
Requirements Honesty

Francisco A. C. Pinheiro
Universidade de Brası́lia

facp@cic.unb.br

Abstract

This article discusses issues related to the inconsistency
between requirements principles and the need for faster and
faster ways of developing software. Requirements princi-
ples are related to the purpose of the system and to the ap-
propriateness of requirements that correctly describe what
is necessary for the system to fulfil its objectives. I argue
that the quest for speed in software development may have
the undesirable effect of weakening these principles.

Since the beginnings of software engineering, there is
a search for faster ways to develop software. Many tech-
niques and development models have been proposed that
contribute for shortening development time, although the
reduction in time comes almost as a side effect, as a re-
sult of improving some key aspect of software development.
Agile methods are the first to place time-to-market as the
prominent feature. The risk is to view other quality features
as secondary.

1. Introduction

Requirements honesty is the adherence to certain re-
quirements principles. I argue that the quest for faster and
faster ways of developing software may impair the satis-
faction of these principles. The argument starts with the
consideration of two questions: “why would someone want
a functionality in one to three weeks time?” and “why that
same person is unwilling to wait two to three months to have
the same functionality, if the resulting software is proved to
be more appropriate, stable, or easier to maintain?”.

Several answers can be given. One could stress the point
that is very difficult to assure appropriateness, stability, and
other quality factors. If no guarantee can be given that these
quality factors are better preserved in a two months devel-
opment time, then there is no point in taking the longer path
to get similar uncertainties. Another answer could note that
for some systems the cost of assuring quality factors in a
longer time-scale outweighs the benefits. This line of rea-
soning does not diminish the importance of producing qual-

ity products. It just recognises that there are costs involved
and difficulties to overcome, and that these should be taken
into consideration when deciding the amount of effort de-
voted to assure quality.

A second line of reasoning takes the market as the driv-
ing force. The need to produce in a short time is derived
from the need to be the first in the market. It is a busi-
ness requirement and a very strong one because it is per-
ceived as related to survivability. I present time-to-market
as a mandatory requirement, implying a trade-off between
development speed and other quality characteristics that are
also important to business survival.

This article discusses the impact of the agile methods
on requirements research. The discussion is focused on the
concepts and practices of extreme programming (XP [2]),
taken as a representative of the agile methods. It is an it-
erative process built around a short iteration length of one
to three weeks. The short delivery time is central to the
model. OtherXP practices and artefacts like user stories,
pairwise programming, on-site customer, and the test-first
approach are organised to maintain the increments being de-
livered in a constant speed within that time. I argue that this
time-oriented approach is dictated by market and may have
a negative impact on the requirements principles.

This market orientation is very strong. We already have
several evidences of the wide acceptance ofXP concepts.
Well known market players are moving towards incorpo-
rating agile concepts. McCormick [15] comments on the
adaptation of RUP to embraceXP practices and Paulk [24]
presents CMM andXP as complementary, exhorting peo-
ple to considerXP if they are interested in process im-
provement, and to consider the CMM management infras-
tructure if they want agility. Requirements engineering is
also adopting the new terminology. A search on the In-
ternet produces dozens of references on “extreme require-
ments”, from consulting services [26] to academic propos-
als [9]. Even the characterisation of people discussingXP

seems to be market oriented. Booch [3] quotes Dick Fair-
ley as calling theXP supporters athenians, or entrepreneurs,
as opposed to the disciplined software engineers, the spar-
tans. We also have some academic exercises showing that



XP may be the right choice for small projects where the
time-to-market is the most important factor [19].

The quest for quicker ways to develop software is nat-
ural. Many development models and software techniques
contribute in a positive way for shortening development
time. However, the reduction in time comes almost as a
side effect, as a result of doing better what should be done.
In requirements terms, what should be done is characterised
as the adherence to the requirements principles of purpose-
fulness, appropriateness, and truthfulness: engineering the
requirements that appropriately describe what is necessary
for a system to fulfil its objectives.

I see the agile methods as the first to strongly raise time
to the status of a quality factor and to take time-to-market as
the governing force of software development. This is dan-
gerous for requirements principles because the prevalence
of time in these methods is independent of the system being
developed; thus, considerations of purpose, adequacy, and
correctness may become secondary.

After discussing these issues, I suggest that research on
requirements should remain focused on the maintenance of
the requirements principles, with reduction in development
time coming as a consequence. In situations in which this
orientation is not possible, requirements research should
help to clarify the possible losses. I also make some ques-
tions to be considered when investigating to what extent the
requirements principles can be preserved in agile, market-
oriented environments.

The requirements principles I use to build the argument
are presented in Section 2. Section 3 discusses the quest for
agility in software development and presents some propos-
als that, although contributing in a positive way to reduce
development time, are based on the preservation of the re-
quirements principles. The basics ofXP are presented in
Section 4 and a critique of its concepts is developed in Sec-
tion 5. The links between agile methods and market are dis-
cussed in Section 6, where I also present possible directions
for research. Section 7 contains my conclusion.

2 Requirements principles

Elicitation, analysis, and validation are at the heart of the
requirements process. The determination of what is to be
achieved and of what is required to accomplish the objec-
tives is a key aspect of software development. A careful pro-
cess of study, understanding, and analysis of requirements is
necessary to deal with the complexities of the requirements
elicitation. A validation procedure is essential because if
we do not know whether we have the right requirements,
then we also do not know if software built to meet these
requirements will fulfil its objectives. These activities are
associated with the following requirements principles:

Purposefulness.There should be an objective to be ful-
filled.

Appropriateness. Requirements should be appropriate to
the system. They should express what is necessary to
achieve the system’s objectives.

Truthfulness. Requirements should express what is actu-
ally required.

The first two principles are closer to elicitation and anal-
ysis, and the third to validation. These principles are some-
times related to requirements properties like correctness
and consistency. The ideas behind them are present in old
and recent surveys. Roman [27] uses the termappropri-
atenessreferring to requirements specification. Nuseibeh
and Easterbrook [22] say that one of the most important
goals of elicitation is to find out what problem needs to
be solved. They also rightly present validation as a very
difficult problem concerning truth and knowledge. Similar
points, mainly related to the importance of goal discovery
and modelling, are made by van Lamsweerde [31].

2.1. Purposefulness

We build software for some reason. If that reason is ful-
filled then the software is successfully built. Of course this
idea of success is subjected to ethical considerations. One
may, as I do, reject as successful a system built to satisfy
unethical or immoral objectives. The point here is that there
is always a purpose.

Software requirements express part of what is necessary
to achieve the system’s objectives by means of software —
we may say that software requirements express the soft-
ware’s contribution to the achievement of these objectives.

The determination of the system’s objectives is a difficult
task, aggravated in situations in which they are not, or can-
not be, clearly stated. Usually there are several objectives
satisfying different interests, and determining the right ones
is hard. To complicate things a bit more, the system may
have unclear or no absolute goals. However, there always
will be a negotiated construction of the objectives and the
system will always serve some purpose.

2.2. Appropriateness

Software is just a piece of larger systems; thus, it has to
be appropriate to the system in which it is inserted.

Determining the software appropriateness amounts to
getting the right requirements. In situations in which the
objectives are unclear or there are no absolute objectives,
the determination of the right requirements is more diffi-
cult. In those situations, defining what is needed for a soft-
ware to contribute to the accomplishment of the objectives



comespari pasuwith the determination of the objectives
themselves.

One of the consequences for the development process is
that no user may be regarded as having all the necessary
information. Negotiation is usually necessary to define the
appropriate requirements and this involves listening to all
parties playing a role in the negotiation process.

2.3. Truthfulness

The assurance that we have the right requirements and
subsequently the assurance that we get the requirements
right are paramount for the development of software. For
complex systems the number of mistakes and errors, and
the number of them that may go unnoticed, is large. There
are two ways to deal with those mistakes and errors on re-
quirements: one is through requirements analysis and the
other is through a process of verification and validation.

Requirements analysis try to establish the presence of
desirable attributes like consistency, precision, and com-
pleteness, among others. Although these desirable proper-
ties are no guarantee that the requirements are correct, their
presence is a good indication in that direction and the lack
of them is a sign that something is wrong or improperly
stated.

Validation is always a process of building confidence. It
is concerned with the understanding of things and it is nec-
essary if we do not want to walk in the dark. There are
several ways to verify and validate requirements. For exam-
ple, using inspections and walk-through sessions to discuss
what was understood with other people, using scenarios to
explore the consequences of something being true, using
prototypes to show what was understood, or simply restat-
ing the requirements. Testing is a necessary step not only to
identify errors introduced in the construction of the various
artefacts, but also to build confidence on the truthfulness of
the system — that the system is indeed what it should be.

3. Quick, fast, rapid, agile

The first two major conferences on software engineer-
ing [21, 25] had already stressed the fact that the techniques
and methods of the time were inadequate to cope with the
increasing demand for software products. This fuelled the
search for quicker and faster ways of developing software.
Automation of tasks, improved techniques, and new devel-
opment processes were proposed. Rapid prototyping, joint
application design, automated test case generation, and in-
cremental development are just few examples.

Each one of the proposed models, methods, and tech-
niques can be viewed as capable of abbreviating product
delivery time. In common, their proponents advocate im-
provements in key areas of software development. Design

patterns stress the use of proven solutions. Modularisa-
tion avoids propagation of errors and facilitates testing and
maintenance. Rapid prototyping anticipates problems and
reduces uncertainty. Formal methods preserve correctness
and help to shorten the testing phase.

All of this have a positive effect on development time
but the reduction in time comes almost as a side effect, in
virtue of successfully addressing some key aspect of the de-
velopment. I illustrate this point showing how prototyping,
incremental development, and user involvement impact de-
velopment time.

3.1. Prototyping

Prototypes are broadly classified in two kinds: the ex-
ploratory and the evolutionary prototypes. This section dis-
cusses the first one. The evolutionary prototype is discussed
in the context of incremental development.

Exploratory prototypes are used to explore uncertain is-
sues and to clarify questions related to them [7]. They are
also known as throwaway prototypes because the whole
idea is to dispose of it after the unclear aspects have been
clarified. In practice the prototype is kept either as part of a
specification, to illustrate the prototyped aspects, or just to
register how required things came into existence.

The principle behind the use of prototypes is that they
should be useful for uncovering hidden aspects of the sys-
tem; for eliciting requirements. The reduction in develop-
ment time comes as a consequence of the reduction of un-
certainty. Therefore, a prototype is good only if it helps
reducing the uncertainties. To this end, a lot of preparation
is required. It is a common advice to have good program-
mers, skilled at the tools used for prototyping, and good
users, having the necessary time to try the prototype and
being able to give competent feedback.

Moreover, not everything that is unclear is a candidate
for prototyping. If we suspect that the issue may be solved
by interviewing the right people or observing how things
work in a proper setting we may consider using these other
kinds of elicitation techniques.

3.2. Incremental development

The use of prototypes leads naturally to a development
based on successive prototypes [7, 23]. The idea is to build
parts of the system as increments. The development process
continues until the whole system is delivered.

The important feature in this form of development is the
early delivery of useful functionalities. This is a great ad-
vantage and very valuable in many circumstances. We also
have other possible benefits: by dividing the system in in-
crements we may simplify the analysis tasks concerning



each increment, with a positive effect on construction and
test.

The development time is not necessarily shorter: it is
usually perceived as such because of the delivery of use-
ful functionality early in the process. Besides, it is never
implied that the time should lead the way. One must take
the necessary time to set up an appropriate architecture and
to conceive and build each increment. The requirements
should be understood at least to a point where the overall
functionality may be clustered, and the interface of each
cluster is well defined.

Each increment is built to deliver the associated func-
tionality and it should be prepared to work together with
the next increments. A poorly understood system leads to
a large amount of rewriting, with several problems. This
could soon diminish any benefit gained from the function-
alities delivered earlier.

3.3. Participatory development

Participatory development refers both to participatory
design [17] and to the methods collectively known as
FAST [4] (facilitated application specification techniques).
They have characteristics making them useful to shorten the
life cycle. The user involvement helps bringing the con-
troversial and contradictory issues earlier in the process.
These methods promote discussion with the interested par-
ties, which helps to solve difficult issues. This accounts for
a design that reflects more closely what is required, result-
ing in a better acceptance of the product.

The proponents of participatory development claim that
the design and implementation phases are shortened and
maintenance is reduced. They argue that the user involve-
ment in the specification and design artefacts serves also
as a process of validation. I do not discuss the possibility
that the user acceptance comes in fact more because of the
complicity built in the process than for any improved de-
sign outcome. For one reason or another, the verification
and validation phases are made shorter.

3.4. The path to short delivery times

The above approaches adhere to the requirements princi-
ples in the sense that they try to preserve some of its asso-
ciated qualities. There are assumptions related to purpose,
appropriateness, and truthfulness that are key for their ef-
fective use. The prototypes should clarify obscure issues,
the increments should be based on a well thought architec-
ture, and the user involvement should be carefully prepared
and conducted. A short development time is a consequence
of doing what should be done in a better way.

Recently we have proposals explicitly intended to
shorten the delivery time. This comes not as a consequence

of improved methods and techniques for software design
and construction. Quite the contrary, these recent proposals
are explicitly devised to support the delivery of function-
ality in a reduced time length. Not surprisingly they are
collectively known asagilemethods, stressing the quest for
velocity. In fact, agility requires a quick and easy move or
reaction, but being quick is a prominent aspect of the defi-
nition of the word.

4. Extreme programming concepts

Agile methods are the first to place time-to-market as the
prominent feature of software development. I discussXP as
a representative of the agile methods because of its wide
acceptance. Also, it seems that many of its extremeness
come from this time-to-market prominence.

The description ofXP is based on [2, 36]. Its project
structure, illustrated in Figure 1, is very simple. The project
begins with a release meeting where a plan to deliver the
software in increments is elaborated. The software is de-
livered through several iterations. Each one is planned in
detail defining, for example, which functionalities should
be added and which errors from previous iterations should
be fixed. The increments are delivered into production line
after passing the acceptance tests. The process continues
with replanning and the necessary adjustments until a com-
plete system is in operation. The main points of this process
are summarised as follows:

The release plan is based on user stories, short pieces of
text expressing in customers’ terms what they want to
get.

In each iteration a small set of user stories is chosen for
implementation.

The design of the software should be kept simple. Only
the functionalities being delivered receive attention in
each iteration.

Programming is the heart ofXP. The coding follows two
principles: one is pairwise programming and the other
is the test-first approach — to create tests before cod-
ing the functionality.

The acceptance tests are designed from the user stories as
black-box tests. They are kept as part of a test suite to
run every time an increment is delivered.

The unit tests are also black-box tests. Programmers write
their own tests before they code.

Integration is responsibility of everyone programming the
software. Each team integrating a piece of code is re-
sponsible for running the integration tests.



Architectural
Spike

System

Metaphor
Release

Planning

Uncertain

Estimates

Release

Plan

Acceptance

Tests
Small

ReleasesApproval

CustomerLatest

Version

Project Velocity
New User Story

Confident

Estimates

User Stories

Requirements

Iteration

Next Iteration / Plan

Errors

Test Scenarios

Spike

Figure 1. XP project structure (adapted from [36]).

4.1. User stories

User stories are the prominent artefact ofXP. They are
used to describe things the user wants to get, to elaborate
time estimates for planning each release, and to develop unit
and acceptance tests.

They are written by customers and express what the sys-
tem needs to do for them. Each user story consists of two
to three sentences of text. They should provide just enough
detail to make possible the determination of the number of
weeks it will take to implement them.

When time comes to the actual implementation, the pro-
grammers developing the functionalities associated with a
user story talk to the customer and receive a detailed de-
scription of the requirements in face-to-face meetings.

4.2. Planning

A XP project is based on making frequent and constant
small releases. Each release is developed in one or more it-
erations and the project is planned to have several iterations.
There is a initial release plan laying out the overall project.

In each iteration a subset of the user stories is chosen
to be implemented. Customers and developers choose the
user stories taking into consideration their delivered value,
the estimated time to implement, the length of the iteration
and the project velocity.

The iterations are planned to have a fixed length and the
team should strive to maintain this length constant through-
out the project. A period from one to three weeks is consid-
ered ideal. The project velocity is calculated summing up
the number of user stories or programming tasks finished in
each iteration. This number is used to estimate how many
user stories can be implemented in the next iteration.

4.3. Designing and coding

The design tasks are intended to develop a set of classes
providing the services required to implement the user sto-
ries. There is a general guidance to make things simple and
avoid unnecessary details. The proper place for details is
during programming.

The programming tasks are the heart ofXP approach.
Programming is done by pairs of programmers. There are
two necessary things: the user should be always available
and the unit tests should be created first, with the actual
code coming later.

4.4. Acceptance tests

In each iteration the user stories being built are translated
into acceptance tests and incorporated into a set of regres-
sion tests. At the end of the iteration the entire release is
tested, not only the increment being delivered.

Whenever an error is found during software operation,
if not corrected right away, the error is scheduled for cor-
rection in future releases. An acceptance test to catch it is
always added to the test suite.

5. The extremeness of extreme programming

If one point can be selected to characterise theXP pro-
cess, it is the duration of its iterations. Other points like
user stories, pair programming, and testing also have pecu-
liar aspects, but they seem to be oriented and subjected to
the delivery of increments in short-duration iterations.

The ideal duration of an iteration is one to three weeks. If
we take this off and allow iterations of two to three months,
then we need no extremeness any more. Except for a de-
liberate attempt to reduce documentation through user sto-



ries and face-to-face meetings, theXP practices may be con-
ceivably applied in other development models without be-
ing considered extreme.

Most critiques ofXP address the extremeness of its prac-
tices, showing them as taking to extreme lengths what
would otherwise be considered normal. My position is dif-
ferent: the practices deserve attention and should be inves-
tigated but the main source ofXP extremeness is the length
of its iterations. This is extreme because it may hinder the
requirements principles. If we allocate less and less time
to perform some task we are certainly running into trouble,
and to make this task simpler and simpler by way of com-
pensation for the risk may not be the best solution. The
following discussion is centred on the negative impactXP

practices have on the requirements principles.

5.1. Selecting the right users

The choice of an appropriate customer to work onXP

projects is recognised as a key factor of success. Ability to
participate, communicate, and specify are some skills the
on-site customers are expected to have [30].

The extremeness related to on-site customers is that they
seem to be the only source of requirements. This goes
against the purposefulness and appropriateness principles.
Users, customers, and other requirements’ sources should
be chosen based on what is necessary to define the system’s
objectives and requirements.

Deciding who are the right people or what is the right sit-
uation to use as requirements’ source, who should be inter-
viewed, and what should be observed is a complex matter.
In some cases it is possible that the customer has a wrong
conception about what is required, even if he knows pre-
cisely what he wants to achieve.

Also, some objectives may only be achieved with the
concurrence of a group of people working together. People
in this group may have personal objectives differing from
the system’s objectives or, at least, they may have different
views on how the system’s objectives should be achieved. It
may be unwise to leave some of them out of the elicitation
process.

5.2. Using the right techniques

Deciding what techniques to use when eliciting require-
ments is another problem and another source of extreme-
ness. Face-to-face meetings between customer and pro-
grammers are the only method formally conceived inXP

to elicit requirements. This is extreme because it limits the
choice of elicitation techniques. This goes against the prin-
ciple of appropriateness.

Different situations, and even different customers, re-
quire different elicitation techniques. In some situations one

may use unstructured interviews, in others it may be better
to apply structured interviews, to use scenarios, or to ob-
serve people at work [11]. It all depend on the sources of
requirements and what kind of requirements we are dealing
with.

Elicitation methods should be based on the situation at
hand. An appropriate choice is fundamental for the elicita-
tion process and may also contribute to other requirements
related tasks. For example, a structured interview may be
used to gather information and, using control questions, also
to validate information previously obtained.

5.3. Getting the right requirements

The extreme aspect related to the truthfulness principle
is concerned with the verification and validation of require-
ments. First, there is no provision for requirements valida-
tion. Second, there is little room for a proper verification
through independent testing.

An important point of testing is to have something re-
quired, some expected behaviour or result for testers to test
against it. InXP there is no detailed descriptions on what to
base the elaboration of tests. The only descriptions of what
should be built are the user stories, which seem an insuffi-
cient base for both unit and acceptance tests.

It is accepted that the inexistence of independent testing
brings the risk of creating tests that conform to the programs
being tested. TheXP practice of creating tests before coding
does not make the situation any better: the risk now is to
create programs that conform to the tests, and the question
becomes: who tests the tests?

6. The mandatory requirement

In economic terms there is one mandatory requirement:
to survive in business, i.e., to make profits. This is usually
taken for granted and it seems too basic to be mentioned.
However, we should not overlook the crucial importance of
such a requirement.

The quest for agility is a business requirement in a broad
sense and it is unrelated to any particular application. It is
in fact driven by market. Most of the time, a product has to
be delivered quickly as a market strategy. In software terms
the mandatory requirement may be stated as

The software should be built to make possible its
delivery first than any other competing software.

There are other possible formulations. The main point
of this definition is the conquering of a market position. Of
course this is not an absolute requirement in the sense that
it is derived from the need to conquer a market position and
it depends on other requirements to satisfy this objective.



For example, to come first with a faulty product may hinder
rather than help the conquering efforts.

The point of being the first to secure a market position
always involves a trade-off between agility and correctness.
A decision on to what extent one may go in producing a
faulty product to be the first in the market has to be made;
and that decision does not rely on technical arguments only.
There are other resources like advertising, legal and politi-
cal actions,FUD (fear, uncertainty, and doubt) tactics [12],
pain infliction [16], and other market practices that come
into play. Considerations like correctness, quality, and ap-
propriateness may be relativised if market conditions allow
a product or service to live with less than optimal features,
and this is usually the case. This is what is called relative
quality in [1].

Of course it is inconvenient to tell people that some val-
ues are not being considered as they should be. So a jus-
tification discourse is developed to make things palatable.
(see [6] for a description of the use of propaganda for shap-
ing acquiescence in corporate hegemony and [29] for a gen-
eral discussion on business ethics and public interest). Usu-
ally the discourse takes the form of convincing people of
the inevitability and necessity of new ideas and approaches.
This is one aspect of what is called “engineering of consent”
in [5].

If the new ideas are associated with the sign of moder-
nity or post-modernity, even better. In software terms we
may start talking about continuous improvement instead of
deliver-and-fix practices. Other claims and incentives like
courageous way of doing things and customers in control,
having what they want when they want, are other facets of
the same justification discourse.

6.1. What should be researched?

The justification discourse is by no means completely
destituted of sense. There should be some anchors to reality,
no matter how diffuse, weak, or inappropriate those anchors
may be. InXP we have many ideas and practices that are
indeed perceived and accepted by many as contributing to
improve the quality of work and product. Even the leitmotiv
of the agile methods — to develop software to be the first
in a market niche — is a legitimate desire and therefore a
requirement that should be seriously considered.

The ideas and practices related to the agile methods
should be investigated in two ways. First, whether they can
indeed lead to short development times; what is it that works
and what does not? Second, whether the assumptions be-
hind each practice are preserved in agile environments; to
what extent theXP ideas and practices weaken the princi-
ples of purposefulness, appropriateness, and truthfulness.

The first line of investigation requires case studies and
experimentation. SomeXP practices have already been tried

in other contexts: a daily build approach to software devel-
opment, organised around teams responsible for the com-
plete development of customer features, is described in [14]
and it is said to helpXP to scale up.

The second line of investigation requires a careful
scrutiny and would benefit from research already done con-
cerning the roots ofXP practices.

Continuous improvement. The idea of continuous im-
provement, taken from the quality movement [8, 13],
deals with change but from a stable perspective. A
process modification should last and be present in fu-
ture instances of the (improved) process. In a situation
of instability it becomes difficult to insert any modifi-
cation and call it an improvement because we do not
know even if the situation is going to appear again.
How can we be sure that we are indeed improving the
product and not just working with a bad process that
requires constant product fixes?

User stories. A concise description of the system and its
desired functionalities early on the development is nec-
essary for planning, making estimatives, and defin-
ing its scope. Can requirements and design be based
on these concise descriptions without further elicita-
tion activities? Are face-to-face meetings between pro-
grammers and customers enough to elicit all the neces-
sary details? Can the informally elicited details be ef-
fectively shared with others in the development team?

Pair programming. Pair programming and promotion of
shared code are related to the idea of egoless program-
ming [33]. There are published lessons teaching pair
programming [35] and reports containing evidences of
its benefits [34]. This is a very appealing idea but may
not be applicable in all situations [20]. What is neces-
sary to work with such a social and psychological con-
cept? To share something is a very deep social attitude.
Is it possible such an attitude in a selfish and compet-
itive environment? Is it possible to have an altruis-
tic software development process in a market-oriented
company?

Test-first approach. The test-first approach has some pos-
itive points and may be wise in a situation of partial
knowledge. A positive result is that it obliges the pro-
grammers to think about what they are going to code,
not only in terms of what should be coded but also in
terms of what should not, i.e., the exceptions. This ori-
entation has long been advised as a good practice, but
is it sufficient to replace independent testing? An ex-
periment with the test-first approach found that it sup-
ports better programming understanding, although it
neither accelerates the implementation nor results in
more reliable code [18].



On-site customers.The constant presence of the customer
resembles the concepts of superuser and of participa-
tory design [17], but the motivation for user involve-
ment is quite different. Is that presence sufficient to
assure the quality of elicitation? Having customers as
the only source of requirements, how can we distin-
guish what they want from what they need? Can elici-
tation and programming be done by the same person?
Is not a different frame of mind necessary for each of
these activities?

Apart from investigating the concepts related to agile
methods, we may also consider some research topics that
have a positive impact on development time.

6.1.1 Domain and organisational models

Organisational models have been used as software analysis
devices, to build models of the system being developed [10].
Their use in system development should help the acquisition
and analysis of the domain, environmental, social, and other
organisational related requirements. This requires an effort
that may not be appropriate for situations where time-to-
market is the prominent requirement.

I believe that the proper use of organisational models
is to model organisations and not particular applications.
Therefore, we do not need to build a model for every ap-
plication, we need just to consider the application’s impact
on an existing model. Assuming there is an organisational
model available to the development team, how the short de-
scriptions of functionality can be related to this pre-existing
description of the organisation? Generally, how are things
expressed in an organisational model related to what is said
in the user stories? Is it possible to use an organisational
model to guide the conversation between customers and
programmers and so improve the elicitation process?

Are organisational models compatible with rapidly
changing environments? In principle, they are for organisa-
tions that want to organise themselves and, therefore, they
should be stable and last for long periods with small mod-
ifications. This is not the case, for example, of many dot-
com and Internet companies, representatives of these hectic
times, and natural candidates for using agile methods.

6.1.2 Reuse and patterns

The design and architectural patterns and the reutilisation
of artefacts may also be useful in the context of agile de-
velopment. Two important problems in reuse are the proper
description of the components and the retrieval of an ex-
isting reusable component. Some form of structure should
be enforced to help people find what they want, otherwise
the reuse effort is useless. One line of research could in-
vestigate the relationship between descriptions of reusable

components and user stories. Are user stories sufficient for
the identification of components? How may they be used to
guide theXP team in finding what is available?

If an organisation wants to reuse context situated com-
ponents it should create and organise its own reusable com-
ponents. This requires a development process where tasks
related to the identification, analysis, modification, and reg-
istration of reusable artefacts could take place. Is it compat-
ible with the wayXP projects are carried out?

6.1.3 Scenarios

Scenarios are used in several ways during software devel-
opment. They have potential to save development time be-
cause of their power for the identification of problems and
requirements, facilitation of learning and agreement, and
validation of knowledge. They can also be used to derive
test cases and to help management [32].

Scenarios have a natural relation withXP. It is usual to
associate user stories with use cases and scenarios. Indeed,
it has been said that a user story can be thought of as “the
amount of a use case that will fit on an index card” [2].

Can the informal face-to-face meetings be guided by
scenario construction? Can scenarios be derived from the
building of unit tests and be used as a validation artefact?
What level of automation and what notational devices do
work with the “no waste of time on documentation” phi-
losophy ofXP? Sutcliffe et al. [28] propose an approach
for a scenario-based requirements engineering that facili-
tates the reuse of knowledge, increases the validation power,
and can be integrated with enterprise concepts. Leite [9]
presents a concrete proposal for using scenarios in modified
XP projects.

7. Conclusion

I do not think requirements need to go extreme and I
see as inappropriate the election of time as the prominent
aspect of requirements research. On the other hand, we still
have a long way to go and clearly many advances from RE
research will have a positive impact on the development of
timely products.

I support the idea that requirements research should
strive to identify, study, and use as a framework, principles
to guide the investigative labour. The requirements princi-
ples may be different from the ones I have described, the
point being that we should have principles against which to
discuss advances and contraventions. The adherence to the
requirements principles is what I call requirements honesty.
Of course, I do not imply that people supportingXP are dis-
honest. I also do not propose that RE research should try
to preserve these principles at all costs — they can even be
subverted. What I claim is that they should be understood



and taken into consideration so that possible deviations can
be made clear.

In this article I discuss how requirements research should
be conducted in the light of the agile methods. Many of the
issues discussed here are general, but my specific points and
conclusions cannot be extrapolated to all agile methods. In
particular, I focus my attention onXP, describing it as bi-
ased towards time. I present time-to-market as a manda-
tory requirement and argue that this market orientation may
weaken requirements principles.

The XP process introduces into the discussion of soft-
ware development a strong appeal to human considerations.
This comes not only with the reliance on the programmer’s
job and customer involvement, but also with the invitation
to be fast, quick, agile, and other characteristics perceived
as good ones. For example, it is said thatXP improves a
software project in four essential ways: communication,
simplicity, feedback, and courage. The first three aspects
are also present in other models and the courage aspect, if
nothing else, is a clear invitation for one to be on the right
side — the side of courageous people. The point developed
in this article is that this is part of a justification discourse
elaborated around the need to be the first in a market niche.
The agile trend reflects more and more a market based re-
quirement.

Nevertheless, the desire to be the first in the market is le-
gitimate and most of theXP concepts and practices have
been proposed before in other contexts. Therefore, they
should be thoroughly investigated to see how they work to-
gether and what are their implicit assumptions. We should
only be careful not to embark on the market’s justification
discourse and start proposing things like extreme require-
ments. In terms of requirements the point to make is not re-
lated to extremeness, or to be the first in a market niche —
this is just another requirement. The main point is whether
requirements engineering is possible in agile environments
and what are the limits; what are the gains and losses in
trying to be faster and faster?

Natural lines of research would inquire to what extent
the XP practices hinder the requirements principles. Some
questions were proposed to illustrate possible points of in-
vestigation concerning the concepts of continuous improve-
ment, pairwise programming, user stories, test-first ap-
proach, and customer involvement. I also suggest research
on the relationships of someXP artefacts like user stories
to some conventional practices and artefacts like domain
and organisational models, reuse, scenarios, and architec-
tural patterns.

A last point, unexplored in this article but serving well
as a way of conclusion, is related to the status of require-
ments education. There are few classes teaching how to
elaborate and apply surveys and questionnaires, how to ob-
serve and interview people, and how to use requirements

related techniques in practice. There are some books and
articles talking about the elicitation techniques, their struc-
ture, properties and appropriateness. However, expecting
someone to learn how to elicit just by reading about elicita-
tion techniques is similar to expecting people to learn how
to program just by reading a programming language book.
One should practice, practice, practice; and practice again.
We should realize that there are some skills that need to
be mastered before we can make sense of more advanced
concepts. This lack of experience on elicitation techniques
contributes to the acceptance of lesser ways of doing re-
quirements engineering.

Acknowledgements

I am grateful to the valuable and constructive comments
and suggestions that I received from the anonymous re-
viewers. They pointed out errors and made very interesting
points that helped me to improve the contents of the paper.

References

[1] J. P.-H. Balasubramaniam, R. Baskerville, and L. Levine.
How internet software companies negotiate quality.IEEE
Computer, 43(5), May 2001.

[2] K. Beck. Embracing change with extreme programming.
IEEE Computer, 32(10):70–77, October 1999.

[3] G. Booch. Developing the future.Communications of the
ACM, 44(3):119–121, March 2001.

[4] E. Carmel, R. D. Whitaker, and J. F. George. PD and joint
application design: A transatlantic comparison.Communi-
cations of the ACM, 36(4):40–48, June 1993.

[5] N. Chomsky. Market democracy in a neoliberal order: Doc-
trines and reality. Davie Lecture, University of Cape Town,
May 1997. (Available at www.bigeye.com/chomsky.htm,
last visited 06/2002).

[6] D. J. Collison. Corporate propaganda: Its implica-
tion for accounting and accountability. Discussion pa-
pers series, University of Dundee, Accountancy and
Business Finance Department, 2000. (Available at
www.dundee.ac.uk/accountancy/papers/010.doc, last vis-
ited 06/2002).

[7] A. M. Davis. Operational prototyping: A new development
approach.IEEE Software, pages 70–78, September 1992.

[8] W. E. Deming.Quality, Productivity, and Competitive Posi-
tion. Massachusetts Institute of Technology, 1982.

[9] J. C. S. do Prado Leite. Extreme requirements. InJornadas
de Ingenieŕıa de Requisitos Aplicada, Sevilla, Spain, June
11-12 2001.

[10] E. Dubois, E. Yu, and M. Petit. From early to late formal
requirements: A process-control case study. In9th Inter-
national Workshop on Software Specification and Design,
pages 34–42, Ise-Shima (Isobe), Japan, April 16-18 1998.
IEEE Computer Society Press.



[11] J. A. Goguen and C. Linde. Techniques for requirements
elicitation. InFirst IEEE International Symposium on Re-
quirements Engineering, RE’93, pages 152–164, San Diego,
California, 1993. IEEE Computer Society Press.

[12] E. L. Green. FUD 101, 2002. (Available at
http://badtux.org/eric/editorial/fud101.html, last visited
06/2002).

[13] J. M. Juran. Juran on Quality by Design: The New Steps
for Planning Quality into Goods and Services. Free Press,
revised edition, 1992.

[14] E.-A. Karlsson, L.-G. Andersson, and P. Leion. Daily build
and feature development in large distributed projects. In
22nd International Conference on Software Engineering,
ICSE’00, Limerick, Ireland, June 2000.

[15] M. McCormick. Programming extremism.Communications
of the ACM, 44(6):109–111, June 2001.

[16] P. Meyer. Killer applications. Business & Economic
Review, 44(2), January-March 1998. (Available at re-
search.moore.sc.edu/research/bereview/be442/killapp.html,
last visited 06/2002).

[17] M. J. Muller, D. M. Wildman, and E. A. White. Taxonomy
of PD practices: A brief practitioner’s guide.Communica-
tions of the ACM, 36(4):26–28, June 1993.

[18] M. M. Müller and O. Hagner. Experiment about test-first
programming. InConference on Empirical Assessment in
Software Engineering, EASE’02, April 2002.

[19] M. M. Müller and F. Padberg. Extreme programming from
an engineering economics viewpoint. InFourth Interna-
tional Workshop Economics-Driven Software Engineering
Research, EDSER, Orlando, Florida, May 2002.

[20] M. M. Müller and W. F. Tichy. Case study: Extreme pro-
gramming in a university environment. In23rd International
Conference on Software Engineering, ICSE’01, pages 537–
544, Toronto, May 2001.

[21] P. Naur and B. Randell, editors.Software Engineering:
Report of a conference sponsored by NATO Scientific Com-
mittee, Garmish, Germany, 7-11 October 1968. Brussels,
Scientific Affairs Division, NATO (1969). (Available at
www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/
index.html, last visited 06/2002).

[22] B. Nuseibeh and S. Easterbrook. Requirements engineering:
A roadmap. In A. C. W. Finkelstein, editor,The Future of
Software Engineering, Limerick, Ireland, June 2000. IEEE
Computer Society Press. (Companion volume to the pro-
ceedings of the 22nd International Conference on Software
Engineering, ICSE’00).

[23] M. B. Özcan and J. Siddiqi. Interchanging specifications
and implementations in evolutionary prototyping.Software
Practice and Experience, 26(9):999–1023, September 1996.

[24] M. C. Paulk. Extreme programming from a CMM perspec-
tive. In XP Universe, Raleigh, NC, July 2001.

[25] B. Randell and J. N. Buxton, editors. Software
Engineering Techniques: Report of a confer-
ence sponsored by the NATO Scientific Committee,
Rome, Italy, 27-31 October 1969. Brussels, Scien-
tific Affairs Division, NATO (1970). (Available at
www.cs.ncl.ac.uk/people/brian.randell/home.formal/NATO/
index.html, last visited 06/2002).

[26] S. Robertson and J. Robertson. Extending requirements
- a practical workshop. Seminar offered by The At-
lantic System Guild, Inc., 2002. (Description available at
www.systemsguild.com/GuildeSite/Robs/erw.html, last vis-
ited 06/2002).

[27] G.-C. Roman. A taxonomy of current issues in requirements
engineering.IEEE Computer, 18(4):14–22, April 1985.

[28] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and
D. Manuel. Supporting scenario-based requirements en-
gineering. IEEE Transactions on Software Engineering,
24(12):1072–1088, December 1998.

[29] P. Ulrich. Facing public interest. the ethical challenge to
business policy and corporate communication. InTopics of
the 7th European Business Ethics Conference, St. Gallen,
September 14-16 1994. Institute for Business Ethics. Avail-
able from www.iwe.unisg.ch/org/iwe/web.nsf (last visited
06/2002).

[30] A. van Deursen. Customer involvement in extreme pro-
gramming. ACM SIGSOFT Software Engineering Notes,
26(6):70–73, November 2001.

[31] A. van Lamsweerde. Requirements engineering in the year
00: A research perspective. In22nd International Confer-
ence on Software Engineering, ICSE’00, Limerick, Ireland,
June 2000. IEEE Computer Society Press.

[32] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. Sce-
narios in system development: Current practice.IEEE Soft-
ware, pages 34–45, March/April 1998.

[33] G. M. Weinberg. Psychology of Computer Programming.
Dorset House, silver anniversary edition, 1998. (An adap-
tation of chapter 4 on egoless programming is published in
IEEE Software, 16(1):118-120, 1999).

[34] L. Williams and R. L. Upchurch. In support of student pair-
programming. InSIGCSE Conference on Computer Science
Education, Charlotte, NC, February 2001.

[35] L. A. Williams and R. R. Kessler. All I really need to know
about pair programming I learned in kindergarten.Commu-
nications of the ACM, 43(5):109–114, May 2000.

[36] XP.org. Extreme programming: A gentle introduction, 2002.
(Available at http://www.extremeprogramming.org, last vis-
ited 06/2002).


