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Chapter 1

Introduction

1.1 Abstract

During the recent years the sequencing has turned into an efficient high-through-
put process which accelerated ventures like the Human Genome Project. Producing
enormous amounts of raw sequence data, the transformation into useable knowledge
needs more and more automation to keep up with the accumulated data.

A new path has been struck, in silz’cz’oE] analysis, but it will never completely
replace in vitro wet lab confirmation. Mathematical and statistical methods like the
usage of sequence signals and content, similarity to known genomes are used by so
called gene structure prediction programs to perform the ab initiof| task of spotting
genes on a plain sequence. Although those programs are continously further developed
and widely used they are unable to provide the desired correctness in automatic gene
discovery. Combining output from different gene structure prediction programs may
improve the quality of the prediction.

My project addresses this issue. The aim was to re-analyse and combine different
predictions in order to obtain a consensus with a higher accuracy. To perform this
task additional external data like similarities to known sequences was used.

The result is the Java application GFMerge which generates a combined prediction
for a sequence out of various gene structure predictions.

1.2 Acknowledgements

Many thanks ...
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computational analysis and simulation in contrast to in wvitro/in vivo which is experimental
analysis
2”from the beginning”



1.3 The Sanger Insitute

The Sanger Insitute, which was founded in April 1993, is one of the world’s leading
sites of genome sequencing and analysis. It started with only 15 staff members in
temporary laboratories but increased its workforce to more than 600 to date. Named
after the double Nobel Laureate Dr Fred Sanger, who pioneered the gene-sequencing
technique still used at the Genome Campus today, it is based in Hinxton, Cambridge,
UK. The institute’s largest programme, predominantly founded by the Wellcome
Trust, was the contribution to the Human Genome Project. One third of the whole
project was completed at Hinxton. Furthermore research is done on genomes of
organisms causing some of our deadliest diseases, such as tuberculosis and malaria

(131, M)



Chapter 2

Computational gene prediction

This chapter briefly introduces biological terms which are used in this report.

2.1 Gene structure

A gene is a discrete unit of hereditary information consisting of a specific nucleotide
sequence in DNA (or RNA in some viruses). It is involved in producing a polypetide
chain ([5]). One characteristic is the organization of its structure into exons and
introns. An exon can be described as any segment of an gene sequence which is
represented in the mature RNA product. Whereas an intron is a component of DNA
which is transcribed] but removed from within the transcript by splicing together
the sequences (exons) on either side of it ([0]).

Generally speaking, exons can be divided into four classes:
e 5 end exons

e internal exons

e 3’ end exons

e intronless genes / single exon genes

2.2 Computational Gene Prediction

In 1982, Ficket developed the first programs to predict coding regions in genomice
DNA sequences. In terms of computational efficiency and accuracy of predictions,

!Transcription = the synthesis of an RNA copé/ of a gene citeBrown(02
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Figure 2.1: Relationship between gene, mRNA, and protein sequence in higher eu-
karyotes [7]

substantial progress was made during the nineties. Analysis went from sequences
shorter than a few kilobases to chromosome size sequences. But accurate identification
of every gene in a genome by computational methods still is a distant goal. [§]

2.2.1 Similarity based Approach to GGene Prediction

Unlike ab initid?| methods, similarity based methods seek to extract information from
genomic sequence data by comparing the sequence with other sequences which are
known to be coding. The aim is to find segments which are conserved over evolu-
tionary time. Two main classes of similarity-based gene detection approaches can
be distinguished. One can compare a DNA query sequence with a protein or cDNA
sequence or database of such sequences or alternatively, compare two or more ge-
nomaic sequences to detect conserved fragments which can be distinguished from non-
conserved segments. [§]

As an example, the approach of Gelfand et al., 1996 [9] will be described. Given
a genomic sequence, they first find a set of candidate blocks that contains all correct
exons. This can be done by selecting all blocks between potential acceptor and donor

’mathematical and statistical approach of predicting genes on a plain sequence described in

section [2.2.2
227 7



sites. (i.e., between AG and GT dinucleotides) with further filtering of this set (in
a way that does not lose the actual exons). The resulting set of blocks can contain
many false exons, of course, and currently it is impossible to distinguish all actual
exons from this set by a statistical procedure. Instead of trying to find the actual
exons, Gelfand et al. select a related target protein in GenBank and explore all
possible block assemblies with the goal of finding an assembly with the block highest
similarity score to the target protein. The number of different block assemblies is
huge, but the spliced alignment algorithm, which is the key ingredient of the method,
scans all of them in polynomial time.

Genomic Query Against Protein or cDNA Target An essential part of simi-
larity based gene prediction programs is constituted by methods which rely on com-
parison of query sequences with protein or cDNA sequences. A popular database
search program is the Basic local alignment tool (BLAST) [10], a program for com-
paring DNA and protein sequences. The BLASTX version translates a genomic query
into a set of amino acid sequences in all six reading frames. Then it compares the set
of amino acid sequences against a database of known proteins. In doing so, BLASTX
identifies segments in the genomic query which are similar to database proteins. Pro-
teins are likely to correspond to coding exons. BLASTN is a tool for comparison of
a genomic query against a database of cDNA sequences such as ESTs. [11],[8]

These database search programs are not dedicated gene prediction tools. They
only report matching sequences and are not capable to automatically identify start
and stop codons or splice sites. After database search and identification of potential
targets, additional tools are required to define exonic structures.

Despite a considerably higher accuracy of similarity based gene prediction tools, in
the practice of large scale sequence analysis, pure ab initio gene prediction programs
appear to be prefered over their extended versions which incorporate sequence simi-
larity searches. Part of the reason may be difficulty of usage and substantially longer
execution time. Another reason may be inconvenient training and incomplete refer-
ence database which are temporarally dynamic, exponential in growth and contain
accumulation of annotation errors.[§]

Genomic Query Against Genomic Target The genome-genome comparison de-
scribed above uses the rationale that a random mutation in a functional, not necessar-
ily protein-coding, region is usually deleterious to the organism, and hence unlikely to
become fixed in a species, whereas mutations in non-functional regions are not, or at
least much less, surveyed by natural selection. According to this, they are more likely
to be fixed and thus generate the sequence divergence between species that we observe
today. This fact is exploited in order to localize genes, determine gene structures and
regulatory regions and to infer gene function. The potential to infer complete gene

8



structures from their similarities with genes in related species decreases with diver-
gence time, leading to increased number of false-negative predictions (missing genes).

8]

2.2.2 Statistical Approach to Gene Prediction

Besides the similarity based approach, there are ab-initio or intrinsic methods using
statistical features such as Open Reading frame length and codon usage to distinguish
coding from non-coding regions. By contrast, extrinsic methods try to find similarities
between genomic sequences and known proteins. [12]

The statistical approach to gene prediction deploys two complimentary approaches:
gene search by signal and gene search by content. The search by content methods use
various coding measures to determine the protein-coding potential of sequences. The
search by signal methods identify signal sequences, such as splice sites, which delimit
coding regions. Common approaches to finding functional signals include the weight
matriz method and the neural network method. [13]

Signal sensors Local sites such as splice sites, start and stop codons, branch points,
promoters and terminators of transcription, polyadenylation sites, and ribosomal bind-
ing sites are called signals and methods for detecting them may be called signal sen-
sors. The most basic signal sensor is a simple consensus sequence or an expression
that describes a consensus sequence along with allowable variations. More sensitive
sensors can be designed using weight matrices, in which each position in the pattern
allows a match to any residue, but different costs are associated with matching each
residue in each position. The score returned by a weight matrix sensor for a candidate
site is the sum of the costs of the individual residue matches over that site. If this
score exceeds a given threshold,the candidate site is predicted to be a true site. Such
sensors have a natural probabilisitic interpretation in which the score returned is a log
likelihood ratio under a simple statistically model in which each position in the site
is characterized by an independent and distinct distribution over possible residues.
More sophisticated tyes of signal sensors are neural networks. [14]

Splicing signals Certain signals can be used to detect intron-exon junctions.
These so called splicing signals are conserved sequence segments of eight nucleotides
at an exon-intron boundary (5" end or donor splice site) and a sequence of four
nucleotides at an intron-exon boundary (3’ end or acceptor splice site). A signal can
be represented as a consensus pattern of most frequent nucleotides at each position
of an alignment. The frequency information is captured by Position Weight Matrices
which assign frequency based scores to each possible nucleotide at each position of
the signal. [15]



Content sensors Genomic DNA signals can be contrasted with extended and vari-
able length regions such as exons and introns, which are recognized by different meth-
ods that may be called content sensors.

The most important and most studied content sensor is the sensor that predicts
coding regions. In prokaryotes, it is still common to predict genes by simply looking for
long open reading frames (ORFs); this is certainly not adequate for higher eukaryotes.
To discriminate coding from non-coding regions in eukaryotes, exon content sensors
use statistical models of the nucleotide frequencies and dependencies present in codon
structure. The most statistical used models are known as Markov models. Neural
networks can be used to combine several coding measures along with signal sensors
for the flanking splice sites. Other content sensors include sensors for CpG islands,
which are regions that often occur near the beginnings of genes where the frequency
of the dinucleotide CG is not as low as it tupically is in the rest of the genome, and
sensors for repetitive DNA, such as human ALU sequences. [14]

Open Reading Frames The simplest way to detect potential coding regions is
to look at Open Reading frames (ORFs). An ORF is a sequence of codong’| in DNA
that starts with a Start codon, ends with a Stop codon, and has no other Stop codons
inside. One expects to find frequent Stop codons in non-coding DNA simply because
3 of 64 possible codons are translation terminators. The average distance between
Stop codons in "random” DNA is %4 ~ 21, much smaller than the number of codons
in an average protein (roughly 300). Therefore, long ORF's point out potential genes,
although they fail to detect short genes or genes with short exons. [15]

Codon usage Another statistical measure is the codon usage. It can be used
to recognize diffuse regularities in protein coding regions. A 64-mer vector gives the
frequencies of each of 64 possible codons in a window. Codon usage vectors differ
between coding and non-coding windows. Thus they can be used as a measure for
gene predictor. [15]

2.2.3 Gene prediction concepts

The trend for gene prediction has moved away from statistic-based to similarity-based
and EST-based algorithms. The combinatorial approach includes protein similarities
to derive exon-intron structure. Later those predictions are used for experimental
verification by biologists.

3A codon is a three-nucleotide sequence of DNA or mRNA that specifies a particular amino acid
or termination signal; basic unit of the genetic code ([5])
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Linear Discriminant Analysis and Quadratic Discriminant Analysis Two
classical, statistical pattern-recognition methods that are used to categorize samples
into two classes. Once samples have been represented as points in space, linear
discriminant analysis (LDA) finds an optimal plane surface that best separates points
which belong to two classes. Quadratic discrimant analysis (QDA) finds an optimal
curved (quadratic) surface instead. Both methods seek to minimize some form of
classification error. For example, if there are ten true exons and ten pseudoezondl,
and two feature variables - 5’ splice-site (ss) score and 3’-ss score - these samples
could be represented by 20 points in a two-dimensional space (the 5’-ss score on the x
axis and the 3’-ss score on the y axis). LDA (or QDA) would compute a straight (or
curved) line through the space that can best separate the two classes of exons (with
the minimal classification error). [11]

Perceptron Method A machine learning algorithm for pattern recognition or clas-
sification. Unlike LDA-based approaches, which calculate theoretically the final best-
discriminant plane, a perceptron method is based on a simple neural network which
begins with an arbitrary initial plane and then iteratively moves the plane in a way
that tries to reduce the classification error at each step. [11]

Hidden Markov Models Probability models that were first developed in the
speach-recognition field and later applied to protein- and DNA-sequence pattern
recognition. Hidden Markov Models (HMMSs) represent a system as a set of dis-
crete states and as transitions betweent those states, each of the possible transitions
having an associated probability. Markov models are 'hidden’ when one or more of
the states cannot be observed directly. HMMs are valuable in bioinformatics because
they allow a search or alignment algorithm to be built on firm probability basis, and it
is straightforward to train the parameters (transition probabilites) with known data.
I

Hexamer-Coding Measures Some methods interpret sequences as successions of
words (so-called because nucleotides are not independent of each other, but tend to
occur together as if in a word) of length k& (k-tuples); 6-tuples are called hexamer.
In-frame hexamer frequencies in a region of DNA have traditionally been used as
a powerful way of discriminating coding regions from non-coding regions, as some
words are more likely to be present in either type of DNA. A score s for a hexamer
w, such as CAGCAG, can b defined as s(w) = log(freq(w)). Because the frequency of
CAGCAG is relatively high in exons, its score in exons will be higher than that of,
for example, TAATAA. [11]

4A pre-mRNA sequence that resembles an exon, both in its size and in the presence of flanking
splice-site sequences, but that is never recognized as an exon by the splicing machinery.



Weight Matrix Method and Weight Array Method Used for scoring a signal
motif site. In the weight matrix method (WMM), a score s(z,b) is assigned to each
position z for each base pair b, such that the total score of a motif site can be
calculated as the sum of scores at all positions in the site. In the weight array
method (WAM), a score s(z,w) is assigned to each position z for each word w of
length & (when k=1, the two methods are the same). [11]

Maximal-Dependence Decomposition (MDD) Donor Matrices A set of
donor splice-site weight matrices that are generated using the WMM, each of which
is built for a different class of splicing donor sites in such a way that the dependence
between nucleotide positions is minmized. [11]

Decision Tree A classification scheme, which can be used, for example, to split a
sample into two subsamples according to some rule (feature variable threshold). Each
subsample can be further split, and so on. [I1]

Artificial Neural Networks A collection of mathematical models that emulate
some of the ovserved properties of biological nervous systems and draw on the analo-
gies of adaptive biological learning. The key element of the artificial neural network
(ANN) model is the novel structure of the information processing system. It is com-
posed of many highly interconnected processing elements that are analogous to neu-
rons and are tied together with weighted connections that are analogous to synapses.
Once it is trained on known exon or intron sample sequences, it will be able to predict
exons or introns in a query sequence automatically. [11]

12



Chapter 3

Benchmarking gene predictions

3.1 Measuring the prediction accuracy

The first comprehensive comparative analysis of gene prediction programs was pub-
lished by Burset and Guigo, 1996 [16]. A number of gene prediction programs were
run on a large set of vertebrate genomic sequences coding for single genes and per-
formance metrics were introduced to evaluate accuracy of predictions.

In order to evaluate the accuracy of a gene prediction program on the test se-
quence, the by the program predicted gene structure has to be compared with the ac-
tual gene structure of the sequence experimentally validated by, for instance, mRNA.
The accuracy can be evaluated at different levels of resolution:

e nucleotide level
e exon level
e gene level

These three levels offer complementary views of program’s accuracy. At each level
two basic measures can be introduced, sensitivity and specificity. They are essential
measures for prediction errors of the first and second kind. Sensitivity (Sn) is the
proportion of real elements (coding nucleotides, exons, genes) that have been correctly
predicted. In contrast, specificity (Sp) is the proportion of predicted elements that
are correct. Both measures values lie inbetween 0 and 1. In a perfect prediction both
measures are equal to 1.

Neiter Sn nor Sp alone constitute good measures for global accuracy since one can
have sensitivity with little specificity and vice versa. A single scalar value desirable
to summarize both measures. In gene finding literature, the prefered measure on the
nucleotide level is the correlation coefficient. At the exon level, an exon is considered

13



correctly predicted (TE) only if predicted exon is identical to the true one, in partic-
ular both 5" and 3’ end boundaries have to be correct. A predicted exon is considered
wrong (WE), if it has no overlap with any real exon. A summary measure on the
exon level is simply the average of sensitivity and specificity. At the gene level, a
gene is correctly predicted if all of the coding exons are identified, every intron-exon
boundary is correct, and all exons are included in the proper gene. Missed genes
(MG) are the fraction of true genes for which none of its exons is overlapped by any
predicted gene. Wrong genes (WG) are the fraction of those predicted genes for which
none of the exons is overlapped by any real gene.

3.2 Using the prediction accuracy for merging of
gene predictions

When merging different gene predictions provided by diverse gene structure prediction
computer programs one will soon realize that there are no standardized performance
and quality metrics which enable consistent comparison among the programs in terms
of the prediction quality.

If one has to choose among overlapping genemodels of different predictions one
cannot use the scores and probabilities provided by the gene prediction programs
themselves due to the fact that this information is calculated very different algorithms
and sometimes are not publicly available. Introducing a standardized scoring system
seems to be essential for further comparison.

For the purpose of calculating an accuracy measure a test data set has to be
identified. When choosing this test data set one has to take into account that gene
prediction programs were trained on particular sequences. To minimize the overlap
of test and training data in order to obtain a non biased measure one should consider
only sequences which were entered in databases after the release of the prediction
programs although some programs are continuously updated and further developed.

Bearing in mind that most gene predictors have problems with finding the exact
boundaries of exons, a prediction program which recognizes the correct region of a
gene, but mispredicts the boundaries of the gene, would achieve a similar score as a
program which predicts non-existing genes. For this reason the nucleotide level was
chosen for determining the prediction accuracy.

One can represent the coding value of nucleotides along the sequence as a joint
distribution of two binary variables which form a 2x2 contingency table (Figure .
This table contains four cells. The number of nucleotides which are correctly predicted
(true positive) are placed in the upper left cell while the number of nucleotides which
are predicted as coding but are non-coding in reality (false positive) are placed in the
upper right cell. The lower left cell contains the quantity of nucleotides which are

14
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Figure 3.1: Average conditional probability - distribution table

_1[ TP TP TN TN
acp = 4 {TP+FN + 7P T TNFFP T TNSFN

Figure 3.2: Average conditional probability - formula

wrongly predicted as non-coding (false negative) while the lower right cell contains
nucleotides where prediction and reality agree in non-coding (true negative).

With the information of the table, one is able to calculate measures of accuracy.
Burset and Guigo report that neither sensitivity nor specificity alone can be used as
global measures for the prediction accuracy. There are several possible approaches to
combine sensitivity and specificty. Most of these combined measurements were unde-
fined in special situations or the components (Sn and Sp) were not equally weighted.

One appropriate measure for global prediction accuracy is the ’Average Condi-
tional Probabiltiy’(acp) which was chosen for comparative analysis in GFMerge (Fig-

ure .

The acp value has two advantages, firstly, it summarizes the information of the 2x2
contingency table and secondly, it can be computed in any situation and is in this
way an appropriate measure for global prediction accuracy.

The class PredAccuracy implements the computation of the acp calculation. It
has to be noted that due to the double helix structure of the DNA genes can be
situated on both strands. The first part 1%f the calculation is the transformation of



the nucleotides, which represents one of the four bases, into a binary variable which
is either the state coding or non-coding. In two steps the forward and reverse strand
of the prediction are compared with the annotation. For each of the four cases (true
positive, true negative, false postive, false negative) an integer variable is incremented.
The acp value is calculated according to the formula above.

16



Chapter 4

Software Development

This chapter introduces briefly the object-oriented paradigm and the Unified mod-
elling language (UML). Their fusion embodies a powerfull instrument in software
development.

4.1 Object-Oriented Software Development (OOSD)
Metholodogy

The main features of object-oriented programming are abstraction, encapsulation,
inheritance and code reuse. An entity in the problem domain is abstracted as an
object. The object encapsulates related data (in form of instance variables) and its
operations (called methods). An object can be inherited by another object to provide
reuse. The reuse is "flexible” in that the ”child” object can add new operations (and
data) and/or modify existing ones.

Object-Oriented Software Development focuses on objects during its phases, analy-
sis, design, implementation and testing. During object-oriented analysis the problem
is described. Functional and non-functional requirements are determined. Entity-
Relationship diagrams are drawn. An entity-dictionary which is a repository of entity
names and descriptions is written. Entities are validated as black boxes. The next
step is object-oriented design when object diagrams are developed and data struc-
tures are determined. For each object specifications are identified. Pseudo-code is
written for each operation. Test strategies are developed for class integration. After
design follows implementation. An adequate object-oriented programming style is
chosen to produce source code which will be debugged and then compiled. In the
OOSD methodology unit testing proceeds as follows. For each class, test its member
functions. Test all constructors/destructors and overloaded operators. Verify each
unit meets its specification. For the Integration test all parts are put together and
tested as a whole. A test log entry shoul(%7specify who, what, when, inputs, outputs



both expected and actual, and conclusions. [17]

4.2 Appliance of OOSD in the Circular Model for
Software Development

During the last few decades the computer industry has matured and hardware became
smaller, faster and cheaper. Computer systems have grown larger and more complex.
As a result, the methodology used to produce software has correspondingly grown in
complexity. In an increasing number of systems, it is necessary to build and operate a
portion of the system before the requirements for the entire system can be thoroughly
understood. The circular model proposes a software life cycle model that not only
addresses resolving requirements, prototyping and incremental development, but also
provides a method to handle the total software life cycle in a continuum without
discontinuities that are inherent in other models.

The circular model (Figure was developed out of the need for a process that
could be used not only for current methodologies, but also for methodologies that are
emerging in Object Oriented Development (OOD). The entry point into the circular
model is in the center at point E. Cycle 1 defines the system and plans the overall
development. Requirements are analysed and planning is done to lay out the devel-
opment activites such that the system is built in the most efficient manner. Reviews
of the product of the current stage involve the customer to ensure that the system
is meeting the specified requirements. Cycle 1 consists of the stages Define Con-
cepts, Generate Definitions and Fvaluate Requirements. Cycle 2 is concerned with
implementing the system defined in cylce 1 and consists of the stages Analyze, Build
(Implementation) and Evaluate System. There are thre major decision points in the
circular model. Decision point A controls the transition of the process into cycle
2. If the results of the requirements evaluation (stage 3) indicate that the proposed
solution generated during stage 2 does not satisfy the customer’s requirements then
cycle 1 is repeated until the requirements are adequately defined and clarified. Deci-
sion point B provides the mechanism to resolve anomalies between requirements and
design before coding commences. Decision point C) crossing the boundary of cycle
2 to denote completion of the system, brings an orderly end to the life cycle model.
The boundary point crossing occurs when the criterion for satisfactory performance
of the system is met. [I]

18
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Chapter 5

Development of GFMerge

5.1 Project description

Large scale sequencing of genomes, such as that is done at the Wellcome Trust Sanger
Institute, produces a continuing flow of data. Much of which has to be analyzed au-
tomatically. The goal is to extract as much biological knowledge from a sequence
as possible. The core element of the analysis is finding genes. For this a number
of different gene prediction programs are used on the same sequence. Results are
inspected in parallel by a biologist in combination with evidence from other sources
such as comparisons to known sequences from the same or another organisms. Fre-
quently genemodels proposed by various gene prediction tools for a particular region
do not agree. Differences can be in level of confidence as given by the gene prediction
program, gene structure, size or location. A typical situation, for instance, is that
one program predicts a single gene in a region whereas another predicts two separate
ones in that area. Overall the aim is to derive the most plausible genemodel taking
into account all available evidence. This means that the best possible genemodel
could represent a composite of the structures proposed by the individual tools. When
the maximum amount of evidence is available one criterion can take precedence over
another: e.g. a genemodel of the largest possible size may not be judged to be the
authorative one if evidence from similarity to other sequences indicates there is reason
for it to be split into two separate genes.

The aim of the project is to develop a tool to automate parts of the above evalu-
ation process. It would apply the criteria of confidence score, size and similarity to
other known sequences to condense all possibilities into the most likely genemodel
which could then be inspected by a biologist. Compromises are necessary for the
completion of the task: normalisation of the score, clustering genemodels which are
exactly or approximately in the same region of the sequence and integrating the high
quality segments of each prediction and sequence similarity search into a single valid
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consensus genemodel. The tool should be expandable so that other evidence for gene
structures could be added as it becomes available. The development of the tool in-
cludes a functional specification, a design of the tool, as well as writing and testing
the tool itself. Java classes may be used for carrying out mathematical functions.

In the original specification it was considered desirable for this tool to be written
in Perl using BioPerl objects. This requirement was considered necessary because the
Pathogen Sequencing Unit wished to read data from simple EMBL files. However,
Java and BioJava together fulfilled the requirements adequately.

5.2 Software development process according to the
Circular Model

5.2.1 Cycle 1
Define Concepts

Cycle 1 is concerned with definition of the system. During the Define Concepts state
the objectives of the system are elaborated through the analysis of the customer sup-
plied system specifiation. A document that describes the operation of the system
is written detailing the system’s required objectives and how the objectives are en-
visioned to be accomplished. Stage 1 has a high degree of customer interaction to
ensure that the customer’s needs are fully understood. [I]

At the beginning, a rough description of the project was provided (see section
[b.1). After having consulted relevant literature (especially Burset et al., 1996 [16]),
the project domain was narrowed down and first ideas were formulated. Later, during
several user interviews the project description was iteratively improved and more
detail was added to the specification. Feasibility studies and Requirements analysis
were subsequently performed.

Requirements in brief:

e The application should transform an undefined number of gene predictions (in
files), calculated by different gene structure prediction programs on the same
sequence, into one gene prediction containing only high quality gene models
or gene models which consist of high quality segments predicted by different
programs.

e It was decided to implement a set of simple rules (Figure . These rules are
the basis for the merging process, the aim of which is to pick one gene model
in preference to the others, which overlap it, in the region. The rules are the
result of numerous discussions.
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Scores for gene models included in the predictions should be used for comparison
among overlapping items.

Scores from different prediction sources should be normalized to an equivalent
dimension.

e A scoring system should be developed which combines different evidences and
prediction scores to a total score of a gene model.

e The program should be modular and extendable.

The idea of integrating high quality segments of different gene predictions from a
same region into a new gene prediction was soon discarded due to the high complex-
ity of rules and exceptions, problem domains like frameshiftingﬂ and ORFSﬂ can be
mentioned.

Generate Defintion

Stage 2, Generate System Definition, is concerned with top level specifications for the
software. A top level system design is formulated by decomposing the total software
system into software subsystems. [I]

The system was basically devided into two subsystems, data object definition and
analysis classes. Data objects represent gene prediction programs and their gene
predictions. A gene prediction holds predicted gene models which consist of exons and
introns. Similarity data, like BLAST or cDNA evidence, contains exons and introns as
well. Analysis classes embody sequence similarity analysis, protein similarity analysis,
gene model length analysis and accuracy of the gene predictor. A thorough description
of the data object definition and analysis classes follows in section and [6.2]

5.2.2 Cycle 2

Cycle 2 is entered when the customer and contractor make the decision that the sys-
tem is adequately understood and specified. Adequately means that the abstraction
of the system that is being transitioned into cycle 2 can be implemented in its entirety.

[

1

occuring when the number of nucleotides inserted or deleted is not a multiple of 3, thus result-
ing in improper grouping into codons and consequently changing the frame in which triplets are
translated into a protein

2check for amino acids with termination codons becomes necessary
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Analysis

The Analyze stage consists of designing the software to a detail where coding can
easily take place. This is accomplished by performing the design and validating the
design against the specifications detailed during cycle 1. The Analyze stage ends
when the software design satisfactorily passes the design review. [1]

For data object definition a class diagram was produced (see Figure which
clearly states dependencies among data objects and their inheritance. Major al-
gorithms of the subsystem analysis classes were formulated into pseudo code (see
Figures , . A analysis hierarchy which states the chronology of analysis steps
was developed (see Chapter |8.3)).

Implementation

The decision to enter the Built stage is based upon a complete design that contains
no open items, i.e., no infamous TBDs (To Be Determined). [I]

Like in section described, it might be necessary to build some parts of the
system before most requirements for the whole system can be understood. There will
be always requirements which have been overlooked during analysis and design, but
are necessary to implement. In bioinformatics the incremental software development
process ofter reminds of a build-and-fix approach[I§]. It does not matter how well
analyzed and designed the first program version is, it always has to be modified, to
include biological execptions although it often breaks a well-designed implementation.

A brief example shall illustrate the issue. In a test set, following situation (Figure
occured. Three gene models overlap a BLASTX feature. Although the first gene
model has a better total overlap, gene model 2 and 3 have a slightly higher accumu-
lated overlap on the high-scoring path and are therefore picked. In biological terms,
it is better to chose gene model 1, because all of its exons match a single protein.
To make the BLAST analysis algorithm take gene model 1, intron overlap was intro-
duced. This involved several changes in the analysis class hierarchy. Basic methods in
the abstract class FeatureOuverlapAnalysisTools had to be adjusted which entailed into
alterations in the classes CDnaQverlapAnalysisTools and BlastOverlapAnalysisTools.

Although the project description stated differently, the object-oriented language
Java was favored over the script language Perl for implementation. Apart from a
better performance, Bz’oJ(waEL a comfortable Java library for bioinformatics issues,
was one of the decision criterions. The decision for Java did not negatively affect

3The BioJava Project is an open-source project dedicated to providing Java tools for processing
biological data. This will include objects for manipulating sequences, file parsers, CORBA interoper-
ability, DAS, access to ACeDB, dynamic programming, and simple statistical routines to name just
a few things. The BioJava library is useful for automating those daily and mundane bioinformatics
tasks. As the library matures, the BioJava libraries will provide a foundation upon which both free
software and commercial packages can be develoged. For further information see www.biojava.org


www.biojava.org

the usability, but it allowed a better implementation using a clean object-oriented
paradigm. Even though the final program will be built in a Perl pipeline, it can be
easily wrapped by a Perl script.

Code and unit test In this stage the design is coded and unit tested. [I] Apart
from the data object definition and analysis classes, several submodules were devel-
oped seperately and thoroughly tested. The high scoring path recursion (see [7.2)) as
well as the calculation of the average conditional probability (see|3|) can be mentioned
in this context.

During the implementation process, modules were indepentently tested. For log-
ging purposes in order to debug and test a new class was implemented, which enables
the user as well as the developer to log certain data which is produced while calcu-
lation. The logging functionality is seperated from the analysis code. When running
GFMerge the verbosity can be adjusted. One can either log a single modul, a level
of modules, which corresponds to an analysis level, or the whole program processing
data. The debugging mode can be passed as a command line argument.

Subsystem and System integration After testing had been accomplished and
the modules had been proved working correct, they were integrated to form the final
program GFMerge.

Evaluate System

The FEvaluate System stage consists of integrating the product with the rest of the
system, independent testing and formal acceptance testing to demonstrate the system
satisfies the requirements specification. At the end of the this stage the software is
delivered to the customer and the project is completed.

Independent and Acceptance test After the integration of all modules the pro-
gram was put to the acid test by several biologists. Variations from the desired
output, like shown in Figure [8.9] were eliminated.
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Operational demonstration During the development process, an APIE| was de-
veloped by using [literate pmgmmmingﬂ commands for JavaDoc. The program was
introduced by a presentation explaining the ”black-box” mechanisms and a written
documentation was provided.

4 An Application Programming Interface (API) is a set of definitions of the ways in which one
piece of computer software communicates with another. It is a method of achieving abstraction,
usually (but not necessarily) between lower-level and higher-level software. One of the primary
purposes of an API is to provide a set of commonly-used functions—for example, to draw windows
or icons on the screen. Programmers can then take advantage of the API by making use of its
functionality, saving them the task of programming everything from scratch. APIs themselves are
abstract: software which provides a certain API is often called the implementation of that API.[19]

5Literate programming is a certain way of writing computer programs. It is seen as communi-
cations to human beings, as works of literature, hence the name ”literate programming”. Docu-
mentation and source code are written into one source file. The compilable source code and the
formatted documentation can be extracted from this file with specific utilities (JavaDoc for Java).
The information is presented in a reading order suitable for human consumption (API in HTML).
The code is automatically rearranged for compu&eg execution. [19]



If different gene models in one region overlap:

U

Pick gene model with highest sequence similarity (cDNA). If several gene models
have the same similarity, keep all of them.

Pick gene model with highest protein similarity (BLAST). If several gene models
have the same similarity, keep all of them.

Several identical predictions take precedence over a single non-identical gene
model.

Pick rather long gene models than shorter gene models not to lose any coding
information. Total exon length which is the length of the gene model without
introns and genemodel length which includes all introns are used for comparison.

Pick gene model with the highest average conditional probability of its prediction
program, if several overlapping gene models are either identical or if there is no
other evidence.

Use percentage coverage of similarity data to score the overlap.

Accumulate all BLAST hits from the same protein to a gene model and use the
sum for scoring.

If two or more predictions overlap, take the one with the highest score.

A new scoring system has to be introduced due to the fact that gene structure
prediction programs use different scoring algorithms whose scores cannot be
converted in an universal scoring system.

Figure 5.1: Merging rules
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Program logging

Level logging

Modul logging

Figure 5.2: Logging scheme of GFMerge
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Chapter 6

Software architecture and design of
GFMerge

6.1 Unified Modelling Language (UML)

The Unified Modelling Language (UML) follows the hype of object-oriented analysis
and design methods. After a standardisation process with the Object Management
Group (OMG) it is now an OMG standard. Although it is called a modelling language
UML is rather a method. It embodies both a modelling language as well as a process.
The modelling language is mainly the graphical notation. The advice which steps to
take while doing a design can be assigned to a process. The main goal of software
development is the final code which is going to be executable by the user. In this sense
UML does not primarily support the development process. The fundamental reason
for the use of UML is a better communication. Certain concepts can be described
more clearly. Natural language is too imprecise when it comes to more complex
concepts. On the other hand the source code is precise but too detailed. UML can
emphasise important details while blanking out information which are unnecessary
for the overall view of a system.

Basically, class and sequence diagrams were used for the analysis of requirements
and the design of GFMerge. Class diagrams map requirements into an object-oriented
model. Classes show parts which need further work and are a good base for user-
developer communication. Each class should be treated as a concept in the user’s
mind. Another good approach is the usage of sequence diagrams which illustrate
parts of the program flow. A good understanding of the user’s world is essential
for developing good software. Especially in bioinformatics difficulties are reassigned
when computer scientist meets biologist.
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6.1.1 Class diagrams

Class diagrams are the backbone of most object-oriented methods. A class diagram
describes the types of objects in the system and the relationships that exist among
them. Operations and attributes are assigned to classes within the diagram. Con-
straints show relationships among objects.

As described in Cook’s and Daniels’ book ”Designing Object Systems” [20] there
are three perspectives which can be used when drawing a class diagram. The first
perspective is the Conceptual or Essential one. The diagram represents concepts of
the domain under study. There does not have to be a direct mapping between the
conceptual model and the later implementation. It can be considered as language-
independent. The second perspective is called Specification. 1t deals with interfaces
of software, not with their implementation. The core of effective object-oriented pro-
gramming is the programming to a class’ interface rather than to its implementation.
The Implementation shows the implementation of classes. This view is the most often
used although in many cases it is better to stick to the specification perspective.

For the modelling of GFMerge I decided for the implementation perspective. The
first diagram Figure combines dependencies between data structure objects. It
includes interfaces which are used. The view follows the succession of instantiation.
The first objects which are created are GenePredictor instances. In the next step
Prediction objects are assigned to appropriate gene predictor. Each prediction con-
tains a list of GeneModel instances which hold themselves Fxon and Intron objects.
GeneModel and SimFeature (protein or sequence similarities) objects can be pooled
to GFMergeRegion objects.

6.1.2 Sequence diagrams

6.2 Data structures in GFMerge

6.2.1 class GenePredictor

The class GenePredictor represents a single gene structure prediction computer pro-
gram. Objects of this class are instantiated for each prediction file in the training
data set. While the constructor is called a PredAccuracy object does the calculation
of the ’average conditional probability’ and returns a value which is stored in the
attribute acp.

The second attribute name contains the program’s label found in the training file
in the method tag of every feature. All tags have to have the same value otherwise
an exception is thrown.
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Figure 6.1: Class diagram GFMerge - data objects

The name is used to establish references among gene predictor objects and pre-
diction objects. The label used in the prediction files has to be the same like the ones
used in the training set alternatively predictions cannot be assigned to the evaluated
prediction program and an exception would be thrown.

6.2.2 class Prediction

After the instantiation of GenePredictor Prediction objects are created. They wrap a
BioJava Sequence and contain additional information. Referencing to a gene predictor
an absolute value about the quality of each prediction can be obtain. Furthermore a
prediction contains an ArrayList of GeneModel objects.

The attribute genePredicterName is gained from the prediction file and used for
producing a reference to the gene predictor.

6.2.3 abstract class GFMergeFeature

The abstract class GFMergeFeature is the basic structural design of common at-
tributes and methods of class GeneModel and SimFeature. A predicted gene, a cDNA
and a Blast feature have the same structure. They consist of Frons and Introns and
have a location on the sequence, are stranded and have a length. GFMergeFeature

wraps the BioJava Feature class.
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Figure 6.2: Sequence diagram GFMerge - analysis objects

abstract class FeatureComponent

The abstract class FeatureComponent represents class Fxon and Intron. Common
attributes are location and a reference to the GFMergeFeature object it the belongs
to.

class Exon

The class Ezon is derived from the abstract class FeatureComponent. An additional
attribute is the FzonType. The class FxonType was introduced for type safe enu-
meration in Java and contains following values which an exon can be assigned
to:

TYPE 5END which means that the exon is the 5-end of a feature

TYPE_SEND which means that the exon is the 3’-end of a feature

o TYPE_ INTERNAL which means that the exon is an internal one

TYPE_SINGLE_EXON_GENFE which means that the feature consists of only a
single exon

class Intron

The class Intron is derived from the abstract class FeatureComponent. In contrast to

exons which are modelled as sublocations of a Feature object in BioJava introns are
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not implemented. A single intron corresponds to the gap in-between two exons. It is
calculated by the program.

class GeneModel

The class GeneModel is derived from the abstract class GFMergeFeature. Each gene
model contains a list of exons and introns, a reference to its prediction and it wraps
a BioJava StrandedFeature.

A gene model represents a location on the sequence which a gene prediction pro-
gram conjectures a real gene.

class SimFeature

The class SimFeature is derived from the abstract class GFMergeFeature. It embodies
both, cDNA and Blast features which are used as evidence to proof the correctness
of a predicted gene. Apart from the reference to a prediction a SimFeature has the
same properties as a GeneModel.

6.2.4 GFMergeRegion

The class GFMergeRegion is instantiated to gain non-overlapping clusters of GFMerge-
Feature objects. The list of regions across the sequence is calculated by a recursive
algorithm. Each region contains overlapping GFMergeFeature which are either gene
models, cDNA or Blast features. Clustering the sequence in independent regions en-
ables a faster calculation because redundant combinations of gene models do not have
to be considered. Attributes of GFMergeRegion are a location and an ArrayList of
LocateAble which is an interface for GFMergeFeature.

6.3 Program flow of GFMerge

6.3.1 Main class GFMerge

GFMerge is considered as the main class of the application. It contains the stub of
the logic. Firstly, an object of the class SimpleArg is created. All arguments provided
when started the program are wrapped in a convenient way. The information can be
retrieved easily and independently by using accessor methods. For further processing
the reference of this SimpleArg object will be passed to methods.

As a second step a GFMerge_analysis object is created. To clearly separate the
main program flow from the data processing the class GFMerge_analysis contains all
analysis steps as invisible objects. The method getMergedFeature Table() returns the
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result of the calculation, an ArrayList of gene model regions of GFMergeRegion where
no gene model should overlap another one anymore.

This ArrayList of gene model regions is saved to a file which represents the final
output of GFMerge. After comparing the merged feature table to the original gene
predictions provided as input removed gene models are spotted and can be saved to
an additional file.

6.3.2 class GFMerge_Analysis - preprocessing

As mentioned above a GFMerge_Analysis object is created in main class GFMerge.
When calling the constructor GFMerge_Analysis() creates an ArrayList of GenePre-
dictor objects, one for each training data file. Using the predictor objects and all
prediction files an ArrayList of Prediction objects is generated where each prediction
is linked to its gene predictor. A prediction contains a set of GeneModel’s which
themselves consist of Fxon and Intron objects.

Similarly ¢cDNA and Blast objects are created according to the structural design
of class SimFeature. These objects embody exons and introns as well as gene models
but they are not linked to a prediction and gene predictor object.

6.3.3 class GFMerge_Analysis - Computation

Having packed the gene predictions and evidence data, cDNA and Blast features, into
handy objects the computation can start. When calling the method getMergedFea-
tureTable() the first time the analysis is carried out. An ArrayList of BasicFeature-
Analysis items, an abstract class which CDnaSpliceSite Analysis, CDnaQuverlapAnaly-
sis, BlastOverlapAnalysis, TotalEzonLengthAnalysis, GeneModelLengthAnalysis and
AvgCondProbAnalysis are derived from, contains the analysis objects in the order of
processing. Processing is kicked off in the analysis objects by calling method getH-
tghScoringGmRegArr which returns an ArrayList of regions containing high scoring
gene models.
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Chapter 7

Selected algorithms of GFMerge

7.1 Clustering the sequence

Most of the time gene predictions are unevenly distributed across a sequence. Some
areas are full of overlapping features, others seem to be non-coding. One could think of
clustering the sequence in independent regions of overlapping features.This approach
would enable an acceleration of the analysis process since analysis is done separately
in each region which means a high reduction of possibilities to consider. Individual
results are merged afterwards to a continuous conclusion. For this purpose the class
GFMergeRegion was introduced. Its data objects contain a cluster of overlapping
GFMergeFeature objects.

The algorithm which is used to determine the location of regions is based on a
recursion (Figure . Beforehand a preprocessing is done where gene models of all
Prediction objects are put into a tree map sorted by their start location (key). Due
to the fact that several gene models can identical or similar locations the value pair
contains an array of gene models with the same start location.

Java provides the class TreeMap based on red-black tree. Keys are sorted in
ascending order. All operations on the tree take a 6(logN) time cost in the worst
case. A red-black tree is a binary search tree and can be described as following ([21]):

[0 Every node is coloured either black or red.
U The root is black.
U Every red node that is not a leaf has only black children.

[0 Every path from the root to a leaf contains the same number of black nodes.

The beneficial effects of the colouring rules are a hight of the red-black tree which is
not exceeding the height of 2log(/N +1) f:m??ll guarantees logarithmic search operations.



Due to this fact this binary tree enables efficient storage and retrieval of ordered
items as long as the tree is balanced. A new item is inserted by placing it as a leaf.
If the its parent is black, the colour of the item should be red. On the other hand, if
the parent’s colour is red, the has to be adjusted. Following operations are possible,
changing the colour of the tree’s nodes and rotating the tree.

7.2 High Scoring Path

7.2.1 Description

The high scoring path is the path within a cluster or region of overlapping gene models
which contains the maximum score as accumulation of single scores of non-overlapping
gene models on the way.

In different stages of the merging process a score is assigned to a single gene
model. In order to find the mentioned high scoring path a recursive algorithm was
implemented in GFMerge.

The illustration shows four lanes which represent four gene predictions of different
programs. One will realize that the boundaries differ as well as the allocated scores
printed above each gene model. (The length of a gene model is not proportional to
its score.) Different test modules were developed with the task of finding the highest
score of a series of gene models within a cluster.

The first approach was a search algorithm which operated in the way as following
described. The set of gene models would be sorted in a list. Starting with the highest
item the list would be scanned in a descending order picking the next lower gene model
which does not overlap the already selected ones. It attracted our attention that we
would get a high score path but the accumulated score would not be the maximum
score which could be achieved. In certain situations a group of non overlapping lower
scoring gene models would have a higher score.

Aware of this problem a recursive algorithm was developed which would find all
possible combinations and would choose the gene models on the path with the highest
total score.

7.2.2 Implementation and optimisation

The algorithm was implemented according to the pseudo code (Figure . The
correctness was proven by further testing using a test data set similar to the one of
the illustration (Figure [7.3).
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AoRegs := array of regions;

ToGms := tree of genemodels;

AoGmsInReg := array of genemodels in single region;
AoOvGms := array of overlapping genemodels;
AoOvGmsTemp:= array of overlapping genemodels;
HoGms := hash of processed gms;

AoRegs = search(ToGms)
{
HoGms = new Hash();
foreach gm in ToGms
{
AoGmsInReg = find(gm, HoGms, ToGms);
AoRegs.add (AoGmsInReg) ;
}
}

AoGmsInReg = find(gm, HoGms, ToGms);
{
if (HoGms.contains (gm))
{
return null;

}

else
{
HoGms . put (gm) ;
AoOvGms = findOverlaps(gm, ToGms);
foreach gm in AoOvGms (= gmo)
{
AoOvGmsTemp = find(gmo, HoGms, ToGms);
AoGmsInReg.add (Ao0vGmsTemp) ;
}
}
return AoGmsInReg;

}

AoOvGms = findOverlaps(gm, ToGms)
{
foreach gm in ToGms (= gmComp)
{
if (gmComp.overlap(gm)
{
AoOvGns . add (gmComp) ;
}
}
return AoOvGms;

}

Figure 7.1: Pseudo code for clustering a sequence
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HoGms := hash of genemodels;

AoP := array of paths;

AoSP := array of single path (containg gms);
HoHScP := hash of highscoring path;

AoNoGms := array of non overlapping gms;

HighScoringPath = findHighScorePath(HoGms)

{
AoP = getAllPaths(new AoP, new AoSP, HoGms);
maxScore = getMaxPathScore(AoP);
HoHScP = getHighScoringPath(maxScore, AoP);
return HoHScP;
}
AoP = getAllPaths(new AoP, new AoSP, HoGms)
{
AoNoGms := getNonOverlappingGms(AoSP, HoGms) ;
if (AoNoGms.size = 0)
{
AoP.add (AoSP) ;
}
else
{
foreach gm in AoNoGms
{
tempArr = copy of AoSP;
tempArr.add (gm) ;
Al1Paths (AoP, tempArr, HoGms);
}
}
return AoP;
}

Figure 7.2: Pseudo code for high scoring path recursion

|

o

#——— first approach

@———— high scoring path

Figure 7.3: High scoring path in two dimensional space
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Optimisation | No. of paths
before 640
opt. 1 158
opt. 2 34

Table 7.1: Optimisation of recursive algorithm

Later the algorithm was optimised due to the fact that one ends up with all
possible combinations (faculty of the number of gene models on the path) which
represent the same path but in a different order of gene models. The number of
possible combination exponentially increases with the length of the path. A number
of rules were introduced which would reduce redundancy.

The first optimisation is that a path should always start at the ’left corner’ of
the cluster. The first gene model of the paths should be the furthest downstream
element, there should be no elements in the path array after the first element with a
location further downstream than the first element.

The test data cluster contained thirteen elements. Before the introduction of
optimisation 1 the number of all possible paths was 640 (Table . After the first
reduction of redundancy the number of paths could be decreased to 158. All paths
start at the left corner of the cluster although there were still some paths which are
identical apart from the order of their elements.

In order to get rid of the described redundancy another optimisation was used.
Only gene models should be added to a path if they have no predecessor which should
be further downstream. The result of this optimisation was the reduction of 158 paths
to the number of 34 in the test data set.

A third optimisation in the algorithm concerned iteration over the paths while
looking for the high scoring path. Instead of using an array of paths in which each
path would be an array of gene models the paths were stored in a tree map sorted
by their score. The sorting process would be automatically done when inserting the
path element in the tree. The high scoring path could easily obtained by taking the
last tree element. This optimisation would lead to a saving of processing time which
exponentially increases with the number of gene models within the cluster.
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Chapter 8

Documentation of GFMerge

8.1 Reference manual

Basically, the application GFMerge will be part of a pipeline which strings together
various analysis tools. Due to the fact, that all parameters can be typed in on the
command line, however, the program can be run on its own.

A brief reference manual will be displayed in the Unix shell when the program is

either started with insufficient parameters or the parameter -h.
For later processing the gene predictor accuracy (see Chapter |3) has to be calculated
in order to gain a statistical base for comparison of gene predictors. To deploy a
non-biased measure, an independent sequence with an annotation file as well as one
gene prediction file for each gene predictor has to be provided. This so called training
set should be a long sequence and if possible from the same organism in order to
measure the accuracy. Command line arguments are -a for the annotation file and -¢
“filel file2 .. fileN” for n gene predictions.

The other part of the command line parameters concerns the actual gene predic-
tions which have to be collapsed into one. The argument -p "filel file2 .. fileN”
should contain the predictions from the same gene predictors like the ones of the
training set.

The mandatory evidence data, used for similarity comparison, is a single cDNA file -c
and a single BLAST file -b. According to the quality of cDNAs, strand consideration
can be switched on by using the -y tag.

When confirming exons of a gene model internal cDNA boundaries are used. The
allowed deviation of an exon boundary from the original cDNA boundary, described
as fuzzy boundary, can be entered with the tag -z. The default value is the length of
15 bases upstream and downstream from the original location.

The tag -f is used to specify the name and path of the ”path/filename.tab” file which
represents the collapsed gene predictions. When the output of removed features is
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switched on by using -7, a single ”path/filename.removed. AnalysisLevel.tab” file is
saved at each analysis stage, containing the set of gene models which have been re-
moved at this level. At the end a ”path/filename.removed.tab” file of all removed
features is saved (Figure 8.1)).

[-h]  help
[-a] annotated training set
[-t "filel file2 .. fileN"] predictions on training set

[-p "filel file2 .. fileN"] predictions of gene predictors
[-b]  BLAST file

[-c] cDNA file

[-£] filename for output

[-r] switch for output of removed features

[-x]  fuzzy cDNA boundaries

[-y] consider cDNA strand

Figure 8.1: Command line arguments

8.2 Input/Output data

8.2.1 File format

As described in section an annotation and prediction files on the training set,
prediction files on the new sequence as well as similarity data have to be provided
to run GFMerge. The program was developed to handle files in EMBL format (for
detailed information see section [A.1)).

8.2.2 Requirements on input data

For a proper processing of GFMerge a set of requirements on the input data was laid
down.

First of all, only one sequence is accepted per EMBL file. In the case that there
are more than one sequence in a file, only the first one is considered!

Each gene prediction in a prediction file must be represented as a CDS feature
and must contain a method qualifier stating the name of the gene prediction program.
The spelling of the name must be identical in the training file and in the prediction
file (Figure [3.2)).

Each BLASTX alignment is represented as a BLASTCDS feature. These BLASTX
features are generated by a Perl script called exblz_to_tab.pl which takes a crunch file
as input.
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Each ¢cDNA alignment is represented as a mRNA feature. These mRNA features
are generated by parsing the output of a cDNA alignment softwareﬂ Ezonerate, using
exonerate2art.pl.

FT /method=HMMGENE

Figure 8.2: EMBL method tag for gene prediction program

In order to assign different BLAST matches to the same protein to a protein 1D,
the protein information can be provided in two possible formats (Figures , . If
GFMerge cannot retrieve the protein ID, it will exit the calculation.

FT /note="BLASTX similarity (percentage match=30.00) to
FT Q9U8L6 Q9USL6 CLC CHLORIDE CHANNEL HOMOLOGUE., from 194 to
FT 410"

Figure 8.3: BlastCDS feature

FT /note="max score = 497 AAP37962 AAP37962 Heat shock protein 70.

Figure 8.4: BlastCDS feature generated by exblx_to_tab.pl script

lany cDNA alignment can be used as long as a zﬁt of mRNA features in EMBL format is produced.



8.3 Merging process

8.3.1 Introduction

The merging process is done in a hierarchy of different analysis stages. The order of
those levels were carefully chosen in a way that the conclusiveness is declining from
the first to the last level. Less accurate evidence should be used only if there is no
other information available.

O c¢DNA splice site analysis (section

O c¢DNA overlap analysis (section

00 BLAST overlap analysis (section

O Total exon length analysis (section

O Gene length analysis (section

O Average conditional probability analysis (section [8.3.7))

At each vertical stage overlapping gene predictions are compared to each other
on the base of a horizontal scoring system. The sequence has been segmented in
non-overlapping regions which contain coinciding gene models. If one calculates the
high scoring path within all of those clusters the union is the high scoring path of the
whole sequence since each cluster is independent.

Not having a direct correlation between length of a gene model and its score
the high scoring path might not be the path of the high score non-coinciding gene
predictions. It can happen that a number of short genes can have a higher accumu-
lated score. For this reason every possible way through the two dimensional space of
non-overlapping gene predictions has to be considered.

gene prediction 1 N & 00 | <l
gene prediction 2 < <
protein similarity (BLASTX) I e

sequence similarity (cDNA) <da
merged gene prediction < <

Figure 8.5: Merging process - illustration
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8.3.2 cDNA splice site analysis

The first level of analysis is the comparison of cDNA splice sites to exon boundaries
of predicted gene models.

Due to the fact that ”full-length” ¢cDNAP|libraries can be obtained only with a lot
of effort, normally cDNAs with a lacking or uncertain 5’ end are used. Bearing this in
mind, only intron-exon boundaries of cDNAs are considered for comparison. Although
the 3’ end of cDNAs can be trusted as evidence, they are not used. Indeed, ESTs
(cDNAs) include coding sequences, known as exons, as well as non-coding regions,
known as untranslated regions (UTRs) upstream of the start codon (5 UTR) and
downstream of the stop codon (3’ UTR). Therefore one cannot use the data to predict
the beginning and the end of the coding region of a gene (external exon boundaries).

The program was not tested on genomes where alternative splz'cmgrf] has been
identified. As a consequence, it cannot be assessed which influence alternative splicing
might have on the merging process.

In order to evaluate each single gene model, a splice site scoring system was
introduced. If a gene model exon boundary exactly overlaps a cDNA splice location,
it obtains a score of 741”. A gene model exon boundary scores ”-1” when it overlaps a
cDNA location but not precisely a cDNA splice site. Whereas a gene model boundary
does not overlap a cDNA location at all, it receives a score of 70”. If a cDNA splice
site does not overlap a gene model exon boundary but a gene model location, a score
of 7-17 is added to the gene model. The total score of every gene model is calculated by
summing up the score of all individual gene model sublocations. Having scored each
gene model the program can find the high scoring path in the clustered sequence and
removes the low scoring ones. Fuzzy boundaries of cDNAs are considered. They can
be described as allowed deviation of a cDNA splice site and a gene model sublocation
boundary. The default is ”15” bases but can be changed to an arbitrary value (Figure

8.3.3 cDNA overlap analysis

As a second level of analysis a scoring system of gene models gained by their absolute
overlap with cDNAs has been introduced. All sub features of cDNAs are compared
to exons of predicted gene models in order to calculate the overlapping number of
bases. It does not matter if only one or more cDNAs overlap a gene model or its
exons. All overlap is collapsed into one compound location which the base overlap is

determined from (Figure [8.7).

2¢DNA which contain both ends of the mRNA
3the production of two or more mRNAs from a single pre-mRNA by joining together different
combinations of exons. [22] 43



genemodel

CcDNA [

Figure 8.6: The illustration shows a gene prediction which is supported by a cDNA feature. The light red areas
around the cDNA splice sites are referred to as fuzzy boundaries. Within a certain deviation gene model boundaries
are proved to be right. Only internal intron/exon splice sites of the cDNA feature are considered.

In (a) the gene model boundary overlaps an internal exon splice site of a cDNA feature. Because of the gene model
boundary being a start position and the cDNA splice site being an end position the cDNA boundary does not support
the gene model splice site. The boundary of the gene model is scored with ”-1” and for the non-overlapped cDNA
splice site another ”-1” is added to the gene model score. The gene model splice site in (b) overlaps the cDNA but
matches no ¢cDNA splice site. A score of ”-1” is added to the total gene model score. In (c) the gene model and
c¢DNA boundary agree, the total score is incremented by ”+1”. In (d) and (e) no value is added to the score. In the
first case, external cDNA splice sites are not used for proving correct gene model boundaries (since the information
for terminals of cDNAs are not certain because of practical reasons in the lab) and in the second case the gene model
boundary is not considered because it does not overlap a cDNA. The total score is ”7-2”.

genemodel 1

genemodel 2

cDNA

¥ n,m = overlap of exon n of genemodel m

Figure 8.7: In this figure two gene models overlap a cDNA feature. Although the first exons’ overlap of
both gene model is equal in length (1,1 = x1,2), the second exon of gene model 1 has a longer overlap than the
second exon of gene model 2 (z2,1 > x2,2). Consequently gene model 1 will gain a higher score than gene model 2
(z1,1 + 2,1 > x1,2 + x2,2), the absolute overlap length of gene model 1 is taken as score.

8.3.4 BLAST overlap analysis

In the third step BLAST overlap is taken into account. For each gene model over-
lapping BLAST hits are determined. Due to the fact that BLAST hits of different
proteins can match a single gene model one should distinguish the overlap of different
proteins to a gene model. On this account the BLAST overlap of each protein is
calculated and the longest protein overlap is taken as score. In that way, one gets the
highest coverage (Figure [8.8)).

Some users of GFMerge might use a script which merges BLAST hits with the
same protein ID within a certain intron length limit. The intron length limit avoids
merged blast hits containing multiple locations which should not be merged in bio-
logical terms, for instance, one hit at one end and another hit at the other end of the
sequence are bound together. (Figure 4



Recapitulating, the gene model score contains the absolute overlap at the exon
level as well as the absolute length of gene model introns overlapped by cDNA introns.

genemodel

protein 1

protein 2

p n,m = match n of protein m

Figure 8.8: Three BLAST features of two different proteins matches a gene model. As one can see is the
overlap of protein 1 (z1,1) shorter than the overlap of protein 2 which hits the gene model in two different locations
(p1’2 + p2,2). The longer overlap is used for scoring the gene model which is in this context protein 2.

genemodel 1 (|

genemodel 2, 3 <

protein <] |
i1,2i1,1

in,m = intron n of genemodel m

Figure 8.9: BLASTX special case

A percentage overlap analysis in the case of cDNA and BLAST overlap has been
condemned because the algorithm would favour a shorter gene model over a longer
gene model if both of them have the same or similar absolute overlap.

8.3.5 Total exon length analysis

If there are still overlaps among gene models after the previous analysis the total exon
length is taken to score gene models in order to keep as much coding information
(exons, exon length) as possible. The algorithm rather picks gene models with long
exons than ones with shorter coding segments (Figure .

8.3.6 Gene length analysis

This step compares coinciding gene models by using the total length of a gene model
including exon and intron length. After }i%ving picked gene models with the longest



possible accumulated length of all their exons the program now advantages gene
models with long introns for the purpose of allocating as much sequence space as
possible (Figure |8.10)).

genemodel Bl

x1 ylx2y2 x3 y¥3 x4

XN =exonn; ym = intron m

Figure 8.10:

The total exon length of a gene model is the accumulated length of all exons.
tgm = Z?:l x; with x; as exon 1.

The gene model length is the accumulated length including all introns.

lgm = Z;;l T; + ZT:I y; with y; as intron j.

n>l,n=m-1

8.3.7 Average conditional probability analysis

On the basis of a training data set including gene predictions of each gene prediction
program and an annotation for the training sequence the average conditional proba-
bility has been calculated. It represents a probability value which embodies a measure
of prediction accuracy at the base level. Due to the fact that a number of shorter
gene models with moderate average conditional probability (see section ?7)value are
rather taken than a single longer gene model with a considerable high score the high
scoring algorithm should be used only to choose among overlapping gene models with
similar length and location on the sequence. The reason for this apparently paradox
behaviour is the average conditional probability value should not be accumulated.
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Appendix A
GFMerge

A.1 Input/Output format

The input and output data is going to be in a special file format which is called EMBL
(Figure [A.1)). The EMBL format is a standard introduced by the European Bioinfor-
matics Institute (EBI) which is part of the European Molecular Biology Laboratory
(EMBL). It can be described as follows: [2]

e no series of header lines are required

e first line in the file begins the first sequence entry of the file

e first line of each sequence entry contains a two letters ID in the first two spaces
o EMBL identifier follows in spaces 6 through 14

e second line of each sequence entry has the two letters AC in the first two spaces
e accession number follows in spaces 6 through 11

e third line of each sequence entry has the two letters DE in the first two spaces
e free form text definition follows in spaces 6 through 72

e fourth line in each sequence entry has the two letters SQ in the first two spaces
e length of the sequence beginning at or after space 13 follows

e blank space and the two letters BP after sequence length

e nucleotide sequence begins on the fifth line of the sequence entry

e cach line of sequence begins with four blank spaces

e next 66 spaces hold the nucleotide sequence in six blocks of ten nucleotides

e cach of the six blocks begins with a blank space followed by ten nucleotides

e first nucleotide is in space 6 of the line while the last is in space 70



ID
XX
AC
XX
DE
DE
XX
SQ

//

AA03518 standard; DNA; FUN; 237 BP.
U03518;

Aspergillus awamori internal transcribed spacer 1 (ITS1) and 18S
rRNA and 5.8S rRNA genes, partial sequence.

Sequence 237 BP; 41 A; 77 C; 67 G; 52 T; O other;

aacctgcgga aggatcatta ccgagtgegg gtcctttggg cccaacctcc catccgtgtce 60
tattgtaccc tgttgcttcg gecgggeccge cgettgtegg ccgeeggggg ggegectetg 120
cccececggge ccgtgeccge cggagacccc aacacgaaca ctgtctgaaa gegtgeagtc 180
tgagttgatt gaatgcaatc agttaaaact ttcaacaatg gatctcttgg ttccgge 237

Figure A.1: EMBL file format [2]

e last line of each sequence entry in the file is a terminator line which has the two characters // in the first two
spaces

e multiple sequences may appear in each file
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A.1.1 Sequence diagram
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