
Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-1--LOFAR Project


ASTRON 2002

LOFAR Software Engineering
Guideline

Verified:

Name Signature Date Rev.nr.

Marco de Vos

 2002/10/17 1.0

Accepted:

 System Engineering Manager Program Manager

Marco de Vos Jan Reitsma

© ASTRON 2002
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-2--LOFAR Project


ASTRON 2002

Distribution list:

ISC WPMs (for Project Team) TAC
Harvey Butcher (ASTRON)
Joe Salah (MIT)
Phil Schwarz (NRL)

Wim Brouw (CSIRO)
Bill Cotton (NRAO)
Tom Clark
Steve Ellingson
 (Ohio State University)
Alle-Jan van der Veen
 (Delft Technical University)

PMT SCB
Jan Reitsma (ASTRON)
Colin Lonsdale (MIT/Haystack)
Davidson Chen (NRL)

SEG
Roger Cappallo (MIT/Haystack)
Marco de Vos (ASTRON)
Lee J. Rickard (NRL)

ASTRON:
 Jaap Bregman
 Jan Noordam
 Kjeld van der Schaaf
 Dion Kant
 Wim van Cappellen
 Jan Doornink (DutchSpace)
 Hans Kollen (DutchSpace)
 Martijn van Veelen
 Ger van Diepen
 Frank van Eck (Ordina)
 Hans de Wolf (DutchSpace)
 Albert-Jan Boonstra
 Rob Millenaar
 Willem Baan

MIT/Haystack:
 Jackie Hewitt
 Shep Doeleman
 Brian Corey
 Jody Attridge
 Chris Phillips

NRL:
 Bill Erickson
 Namir Kassim
 Kurt Weiler
 Joe Lazio
 Ken Stewart
 Brian Hicks
 Pat Crane
 Paul Ray

Namir Kassim (NRL, chair)
Michiel van Haarlem (ASTRON)
Ger de Bruyn
 (Groningen University/ASTRON)
Huub Rottgering (Leiden University)
Bryan Gaensler (Harvard University)
Rob Fender
 (University of Amsterdam)
Colin Lonsdale (MIT/Haystack)
Jim Cordes (Cornell University)
Frazer Owen (NRAO)

Document history:

Revision Date Section Page(s) Modification

0.5 2000-10-16 - Creation

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-3--LOFAR Project


ASTRON 2002

Table of contents:
1 Introduction .. 4

1.1 Purpose of this document ... 4
1.2 Executive summary... 4

2 Configuration Management .. 5
3 Development Approach.. 9

3.1 Iterative or waterfall?... 9
3.2 Discussion of popular software development methods ... 11
3.3 Prince2.. 14
3.4 The LOFAR approach... 15
3.5 Limitations to Subsystem development methodology.. 16

4 The software Engineering Life cycle .. 17
4.1 Requirements.. 17
4.2 Architecture and detailled design .. 17
4.3 Modelling .. 17
4.4 Operation System ... 17
4.5 Middleware ... 17
4.6 Languages, code standard.. 17
4.7 Tooling .. 18
4.8 Testing en verification ... 18
4.9 Reviews .. 18

References.. 19

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-4--LOFAR Project


ASTRON 2002

1 Introduction

1.1 Purpose of this document

This document provides a guideline for software development within the LOFAR project.
The context for this guideline document is given by the LOFAR project standards; the software engineering
approach should be an integral part of the LOFAR project management.

This document briefly describes the Configuration Management approach for the LOFAR project as a whole,
and software development activities in particular. The configuration management for software activities will
be embedded in the LOFAR project wide configuration management system, to which some artefacts are
added.

The software development process approach is discussed next. The software development approach must
correspond to the LOFAR system engineering approach. Especially with respect to system integration the
two engineering disciplines must co-operate closely.

Finally, guidelines for all steps within the software development life cycle are given. These guidelines
embody the more general approaches given in the preceding sections. This section contains the body of
guidelines to be used by members of the software development teams.

The software development guidelines presented in this document are of course completely applicable to
those subsystems concerned with pure software developments, such as MAC, SAS, LCS and CPA. Part of
the guidelines is also applicable to digital signal processing systems, embedded software or HW/SW
systems. Such systems are found in the SDP and CEP Platform subsystems.

1.2 Executive summary

[TBW]

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-5--LOFAR Project


ASTRON 2002

2 Configuration Management

Configuration management is an important aspect of software development projects. Especially version
control and (automated) build management are important operational tools during the engineering workflow.
The software configuration management must be strongly embedded in the LOFAR project as a whole.
Major parts of the software engineering management are equally relevant for hardware development and
system engineering. The differences may be found in detailed and dynamically evolving version numbering
and (automated) regular builds and regression testing. For these aspects some dedicated information
logging may be required in addition to the “normal” bookkeeping.

In the current status of the LOFAR project, no final configuration management approach exists yet, although
an information database system is defined and used for the requirements management . Therefore, in the
current version of this document a complete configuration management approach is discussed, large parts of
which may be replaced by references to appropriate LOFAR documents later on.

The configuration management approach is based on the information model shown in Figure 1. The
information model is shown as a class diagram in which the classes have stereotype <<table>>. The model
can be implemented as a relational database with one table per class. The relations between the classes can
be used for tracking and tracing. The information model is discussed in more detail in [11].

The implementation of the CM information model into a working CM system can be performed gradually
during the project. In the current phase of the project (before PDR), the tracking of requirement and
specification changes is less important, so a simple implementation of this part is feasible. Also, the build and
verification tables are not heavily used. On the other hand, this is a good time to start developing and using
the CM system.
The implementation of the CM system should provide dedicated GUI access to sets of relevant tables for
typical usage. Those GUIs also provide knowledge of how to relate the tables and possibly how to access
version control, file systems etc. The following GUIs should be provided:

• Build process
• Regression testing
• Problem report/ change request handling
• Issue and action management
• [TBW: others]

The workflow of problem report and enhancement requests management, including change request boards
etc., will be discussed in the Configuration Management approach (see [11] and [7]).

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-6--LOFAR Project


ASTRON 2002

Action activities
old status
new status
actionee
description
reference
date

history
ID
date
status

configurations
ID
description
definition

B u i l d R e c o r d

ID
build description
build report

Configuration Items
ID
description
source
reference
version

verifi cation
short description
result
ref doc

Verification De finitio n
short description
definition
criteria

Problem report
ID
name
description
owner
reference/rationale
source link
responsible
source
severirty

Enhancement requests
ID
name
description
owner
reference/rationale
source link
responsible
source

Issues
ID
name
description
owner
reference/rationale
source link
responsible
source

Requirements
ID
descri ption
sp ecif icati on
rationale
priorit y

Technical Specification
ID
descri ption
rationale
priorit y

products
ID
description

actions
ID
name
description
owner
reference/rationale
source link
responsible
source
status

Issue activities
actionee
description
reference
date

Problem Report Activities
actionee
description
reference
date

Enhancement Request activities
actio nee
descript ion
reference
date

decisions
ID
date
description
authority
reference

Figure 1 Configuration Management information model.

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-7--LOFAR Project


ASTRON 2002

The most important tables and their functions are:
• Requirements.This table contains the requirements and specifications of the LOFAR system and

subsystems. The testability is defined in the verification table; a relation to this table is given for the
verification definition and for the performed verifications.
Associated with the requirements is a requirement history table. The requirement history entries may
define links to decisions.
The Requirements are ordered according to their appearance in SRS documents through the
Requirements Sections table (not shown in Figure 1).

• Technical Specifications. This table defines the technical specifications of the LOFAR system and
its subsystems. The specifications are ordered according to their appearance in ADD documents
through the Specification Sections table (not shown in Figure 1). Associated with the specifications is
a requirement history table. The specification history entries may define links to decisions.

• Products. The Products table covers a hierarchy of products. The hierarchical relations are defined
in this table. The number of levels in such a hierarchy may depend on the product itself. The product
hierarchical relations (parent child relations) are defined in a Product Hierarchy table.
Products can be classes of CIs. Therefore, the CI table can be seen as instantiations of products.

• Configuration Description. There are two major types of configurations:
o An assembly of products in a certain configuration (setup). E.g. the definition of a lab setup

consisting of a product, test equipment, connections etc.
o A configuration description describes the build (production) process of actual CIs. For

example, a configuration may describe the production process for the product “LF antenna
version 3.1”. In this example, the configuration description is used in build “LF antenna batch
45 on 23 February 2003” resulting in CIs for 100 antennas. Another example is the build of a
software library on a particular computer configuration.

• Build Record.The build record defines and describes a build. A build is the transformation of one or
more configuration items into a new configuration item. For example, two modules of source files are
compiled and linked producing an executable. The two modules each are a configuration item, as is
the executable. In the build record the build processes is described (build definition) and the results
are logged.

• Verification and Verification definition. These tables contain records for all verification definitions
and activities. A verification definition describes and defines a verification process. The definition
contains the exact script of how to perform a verification. Criteria for pass/fail are defined. Each
requirement or specification should be associated with one or more verification definitions that define
when the requirement or specification is fulfilled.
A verification activity relates to one or more configuration items that are verified using a
configuration. The verification is defined in a verification definition record. For example, an
executable program (configuration item) is run on a cluster computer (configuration) and crashes
during execution (verification result).
The short description filed gives an informal description of the verification. The exact definition of the
verification process, for example a test script, is given in the definition field.

• History. The history of evolving items is traced through the history table. Such information is
administered for the following tables: Requirements, Specifications, Products and configuration.
The status field is used to indicate the currently valid item.

• Issues, Actions and Changes. These tables are all specializations of topics. For each topic an
activity table is kept. In this activity table the activities related to the topic are administered. Issues,
problem reports and enhancement requests lead to decisions. A possible decision is to perform a
new action. Also, the decision may imply modifications to the requirement, specification and product
tables. This is the only valid way to modify those tables (apart from initial data entry).
It is possible to promote an Issue into an action or problem report/enhancement request through a
decision (this should be a one-button action in the actual implementation of the CM system).

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-8--LOFAR Project


ASTRON 2002

documents
ID
author
verifiers
authority(accept)
authority (approve)
title
keywords
institute
document type
document number
associated workpackage
document status
distribution
description

Configuration Items
ID
description
source
reference
version

<<extend>>

file system

put()
get()

version control tool

check in()
check out()
define()
diff()

<<communicate>>

<<use>>

Figure 2 The relation of configuration items to the version control tool and the relation between configuration
items and documents. Documents are configuration items for which extra attributes are defined in a
documents table class.

The relation of version control and documents to the configuration item table is shown in Figure 2. A
document is treated as an extension to the configuration item table.

A version control tool is used to keep track of modifications to files. This is relevant for all files on which the
developer has influence and that determine the configuration items. For software development, these are in
first place the source files. However, also model definitions (e.g. rose model files) and other design
definitions should be controlled. Also, the files controlling the build process (e.g. autoconf macros), IDE
settings and settings for simulator programs should be controlled. Results of a build process must not be put
under version control since these are on-off actions; those can be stored on a normal file system and
referred to from the build record table.

The version field in the Configuration Items table class defines how the actual configuration items can be
retrieved from the configuration management tool. For example, a tag can be specified for a CVS based
version control system.

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-9--LOFAR Project


ASTRON 2002

3 Development Approach

This section discusses the software development (life cycle) approach. The LOFAR system level software
development (and system integration!) approach is described. Within this context, subsystems software
development may use different approaches, but the system level context does provide boundary conditions.

3.1 Iterative or waterfall?

We first start with a short definition of the terms waterfall and iterative development. In Figure 3 the waterfall
development approach is shown. The whole development is performed step by step. First the complete
requirements analysis is performed. Next the complete architectural design is made after which the detailed
design and implementation is done. The final verification may find some bugs that are to be solved in the
implementation block, yielding some interaction between the final two stages.

Requirements analyse

Architectural design

detailled design & implementation

verification & validation

Figure 3 Waterfall or revolutionary process. The process evolves in one direction, without feedback between
the stages. Only during the verification process, some feedback to the implementation process is needed
(bugs!).

The iterative process approach is illustrated in Figure 4. The processing stages are similar to those in the
waterfall approach. However, this time we go through the stages multiple times. In each iteration, all stages
are performed, this is sometimes called a “mini project”. The results of an iteration is input for the next
iteration.

Requirements analyse

Architectural design

detailled design &
implementation

verification & validation

Next iteration

Figure 4 Iterative process. The process steps are executed in multiple iterartions. Each iteration contains all
steps and uses feedback from former iterations.

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-10--LOFAR Project


ASTRON 2002

In iterative development, we can use multiple models of how to work towards the desired end product. In
Figure 5 we see an example of how multiple iterations contribute to the final software product. The final
product is developed by adding more and more functionality in each iteration, this is called incremental
development.

1

3
2

Figure 5 "Onion" style iterative development; every iteration extends the performance of the system.

On the other hand, we can also use one or more iterations to test a principle, architecture or so. Such a test
may generate knowledge that can be used in later iterations, but may not be part of the final deliverable.
Also, an iteration may (partly) re-do some of the work done in a previous iteration. These possibilities are
shown in Figure 6.

1 32

5

4

rm -rf
increment,
re-do

increment
new

Figure 6 Other types of iteration results: No increment at all (1-2), complete --better-- reprogramming (2-3),
new module (4) and integration of modules (3-5)

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-11--LOFAR Project


ASTRON 2002

3.2 Discussion of popular software development methods

In the next sub sections, the particular features of the three most popular iterative software development
approaches are discussed. The discussion focuses on the usage of (parts of) the methods for the LOFAR
software development approach. A prerequisite is that we will not adopt a single complete method, but rather
will provide a general description based on a mixture of approaches, leaving open the possibility to adapt a
particular approach for the development of a particular subsystem, for example for development outsourced
at third parties.

In the current version of this document, this section is at the discussion level. In later versions more definite
choices will have been made and indications may be given of how to incorporate the given approach in the
three described standard methods.

3.2.1 Unified Process

People are involved in the development of a software product throughout its entire life
cycle. They finance the product, schedule it, develop it, manage it, test it, use it, and
benefit from it. Therefore, the process that guides this development must be people

oriented, that is, one that works well for the people using it.
--- Jacobson et al. [6]

The unified process describes how the overall waterfall-like project stages are translated into a large set of
short iterations in the software development process [2]. During the project, the focus of the iterations
changes from requirements finding, analysis and architecture definition to implementations and testing. This
is described by the project phases: Inception – Elaboration – Construction – Transition. All iterations do
follow the same waterfall-like core workflows: planning - analysis – architecture – design – implementation –
integration - test.

The unified process is use-case driven. Use cases are not just a tool for specifying the requirements of the
system; they also drive the system’s design, implementation and test. That is, use cases drive the complete
development process. Based on the use-case model, developers create a series of design and
implementation models that realise the use cases. The developers review the models for conformance to the
use-cases. The testers verify the software components for compliance to the original use-cases.

[TBW: Unified process is an architecture driven process]
[TBW: roles and workers]

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-12--LOFAR Project


ASTRON 2002

Figure 7 The core workflows –- planning, analysis, architecture, design, implementation, integration and test
--- take place over the four phases: inception, elaboration, construction and transition.

[TBW: pros and cons of (R)UP]

3.2.2 DSDM

DSDM is more a framework than a method. It does not say how things should be done in
details, but provides a skeleton process and product description that are to be tailored to

suit a particular project or a particular organisation.
--- DSDM Manual

The project process, as shown in Figure 8, has five phases: Feasibility Study, Business Study, Functional
Model Iteration, Design and Build Iteration and finally Implementation in the working environment:

• Feasibility Study. This phase includes a definition of the problem to be addressed together with
assessments of the likely costs and of the technical feasibility of delivering a system to solve the
business problem.

• Business Study. This study produces a global overview of the system to be build. Also, the system
architecture definition is produced, which is the basis for the functional modelling in the next iteration.

• Functional Model Iteration. The focus of Functional Model Iteration is on refining the business-
based aspects of the system, i.e. building on the high-level processing and information requirements
identified during the Business Study. Both the Functional Model Iteration and the Design and Build
Iteration consist of cycles of four activities: Identify what is to be produced, agree how and when to
do it, create the product and finally check that it has been produced correctly. The bulk of
development work is in the two iteration phases where prototypes are incrementally built towards the
tested system. All prototypes in DSDM are intended to evolve into the final system and are therefore
built to be robust enough for operational use and to satisfy any relevant non-functional requirements,
such as performance.

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-13--LOFAR Project


ASTRON 2002

• Design and Build Iteration. The Design and Build Iteration is where the system is engineered to a
sufficiently high standard to be safely placed in the hands of the users. The major product here is the
Tested System. The DSDM process diagram does not show testing as a distinct activity because
testing is happening throughout both the Functional Model Iteration and the Design and Build
Iteration. Some environments or contractual arrangements will require separate testing phases to be
included at the end of the development of the increment, but this should not be the major activity
encountered in more traditional approaches to development. Testing is just as important in DSDM
and consumes just as much effort, but it is spread throughout development.

• Implementation. The Implementation phase covers the migration from the development
environment to the operational environment. This includes training the users who have not been part
of the project team. One product of this phase is the Increment Review Document. The Increment
Review Document is used to summarise what the project has achieved in terms of its short-term
objectives.

Figure 8 The DSDM process model.

Important techniques used in DSDM are timeboxing and the MoSCoW rules for requirements prioritisation:

• Must Haves fundamental to the projects success
• Should Haves important but the projects success does not rely on these
• Could Haves can easily be left out without impacting on the project
• Won't Have this time round can be left out this time and done at a later date

DSDM and Unified Process can be combined. In this case DSDM is used for business driven rapid
application development in the construction phase of a more rigorous architecture driven Unified Process
approach.

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-14--LOFAR Project


ASTRON 2002

3.2.3 EVO

One of the great time-wasters in software projects is detailed requirements analysis,
followed by detailed design, followed by full coding and testing phases. If only we had the

intellectual capacity, and the necessary knowledge, to do those thing accurately! In reality,
we have to admit that we connot tackle such tasks adequately for any but trivially small

projects. There are too many unknowns, too many dynamic changes , and too complex a
set of interrelationships in the systems we build. We must take a more humble approach.

--- Tom Gilb [4]

Similar to DSDM, in EVO every iteration in the software development process focuses on maximal
contribution to the user requirements. Each iteration does deliver value to the end-user. Also, the set of user
requirements to be fulfilled in the next iteration is based on the (user!) experiences with the current
deliverable. Early, frequent iterations are used to get a maximal involvement of the user in the project.

An open-ended basic system architecture is favoured. An open-ended architecture is characterised by
maximal adaptability, extendibility, portability and improvability. Such an architecture is needed in order to
add the new components corresponding to new or modified requirements found in later iterations of the
development process.

[TBW: more information on EVO development]
[TBW: pros and cons]

3.3 Prince2

Prince2 is a process management method and not a development method. It is often used for the
management of software projects, possibly in combination with one of the development methods discussed.
Prince2 may be used for (software) subsystem development. The Prince2 method must be tailored to fit the
DDV context, but the similarity between the method and the ECCS-E-10A standard should allow for this.

[TBW: short analysis of the differences]
[TBW: short analysis of the pros and cons of prince2 for LOFAR subsystems]

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-15--LOFAR Project


ASTRON 2002

3.4 The LOFAR approach

A modular approach to the software development will be followed. The total functionality to be provided by
software is divided in a rather large set of modules with low coupling between modules and high in-module
cohesion. This subdivision is provided at system level by software system engineers. The delivery scheme of
those modules is based on the planned integration scheme of prototypes and final products. This scheme
requires multiple (partly) prototypes for each subsystem. For modules within the subsystems, either multiple
prototypes are requested (thus implying an iterative development process) or stubs may be provided instead.

In Figure 9 the life cycle approaches for subsystem deliveries is shown. At system level, a life cycle
frequency of half a year is chosen. Within this half-year, proto types and stubs from the subsystems are
continuously integrated and tested. The system level integration team integration team consists of a small
permanent staff to which developers from the subsystem teams are added for short periods during the
integration of subsystem deliverables.

Subsystem B

Subsystem A

System

integrate test

0
6 months

stub proto 1 final

Figure 9 System level integration and subsystem delivery life cycles.
The LOFAR top-level development process is described in the LOFAR Template [8], which is based on the
ECSS-E-10A standard. This DDV plan provides the context for the software subsystems development. The
subsystems themselves can be developed using existing software development methods appropriate for the
dynamics and context for the subsystem. In general, iterative methods should be used in order to provide
early proto types for the system level integration activities. Unified process and DSDM are favoured. Existing
practices at subcontractors should be an important aspect in the choice for a specific method.

[TBW]

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-16--LOFAR Project


ASTRON 2002

3.5 Limitations to Subsystem development methodology.

The LOFAR software development approach defines the context for subsystem software development. The
subsystems may adopt one of the software development methods described before. However some of the
assumptions taking in the various methods may be hard to fulfil:

• Unified Process: [TBW]
• DSDM: A high degree of involvement of the “user” is required. For subsystem development, part of

the user role should be provided by LOFAR system level engineers. The dynamics of the LOFAR
project determines the availability of those engineers to a large extend. Therefore, the user role may
not always be available, which may conflict with the high interaction required for the DSDM method.
DSDM does not provide a rigorous architecture-driven software development approach.

• EVO: [TBW]

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-17--LOFAR Project


ASTRON 2002

4 The software Engineering Life cycle

This section describes details of the software development lifecycle. This gives a guideline of how aspects in
the software engineering workflow must be done.
In the current version of this document only a raw overview is given.

4.1 Requirements
[TBW: Use case gathering and definition]
[TBW: from use case to requirements and specs]
[TBW: requirements management; see CM]

4.2 Architecture and detailled design
[TBW: Architecture guideline]
[TBW: patterns etc.]

4.3 Modelling
The Unified Modelling Language (UML) is used for modelling of software products. “Structured” data flow
diagrams should not be used since they try to tell to much. Instead, activity diagrams are used to define the
logical/functional level. Class and Object (or collaboration) diagrams are used to define the data transport.
The preferred UML case tool is Rational Rose.
[TBW]

4.4 Operation System
Unix operating systems should be used, unless there are good arguments not to do so. The preferred Unix
variant is Linux.

4.5 Middleware
Middleware libraries shall be used were possible.
Prefered libraries are: MPICH, Corba, AIPS++ [TBD]

[TBW: more libraries]
[TBW: what to use when]
[TBW: standards and implementations]

4.6 Languages, code standard

C++ is the prefered programming language. Other languagaes are used for:

• GUI: [TBD, e.g. Java, Qt]Device drivers: ANSI CScripting: To be defined in LCS subsystem.
A set of coding standards shall be provided covering all languages. Sets of languages may use a generic
coding standard, for example C, C++ and Java will have a large common set of coding rules. Currently a
C++ coding standard is used in the CEP workpackage [10]. This standard will be split in a generic part and a
C++ specific section. These two documents will for the basis for the LOFAR coding standard documents.
Dedicated coding standard documents must be made for drivers and GUIs.
The coding standard documents shall also address detailed design issues.
All coding standard documents will contain a 1-page (at most) shortlist of most used rules, which can be
used during daily development work.

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-18--LOFAR Project


ASTRON 2002

Common software components are administered (and probably also maintained) by the LCS workpackage.
Those components address “generic” issues that are expected to be useful for multiple software products.
There are two important motivations for re-use of such generic software components:

• Standardisation enhances understandability, maintenance etc.
• Re-use can reduce development time.

The current list of common software components (from the CEP and SIM workpackages) is:

• Debug and tracing macros
• Mutex style locking mechanisms
• [TBW]

4.7 Tooling

CASE: Rational Rose
Code documentation: Doxygen. The C++ code standard defines how code documentation shall be marked.
Static Code checking: [TBD]
Dynamic Code checking: Insure++.

C++ Compiler: gnu 2.95 (will be phased out during project), Gnu 3.X will be de basis for software
development. Production code may use optimised and/or hardware specific compilers ([TBD]).
IDE:eclipse ?

Build environment: Based on Autotools, including regression testing based on scripts . A working
environment is developed in the CEP workpackage, see [ref]. This will be the basis for the LOFAR software
build environment.

4.8 Testing en verification
[TBW: V-model]
[TBW: Code inspection.]
[TBW: Code reviews.]
[TBW: Requirements review.]
[TBW: Architecture review.]
[TBW: Module testing is the basis test]
[TBW: Hardware built-in tests for embedded systems]

Regression testing is part of the build environment. Each software module in the build environment has an
associated set of test programmes and test scripts. The tests script defines how to execute the test
programmes and defines the input and output files. The generated output file is compared with a pre-defined
one, yielding the test result.

4.9 Reviews
[TBW: when to review]
[TBW: how to review]

Author: Kjeld v.d. Schaaf

Date of issue: 2002-10-16
Kind of issue: limited

Scope: project/sde
Doc.id: LOFAR-ASTRON-MEM-060

 Status: draft
Revision nr: 0.5

-19--LOFAR Project


ASTRON 2002

References

[1] F. Buschmann et al, A System of patterns, Wiley,1996, ISBN 0471958697
[2] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User Guide, Addison

Wesley 1999
[3] E.Gamma et al., Design Patterns, Addison Wesley 1994
[4] T. Gilb, Principles of Software Engineering Management, Addison Wesley 1988, isbn 0201192462
[5] C. Hoffman, R. Nord and D. Soni, Applied Software Architecture, Addison Wesley 2000
[6] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development Process, Addison

Wesley, 1999
[7] H.Kollen, LOFAR Configuration Management Plan, LOFAR-ASTRON-PLN-008
[8] H.Kollen, LOFAR Design, Development & Verification Plan, LOFAR-ASTRON-PLN-007, 2002
[9] P. Kruchten, Architectural Blueprints – The “4+1” View Model of Software Architecture, published in

IEEE Software 12 (6), November 1995, pp. 42-50
[10] K. v.d. Schaaf, LOFAR CEP Software development Coding Standard, LOFAR-ASTRON-MEM-008
[11] K.v.d. Schaaf, LOFAR Configuration Management, LOFAR-ASTRON-PLN-006
[12] J. Stapleton, Dynamic Systems Development Method, Academic Service 1999, isbn 9039510911

(dutch translation)

