
1

Motif FindingMotif Finding

Regulation of Genes

GeneRegulatory Element

RNA polymerase
(Protein)

Transcription Factor
(Protein)

DNA

Regulation of Genes

Gene

RNA polymerase

Transcription Factor
(Protein)

Regulatory Element

DNA

Regulation of Genes

Gene

RNA
polymeraseTranscription Factor

Regulatory Element

DNA

New protein

Microarrays

• A 2D array of DNA sequences
from thousands of genes

• Each spot has many copies of
same gene

• Allow mRNAs from a sample to
hybridize

• Measure number of
hybridizations per spot

Finding Regulatory MotifsFinding Regulatory Motifs

Tiny Multiple Local Alignments of Many
Sequences

2

Finding Regulatory Motifs

Given a collection of genes with common
expression,

Find the TF-binding motif in common

.

.

.

Characteristics of Regulatory Motifs

• Tiny

• Highly Variable

• ~Constant Size
– Because a constant-size

transcription factor binds

• Often repeated

• Low-complexity-ish

Problem Definition

Probabilistic

Motif: Mij; 1 ≤ i ≤ W
1 ≤ j ≤ 4

Mij = Prob[letter j, pos i]

Find best M, and positions
p1,…, pN in sequences

Combinatorial

Motif M: m1…mW

Some of the mi’s blank

Find M that occurs in all si
with ≤ k differences

Given a collection of promoter sequences
s1,…, sN of genes with common expression

Essentially a Multiple Local Alignment

• Find “best” multiple local alignment

Alignment score defined differently in
probabilistic/combinatorial cases

.

.

.

Algorithms

• Probabilistic

1. Expectation Maximization:
MEME

2. Gibbs Sampling:
AlignACE, BioProspector

• Combinatorial
CONSENSUS, TEIRESIAS, SP-STAR, others

Discrete Approaches to Motif Finding

3

Discrete Formulations

Given sequences S = {x1, …, x n}

• A motif W is a consensus string w1…wK

• Find motif W* with “best” match to x1, …, xn

Definition of “best”:
d(W, xi) = min hamming dist. between W and a word in xi

d(W, S) = Σ i d(W, xi)

Approaches

• Exhaustive Searches

• CONSENSUS

• MULTIPROFILER, TEIRESIAS, SP-STAR,
WINNOWER

Exhaustive Searches

1. Pattern-driven algorithm:

For W = AA…A to TT…T (4K possibilities)
Find d(W, S)

Report W* = argmin(d(W, S))

Running time: O(K N 4K)
(where N = Σi |xi|)

Advantage: Finds provably best motif W
Disadvantage: Time

Exhaustive Searches

2. Sample-driven algorithm:

For W = a K-long word in some x i

Find d(W, S)
Report W* = argmin(d(W, S))
OR Report a local improvement of W *

Running time: O(K N2)

Advantage: Time
Disadvantage: If: True motif does not occur in data, and

True motif is “weak”
Then, random motif may score better than any

instance of true motif

CONSENSUS (1)

Algorithm:

Cycle 1:
For each word W in S

For each word W’ in S
Create alignment (gap free) of W, W’

Keep the C1 best alignments, A1 , …, AC1

ACGGTTG , CGAACTT , GGGCTCT …
ACGCCTG , AGAACTA , GGGGTGT …

CONSENSUS (2)

Algorithm (cont’d) :

Cycle t :
For each word W in S

For each alignment Aj from cycle t- 1
Create alignment (gap free) of W, A j

Keep the Cl best alignments A1 , …, Ac t

ACGGTTG , CGAACTT , GGGCTCT …
ACGCCTG , AGAACTA , GGGGTGT …
… … …
ACGGCTC , AGATCTT , GGCGTCT …

4

CONSENSUS (3)

C1, …, Cn are user-defined heuristic constants

Running time:

O(N2) + O(N C1) + O(N C2) + … + O(N Cn)

= O(N2 + NC total)

Where Ctotal = Σi Ci , typically O(nC), where C is a big constant

MULTIPROFILER

• Extended sample- driven approach

Given a K-long word W, define:

Na(W) = words W’ in S s.t. d(W,W’) ≤ a

Idea :
Assume W is occurrence of true motif W *

Will use Na(W) to correct “errors” in W

MULTIPROFILER (2)

Assume W differs from true motif W * in at most L positions

Define:

A wordlet G of W is a L-long pattern with blanks, differing from W

Example:

K = 7; L = 3

W = ACGTTGA
G = --A--CG

MULTIPROFILER (2)

Algorithm:

For each W in S:
For L = 1 to Lmax

1. Find all “strong” L-long wordlets G in Na(W)
2. Modify W by the wordlet G -> W’
3. Compute d(W’, S)

Report W * = argmin d(W’, S)

Step 1 above: Smaller motif-finding problem;
Use exhaustive search

Expectation Maximization in Motif FindingExpectation Maximization in Motif Finding

Expectation Maximization (1)

• The MM algorithm, part of MEME package uses Expectation
Maximization

Algorithm (sketch):

1. Given genomic sequences find all K-long words
2. Assume each word is motif or background
3. Find likeliest

Motif Model
Background Model
classification of words into either Motif or Background

5

Expectation Maximization (2)

• Given sequences x1, …, xN,

• Find all k-long words X1 ,…, Xn

• Define motif model:
M = (M1,…, M K)
M i = (M i1,…, M i4) (assume {A, C, G, T})

where M ij = Prob [motif position i is letter j]

• Define background model:
B = B1, …, B4

Bi = Prob[letter j in background sequence]

Expectation Maximization (3)

• Define

Zi1 = { 1, if Xi is motif;
0, otherwise }

Zi2 = { 0, if Xi is motif;
1, otherwise }

• Given a word Xi = x[1]…x[k] ,

P[Xi, Z i1=1] = λ M1x [1]…Mkx[k]

P[Xi, Z i2=1] = (1 - λ) Bx[1]…Bx [K]

Let λ1 = λ; λ2 = (1- λ)

Expectation Maximization (4)

Define :
Parameter space θ = (M,B)

Objective:

Maximize log likelihood of model:

∑ ∑∑∑

∑∑

= ===

= =

+=

=

2

1

2

111

1

2

1
1

log)|(log

))|(log(),|,...(log

j j
jij

n

i
jiij

n

i

n

i j
jijijn

ZZ

Z

XP

XPZXXP

λθ

θλλθ

Expectation Maximization (5)

• Maximize expected likelihood, in iteration of two steps:

Expectation:
Find expected value of log likelihood:

Maximization:
Maximize expected value over θ, λ

)],|,...([log 1 λθZXXPE n

Expectation Maximization (6): EE--stepstep

Expectation:
Find expected value of log likelihood:

∑ ∑∑∑
= ===

+

=
2

1

2

111

1

log][)|(log][

)],|,...([log

j j
jij

n

i
jiij

n

i

n

ZZ EXPE

ZXXPE

λθ

λθ

where expected values of Z can be computed as follows:

∑ =

= 2

1
)|(

)|(

k kik

jij
ij

XP

XP
Z

θλ

θλ

Expectation Maximization (7): MM--stepstep

Maximization:
Maximize expected value over θ and λ independently

For λ, this is easy:

∑ ∑
= =

==
n

i

n

i

ij
jij

NEW
j n

Z
Exam Z

j 1 1

log][arg λλ
λ

6

Expectation Maximization (8): MM--stepstep

• For θ = (M, B), define

cjk = E[# times letter k appears in motif position j]
c0k = E[# times letter k appears in background]

It easily follows:

∑ =

= 4

1k jk

jkNEW
jk

c

c
M

∑ =

= 4

1 0

0

k k

kNEW
k

c

c
B

to not allow any 0’s, add pseudocounts

Initial Parameters Matter!

Consider the following “artificial” example:

x1, …, xN contain:
– 2K patterns A…A, A…AT,……, T…T
– 2K patterns C…C , C…CG,…… , G…G
– D << 2 K occurrences of K- mer ACTG…ACTG

Some local maxima:

λ ≈ ½; B = ½C, ½G; M i = ½A, ½T, i = 1,…, K

λ ≈ D/2k+1; B = ¼A,¼C,¼G,¼T;
M1 = 100% A, M 2= 100% C, M 3 = 100% T, etc.

Overview of EM Algorithm

1. Initialize parameters θ = (M, B), λ:
– Try different values of λ from N-1/2 upto 1/(2K)

2. Repeat:
a. Expectation
b. Maximization

3. Until change in θ = (M, B), λ falls below ε

4. Report results for several “ good” λ

Conclusion

• One iteration running time: O(NK)
– Usually need < N iterations for convergence, and < N starting

points.
– Overall complexity: unclear – typically O(N2 K) - O(N3 K)

• EM is a local optimization method

• Initial parameters matter

MEME: Bailey and Elkan, ISMB 1994.

