
RNA Secondary Structure

aagacuucggaucuggcgacaccc
uacacuucggaugacaccaaagug
aggucuucggcacgggcaccauuc
ccaacuucggauuuugcuaccaua
aagccuucggagcgggcguaacuc



Hairpin Loops

Stems

Bulge loop

Interior loops

Multi-branched loop



Context Free Grammars and RNAs

S   → a W1 u
W1 → c W2 g
W2 → g W3 c
W3 → g  L  c
L   → agucg

What if the stem loop can have other letters in 
place of the ones shown?

ACGG
UGCC

AG
U

CG



The Nussinov Algorithm and CFGs

Define the following grammar, with scores:

S   → a S u  : 3 |    u S a  : 3
g S c  : 2     |    c S g  : 2
g S u  : 1     |    u S g  : 1

S S : 0   |

a S : 0   |   c S : 0   |   g S : 0   |   u S : 0   | ε : 0 

Note: ε is the “” string

Then, the Nussinov algorithm finds the optimal parse of a string with 
this grammar



The Nussinov Algorithm

Initialization:
F(i, i-1) = 0; for i = 2  to  N
F(i, i)    = 0; for i = 1  to  N S → a | c | g | u

Iteration:
For l = 2 to N:

For i = 1 to N – l
j = i + l – 1

F(i+1, j  -1) + s(xi, xj) S → a S u | …
F(i, j) = max

max{ i ≤ k < j } F(i, k) + F(k+1, j) 
S → S S

Termination: 
Best structure is given by F(1, N)



Stochastic Context Free Grammars

In an analogy to HMMs, we can assign probabilities to transitions:

Given grammar

X1 → s11 | … | sin

…
Xm → sm1 | … | smn

Can assign probability to each rule, s.t.

P(Xi → si1) + … + P(Xi → sin) = 1



Computational Problems

• Calculate an optimal alignment of a sequence and a SCFG

(DECODING)

• Calculate Prob[ sequence | grammar ]

(EVALUATION)

• Given a set of sequences, estimate parameters of a SCFG

(LEARNING)



Evaluation

Recall HMMs:
Forward: fl(i) = P(x1…xi, πi = l) 
Backward: bk(i) = P(xi+1…xN | πi = k)

Then,
P(x) = Σk fk(N) ak0 = Σl a0l el(x1) bl(1)

Analogue in SCFGs:

Inside: a(i, j, V) =  P(xi…xj is generated by nonterminal V)
Outside: b(i, j, V)  = P(x, excluding xi…xj is generated by S and 

the excluded part is rooted at V)



Normal Forms for CFGs

Chomsky Normal Form:

X → YZ
X → a

All productions are either to 2 nonterminals, or to 1 terminal

Theorem (technical)

Every CFG has an equivalent one in Chomsky Normal Form

(That is, the grammar in normal form produces exactly the same set of strings)



Example of converting a CFG to C.N.F.

S → ABC
A → Aa |   a
B → Bb   |   b
C → CAc |   c

Converting:

S → AS’
S’ → BC
A → AA | a
B → BB | b
C → DC’ |  c
C’ → c
D → CA

S

A B C

A a

a

B b

B b

b

C A c

c a

S

A S’

B CA A

a a B B

B B

b b

b

D C’

C A c

c a



Another example

S → ABC
A → C   |   aA
B → bB |   b
C → cCd |   c

Converting:
S → AS’
S’ → BC
A → C’C’’ |   c   |   A’A
A’ → a
B → B’B   |   b
B’ → b
C → C’C’’ |   c
C’ → c
C’’ → CD
D → d



The Inside Algorithm

To compute

a(i, j, V) = P(xi…xj, produced by V)

a(i, j, v) = ΣX ΣY Σk a(i, k, X) a(k+1, j, Y) P(V → XY)

k k+1i j

V

X Y



Algorithm: Inside

Initialization:

For i = 1 to N, V a nonterminal,
a(i, i, V) = P(V → xi)

Iteration:

For i = 1 to N-1
For j = i+1 to N

For V a nonterminal

a(i, j, V) = ΣX ΣY Σk a(i, k, X) a(k+1, j, X) P(V → XY)

Termination:

P(x | θ) = a(1, N, S)



The Outside Algorithm

b(i, j, V) = Prob(x1…xi-1, xj+1…xN, where the “gap” is rooted at V)

Given that V is the right-hand-side nonterminal of a production,

b(i, j, V) = ΣX ΣY Σk<i a(k, i-1, X) b(k, j, Y) P(Y → XV)

i j

V

k

X

Y



Algorithm: Outside

Initialization:
b(1, N, S) = 1
For any other V, b(1, N, V) = 0

Iteration:

For i = 1 to N-1
For j = N down to i

For V a nonterminal

b(i, j, V) = ΣX ΣY Σk<i a(k, i-1, X) b(k, j, Y) P(Y → XV) +

ΣX ΣY Σk<i a(j+1, k, X) b(i, k, Y) P(Y → VX)

Termination:
It is true for any i, that:

P(x | θ) = ΣX b(i, i, X) P(X → xi)



Learning for SCFGs

We can now estimate 

c(V) = expected number of times V is used in the parse of x1….xN

1

c(V) = –––––––– Σ1≤i≤NΣi≤j≤N a(i, j, V) b(i, j, v)
P(x | θ)

1

c(V→XY) = –––––––– Σ1≤i≤NΣi<j≤N Σi≤k<j b(i,j,V) a(i,k,X) a(k+1,j,Y) P(V→XY)
P(x | θ)



Learning for SCFGs

Then, we can re-estimate the parameters with EM, by:

c(V→XY)
Pnew(V→XY) = ––––––––––––

c(V)

c(V → a)             Σi: xi = a b(i, i, V) P(V → a)
Pnew(V → a) = –––––––––– = ––––––––––––––––––––––––––––––––

c(V) Σ1≤i≤NΣi<j≤N a(i, j, V) b(i, j, V)



Decoding: the CYK algorithm

Given x = x1....xN, and a SCFG G,

Find the most likely parse of x
(the most likely alignment of G to x)

Dynamic programming variable:

γ(i, j, V): likelihood of the most likely parse of xi…xj,
rooted at nonterminal V

Then,

γ(1, N, S): likelihood of the most likely parse of x by the grammar



The CYK algorithm (Cocke-Younger-Kasami)

Initialization:
For i = 1 to N, any nonterminal V,
γ(i, i, V) = log P(V → xi)

Iteration:
For i = 1 to N-1

For j = i+1 to N
For any nonterminal V,

γ(i, j, V) = maxXmaxYmaxi≤k<j γ(i,k,X) + γ(k+1,j,Y) + log P(V→XY)

Termination:
log P(x | θ, π*) = γ(1, N, S) 

Where π* is the optimal parse tree (if traced back appropriately from above)



Summary: SCFG and HMM algorithms

GOAL HMM algorithm SCFG algorithm

Optimal parse Viterbi CYK

Estimation Forward Inside
Backward Outside

Learning EM: Fw/Bck EM: Ins/Outs

Memory Complexity O(N K) O(N2 K)
Time Complexity O(N K2) O(N3 K3)

Where K: # of states in the HMM
# of nonterminals in the SCFG



A SCFG for predicting RNA structure

S  → a S   |   c S   |   g S   |   u S   |   ε
→ S a   |   S c   |   S g   |   S u
→ a S u   |   c S g   |   g S u   |   u S g   |   g S c   |   u S a
→ SS

Adjust the probability parameters to be the ones reflecting the relative 
strength/weakness of bonds, etc.

Note: this algorithm does not model loop size!



CYK for RNA folding

Can do faster than O(N3 K3):

Initialization:
γ(i, i-1) = -Infinity
γ(i, i)    = log P( xiS )

Iteration:
For i = 1 to N-1

For j = i+1 to N
γ(i+1, j-1) + log P(xi S xj)
γ(i+1, j) + log P(S xi)

γ(i, j) = max 
γ(i, j-1) + log P(xi S)
maxi < k < j γ(i, k) + γ(k+1, j) + log P(S S)



The Zuker algorithm – main ideas

Models energy of an RNA fold

1. Instead of base pairs, pairs of base pairs (more accurate)

2. Separate score for bulges

3. Separate score for different-size & composition loops

4. Separate score for interactions between stem & beginning of loop

Can also do all that with a SCFG, and train it on real data



Methods for inferring RNA fold

• Experimental: 
– Crystallography
– NMR

• Computational
– Fold prediction (Nussinov, Zuker, SCFGs)
– Multiple Alignment



Multiple alignment and RNA folding

Given K homologous aligned RNA sequences:

Human aagacuucggaucuggcgacaccc
Mouse uacacuucggaugacaccaaagug
Worm aggucuucggcacgggcaccauuc
Fly ccaacuucggauuuugcuaccaua
Orc aagccuucggagcgggcguaacuc

If ith and jth positions are always base paired and covary, then they are 
likely to be paired



Mutual information

fab(i,j)

Mij = Σa,b∈{a,c,g,u}fab(i,j) log2––––––––––
fa(i) fb(j)

Where fab(i,j) is the # of times the pair a, b are in positions i, j

Given a multiple alignment, can infer structure that maximizes the sum of mutual 
information, by DP

In practice:
1. Get multiple alignment
2. Find covarying bases – deduce structure
3. Improve multiple alignment (by hand)
4. Go to 2

A manual EM process!!



Current state, future work

• The Zuker folding algorithm can predict good folded structures

• To detect RNAs in a genome
– Can ask whether a given sequence folds well – not very reliable

• For tRNAs (small, typically ~60 nt; well-conserved structure) 
Covariance Model of tRNA (like a SCFG) detects them well

• Difficult to make efficient probabilistic models of larger RNAs

• Not known how to efficiently do folding and multiple alignment 
simultaneously


