
1

Large-Scale Global Alignments

Multiple Alignments

Lecture 10, Thursday May 1, 2003
Lecture 10, Thursday May 1, 2003

ARACHNE: Steps to Assemble a Genome

1. Find overlapping reads

4. Derive consensus sequence ..ACGATTACAATAGGTT..

2. Merge good pairs of reads into longer
contigs

3. Link contigs to form supercontigs

Lecture 10, Thursday May 1, 2003

3. Link Contigs into Supercontigs

Too dense:
Overcollapsed?

(Myers et al. 2000)

Inconsistent links:
Overcollapsed?

Normal density

Lecture 10, Thursday May 1, 2003

Find all links between unique contigs

3. Link Contigs into Supercontigs (cont’d)

Connect contigs incrementally, if ≥ 2 links

Lecture 10, Thursday May 1, 2003

Fill gaps in supercontigs with paths of overcollapsed contigs

3. Link Contigs into Supercontigs (cont’d)

Lecture 10, Thursday May 1, 2003

Define G = (V, E)
V := contigs
E := (A, B) such that d(A, B) < C

Reason to do so: Efficiency; full shortest paths cannot be computed

3. Link Contigs into Supercontigs (cont’d)

d (A, B)
Contig A

Contig B

2

Lecture 10, Thursday May 1, 2003

3. Link Contigs into Supercontigs (cont’d)

Contig A Contig B

Define T: contigs linked to either A or B

Fill gap between A and B if there is a path in G passing only fr om
contigs in T

Lecture 10, Thursday May 1, 2003

4. Derive Consensus Sequence

Derive multiple alignment from pairwise read alignments

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive each consensus base by weighted voting

Lecture 10, Thursday May 1, 2003

Simulated Whole Genome Shotgun

• Known genomes
Flu, yeast, fly, Human chromosomes 21, 22

• Make “realistic” shotgun reads

• Run ARACHNE

• Align output with genome and compare

Lecture 10, Thursday May 1, 2003

Making a Simulated Read

Simulated reads have error patterns taken from random real reads

ERRORIZER

Simulated read

artificial
shotgun read

real read

Lecture 10, Thursday May 1, 2003

Human 22, Results of Simulations

263241Avg base qual

6791.197.3% > 2 kb

4.1 Kb3 Mb3 MbN50 scaffold

2.0 Kb10.6 Kb142 KbMean contig

2.7 Kb15 Kb353 KbN50 contig

3 X/ 0 X5 X / 0.5 X10 X / 0.5 XPlasmid/ Cosmid
cov

Lecture 10, Thursday May 1, 2003

Neurospora crassa Genome (Real Data)

• 40 Mb genome, shotgun sequencing complete (WI-CGR)

Coverage:
1705 contigs
368 supercontigs

• 1% uncovered (of finished BACs)

• Evaluated assembly using 1.5Mb of finished BACs

Efficiency:
Time: 20 hr
Memory: 9 Gb

Accuracy:
< 3 misassemblies
compared with 1 Gb of
finished sequence

Errors/106 letters:
Subst . 260
Indel : 164

3

Lecture 10, Thursday May 1, 2003

Mouse Genome

Improved version of ARACHNE assembled the mouse genome

Several heuristics of iteratively:
Breaking supercontigs that are suspicious
Rejoining supercontigs

Size of problem: 32,000,000 reads

Time: 15 days, 1 processor
Memory: 28 Gb

N50 Contigsize: 16.3 Kb à 24.8 Kb
N50 Supercontig size: .265 Mb à 16.9 Mb

Lecture 10, Thursday May 1, 2003

Next few lectures

More on alignments
Large -scale global alignment – Comparing entire genomes

Suffix trees, sparse dynamic programming
MumMer, Avid, LAGAN, Shuffle-LAGAN

Multiple alignment – Comparing proteins, many genomes
Scoring, Multidimensional -DP, Center-Star, Progressive alignment
CLUSTALW, TCOFFEE, MLAGAN

Gene recognition
Gene recognition on a single genome

GENSCAN – A HMM for gene recognition

Cross-species comparison-based gene recognition
TWINSCAN – A HMM
SLAM – A pair-HMM

Rapid Global Alignments

How to align genomic sequences in (more or less!)
linear time

Lecture 10, Thursday May 1, 2003

Motivation

• Genomic sequences are very long:

– Human genome = 3 x 109 –long
– Mouse genome = 2.7 x 109 –long

• Aligning genomic regions is useful for revealing common gene
structure

– Useful to compare regions > 1,000,000 -long

Lecture 10, Thursday May 1, 2003

Main Idea

Genomic regions of interest contain ordered islands of similarity
– E.g. genes

1. Find local alignments
2. Chain an optimal subset of them

Lecture 10, Thursday May 1, 2003

Outline

• Methods to FIND Local Alignments

– Sorting k-long words
– Suffix Trees

• Methods to CHAIN Local Alignments

– Dynamic Programming
– Sparse Dynamic Programming

4

Methods to FIND Local Alignments

1. Sorting K-long words
BLAST, BLAT, and the like

2. Suffix Trees

Lecture 10, Thursday May 1, 2003

Finding Local Alignments:
Sorting k-long words

Given sequences x, y:

1. Write down all
(w, 0, i): w = xi+1…x i+k
(z, 1, j): z = y j+1…y j+k

2. Sort them lexicographically

3. Deduce all k-long matches between x and y

4. Extend to local alignments

Lecture 10, Thursday May 1, 2003

Sorting k-long words: example

Let x, y be matched with 3-long words:

x = caggc: (cag,0,0), (agg,0,1), (ggc,0,2)
y = ggcag: (ggc,1,0), (gca,1,1), (cag,1,2)

Sorted: (agg,0,1),(cag,0,0),(cag,1,2),(ggc,0,2),(ggc,1,0),(gca,1,1)

Matches:
1. cag: x1x2x3 = y3y4y5
2. ggc: x3x4x5 = y1y2y3

Lecture 10, Thursday May 1, 2003

Running time

• Worst case: O(NxM)

• In practice: a large value of k results in a short list of matches

Tradeoff:

Low k: worse running time

High k: significant alignments missed

PatternHunter:

Sampling non-consecutive positions increases the likelihood to detect a
conserved region, for a fixed value of k – refer to Lecture 3

Lecture 10, Thursday May 1, 2003

Suffix Trees

• Suffix trees are a method to find all maximal matches between
two strings (and much more)

Example:
x = dabdac

d a b d a c

ca

b
d

a
cc

cc
a

d
b

1

4

2
5

6
3

Lecture 10, Thursday May 1, 2003

Definition of a Suffix Tree

Definition:
For string x = x1 …x m, a suffix tree is:

– A rooted tree with m leaves
Leaf i: x i…xm

– Each edge is a substring
– No two edges out of a node, start with same letter

It follows, every substring corresponds to
an initial part of a path from root to a leaf

5

Lecture 10, Thursday May 1, 2003

Constructing a Suffix Tree

• Naïve algorithm: O(N2) time

• Better algorithms: O(N) time
(outside the scope of this class – too technical and not so interesting)

Memory: O(N) but with a sizeable constant

Lecture 10, Thursday May 1, 2003

Naïve Algorithm to Construct a Suffix Tree

1. Initialize tree T: a single root node r

2. Insert special symbol $ at end of x

3. For j = 1 to m

• Find longest match of xi…xm to T, starting from r

• Split edge where match stops: new node w

• Create edge (w, j), and label with unmatched portion of xi …xm

Lecture 10, Thursday May 1, 2003

Example of Suffix Tree Construction

1

x = d a b d a $

d a b d a $

1. Insert d a b d a $

a

b
d

a
$
2

2. Insert a b d a $

$
a

d
b

3

3. Insert b d a $

$

4

4. Insert d a $

$

5

5. Insert a $
$

6

6. Insert $

Lecture 10, Thursday May 1, 2003

Faster Construction

Several algorithms

O(N) time,

O(N) memory with a big constant

Technical but not deep, outside the scope of this course

Optional: Gusfield, chapter 6

Lecture 10, Thursday May 1, 2003

Memory to Store Suffix Tree

• Can store in O(N) memory!

• Every edge is labeled with (i, j):
(i,j) denotes xi …x j

• Tree has O(N) nodes

Proof:
1. # leafs ≥ # nodes – 1
2. # leafs = |x|

Lecture 10, Thursday May 1, 2003

Application: Find all Matches Between x and y

1. Build suffix tree for x, mark nodes with x

2. Insert y in suffix tree, mark all nodes y “passes from” with y

– The path label of every node marked both 0 and 1, is a common
substring

6

Lecture 10, Thursday May 1, 2003

Example of Suffix Tree Construction for x, y

1

x = d a b d a $
y = a b a d a $

d a b d a $
1. Construct tree for x

a

b
d

a
$
2

$
a

d
b

3

$

4

$

5

$
6

x
x

x

6. Insert a $

5

6

6. Insert $

4. Insert a d a $

d
a
$
3

5. Insert d a $

y

4

2. Insert a b a d a $

a

y

d
a
$
1

y

y
x

3. Insert b a d a $ a
dy

2

a
$

x

Lecture 10, Thursday May 1, 2003

Application: Online Search of Strings on a
Database

Say a database D = { s1 , s2, …sn }
(eg. proteins)

Question : given new string x, find all matches of x to database

1. Build suffix tree for {s1,…, sn}
2. All new queries x take O(|x|) time

(somewhat like BLAST)

Lecture 10, Thursday May 1, 2003

Application: Common Substrings of k
Strings

• Say we want to find the longest common substring of s1, s2,
…sn

1. Build suffix tree for s1,…, sn

2. All nodes labeled {si1, …, sik} represent a match between si1,
…, sik

