9 .9 .5 .8 .6 .6
.

Documentation pages include analysis, design, and test
documents plus user's guide and internal comment lines.
The only "quality of product" measurement we have is the
average team grade on all the deliverables. The average
for the three WF teams was 83 and 81 for the OO teams.
No team did a satisfactory job of testing. All six systems
were delivered with problems.

REFERENCES

1. Bailin, S., An Object-Oriented Requirements
Specification Method, Communications ACM, Vol 32,
1989, pp. 608-623.

2. Boehm, B. W., T. E. Gray, and T. Seewaldt,
Prototyping Verses Specifying: A Multiproject
Experiment, IEEE Trans. Soft. Eng., Vol SE-10, No 3,
1984, pp. 290-302.

3. Booch, G., Object-Oriented Development, IEEE
Vol SE-12, 1986, pp. 211-221.

4. Cheatham, T., and L. Mellinger, Testing
Object-Oriented Software Systems, Froceedings ACM
CSC'90, 1990, pp. 161-165.

5. Goldberg, A., Smalltalk-80, IILC_._laLC.iMdJY_~
Frogrammin~ Environment, Addison-Wesley, Reading,
Mass., 1984.

6. Pressman, R. S., Software Entfineerine: A Beginner's
Guide, McGraw-Hill, New York, ~,IY, 1988.

7. Seidewitz, E., and M. Stark, Toward a General
Object-Oriented Software Development Methodology,
Collected Software En~ineerin~ Paoers. Vol 4, No 14,
1986, pp. 25-38.

Conclusions.

More experimentation should be done! From this
experiment, it appears that some problems are more
amenable to OO solution than others and that one's gut
feeling may be enough to tell the difference. In fact, it
may be easier to classify a problem by paradigm than by
size. We did a fair job of the former but a poor job of the
latter with our three problems. The OO solutions
required less code but took longer on the average. The
low usage of reused code and the lack of experience with
OOSD may account for the lower productivity.
Statistieally, none of the differences are significant.

599

