A Rapid Development Process with UML

Giuliano Armano
DIEE, Dipartimento di Ingegneria Elettrica ed Elettronica,
University of Cagliari
Piazza d'Armi
1-09123, Cagliari (Italy)
Tel. +39-70-675.5878

armano@diee.unica.it

ABSTRACT

Since “design-oriented” life-cycles came to their maturity,
dramatic changes have been introduced as far as
programming tools and computer hardware are concemed.
Such changes made it possible to develop applications
focusing on refactoring rather than on analysis and design.
The underlying hypothesis is that by adopting suitable
tools and target languages, refactoring would possibly cost
less than the overhead introduced by modemn A&D
techniques. Recently, exitreme programming has been
proposed as an alternative to a “design-oriented” life-
cycle.

In this paper we describe a software application developed
using a software life-cycle that basically follows the
guidelines sugpgested by extreme programming. Such an
approach requires highly expressive programming
languages and powerful CASE tools. UML has been
selected as the underlying modeling language throughout
the whole process, for it incorporates well-known
diagrams for describing a software application from
different perspectives. Smalltalk has been selected as
target language, as it allows fast prototyping and early
delivery. We claim that, for small and medium-sized
projects, a lifecycle based on refactoring and supported
by suitable languages and tools allows tearn productivity
to be greatly enhanced.

Keywords

Software Life-Cycle, Object-Oriented Analysis and Design,
Minimal Methodologies, Extreme Programming, Refactoring.

1. INTRODUCTION

Object-oriented technology is extensively used in the field
of software engineering. In particular, it appears to be the
most suitable approach to perform conceptualization,
analysis, design and implementation, all within a common
framework. Up to 1997 more than 50 methods have been
proposed and used to support abject-oriented life-cycle
software development (e.g., Booch [2] OOSE [7], OMT
[11], Shlaer-Mellor [13], Wirfs-Brock [14], Coad-
Yourdon [4]).

The standardization of the well known Unified Modeling
Language ([3]) has dramatically changed the scope in
object-oriented software development. In fact, the
introduction of a standard language for describing

Michele Marchesi
DIEE, Dipartimento di Ingegneria Elettrica ed Elettronica,
University of Caglian
Piazza d’Armi
1-09123, Cagliari (ltaly)
Tel. +39-70-675.5899

michele@diee.unica.it

information, functional, and control models within the
framework of object-oriented technology has made it
possible to tackle software development issues from a
common perspective. UML does not incorporate any
particular process; however it encourages a process based
on use cases [7], centered upon the architecture, iterative
and, possibly, incremental.

Since UML has been standardized by OMG, their authors
have been attempting to define a process general enough
to be applied in most applications. This work leads to the
definition of the so-called Unified Process ! ([8], [9]). UP
aims to apply software “best-practices™ starting from the
concept of “software generation™.

According to UP, a software product is created in an
initial development cycle, and it will evolve into its next
generation by repeating a sequence of four phases:
inception, elaboration, construction, and transition.
According to the proposal of Boehm [1], each phase
defines a point in time (a milestone) based on clear
criteria. Thus, the above phases end up with the following
milestones: life-cycle objective, life-cycle architecture,
initial operational capability, and product release,
respectively. Several iterations occur within a software
generation, so that inception, construction, transition, and
claboration are different scenarios for iterations. It is
worth pointing out that each iteration incorporates
requirements elicitation, anmalysis, design, and
implementation as core processes workflows, although the
time spent on each “classical” workflow depends on the
point in which the iteration occurs during the software
generation. Roughly speaking, during inception
preliminary iterations most of the time is spent on
plamming and requirements elicitation; during elaboration
on requirements elicitation, analysis and design; during
construction on implementation and testing; during
transition on testing and deployment.

Several alternatives have been proposed that criticize the
overhead introduced by a classical “design-oriented”
approach, trying to simplify the software development
cycle by concenirating on implementation, testing and
refactoring (e.g., Minimal Methodologies [5], Scrum

! UP in the following.

Methodology [12], Extreme Programming > [6]). As this
paper is mainly concermed with XP, let us now illustrate
how it defines its own “best software practices”.

The rationale that supports the “extreme way” is that
requirernents will not be kmown at the beginning, as they
will change along the way. Thus, instead of trying to
capture and analyze requirements separately, it is better to
define an alternative approach able to incorporate the
design-for-change in a natural way. In other words, XP
techniques stemn from the consideration that life-cycle
processes based on formal or semi-formal techmiques
introduce an overhead that might cost as much as
(possibly more than) an approach based on refactoring,
basically played at the implementation level. Of course,
such a consideration could not be effective until languages
and tools able to support Rapid Application Development
[10] became common practice. It is worth pointing out
that XP was conceived within Smalltalk environments.
Due to its rnemory requirements, in the past Smalltalk was
typically run on powerful (and expensive) computer
systems, whereas nowadays it can be easily run on
personal computers and used as a target language for
iterative prototyping (which is the natural support for XP).

As a consequence of the underlying approach, the
“extreme way” ends up with an iterative process strongly
based on refactoring, testing, and a non-hierarchical team
organization. The rule of thumb that highlights the process
is “build for change instead of building for the future”.
Thus, when a change is required, only “the simplest thing
that could possibly work” is dome, followed by a
“merciless” refactoring.

The processes we have been outlining are very similar
when considering their “natural” bias towards an

in the space of the architectural solutions that may be
identified to solve a given problem. In particular, whereas
the former basically follows a rather classical approach
that uses A&D to avoid spending time in refactoring, the
latter bases its process precisely on refactoring.

In this paper we describe a process that basically follows
the guidelines suggested by XP, although here refactoring
is incorporated within round-trip-engineering activities.
Within such a process, UML and Smalltalk are used as
modeling and target language, respectively. The former
has been selected because it incorporates well-known
diagrams for describing a software application from
different perspectives (e.g., Use Cases, as well as Class,
Interaction, State, and Deployment Diagrams), whereas
the latter has been adopted as it allows fast prototyping
and early delivery.

2. THE PROCESS

In the process we propose, used on a real project, we
follow a spiral model where a complete round generates a
software generation. For the sake of clarity, we preserved
a process based on phases, as defined by UP, where
iterations occur within different scenarios, depending on
the phase currently being undertaken. Of course, the way
core processing workflows (such as requirements
elicitation, analysis, design, implementation, test, and
deployment) are distributed along the life-cycle of a
software generation has been customized following “XP-
like™” recommendations.

The main difference between XP and the life-cycle we
adopted is on the scope of refactoring activities: whereas
XP basically adopts refactoring at the implementation
level, our approach extends it to design and analysis.
From our point of view, this may be seen as a natural

Inception Elaboration Construction Transiton
Business Modeling high decreasing almost none none
Requirements low-increasing high-medium decreasing-low low
Analysis & Design almost none high decreasing-low none
Implementation none increasing high almost none
Test none low high decreasing
Deployment none none increasing high

~10% ~30% ~50% ~-10%

Table 1. Life cycle phases together with core processing workflows in the Unified Process.

evolutionary lifecycle. In fact, iterative software
development is widely accepted within the software
enginecers comummunity as an essential characteristic of
modern life-cycles. On the other hand, UP and XP are
very different in the way they try to get a (local) minitmum

2 XP in the following,

evolution of the extreme way, as it continues to focus on
refactoring, while extending it to modeling activities. A
supporter of “pure” extreme programming would rather
point out that such a choice leads back to a classical
scheme, enhancing the overhead due to analysis and
design versus implementation and testing. To extend
refactoring without coming up against such a drawback, a
tool able to perforn round-irip engineering has to be

adopted, in order to facilitate moving from one level of
abstraction to another.

For the sake of simplicity, while illustrating the process
we adopted, we shall refer to the four main phases
proposed by UP (i.e., inception, elaboration, construction,
and transition). Before going into further details, let us
illustrate a cross-reference table that basically recalls how
and when core processing workflows occur within the
phases defined in UP. As reported in Table 1, about 80%

strictly depends on the selected target language
(Smalltalk), which strongly encourages and facilitates it.

To set up an environment able to support the proposed
process, two different tools, i.e., Rational™ Rose and
UMLTALK, have been used. The former is a well known
commercial tool. The latter, developed at our department,
is a tool able to update (or generate) an UML-compliant
model starting from an application written in Smalltalk
and vice-versa. > UMLTALK can also export its internal

Inception Elaboration Construction Transition

Business Modeling high decreasing almost none none
Requirements low-increasing high-medium medium low
Analysis & Design almost none high medium none
Implementation none medium high almost none
Test none medium high decreasing
Deployment none medium medium medium

~10% ~10% 75% ~5%

Table 2. Life cycle phases together with core processing workflows in the proposed process.

of the time required to deliver a software release is spent
on elaboration and construction, their ratio being about
60%.

The same cross-reference table is used to show the main
characteristics of the process we adopted. As reported in
Table 2 (italics have been used to stress where a change
occurred), almost the same amount of time required to
deliver a software release is spent on elaboration and
construction, but their ratio changes (less than 15%). This
basically means that elaboration has been “lightened” with
respect to construction. In particular, let us point out that:

- requirements elicitation and A&D activities have been
partially moved to the construction phase. This is
basically due to the choice of lightening elaboration
while increasing construction (by extending refactoring
to analysis and design through a round-trip-engineering
approach);

implementation starts early (i.e., during the elaboration
phase). In fact, coding is used at an early stage to verify
critical, ambiguous, or incomplete requirements, as well
as to anticipate the implementation of aspects deemed
crucial for the system to be developed;

- testing activities are pervasive and basically follow the
implementation’s workflow profile. In fact, according to
XP, testing activities are very important and require a
separate effort, usually aimed at implementing “test
classes” (one for each class defined within the system to
be developed);

- deployment occurs at each iteration; i.e., it is not
delayed until the transition phase starts. Such a choice

representations into a “Petal” file format, * thus leaving
the possibility of feeding Rose with a model created from
a Smalltalk application. The reverse operation is also
feasible, ie., UMLTALK can update a Smalltalk
application (or generate a Smalltalk skeleton) starting
from a model imported from Rose. Such a capability has
been used extensively within the application’s
development, thus giving rise to a round-trip-engineering
activity.

Let us now concentrate our attention on the process we
propose by considering each single phase of it:

- Inception

According to the “extreme way”, user requirements are
represented by means of use cases (called “user stories™ in
XP terminology), collected during brainstorming meetings
held with domain experts. Use cases are basically aimed at
eliciting domain classes from users. As use cases are an
informal text-based description, we do not spend time on
this issue, since the usual sensible recommendations apply
to them (predefined structure, non ambiguous
terminology, no redundant descriptions, etc.).

- Elaboration

Elaboration consists in performing analysis, defining the
overall system architecture, and attaining a preliminary

3 le, 0 update a Smalltalk apphcation (or generate the skeleton of it)
starting from a comresponding UML-comphant model.

4 Any Rose model (by default) is stored using an internal file format
called “Petal”.

design of the application. In the presented approach, these
three activities are performed in the following steps.

1. Analysis is done wusing Class-Responsibility-
Collaboration cards [14]. Here the focus is on
characterizing classes related to the domain for which
the application is intended to be run. This activity is
usually started with brainstorming meetings, aimed at
recording on actual CRC cards (with responsibilities
and collaborations) the classes found examining and
discussing use cases.

Then, these cards are transferred to UML class
diagrams, drawn using only the subset of UML
primitives that allow to implement CRC basic
concepts. In particular:

- packapes are used to partition the systern into
subsystems;

- classes (without attributes and operations) are used
to represent CRC cards;

- class “documentation” slots are used to hold class
descriptions and their responsibilities;

- dependency relationships are used to represent
collaborations;

- inheritance relationships are used to represent the
corresponding inheritance between classes ammotated
on the cards;

- notes are used to comment the diagrams.

In this way, the CRC analysis is documented with well
defined diagrams, which can be incrementally
modified. These diagrams are the starting point for the
subsequent step.

2. System architecture definition is aimed at expanding
the abstract view recorded with CRC cards and leads
to further refine classes in terms of their attributes and
operations. Now the focus is on adding structural
information to domain classes. Furthermore, extra
classes, strictly related to the application to be
developed but still “visible” to the user, ° can be added
to the model.

The class responsibilities elicited in the previous step
become atiributes, associations, and operations.
Collaborations are wused to specify and refine
operations, and to check the consistence of the model.
Very often, collaborations links become associations
and agpregations, since the fact that two classes
collaborate reflects their structural dependencies.

At this level of detail, further classes and
responsibilities that may arise are added to the model,
and are also incorporated into the CRC analysis by
means of an iterative process. Moreover, other classes
belonging to the user interface or other subsystems are

5 E.g., interface classes, protocols, confrollers, etc.

defined and added to the resulting architecture.
Packages are typically used to characterize high-level
subsystems that exhibit a high degree of internal
cohesion and external decoupling Packages derived
from the analysis can be further expanded, and other
packages can be added, holding the added subsystems.

This activity is performed with extensive use of UML
class diagrams, drawn using Rational Rose.

3. Design builds upon the overall architecture definition.
In this step, further details are added to the model. For
instance, let us consider an agency and its officiers.
During analysis it is specified that an agency has the
responsibility to know its officers and to query their
properties. This is reflected in agency responsibilities
and in a collaboration between the two classes. During
architecture definition these CRC concepts become an
aggregation between an apency and its officers (an
agency contains zero or more officers), and operations
to manage such aggregation and to query the officers.
During design it is specified that the aggregation is
implemented using an ordered collection, and that
officers are uniquely identified by an internal code.

Beside the augmentation of the model derived from
analysis, while performing design all user interfaces
are fully specified describing their widgets, events and
call-back messages. Furthermore, the permanent
storage of data is defined designing the databasc
schema or the file formats, and the interfaces with
external systems and devices are specified.

Eventually, the design model, written in UML, is
automatically transformed into a set of Smalltalk
classes, each with proper data structure, comments,
(automatically generated) access methods, and the
skeletons of other methods.

It is worth pointing out that state transition diagrams are
routinely used to represent the dynamic behavior of a
class. On the other hand, collaboration, sequence and
activity diagrams of UML are used very seldom, if ever.
The only motivation to use these diagrams is to document
a complex scenario of interaction among objects, in order
to make the model more understandable.

The whole elaboration phase has been Kkept as
“lightweight” as possible, so as not to move too far from
the “extreme way™.

- Construction

Construction consists in implementing and testing the
system to be developed. While implementing the system,
several iteraions may occur, basically centered upon
refactoring. As already pointed out, refactoring does not
usually occur just at the implementation level, ie., it
usually involves design activities, the overall architecture
definition, and analysis (possibly together with further
requirements elicitation). As a matter of fact, a round-trip-

engineering process has to be implemented during the
construction phase. To put it into practice, UMLTALK is
employed to link Smalltalk and Rose together. Starting
from the initial architecture developed using Rose (during
elaboration), UMLTALK can then be used (during
construction) to import such an architectural description
and to produce a Smalltalk skeleton of the program. At
this point, Smalitalk coding can be performed until a
change at the design or analysis level is required. In order
to do this, the Smalltalk code is used as a source for
updating the corresponding UMLTALK model. In
particular, new methods may have to be incorporated into
the model, and/or methods description may have to be
updated according to the existing Smalltalk code.

Once performed a coding session, UMLTALK can be
used to export the model in a “Petal” file format. In this
way, when needed, Rose may be fed back and realigned
with the updated model. © The problem of realigning
model and code arises also when changes are performed
within Rose. In such a case, they have to be transferred
down to the Smalltalk code. Commumication between a
Rose model and the corresponding Smalltalk code is
performed by using UMLTALK again, this time
proceeding in the opposite direction. As a result, a round-
trip-engineering process is implemented while performing
construction. In practice, UMLTALK is basically used as
a front-end to get Smalltalk applications being dealt with
using a standard tool able to perform modeling according
to a UML-compliant representation.

Let us note that the round-trip is performed starting from
the architectural level, and does not extend up to the CRC
analysis level. In this way, the “structured” class diagrams
are kept updated as UML documentation of the system.
On the other hand, the CRC diagrams reflect only the
initial efforts in the development of the system.

As far as testing is concerned, it is worth noting that it is
strictly coupled with implementation activities. In
particular, for each class that belongs to the system being
developed, a corresponding test-class must be defined and
implemented. Thus, testing activities are uniformly
distributed within an iteration instead of occurring mainly
at the end of it.

During construction, at each iteration, one or more
subsystems are partially refined and implemented. The
outcome of each iteration is a prototype that incorporates
part of the required functionalities. It is worth noting that
the whole approach is iterative, and incremental. In fact,
high-level subsystems may be developed separately
according to a typical incremental approach, and

implementation activities feed back design and/or
analysis.

S The “Semantics” field of each operation has been selected and used to
keep information about the Smalltalk code withm Rose.

- Transition

Transition consists in working on the application with the
goal of delivering it to the end user. In UP, once the
construction phase has been completed, usually several
problems occur while attempting to adapt it to the working
environment, frying to implement features that have been
postponed, correcting some problems, etc. In particular,
the act of adapting the application to the working
environment involves deployment activities, which should
typically occur at the transition phase. On the contrary, in
the process we adopted, deployment is performed at the
end of each iteration. In this way, the tramsition phase
results in a very “light” activity. In fact, such an approach
is strictly related to the target language (Smalltallc) which,
from a conceptual point of view, does not distinguish
between system and user-defined classes. Thus, in some
sense, the system is always “ready-to-use” and would need
a light deployment activity even if the application were
developed using Distributed Smalltalk.

3. EXPERIMENTAL RESULTS

We developed a system that falls within the class of
business-oriented internet services. The system provides
both an on-line and an off-line front-end. The former
consists of a web service supplied to any potential
business-man searching for a gramt by the European
Community, the state, and other national or regional
bodies to set up a firm in Sardinia. The latter consists of a
local service supporting domain experts in updating the
information about grants.

After starting an internet connection by means of a
standard web browser, the user is typically asked
information about the business to be undertaken or
improved. Depending on the given user profile, the system
queries a data base containing information about all
available grants, and sclects the information that match the
user profile. Results are automatically reported to the user
by means of dynamic web pages. At this point, she/he can
concentiate on a subset of the sclected grants (if any) or
begin a different query to the database. Of course, several
queries can be repeatedly submitted by the same user and
the application must be able to handle, at the same time,
multiple queries submitted by multiple users.

To supply the required functionalities, the following
subsystems have been provided:

- a database, containing laws and directives entailing
financial support, as well as information about
international, national, and regional bodies or
authorities;

- a web interface, compatible with any web browser,
able to create user profiles (one for each user
comnected to the web site), as well as to display, by
automatically pgenerating web pages, useful
information resulting from queries performed on the
database;

- an engine, able to perform suitable queries on the
database, according to any given user profile;

- an interface for database maintenance.

A first atternpt at capturing requirements made it clear that
domain experts were having difficulties while trying to
transfer their knowledge about the domain to be modeled.
Starting from this lack of clarity and considering that only
a few people were involved in the project, we decided not
to let the usual roles of software architect, analyst and
programmers be played within such a software project.
Instead, we defined a more flexible team structure,
composed of 4 people, adopting a non hierarchical team
organization and founding our work on refactoring as the
basic mechanism for process iterations.

Requirements clicitation was dome collecting from the
users about 20 “stories” telling the forecasted use of the
system. A “high-level” analysis was made with CRC
cards, using real cards first, and then storing them as class
diagrams in Rose. Fig.1 shows one such diagram.
Responsibilities are not shown here, although they have
been incorporated within class documentation. During this
activity 22 domain classes were found. Implementation of
some classes has been done at this early stage, to verify
the feasibility and conmsistency of critical aspects.
Furthermore, subsystems (i.e. packages), as well as
dependencies among classes, inheritance relationships,
and responsibilities have been identified.

Then, domain classes have been refined, typically turning
collaborations into associations and responsibilities into

attributes and operations, respectively. Fig. 2 illustrates a
refined diagram (only few attributes are shown for the
sake of simplicity). It is worth noting that collaborations
have become associations and that 15 more classes
(application-dependent classes) have been added to the
former diagram. The whole system ended up with 65
classes. Every week an internal release was developed.
One person was committed to develop test classes only.
He did not work with the rest of the team and was
accustomed to send his artifacts through Internet. This
activity did not have any ncgative effect on the expected
timing. After less than two months the part of the system
consenting intensive data entry was released and
immediately used by administrative personnel. The whole
system was successfully deployed in time after five
months from the beginning of the project. The estimated
man power was about 10 man-months, since developers
did not work fulltime on the project.

4. CONCLUSIONS AND FUTURE WORK

In this paper we describe a software process strongly
biased towards refactoring It basically follows the
guidelines suggested by XP; in fact, inception, elaboration
and transition result in a very “lightweight” activity,
whereas the main focus is on refactoring, implemented
through round-trip-engineering techniques during
construction. It is worth recalling that, within such a
process, refactoring activities are not only used at the
mmplementation level: they are extended to design and
analysis, too. Of course, thc developing teamn has to be

A legislative action is
enacted by an Agency

LegislativeAction k

Person

User

| Incentive

An user looks fo
incentives

and/or ruled by a
legislative action

An incentive is instituted

]

Fig. 1. A CRC diagram drawn during a preliminary analysis of the system

composed of few people, as communication between them
is greater than that observed in classical teams. This
happens for two different reasons: (i) the team is biased
towards a “democratic” organization, and (i) minimizing
overall commmnication is no longer a process requirement.

UML has been sclected as the underlying notation for
representing the model, and Smalltalk has been selected as
target language. To be able to perform round-trip-
engineering, (in particular, to be able to move back and
forth between analysis, design, and implementation
levels), a suitable tool developed at our department
(UMLTALK) has to be used throughout the whole process
to keep the UML representation of the system
synchronized with the corresponding Smalltalk code. In
fact, UMLTALK can produce a UML-compliant model
starting from a Smalltalk program, and vice-versa, and can
export its internal representation into a “Petal” file format
and vice-versa.

The proposed approach has demonstrated to be very
effective in a small-sized project, enhancing productivity
considerably, although its scalability up to middle-sized
projects has still to be proven.

It is worth pointing out that the life-cycle we adopted
takes into account the main criticisms moved by extreme
programming to a classical “design-oriented” life-cycle.

We believe that, from a historical point of view, A&D has
increased its importance within the software life-cycle
depending on the assumption that it is costly to undo
mistakes when playing mostly at the implementation level.
Nevertheless, somehow surprisingly, a classical waterfall
approach suffered from a similar drawback, as it pushes
risks forward in time so that it is costly to undo mistakes
from earlier phases. That is why, a modern “design-
oriented” life-cycle has to be iterative and, possibly,
incremental.

On the other hand, while “design-oriented” life-cycles
came to their maturity, dramatic changes have been
introduced as far as programming tools and computer
hardware are concerned. Such changes made it possible to
develop applications focusing on refactoring rather than
on A&D. The underlying hypothesis is that by adopting
suitable tools and target languages, refactoring would
possibly cost as much as (or less than) the overhead
introduced by modermn A&D techniques. Moving in the
same direction illustrated by exireme prograrmming, we
followed a process in which preliminary analysis and
design are made “lighter” and most of the time is spent on
refactoring. The main difference between our approach
and the “extreme way” is that we perfonmed refactoring
within a round-trip-engineering cycle, so that the model

Agency
id
name
address 1.1
description

Person

sumame
name
phone

1..1’vency %
lawmaker
0"*

IncentiveManagement

constraint Officer User

o0 1.3 code email
7= - 2y title lastConnection
0.* . office id
__ : responsibles officersinCharge omall password

LegislativeAclion admissionHoE preferences
code 1.1]
name
date norm Incentive
issue S———___|code
description 1.+ 1_= |[name
text “ |description

Fig. 2 A simplified “architectural” class diagram derived from the CRC diagram shown in Fig. 1.

10

and the cormresponding Smalltalk implementation are
continuously kept synchronized.

As far as future work is concemed, we are frying to give a
suitable GUI to UMLTALK, in order to be able to directly
perform round-trip-engineering, ~during consiruction,
within a framework based on UML and Smalltalk as
modeling and target language, respectively.

5. ACKNOWLEDGMENTS

Our thanks to all people involved in the project. A special
thanks goes to Dr.A. Angius, President of “BIC
Sardegna”, the enterprise the software project has been
developed for.

6. REFERENCES
(1] B. W. Boehm, “Anchoring the Software Process,”
IEEE Software, pp. 73-82, July 1996.

[2]1 G. Booch, “Object-Oriented Analysis and Design
with Applications,” Curimings, 1991.

[3] G. Booch, J. Rumbaugh, and I Jacobson, “The
Unified Modcling Language User Guide,” Addison-
Wesley, 1998.

[4] P.Coad and E. Yourdon, “Object-Oriented Analysis,”
Prentice-Hall, 1989.

[5] A. Cockburn, “Surviving Object-Oriented Projects: A
Manager's Guide,” Addison-Wesley, 1997.

11

[6] The best reference on Extreme Programming is in the
Web site:
http://c2.com/cgi/wiki? ExtremeProgramming.

[7] 1. Jacobson, M. Christerson, M. Jonsson P. van
Overgaard, “OO Software Engineering, A Use Case
Driven Approach,” Addison-Wesley, 1992.

[8] I Jacobson, J. Rumbaugh, and G. Booch, “The
Unified Softiware Development Process,” Addison-
Wesley, 1999.

[9] P. Krutchen, “The Rational Unified process,”
Addison Wesley, 1998.

[10]). Martin, “Rapid Application Development,”
Macmillan, 1991.

[11]J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, “Object-Oriented Modelling and
Design,” Prentice-Hall 1991.

[12]K. Schwaber, “The Scrum Development Process,”
OOPSLA 95, Workshop on Business Object Design
and Implementation, 1995.

[13]S. Shlaer and S. Mellor, “Object-Oriented Systems
Analysis: Modeling the World in Data,” Prentice-
Hall, 1988.

(14]R. Wirfs-Brock, B. Wilkerson, and L. Wiener,
“Designing Object-Oriented Software,” Prentice-Hall,
1990.

