Chapter 15
Software Engineering

So far we have talked in terms of one programmer designing an already speci-
fied system. Software development in real life is seldom like this. Software is
typically developed by programmers for customers who do not know precisely
what they want. Programmers must understand the customer’s needs and
then define exactly what the software should do before they can do any actual
design. Software development is also typically done by teams of programmers,
ranging from a small group of two to four people to a large team involving
hundreds of people. Testing and deployment of software is also a major effort,
often done by yet another group. Moreover, most of the effort put into a soft-
ware system, especially a successful one, is spent fixing bugs and adding new
features once the system has been “completed,” rather than on the system'’s
initial development.

The study of software development, from a crude need on the part of a cus-
tomer, through design and coding of a software system, and on through the
ever-continuing process of fixing and improving the software, is called soft-
ware engineering. This field has as its goal making software development sim-
pler and the resultant software better. This chapter provides a brief overview
of software engineering, describing the terminology and basic ideas developed
by researchers and practitioners over the past thirty years. We first consider
the problems that led to the field in the first place, proceed to describe the var-
ious phases of software development, and finally discuss the ways in which
these parts can be put together.

THE FOUNDATIONS OF SOFTWARE ENGINEERING

In the early days of computers, software was often ignored. In the 1950s, sys-
tem development concentrated on the hardware, since software contributed
only about 20% of the overall system cost. Software was typically small (as
were the machines) and hand-coded in assembly language to make the most
efficient use of the machine possible. By the mid-1980s, however, the hard-
ware-software ratio had inverted and software accounted for 80% of the sys-
tem cost. Today, with inexpensive machines and personal computers already
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on people’s desks, software is even more dominant, making up 95-100% of the
cost of a system.

Software takes an increasing share of the system cost not only because
hardware has gotten cheaper, but also because software has gotten larger. A
large software system in the past was thousands of lines of code. Today’s sys-
tems are generally millions of lines long. As software grows, its cost and com-
plexity grow faster. Just as writing a thousand-line program is more than ten
times as difficult as writing a hundred-line one, writing a million-line program
is much more than ten times as difficult as writing one with one hundred
thousand lines. The techniques used in developing small-scale systems do not
scale up, and new techniques and methodologies are required.

The Problems of Software

The result of the software explosion has been a set of now-predictable prob-
lems. Software has become notorious for these difficulties and whole indus-
tries have arisen to alleviate them. Some of the problems, no doubt familiar to
the reader, include:

* Software is late. Software is often advertised as available on a given date
and then is delayed by months or even years. No company is really
immune to this, and numerous examples can be found from such well-
known manufacturers as Microsoft, Sun, and IBM.

e Software is expensive. Companies must estimate how much it will cost to
develop a piece of software. These estimates are notoriously low: soft-
ware always costs more than the original estimate, often by factors of
two or more. This comes in part from the personnel costs in software
delays, but other factors come into play as well.

* Software doesn’t do what it is supposed to. Systems are hyped as solving
all one’s ills and never do. Even well specified, narrowly targeted sys-
tems often do not meet the expectations of the potential users.

* Software is unmaintainable. Software maintenance entails fixing bugs
and evolving the software to meet new user or system demands. Com-
plex systems tend to be extensible up to a certain point, after which
either they completely fall apart or programmers refuse to touch them
for fear they will do so. The standard solution is to rewrite the ancient
software completely rather than attempting to modify it.

* Software is not understandable. This should be taken in two ways. We
have been emphasizing the importance of making software readable by
others because most software written today can be understood only by
its author, and then only within a few months of writing it. This, of
course, contributes to making software difficult to maintain. Another
way of viewing this is that the documentation accompanying the code,
which is essential and should be considered part of the software, is
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rarely helpful, often unreadable, sometimes nonexistent, and at times
just plain wrong. Both design documentation and user documentation
must be kept up to date and accurate, and should also be organized so as
to present the necessary information in a usable form.

* Software is unreliable. Bugs, bugs, bugs. Anyone who has used software
is aware of bugs. We are told to save often in the editor, to avoid this or
that feature, and we know that our program or machine freezes or
crashes periodically. Today's software is so complex and so poorly under-
stood that it can't help but have some problems. Moreover, testing meth-
ods are rarely adequate; indeed, many companies resort to letting the
user do the testing.

* Software is inefficient. Efficiency can be measured in various dimensions
— run time, user-interaction time, memory utilization, and disk utiliza-
tion. Each time we get a new version of a complex piece of software we
need to upgrade our machine to run it, since while the old version might
have been designed to run on a smaller machine, the new one does not
run well enough to be used there.

* Software is too complex. This can again be taken at two levels. The
inherent complexity of today’s systems, requiring coding and maintain-
ing millions of lines of code, leads to many of the problems above. In
addition, the interfaces today's systems offer the user have grown in
complexity to the point that few people understand all the available fea-
tures and the extra buttons and widgets only get in the way. (Much the
same can be said of C++.)

It is because of these problems that people look for better approaches to
producing better software. The studies, experiments, approaches and method-
ologies developed here and their validation in real-life programming are the
heart of software engineering.

Software Engineering

Software engineering has been defined by several authors as the use of engi-
neering principles to obtain high-quality software. Engineering principles
include the use of both knowledge and skills in an organized and practical
manner. High-quality software has many aspects, most of which involve avoid-
ing the above set of problems.

The first foundation for software engineering is a good working knowledge
of computer science theory and practice. The theoretical background involves
knowing how and when to use data structures, understanding a broad range
of useful algorithms, knowing how to develop new algorithms where neces-
sary, and understanding what problems can be solved and what can't. The
practical knowledge includes a good understanding of the workings of the
hardware as well as thorough knowledge of the available programming lan-
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guages and tools. It also involves understanding a multitude of approaches to
design such as the design patterns discussed in Chapter 13.

This knowledge is typically accumulated over time through course work,
readings, and practical experience in the design, development and mainte-
nance of systems. Good programmers are like good teachers, always striving
to broaden their horizons and learn more. The best programmers and design-
ers have a good background and can remember and apply to a new situation
everything they have seen previously.

In addition to knowledge, good software engineering (and good engineering
in general) requires a number of skills the programmer should develop,
including inventiveness, judgment, communication, and objectivity. Inventive-
ness is needed to put together solutions to new problems as they arise. It can
be overdone, but programming is problem solving to a large extent, and under-
standing how to solve problems has an important role. Good judgment comes
into play in deciding among competing solutions, in tracking down bugs, in
determining what features can and cannot be added to a system, and even in
figuring out what system to build in the first place. It comes with experience
and knowledge, but must also be exercised and kept fresh.

Communication skills, both oral and written, are often underemphasized in
training programmers. Programmers today rarely work alone. Most work in
groups, and senior programmers typically find themselves leading teams of
programmers. As teams grow larger, more time is typically spent in meetings
and in interacting with the other programmers than in doing the actual cod-
ing. In all these circumstances, the ability to get one’s point across and to
understand what others are saying is an essential part of the job. Written
communication is equally important: one’s design descriptions must be read-
able so that others can understand them later, and documentation on how the
system can and should be used is equally essential.

The final thing a programmer needs is a questioning attitude. Early on we
indicated that design is an evolving process, that one should always ask one-
self how a design can be improved. The same is true of the code, the user inter-
face, and most other facets of the system. A questioning attitude is also
essential in reviewing your own and others’ code and designs. A technique
that has evolved for improving software is reviewing the design and code as
early in the development process as possible. During such reviews, one ques-
tions if the design will work under all circumstances and attempts to figure
out how to break it. A questioning attitude also comes into play in testing and
debugging. Testing involves finding ways to make the program fail and asks
how this can be done. Debugging involves asking the related question: if the
program failed in this way, what was the cause?

Asking questions in the programming process is all the more difficult
because programmers are put in the situation of criticizing themselves. Look-
ing for a better design involves assuming that your own design is not the best;
finding problems in code requires assuming that your code may be wrong, that
you may have made a mistake. What programmers are told to strive for here
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is the ability to question oneself without being critical. Such an egoless atti-
tude takes a lot of practice and self-confidence, but it does tend to make better
programmers.

Software Quality

The quality of a piece of software, what software engineering is designed to
achieve, is assessed in a variety of ways. Unfortunately, all these assessments
are imprecise and the best one can do is to estimate the quality of the software
from a variety of hard-to-measure values.

The most obvious measure of quality is whether the software does what it
is supposed to. Here one would like to take the definition of the problem the
software was meant to address and see if it actually solves that problem. This
is called determining the correctness of the software; the process of doing this
is called verification because one is attempting to verify or prove the software
does what it should. Verification, however, is generally impossible since the
statement of what the software is supposed to do is usually imprecise and does
not cover all the cases. Moreover, proving anything about something as com-
plex as a piece of software is impractical at best and generally intractable.

A better measure of the utility of the software is whether it meets the
user’s needs. This is called validation. Validation is typically the result of a
long testing process in which the testers and the eventual users of a system
try it out to see how well it meets their actual needs. Validation is a much
more tractable problem than verification. However, it does not necessarily
prove that the software actually works or that it works for all cases or under
all circumstances. Like testing, it is an incomplete process.

The problem with validation is that it can overlook aspects of the reliability
of the software. Reliability is a measure of the number of bugs remaining in
the software. It is probably the best quantitative measure of software quality;
it is the only such measure proven to have a strong correlation with the soft-
ware’s overall perceived quality. Moreover, since bugs are generally the aspect
of the software most irksome to the user, their elimination can only help to
make the software better.

Software bugs can be mere nuisances or major problems. The robustness of
a software system is a measure of how it reacts in the presence of errors,
whether the user’s, its own, or the underlying machine’s. A robust system
recovers gracefully from errors, generally displaying a message and indicating
how to undo any damage or to accomplish what was actually meant. A system
that is not robust will crash, lose the user’s work, or display some other unde-
sirable behavior in the face of an error.

Another measure of quality is the performance of the system. Performance
can be viewed along a variety of dimensions. Some of these involve the utiliza-
tion of machine resources such as processing time or memory and disk space;
others involve the performance of the user interface and whether it meets user
expectations (see Chapter 11). In measuring system performance, one must
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take into account what the system is supposed to do and measure performance
relative to the minimum required for these tasks.

User perception of a program affects quality in ways other than perfor-
mance. An increasingly important criterion for software quality is the quality
of the user interface, generally measured by how easy it is to use. A user-
friendly interface is easy to use both for novices and experts and provides the
necessary information in the best manner possible. Assessing the quality of a
user interface involves all the human-factors criteria discussed in Chapter 11.

Two other measures of software quality concern the system’s evolution over
time. The first, portability, has to do with how easy it is to move the system
from one platform to another. This could be as extreme as moving from UNIX
to Windows or as simple as moving from one release of an operating system to
another. Portable software is generally more adaptable and easier to evolve.
The second measure, extensibility, is more difficult to pin down; it concerns
how easy it is to add new features to the software or to adapt it to different
applications. While this is often difficult to determine, it does become one of
the most important criteria for a long-lived system.

Software Management

As software has gotten larger and teams of programmers must be coordinated
to build a system, software engineering has come to include many of the tasks
typically associated with management. These include organizing people,
devising an overall process for software development, and estimating costs.

When people started to work on software in teams, they soon discovered
that team programming offered diminishing returns. The amount of code gen-
erated by one programmer decreased as more programmers were added to a
team. Some studies showed that with a team of five, each programmer’s pro-
ductivity went down by 20%, while a team of ten yielded a 40% decrease in
productivity. My own experience with student teams suggests that once a
team reaches a critical size of around five, little further work is accomplished
by adding more programmers.

This phenomenon was called the “mythical man-month” by Fred Brooks.!
The cost of software is typically measured in terms of the amount of work
required for its development. In most industries, software included, this is cal-
culated by multiplying the number of people working on a project by the time,
in months or years, that each person works. Thus, if four people work on a
given project for six months each, the project is said to require twenty-four
person-months (or man-months in the standard terminology). The fact that
programmers become decreasingly productive as teams get larger makes this

1. See Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engi-
neering, Addison-Wesley, 1995, for more information. (This is the second edition, the
first edition actually dates back to 1975.)
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measure inappropriate for software: two people working on a project for ten
months generally produce more and better code than ten people working on
the same project for two months.

The productivity loss with increasing numbers of programmers is due pri-
marily to the increased communication costs. One way to minimize these costs
and thereby maximize productivity is to concentrate on organizational meth-
ods for software teams. These techniques look for an organizational structure
for the team that minimizes the number of people each programmer needs to
communicate with, generally by employing some sort of managerial hierarchy.
This goal is often undercut by the independent nature of many programmers
and the complex interdependencies in most software systems.

Another approach to increasing productivity is to design the application to
be easy for multiple programmers to work on. This involves breaking the pro-
gram into isolated components and developing well-defined interfaces
between them. If components are independent except for well-defined inter-
faces, then in principle each component can be written and tested indepen-
dently by different programmers and the pieces will fit together quite readily.
In practice, this is often not the case, since interfaces change and are not
always well-understood even if well-defined. However, a good design goes a
long way toward simplifying the work of a programmer team.

This initial breakdown into separate interfaces is one place where object-
oriented design really shines. An object-based design allows the definition of
sophisticated yet simple-to-understand interfaces. The power of objects lets
the interfaces be organized and presented in a way that is natural for the
given problem. Object methods generally require fewer parameters and are
easier to understand than a corresponding procedural design. Also, because
objects are generally self-contained, each object definition is a natural basis
for dividing the problem into independent subproblems. We address issues in
designing larger systems more fully in the next chapter.

Other management issues arise in developing a programming process that
determines what is done where and by whom. This includes the documenta-
tion required at each stage, how testing is to be done, coding conventions, as
well as design and code reviews. Many companies doing software development
have a book describing their programming process (even if it's not always fol-
lowed) that they expect incoming programmers to adopt. We address some of
the process issues further in discussing the various programming stages later
in this chapter.

A final management issue addressed by software engineering is estimating
the cost of a software project. Cost here can be the monetary cost or just the
amount of time necessary to write a program. Cost estimation is important at
all levels. Companies need it to determine whether or not to build a given sys-
tem and what resources should be devoted to its construction. Professors need
it to determine how long a given assignment should take or how complex an
assignment can be for a given amount of time. Students need it to determine
when to start their assignments.



404

Chapter 15: Software Engineering

There are a variety of techniques for cost estimation. The more complex
involve building a detailed model of the software system that includes infor-
mation on the complexity and interactions of each component. This approach
requires both a good understanding of the system to be written and accurate
modeling parameters. It is sometimes useful in industry but not that useful to
students. The most widely used approach to cost estimation remains expert
judgment, i.e. asking someone who has built a lot of systems (preferably simi-
lar ones) to evaluate the requirements, complexity, environment, etc., and
make an educated guess at the amount of time involved. My own personal
approach is to make such an estimate and then multiply it by four.

Other approaches to cost estimation exist. Some involve using a top-down
or bottom-up breakdown of the software to divide the cost estimate into
smaller, more tractable pieces, and then putting the result back together. Oth-
ers, including most student projects, use Parkinson’s Law; i.e. the time needed
to complete a software project increases up to the maximum time available. In
industry, another approach is cost-to-win. Here, in bidding on a contract to
write a software system, one determines the cost level necessary to win the
contract and estimates that, regardless of what the actual cost may be. All
told, however, as one gets more experience with writing systems, one tends to
get better at estimating the amount of effort involved. Our advice here, espe-
cially to students, is always to start software development as soon as possible
since it always takes longer than you expect.

THE PHASES OF SOFTWARE ENGINEERING

Software development has a lot in common with other engineering problems.
In the engineering domain, developing a solution to a given problem, whether
building a bridge or making an electronic component, involves a sequence of
interconnected steps. The steps or phases occur in software development as
well.

The first step is formulating the problem. Here the goal is to understand
the nature and general requirements of the problem. In building a bridge, this
means understanding the load the bridge must carry, the approximate loca-
tions where it can be built, the height requirements, and so on. In software
development it typically means understanding the problem from the user’s
perspective and is called requirements analysis.

The second step involves defining the problem precisely once it is under-
stood. Here one would specify the site for the bridge, its size, and a general
outline of the type of bridge to be built. In software development this step is
called specifications and involves developing a precise statement of exactly
what the program will do, often even to the point of writing user manuals and
other such documentation for the prospective system.
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The third stage of development is detailing the solution to the problem. In
building a bridge this would mean determining the exact configuration, com-
puting the size of the cables and beams, and developing the complete blue-
prints for the bridge. In software development, this is the design process we
have been talking about throughout this text. Top-level design involves devel-
oping an outline to the problem solution while detailed design involves speci-
fying all the details needed so the design can be handed off to a programmer.

The next stage of development, implementation, corresponds to the actual
building of the bridge or the actual coding of the program. If the design was
done correctly and in enough detail, this should be the easiest stage (at least
conceptually).

The final stage of development, maintenance, starts once the solution has
been built. For a bridge it means continually repainting, repaving, and mak-
ing any other repairs necessary. For software it involves fixing bugs, adding
new features, and adapting the software to new architectures as needed.

In the remainder of this section, we consider these phases in more detail
from a software point of view. To illustrate these phases, we introduce the
problem we discuss here and in the next chapter:

One of the oldest computer games (it was created at MIT in 1962 and | was
playing it at Dartmouth in 1970) is Spacewar, where two (or more) spaceships
are flying around a 2D universe consisting of one or more suns. The suns have
gravity and the ships have thrusters (forward or forward and reverse) and the
ability to rotate left and right. They can also shoot unguided, unpropelled mis-
siles that decay after a given time. The object is to shoot the other player(s).

Your job is to program an updated version of this game. Your implementation
should handle multiple users playing on separate machines. You might also
consider a 3D universe rather than a 2D one. (Note that one current invoca-
tion of Spacewar is the network game netrek.)

Requirements Analysis

The first step in software development is to understand the problem from the
user’s perspective. The developer should understand exactly what the pro-
gram needs to accomplish and how it fits into the user’s current or proposed
environment.

This step is generally accomplished by interacting with the prospective
users by written questionnaires, formal interviews, talking to the potential
users, or even working alongside them until the problem and how the solution
will fit in are well understood. The important point here is to undertake the
process with an open mind, not with a solution already in hand. The idea is to
determine what the actual problem is so as to find the proper solution, not to
take a solution and fit it to the problem. Note that if you are building a system
for yourself, this step simply involves introspection.

Once the problem is understood, the developer’s next step is to put together
a list of requirements the eventual solution must meet. These requirements
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determine the outlines of the “best” solution to the problem. (Note that the
best solution in some cases isn't even a program.) This process is generally
done in two stages. The first involves gathering as many requirements as pos-
sible. Here the developer uses the interaction with potential users to construct
“wish lists” of solution features that should be as broad and inclusive as possi-
ble. The second step is to merge and then prioritize this combined list. The
outcome here should be a list of the features required in the solution and a
second list of optional features, with some indication of their desirability.

Determining the mandatory requirements and assigning priorities to the
others is a nontrivial process. Ideally, it should be addressed in conjunction
with the eventual users of the system, determining what their actual and per-
ceived needs are and how the proposed system can best meet these needs. This
is often done through questionnaires asking potential users to rate various
items in order of importance. One should also determine the aspects of the
system most crucial to its intended purpose and the aspects needed for its
acceptance or commercial success.

The requirements should not be limited to the technical aspects of the solu-
tion. They should also include such items as the target architecture and envi-
ronment, current systems with which the new program should interact,
limitations on resources such as memory or disk, display requirements, user
interface requirements, and so forth. Figure 15-1 organizes some of the
requirements for the Spacewar program as either mandatory or optional. A
further refinement might assign actual priorities to the optional require-
ments.

The result of all this should be a good understanding of the problem with-
out any need to define an actual solution. The developer should understand,
after requirements analysis, whether a particular solution will be acceptable
to the user and, of two different proposed solutions, which will better suit the
user’'s needs.

Specifications

The second step in software development is to restate the requirements from
the programmer’s point of view. The object of this stage is to produce a docu-
ment detailing exactly what the eventual system should do. The new docu-
ment, a specification for the eventual software system, is then a sound basis
for actually designing and building the system.

Specifications concentrate on what the program does rather than how it
does it. During this development stage, the programmer is attempting to out-
line the software system so that it can ultimately be designed. This is gener-
ally done in four steps: building a model of the system, defining the system
inputs and outputs, defining the actions of the system for those inputs and
outputs, and finally detailing other information pertinent to the design and
eventual coding of the system.
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Mandatory requirements:

1) Multiple players should be able to connect to or disconnect from the game at the
start of each round. Players each have their own display.

2) Each player has a unique ship.

3) The game is divided into rounds.

a) At the start of a round the players are given an initial position and velocity
by the system. The position and velocity should be safe (i.e. not inside or
directed toward a star).

b) Each player gets a fixed number of missiles per round.

c) Missiles time out after going about half the size of the screen.

d) If an active missile hits a ship, both explode and the player whose ship was
hit is out of the round.

e) If amissile hits another missile, both explode.

f) A round ends when either only one player remains or when all remaining
players are out of missiles. The end can come only when no bullets are on
the screen.

g) A player “wins” a round by being the last player remaining.

4) Players should be able to control their ship from either the mouse or the key-
board.
5) Ships should have main thrusters as well as rotation thrusters.
a) Main thrust is cumulative; i.e. the thrusters accelerate or decelerate the
ship, not start it or stop it.
b) Rotation is on/off. When a rotation thruster is on, the ship rotates. As soon
as it is turned off, the ship stops rotating.

6) The program should run on Sun workstations.

Optional requirements:

7) The game can be in 2D or 3D.

8) Main thrusters can be forward only or forward and reverse.

9) Keep track of each person’s score, i.e. the number of times he or she has won.
10) The system should port to NT.

11) The NT and Sun versions should be interoperable.

Figure 15-1 Sample requirements for the Spacewar program.

The first step is to construct a model of what the system will do. This is
generally done using a combination of text and diagrams. The most relevant
diagrams are data-flow diagrams detailing not how the system will work but
rather what data comes into the system, what transforms are applied to that
data, and what data comes out of the system.

Consider the Spacewar program. The system must read and interpret user
input and translate this input into internal commands. These commands are
sent to a central controller that maintains the state of the game and sends
commands back to a display package to display this state. In addition, the cen-
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Figure 15-2 Data-flow diagram for a simple Spacewar program.

tral controller maintains a database of users to keep track of their wins. This
information can later be provided to the display controller when a round is
over. Finally, the display controller needs to interact with the input processor
so that only currently relevant inputs are processed.

This simple structure is reflected in the data-flow diagram of Figure 15-2.
There are several different types of nodes here. The semicircles on the left rep-
resent the users of the program; these are actors that can generate inputs and
outputs as needed. The rectangular boxes represent actions; these take data
in, process it, and then generate other data out, and are typically labeled with
a description of what they do. Arrows between the users and the boxes or
between different boxes represent the flow of data, typically commands or
messages, between the actions. The elliptical boxes represent local data repos-
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itories, which are data structures maintained only while the program is run-
ning. The action box connected to such a data node can either store or retrieve
data from the data structure. The cylindrical box at the bottom right is a more
permanent data repository that is typically saved between system runs and
can even be a full-fledged database system shared among multiple users.
Finally, the dotted lines group components together to form units.

The diagram shows that commands flow from the user to the input inter-
preter, which uses information from the local or user state to determine what
is legal and eventually to send the next move or other information to the game
controller. The game controller processes these requests from multiple users,
using the temporary repository reflecting the state of the game and the per-
manent repository of user information. The result of this processing is sent
back to each user’s display controller, which in turn updates the user’s display
and modifies the local state information. The dotted boxes indicate the group-
ing of components for each user in case additional users are allowed.

A data-flow diagram like this, annotated to describe what each of the nodes
and arrows is responsible for, is a starting point for a more complete specifica-
tion. It contains the outlines of a model describing what the eventual software
will do. This model must be fleshed out with details of the system’s inputs and
outputs and the processing the system will perform.

There are no standard forms for data-flow diagrams. (Actually, there are
quite a few different ones, but many standards do not make a “standard.”) The
format we use here represents a simplified consensus approach and illustrates
the different types of notes and relationships typically included within such a
diagram. Programmers should generally adopt a particular convention and
use it consistently.

An alternative approach here is to create an object-oriented specification in
which one uses objects to describe the problem rather than a data-flow dia-
gram. The two approaches are closely related, since the elements of the data-
flow diagram are often essentially objects. However, there are differences in
emphasis that are important for inexperienced designers. Specifications
should define the problem, not its solution. When using objects, one is immedi-
ately tempted to think in terms of the solution, especially if one will be using
an object-oriented design. This essentially bypasses the specifications stage
and generally yields less well-thought out and hence poorer designs. Using a
separate notation here helps distinguish the two phases and lets the designer
concentrate on the problem rather than the solution.

Once the programmer has completed a diagrammatic model of the system,
the next step is to detail the inputs and outputs. The idea here is to describe
the user interface so that it can be easily implemented. If the user interface is
graphical, this should include the interface sketches discussed in Chapter 10.
If the interface is textual, it should include a grammar describing all the com-
mands. In any case, all buttons and commands available to the user should be
noted along with their appropriate meaning and corresponding actions. The
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Figure 15-3 User-interface sketches for the Spacewar program.

output views, both standard and resulting from the different inputs, should
also be detailed.

For the Spacewar program, the user-interface specification might show
sketches of the interface, as in Figure 15-3, accompanied by a description of
how users control their spaceships showing which keys are used and how the
mouse buttons work. It would also include sketches of other screens and dia-
log boxes. In Spacewar, dialog boxes are needed for creating a new session (to
name the session so others can attach to it), for attaching to a session, and for
displaying the current scores list at the end of a game.

Describing the processing performed by the action boxes of the model is the
third step in a specification process. This description should be precise and
detailed enough that a software designer can understand the overall system
well enough to evaluate alternative designs. It should include information
about both normal and error processing. Here information would be given
about how the positions of the stars are determined; how gravity, spaceship
motion, and missile motion are computed; how close missiles must be to
explode, what happens when an explosion occurs; what happens if two ships
collide or if a ship collides with a star; and so on.

In saying what the program should do, it is often useful to talk about the
different states the system can be in. This can be done graphically with a
state-transition diagram such as that in Figure 15-4. Such a diagram should
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Figure 15-4 State-transition diagram for Spacewar game logic.

again be accompanied by appropriate annotations and a natural-language
description to make it comprehensible.

Figure 15-4 shows the top-level logic of the program. The black dot indi-
cates a starting point, the rounded rectangles indicate states and the arcs
indicate transitions between the states. The diagram indicates that when the
program starts, the user is given the option of starting a new session or
attaching to an existing one. If a new session is started, the system waits for
another user to attach before starting a game. If attach is selected, the user is
prompted to select a session. Once attached, the program can be in one of
three states. The ready state exists before the game actually starts; no input is
allowed here. Once the game starts, the play state takes over. Here the user
can control the spaceship, fire missiles, etc. Finally, once the system detects
that a round has ended, the program enters the game-over state in which the
winner is declared, high scores are displayed, and the system waits for each
user to be ready to go again before reentering the ready state. An additional
detail indicated in the diagram is that the system checks whether multiple
users are still attached when in the ready state: if only this user remains, the
game reenters the wait state, and if no user remains, the game exits. The
black dot with a circle around it indicates an exit state.

State-transition diagrams such as this one are part of the Unified Modeling
Language (UML) described in Chapter 6. A number of different formats exist
for such diagrams and, as long as the programmer is consistent, all of them
are acceptable. However, since we are using UML for other design diagrams, it
makes sense to use the UML notation for these diagrams as well.

The final step in the specification process is to provide any additional infor-
mation that might be relevant to the designer. This could include the architec-
tures the system should run on, size limitations, other programs the system
should interact with or look like, how the system should handle users connect-
ing or disconnecting, the deadline for the system, and how many programmers
will work on it.
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Design

The details of the specification can be given in forms ranging from informal
comments to formal mathematics. The more mathematical approach, called
formal specifications or formal methods, generally involves using set theory in
a programmer-friendly notation to state precisely what the system should do.
While such specifications can be helpful for some problems, they are very diffi-
cult to do correctly, especially for large interactive systems, and their use is
beyond the scope of this text.

The most practical form for larger specifications centers around an outline.
The outline details the major components of the system as described in the
model and divides each component into major pieces as appropriate. At the
lowest level of the outline is a series of short and precise natural-language
paragraphs providing the necessary information about some particular aspect
of the component. This form can be used as well for simpler specifications to
ensure completeness, but in the simpler cases it is often easier just to use dia-
grams and a natural-language definition, without the formality of an outline.
Figure 15-5 shows excerpts from a sample specification for the Spacewar pro-
gram.

The specifications serve as a prelude to the overall design process. Design, as
noted throughout this text, involves analyzing, developing and detailing an
appropriate solution to the problem defined by the specification process. It is a
process of exploration in which the developer looks at various solutions, deter-
mines which solution is best, and then details that solution. It is also a hierar-
chical process in which the problem is broken down into tractable units.

Designing a moderate-sized software system, especially one involving mul-
tiple programmers, is typically more complex than the simple designs dis-
cussed so far. However, many of the techniques we have introduced and
emphasized were specifically designed to handle the more general case.

The design process works by breaking the system into a small set of compo-
nents that interact with each other in fixed ways. In a large software system,
these components are typically developed by separate programmers or even
separate teams of programmers. As such, it is essential that the function and
interfaces to each of the components be well defined. This lets the components
be developed with minimal interaction with the other components, thereby
minimizing communications costs during development. It also provides a
basis for testing the individual components. When a component is itself com-
plicated, a good understanding of its function and interface provides the start-
ing point for the second-level design of that component.

The first step in designing a large-scale system, top-level design, involves
doing such a breakdown and developing the interfaces as the top level. The
purpose of this step is solely to understand the function of each component
and to specify the interfaces to that functionality. In an object-oriented design,
these interfaces are defined as a small set of top-level classes along with their
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Game Startup

1) When the program starts, the user is asked to choose whether to begin a new
session or attach to an existing one.
a) An appropriate dialog box should be provided.
b) Cancel here should cause the system to exit.
c) The dialog should provide a list of active sessions to attach to.
d) The dialog should let the user name a new session.

2) Sessions exist as long as at least one user is attached. When all users have quit
or detached, the session should disappear.

3) (Optional) Users should be able to detach from a session and attach to another
session without quitting.

Game Control

1) Each spaceship maintains a current velocity, position, and orientation.
a) When the main thruster is on, it provides a constant acceleration in the
direction of the current orientation.
b) The rotation thrusters changes the orientation by a fixed amount at each
interval. It should take 5-10 seconds to rotate 360 degrees.
c) Stars have gravity that provides additional acceleration.

2) Missiles are fired from the front of a spaceship.

a) Missiles have the spaceship’s current velocity plus an additional constant
velocity in the direction of the spaceship’s orientation.

b) Missiles do not accelerate but are affected by gravity.

c) A missile should explode if it gets within one missile diameter of another
missile, the outside of a spaceship, or a star.

d) A missile should last for about half the display when the spaceship is mov-
ing at average velocity.

3) Stars have a fixed position on the display.
a) This can be predetermined or optionally assigned at random for each game.
b) The number of stars should be settable by the players.

4) The game continues until either at most one player remains or until all players
remaining are out of missiles.
a) The game does not end if missiles are active.
b) Once an end condition has been determined, there should be a delay (about
5 seconds) before the game ends.

Figure 15-5 Sample specifications for the Spacewar program.

public interfaces. In the next chapter we consider different techniques and
conventions for creating effective designs for larger software projects.
Interface-centric design is generally repeated until the problem becomes
small enough for an individual programmer to understand. It is at this point
that implementation details in the form of helper classes, data members, and
method pseudocode are typically provided. This is called the detailed design.
While the top-level design is generally done by a committee of designers or an
expert who can understand the overall system, the detailed design is gener-
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Coding

Testing

ally done by the programmer who will eventually implement the correspond-
ing code. The use of objects and interfaces ensures that the rest of the system
is isolated from the low-level design decisions made here. Moreover, as we
noted, programmers are generally more productive when they work alone, and
a compartmentalized solution encourages this.

As we have seen, translating a detailed design into working code should be
straightforward. While many little details must be worked out here, the hard
part has already been done.

Coding should not be neglected. The emphasis here for a large software
system should be on many of the techniques we have stressed throughout the
text. Making a large system work and be maintainable over time requires pro-
grammers to adhere strictly to a set of programming conventions. This is gen-
erally reflected in naming conventions, stylistic conventions about such issues
as indentation and the choice of variable names, and coding conventions such
as the order of commonly grouped parameters.

Another emphasis should be on defensive programming. The hardest part
of coding a large system involves integrating into a single working unit the
pieces of the system written by different programmers. One of the main diffi-
culties here is that bugs arising in the combination are difficult to attribute to
any one piece. Defensive programming helps to find these bugs early on and
isolate problems more quickly.

Once code is written, it needs to be tested, as discussed in some detail in “Test-
ing” on page 216. Here we noted that testing is the process of finding errors in
the code and that a successful test is one that actually finds an error. Pro-
grammers taking this negative approach to testing are more likely to find the
problems in their code early and fix them while they are easy to fix. In that
section we also covered various approaches to testing, emphasizing low-level
testing of individual functions or classes.

Testing of a large system generally is done in stages. First each individual
component is tested, generally by the programmer who wrote the code. This
module testing is generally done either one class at a time or with a small set
of related classes. The programmer typically needs to define a test-case driver,
a simple program to make the appropriate calls on the class being tested.

Once programmers have some confidence in their individual components,
they can be put together and the result tested. Such integration testing contin-
ues until all the components are together. Integration testing generally fol-
lows the hierarchical breakdown of the overall system, with components at
each level being tested before they are integrated. Integration testing is gener-
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ally more difficult and time-consuming than module testing, first because the
program being tested is more complex and second because it needs to check for
mismatches between the components.

When the whole system is put together, system testing begins. This involves
testing the overall functionality of the system and is generally done at first by
the programmers involved. In a larger company, the final stages of system
testing may be done by a separate group to avoid the problems arising when
programmers test their own code.

The final stage of testing involves handing the program over to the people
who requested the system in the first place and asking them to ascertain that
the resultant system meets their needs. This acceptance testing often deter-
mines whether a program written on a contract basis is acceptable and
whether the company writing the program will be paid or not. For student pro-
grams, it is used to grade the assignment.

Operation and Maintenance

The final stage of software development, and the one most often ignored by
students and many programmers, occurs after the software has been accepted
and is in operation in a community of users. While one wishes software would
just keep going forever once it is released, this never really happens. Software,
no matter how well written or well tested, will have bugs. The systems on
which the software runs will change with new hardware or new operating sys-
tems. The demands made on the software will also evolve over time. As users
become more familiar with the software, they will want additional features.
Moreover, the problem the software was originally designed to handle is also
likely to change and the software must adapt to such changes.

Maintaining a successful software system is generally the most costly and
most time-consuming phase of software development. It is also a difficult,
often thankless task that is not particularly liked by programmers. In many
companies, maintenance is done by programmers other than those who wrote
the initial code, often by new or less respected programmers. This only tends
to make the situation worse.

Maintenance programming is hard because it involves understanding the
whole system and the whole development process. Fixing a bug or adding a
new feature to an existing system actually means going back and redesigning
some aspect of the system. Typically, however, design information for an exist-
ing system is either nonexistent or out of date, and hence useless. The mainte-
nance programmer must understand the complete program with little more
than the code as a resource. Modifying or adding to the code in a large system
is difficult because changes to one routine can have unintended and unfore-
seen side effects in some other routine. Moreover, for consistency, the mainte-
nance programmer must adopt the style of the original programmer.

Making maintenance easier and less costly is one of the principal objectives
of software engineering. Much of what can be done along these lines involves
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design and coding. As we have noted throughout the text, a variety of strate-
gies such as keeping the code and design as simple as possible, defining strict
interfaces, maintaining consistent naming and coding conventions, defensive
programming, good and accurate commenting, and insuring code readability
can all help to make maintenance a more tractable task. It is important,
throughout the whole development process, to specify, design, and develop
code that can be maintained and can easily meet new or evolving demands.

Testing must also be adapted to the maintenance process. Here one creates
a collection of test cases. Each time the system is upgraded, all the test cases
in the collection are used to check that the new version of the system does at
least what previous versions did. Such regression testing, discussed in
Chapter 8, is aimed at ensuring that the new system is an advance rather
than a regression over the previous one. To make such testing effective, the
programmer should attempt continually to add new test cases to the overall
collection.

THE SOFTWARE DEVELOPMENT PROCESS

The various phases of software development described above are not done
independently. One of the focuses of software engineering has been to deter-
mine how to put these different phases together in an overall software devel-
opment process. The actual connections among the phases and the
formalization of a process based on them have evolved as developers explore
different alternatives and as software systems become more complex.

The Waterfall Model

The simplest model of the software development process is to view its stages
as successors to one another, as shown in Figure 15-6. Here software develop-
ment proceeds in clearly defined and distinct stages. The first step is to
develop a set of requirements for the system to be built, which is written
down, evaluated and then approved. Next, assuming these requirements are
fixed, complete specifications for the system are developed and are again
reviewed and accepted.

Once specifications are complete, the next step is to design the whole sys-
tem. The top-level design is developed and the problem is broken down. Each
of the subcomponents is designed as well and the design is completed for all
components of the system down to the stage where their coding is obvious.
Once the designs of all components are complete and have been reviewed and
checked, coding begins and the whole system is coded according to the design.
Once the system is coded, it is then tested, starting at the module level and
moving up to system testing. Once testing is complete, the system is distrib-
uted and maintenance begins.
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Figure 15-6 Waterfall model of software development.

This process is called the waterfall model of software development because
the development stages proceed as a cascade, with the diagram of the phases
looking a little like a waterfall. The model does allow some flexibility. For
example, it should be possible to begin coding some sections of the program
before completing the detailed design of everything else and it should be possi-
ble to begin module testing of components as they are coded. However, the
general view here is that each phase of development is completed before the
next is begun.

This model of software development has proven unrealistic for real sys-
tems. Information tends to flow not only from one phase of development to the
next, but also from each phase back to its predecessor. When a system is being
specified, developers often note new features that might be desirable or want
to change the priorities of others in the requirements. When doing design, one
often needs to change the specifications either to enhance the system or to
handle what would otherwise be conflicting demands. When doing coding, one
often finds that the design must be enhanced with additional methods or even
at times changed to handle some unforeseen situation. When doing testing,
one often must go back and change the code to accommodate bug fixes. Finally,
maintenance involves new user requirements that should percolate down into
new code.
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Figure 15-7 The feedback model of software development.

A more realistic model of software development takes these additional
information flows into account, typically by augmenting the waterfall model
with feedback paths as shown in Figure 15-7. The result is a feedback model of
software development. Here the principal flow of information is still from one
stage to the next. However, unlike the waterfall model, the feedback model
lets information flow from any stage back to the previous stage and explicitly
notes that maintenance changes can restart development at any stage.

Most software engineering today follows more or less along the lines of the
feedback model. Requirements are generally gathered first and then the
developers attempt to define the system to be built. As they begin to design
the system, feedback from the design causes the specifications to be modified
in various ways that are then put into the evolving design. Coding is typically
not done until the portions to code have been designed, although coding of
some sections and the detailed design of others often proceeds in parallel.
Most module testing also occurs as the code is being written, while integration
testing, of necessity, requires most of the code to be present. Testing often
finds code errors requiring design changes (and sometimes even the specifica-
tion if something was found to be too difficult or complex) and development
then continues.
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Prototypes and the Spiral Model

Both the waterfall and feedback models of software development assume that
design can be done before coding begins. While this is generally the case, it
can sometimes be better to code first and then design. The prime example of
this is user-interface design. It is very difficult to design a good user interface
on paper without being able to experiment with how the interface can be used,
and one often develops a simple program for this purpose. There are other
design decisions, too, whose impact or feasibility cannot be decided a priori. In
these cases it is often useful to experiment with simple programs illustrating
different design alternatives as a means of exploring the design space. This is
especially true where a particular design decision can affect the overall suc-
cess or failure of the eventual system.

The process of writing a simple program to explore the design space is
called prototyping and the program itself is called a prototype. Prototyping is a
viable strategy when the choice among different essential design alternatives
is not clear, since it lets the developer experiment with the different alterna-
tives and determine which is best. Putting up a prototype user interface gives
the designer a sense of both what the user interface looks like and how it feels
to interact with it. A user-interface prototype can even be shown to prospec-
tive users to get a feeling for how well it meets their needs.

It is generally desirable to build experimental prototypes as quickly as pos-
sible so that they can be evaluated more rapidly and take less time away from
the overall design process. Because of this, prototypes are often made by using
special systems or different programming languages. For example, user-inter-
face prototypes can be developed rapidly by using a user-interface generator
that lets the user select components and put them together graphically. Small-
talk and other interactive languages with extensive user-interface libraries
are also used for this purpose.

The main drawback of prototypes is that they must be discarded after use.
If they are developed by using a prototyping system or very high-level lan-
guage, they are usually too inefficient for inclusion in a production program. If
they were developed as quickly as possible in the target language, the quality
of the code and documentation is generally quite poor and the result is not
suitable for inclusion in a system that eventually must be fully debugged and
maintained. Unless the programmer is willing to throw the prototype away
after it has served its purpose (and to recode its functionality using proper
design and implementation methods), prototyping is not a worthwhile alter-
native.

As systems and user interfaces have become more complex, more design
issues have become potential targets for prototyping. Moreover, the develop-
ment of large, complex systems involves a high degree of risk. A poor design
decision at a critical point in the development can make the software unfix-
ably slow or useless for its intended purpose. To take this into account and to
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Figure 15-8 Simplified spiral model of software development.

decrease the cost of prototyping, an alternative model of software development
has been proposed.

This spiral model of software development, shown in simplified form in
Figure 15-8, assumes that successive prototypes of the system are built. One
starts at the center by reviewing the problem to be solved. Then one does risk
analysis to determine the most vulnerable or least understood parts of the
proposed system, and these become the subject of the first prototype. The pro-
totype is then tested and reviewed and the results of this analysis are used to
derive a set of requirements for the eventual system. Using these desired
requirements, a further risk analysis is done again to determine which parts
of the system are the least understood or most vulnerable. A second prototype
is built to analyze and understand these better. This prototype is again used,
tested, and assessed to evaluate the different alternative designs, and from
this analysis specifications for the eventual system are developed. These are
then tested, after appropriate risk analysis to determine the most vulnerable
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portions, in a third prototype. The third prototype is then a fully operational
model of the target system. It is again tested to find any weaknesses. From
this analysis, a detailed design for the final system is developed and the final
system is built using more traditional coding techniques to ensure code qual-
ity and maintainability. The last stage involves the normal testing process for
this system.

This model can be varied in different ways. If prototypes are unsuccessful
or indicate major problems, additional cycles and hence additional prototypes
might be required. A third prototype might be used, for example, to experi-
ment with different aspects of the specifications, and a fourth prototype would
then represent the fully operational system. The various prototypes, and to
some extent even the final system, need not be developed from scratch but can
be built on top of their predecessors.

In general a prototype should be as focused as possible. It should provide
the minimum functionality necessary to validate or check the design alterna-
tive for which it is being developed. This ensures that it can be developed as
rapidly as possible and limits the temptation to use it as a production system.
In the spiral model, the initial prototypes typically test a single design alter-
native that must be evaluated in order to understand better how the system
should eventually be built. The final prototype is used to demonstrate that the
whole system is feasible and actually meets the needs of the target users. In
all cases, the prototypes are designed to be discarded, and only their designs
and concepts are actually used in the final system.

The proper choice of a development model for a particular system depends
on a variety of factors. The more complex and risky the system, the more one
tends to use prototyping. If the system is relatively straightforward, for exam-
ple if it duplicates and extends an existing system, then a design-oriented
approach is preferred. If the prospective users aren't sure what they want,
prototyping is an inexpensive way to experiment with different alternatives. If
the user’s requirements are well known in advance, the expense of building
and discarding a prototype is probably excessive. In general, prototypes
should be used when issues can be resolved only by experimenting with a real
system and when the programmer is willing to throw away the prototype and
all the work that went into it.

SUMMARY

Software engineering is the use of engineering principles to obtain high-qual-
ity software. It has been developed to help with the many problems arising in
software development and in software itself. These problems primarily involve
the excessive cost of developing and maintaining software and the low quality
typical of most software systems.
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Software engineering has multiple facets. It involves the proper training
and use of programmers. It involves the development of appropriate tech-
niques for defining what to build and how to build it. It involves the develop-
ment of tools to aid the developer. It involves the use of appropriate
management techniques and skills. Throughout all this, it puts an emphasis
on developing and maintaining high-quality software.

Software development occurs in phases:

Requirements Analysis: Here the programmer attempts to determine
the user’s needs and to outline the proposed system. The result is gener-
ally a user model and a prioritized list of features to be included in the
proposed software.

Specifications: Here the programmer determines precisely what soft-
ware will be built. This includes a annotated system model, complete
user-interface designs, and a prioritized list of the capabilities of the
proposed software. The emphasis here is on what is to be built, not how
it is to be done.

Design: Here the programmer determines how the software will work.
This involves both top-level design, where the overall framework for the
system is constructed, and detailed design, where individual packages
are specified.

Coding: Here the detailed design is translated into code in the appropri-
ate target language. This should be the easiest phase of software devel-
opment.

Testing: The code must then be tested. This is done at various levels,
starting with module testing to check individual packages or classes,
moving up to integration testing as the different packages are put
together, and finally ending with system and acceptance testing in
which the system is tested as a whole.

Operation and Maintenance: Here the system is used, bugs are fixed,
and changes are made to accommodate new user demands or a changing
environment. In a successful system, this phase is typically the longest
and most costly, often accounting for 80% or more of the overall software
cost.

These phases can be organized in various ways. ldeally, they occur one
after another, each one finishing before the next one starts; this is the water-
fall model of software development. In practice, the knowledge gained in each
phase makes one change decisions made in the previous stage. This leads to
the more common and practical feedback model. A more recent strategy is to
use prototyping to direct software development in order to minimize risk and
produce higher-quality software. This is reflected in the spiral model.
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Write complete requirements for the Spacewar program.
Write the requirements for the orrery described in Chapter 1.
Write complete specifications for the Spacewar program.

Suppose you wanted to explore using computers in teaching introduc-
tory geology. Interview faculty and students in this area to determine
what a suitable system should or could do and then draw up a full set of
requirements for the system.

Computer systems are beginning to be equipped with software libraries
for speech input and output. Suppose such a library is available. You
want to develop a new product that would allow the use of speech in any
application currently running on the machine (i.e., it should be able to
speak error messages and prompts and simulate keyboard or mouse
input based on speech commands). Draw up requirements and specifica-
tions for such a system.

Investigate and describe the software development process at some com-
pany in your area.

Draw up specifications for a system that allows the user to design and
visualize a flower garden. The system should allow the specification of
what should be planted when and where in a garden setting. Using a
database of the growth characteristics of different plants (height and
color based on time from planting), the system should show the user
what the garden would look like at any point in time. The system should
also provide a user-friendly front end to let the user design the garden.

Develop specifications for a system that simulates a car race. One part
of the system should allow a user to design race tracks. The core of the
system should support one or more users racing their cars around the
predefined tracks.

Develop specifications for a system to do menu planning. As a first step
you should do a requirements analysis to determine how people who
cook at home might use a computer to help them with planning meals,
shopping, adjusting recipes, etc. Then you should draw up complete
specifications for a system to meet these requirements. Evaluate the
specifications by presenting them to the potential users.
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