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Microarrays

• A 2D array of DNA sequences 
from thousands of genes

• Each spot has many copies of 
same gene

• Allow mRNAs from a sample to 
hybridize

• Measure number of 
hybridizations per spot

Finding Regulatory MotifsFinding Regulatory Motifs

Tiny Multiple Local Alignments of Many 
Sequences
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Finding Regulatory Motifs

Given a collection of genes with common 
expression,

Find the TF-binding motif in common

.

.

.

Characteristics of Regulatory Motifs

• Tiny

• Highly Variable

• ~Constant Size
– Because a constant-size 

transcription factor binds

• Often repeated

• Low-complexity-ish

Problem Definition

Probabilistic

Motif: Mij; 1 ≤ i ≤ W
1 ≤ j ≤ 4

Mij = Prob[ letter j, pos i ]

Find best M, and positions 
p1,…, pN in sequences

Combinatorial

Motif M: m1…mW

Some of the mi’s blank

Find M that occurs in all si
with ≤ k differences

Given a collection of promoter sequences 
s1,…, sN of genes with common expression

Essentially a Multiple Local Alignment

• Find “best” multiple local alignment

Alignment score defined differently in 
probabilistic/combinatorial cases

.

.
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Algorithms

• Probabilistic

1. Expectation Maximization:
MEME

2. Gibbs Sampling: 
AlignACE,  BioProspector

• Combinatorial
CONSENSUS, TEIRESIAS, SP-STAR, others

Discrete Approaches to Motif Finding
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Discrete Formulations

Given sequences S = {x1, …, x n}

• A motif W is a consensus string w1…wK

• Find motif W* with “best” match to x1, …, xn

Definition of “best”:
d(W, xi) = min hamming dist. between W and a word in xi

d(W, S) = Σ i d(W, xi)

Approaches

• Exhaustive Searches

• CONSENSUS

• MULTIPROFILER, TEIRESIAS, SP-STAR, 
WINNOWER

Exhaustive Searches

1. Pattern-driven algorithm:

For W = AA…A to TT…T ( 4K possibilities)
Find d( W, S )

Report W* = argmin( d(W, S) )

Running time: O( K N 4K )
(where N = Σi |xi|)

Advantage: Finds provably best motif W
Disadvantage: Time

Exhaustive Searches

2. Sample-driven algorithm:

For W = a K-long word in some x i

Find d( W, S )
Report W* = argmin( d( W, S ) )
OR Report a local improvement of W *

Running time: O( K N2 )

Advantage: Time
Disadvantage: If: True motif does not occur in data, and

True motif is “weak”
Then, random motif may score better than any 

instance of true motif

CONSENSUS (1)

Algorithm:

Cycle 1:
For each word W in S

For each word W’ in S
Create alignment (gap free) of W, W’

Keep the C1 best alignments, A1 , …, AC1

ACGGTTG , CGAACTT , GGGCTCT …
ACGCCTG , AGAACTA , GGGGTGT …

CONSENSUS (2)

Algorithm  (cont’d) :

Cycle t :
For each word W in S

For each alignment Aj from cycle t- 1
Create alignment (gap free) of W, A j

Keep the Cl best alignments A1 , …, Ac t

ACGGTTG , CGAACTT , GGGCTCT …
ACGCCTG , AGAACTA , GGGGTGT …
… … …
ACGGCTC , AGATCTT , GGCGTCT …
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CONSENSUS (3)

C1, …, Cn are user-defined heuristic constants

Running time:

O(N2) + O(N C1) + O(N C2) + … + O(N Cn)

= O( N2 + NC total)

Where Ctotal =  Σi Ci , typically O(nC), where C is a big constant

MULTIPROFILER

• Extended sample- driven approach

Given a K-long word W,  define: 

Na(W) = words W’ in S s.t. d(W,W’) ≤ a

Idea :
Assume W is occurrence of true motif W *

Will use Na(W) to correct “errors” in W

MULTIPROFILER (2)

Assume W differs from true motif W * in at most L positions

Define: 

A wordlet G of W is a L-long pattern with blanks, differing from W

Example: 

K = 7; L = 3

W  =  ACGTTGA
G  =  --A--CG

MULTIPROFILER (2)

Algorithm:

For each W in S:
For L = 1 to Lmax

1. Find all “strong” L-long wordlets G in Na(W)
2. Modify W by the wordlet G -> W’
3. Compute d(W’, S)

Report W * = argmin d(W’, S)

Step 1 above: Smaller motif-finding problem; 
Use exhaustive search

Expectation Maximization in Motif FindingExpectation Maximization in Motif Finding

Expectation Maximization (1)

• The MM algorithm, part of MEME package uses Expectation 
Maximization

Algorithm (sketch):

1. Given genomic sequences find all K-long words
2. Assume each word is motif or background
3. Find likeliest

Motif Model
Background Model
classification of words into either Motif or Background
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Expectation Maximization (2)

• Given sequences x1, …, xN,

• Find all k-long words X1 ,…, Xn

• Define motif model: 
M = (M1,…, M K)
M i = (M i1,…, M i4) (assume {A, C, G, T})

where M ij = Prob [ motif position i is letter j ]

• Define background model:
B = B1, …, B4

Bi = Prob[ letter j in background sequence ]

Expectation Maximization (3)

• Define 

Zi1 = { 1, if Xi is motif;
0, otherwise }

Zi2 = { 0, if Xi is motif;
1, otherwise }

• Given a word Xi = x[1]…x[k] ,

P[ Xi, Z i1=1 ] = λ M1x [1 ]…Mkx[k ]  

P[ Xi, Z i2=1 ] = (1 - λ) Bx[1]…Bx [K]

Let λ1 = λ; λ2 = (1- λ)

Expectation Maximization (4)

Define :
Parameter space θ = (M,B) 

Objective:

Maximize  log likelihood of model:
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Expectation Maximization (5)

• Maximize expected likelihood, in iteration of two steps:

Expectation:
Find expected value of log likelihood:

Maximization:
Maximize expected value over θ, λ
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Expectation Maximization (6):      EE--stepstep

Expectation:
Find expected value of log likelihood:

∑ ∑∑∑
= ===

+

=
2

1

2

111

1

log][)|(log][

)],|,...([log

j j
jij

n

i
jiij

n

i

n

ZZ EXPE

ZXXPE

λθ

λθ

where expected values of Z can be computed as follows:
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Expectation Maximization (7):      MM--stepstep

Maximization:
Maximize expected value over θ and λ independently

For λ, this is easy:
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Expectation Maximization (8):      MM--stepstep

• For θ = (M, B), define

cjk = E[ # times letter k appears in motif position j]
c0k = E[ # times letter k appears in background]

It easily follows:
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to not allow any 0’s, add pseudocounts

Initial Parameters Matter!

Consider the following “artificial” example:

x1, …, xN contain:
– 2K patterns A…A, A…AT,……, T…T
– 2K patterns C…C , C…CG,…… , G…G
– D << 2 K occurrences of K- mer ACTG…ACTG

Some local maxima:

λ ≈ ½;   B = ½C, ½G;   M i =  ½A, ½T, i = 1,…, K

λ ≈ D/2k+1;   B = ¼A,¼C,¼G,¼T; 
M1 = 100% A, M 2= 100% C, M 3 = 100% T, etc.

Overview of EM Algorithm

1. Initialize parameters θ = (M, B), λ:
– Try different values of λ from N-1/2 upto 1/(2K)

2. Repeat:
a. Expectation
b. Maximization

3. Until change in θ = (M, B), λ falls below ε

4. Report results for several “ good” λ

Conclusion

• One iteration running time: O(NK)
– Usually need < N iterations for convergence, and < N starting 

points.
– Overall complexity: unclear – typically O(N2 K) - O(N3 K) 

• EM is a local optimization method

• Initial parameters matter

MEME: Bailey and Elkan, ISMB 1994.


