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Time Warping
Hidden Markov Models
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The Four-Russian Algorithm
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BLAST  Original Version

Dictionary:
All words of length k (~11)
Alignment initiated between words 
of alignment score ≥ T 

(typically T = k)

Alignment:
Ungapped extensions until score 

below statistical threshold

Output:
All local alignments with score 

> statistical threshold

……

……

query

DB

query

scan
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PatternHunter

Main features: 
• Non-consecutive position words
• Highly optimized

5 hits

3 hits

3 hits

7 hits

7 hits

Consecutive Positions Non-Consecutive Positions

6 hits

On a 70% conserved region:
Consecutive Non-consecutive

Expected # hits: 1.07 0.97
Prob[at least one hit]: 0.30 0.47
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Today

• Time Warping

• Hidden Markov models
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Time WarpingTime Warping
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Time Warping

Align and compare two trajectories in multi-D space

α(t)

β(t)

• Additive random error
• Variations in speed from one segment to another
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Time Warping

Definition: α(u), β(u) are connected by an approximate 
continuous  time warping (u0, v0), if:

u0, v0 are strictly increasing functions on [0, T], and
α(u0(t)) ≅ β (v0(t)) for 0 ≤ t ≤ T

α(t)

β(t)

0 T

u0(t)

v0(t)
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Time Warping

How do we measure how “good” a time warping is?

Let’s try:

∫0T w(α(u0 (t)), β (v0(t)) ) d t

However, an equivalent time warping ( u1(s), v1(s) ), is given by:

s = f(t) ; f: [0, T] → [0, S]

has score

∫0S w(α(u1(s)), β(v1(s)) ) ds = ∫0T w(α (u0(t)), β (v0(t)) ) f’(t) dt

This is arbitrarily different
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Time Warping

This one works:

d( u0, v0 ) = ∫0T w(α(u0(t)), β(v0(t)) ) [(u’0(t) + v’0(t))/2] dt

Now, if s = f(t); t = g(s), and g = f-1,

∫0S w(α(u1(s)), β(v1(s)) ) (u’1(s) + v’1(s))/2 ds = 

f(t) = f(g(s)) = s;
f’(t) = f’(g(s )) g’(s) = 1, therefore g’(s) = 1/f’(t)
u0(t) = u0(g(s)), therefore u’0(t) = u’0(g(s)) g’(s)

∫0T w(α(u0(t)), β(v0(t)) ) (u’0(t)+v ’0(t))/2  g’(s) f’(t) dt =
∫0T w(α(u0(t)), β(v0(t)) ) [(u’0(t) + v ’0(t))/2] dt
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Time Warping

From continuous to discrete:

Let’s discretize the signals:

α(t): a = a0……aM
β(t): b = b0……bN

Definition: 
a , b are connected by an approximate discrete time warping (u, v), i f u and v are 
weakly increasing integer functions on 1 ≤ h ≤ H, such that

au[h ] ≅ bv[h ] for all h = 1……H

Moreover, we require  u[0]  = v[0] = 0; 
u[H] = M; 
v[h]  = N
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Time Warping

v

u
0

0

1 2

1
2

M

N Define possible steps:

(∆u, ∆v) is the possible 
difference of u and v

between steps h-1 and h

(1, 0)
(∆u, ∆v) =     (1, 1)

(0, 1)
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Time Warping

Alternatively:

(2, 0)
(∆u, ∆v) =   (1, 1)

(0, 2)

Advantage:

Every time warp has the same number 
of steps

possible 
position at 

h
(2, 0)

position at 
h-1

possible 
position at 

h
(1, 1)

possible 
position at 

h
(0, 2)
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Time Warping

Discrete objective function:

For 0 ≤ i = u[h]  ≤ M; 0 ≤ j = v[h] ≤ N,
Define w(i , j) = w( au[h ], bv[h ] )

Then,

D(u, v) = Σ h w(u[h], v[h]) ( ∆u + ∆v )/2

In the case where we allow (2, 0), (1, 1), and (0, 2) steps,

D(u, v) = Σ h w(u[h], v[h]) 
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Time Warping

Algorithm for optimal discrete time warping:

Initialization:
D(i , 0) = ½ Σ i’<i w(i , 0)
D(0, j) = ½ Σ j’<j w(0, j)
D(1, j) = D(i , 1) = w(i , j) + w(i -1, j-1)

Iteration:
For i = 2……M

For j = 2……N

D(i – 2, j) + w(i , j)
D(i , j) = min D(i – 1, j – 1) + w(i , j)

D(i – 2, j) + w(i , j)

Hidden Markov Models
1
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Outline for our next topic

• Hidden Markov models – the theory

• Probabilistic interpretation of alignments using HMMs

Later in the course:

• Applications of HMMs to biological sequence modeling and 
discovery of features such as genes
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Example: The Dishonest Casino

A casino has two dice:
• Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
• Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth between fair and loaded 
die once every 20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with 

loaded die)
4. Highest number wins $2
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Question # 1 – Evaluation

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How likely is this sequence, given our model of how the casino 
works?

This is the EVALUATION problem in HMMs
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Question # 2 – Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

What portion of the sequence was generated with the fair die, and 
what portion with the loaded die?

This is the DECODING question in HMMs
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Question # 3 – Learning

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs
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The dishonest casino model

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2
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Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)
• Alphabet Σ = { b1, b2, …, bM }
• Set of states Q = { 1, ..., K }
• Transition probabilitiesbetween any two states

aij = transition prob from state i to state j

ai1 + … + aiK = 1,   for all states i = 1…K

• Start probabilities a0i

a01 + … + a0K = 1

• Emission probabilities within each state

ei(b) = P( x i = b | πi = k)

ei(b1) + … + ei(bM) = 1,   for all states i = 1…K

K

1

…

2
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A Hidden Markov Model is memory-less

At each time step t, 
the only thing that affects future states 
is the current state πt

P( πt+1 = k | “whatever happened so far ”) =
P( πt+1 = k | π1, π2, …, πt, x1, x2, …, xt) =
P( πt+1 = k | πt)

K

1

…

2
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A parse of a sequence

Given a sequence x = x1 ……xN,
A parse of x is a sequence of states π = π1, ……, πN
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Likelihood of a parse

Given a sequence x = x1 ……xN

and a parse π = π1, ……, πN,

To find how likely is the parse:
(given our HMM)

P(x, π) = P(x1 , …, xN,  π1,  ……, πN) =
P(xN , πN | πN-1) P(xN-1, πN-1 | πN-2)……P(x2, π2 |  π1) P(x1, π1) =
P(xN |  πN) P( πN | πN-1) ……P(x2 | π2) P( π2 |  π1) P(x1 |  π1) P( π1) =
a0π1  aπ1π2 ……aπN-1πN eπ1(x1)……eπN(xN)

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x
1

x2 x3 xK

2

1

K

2

Lecture 4, Thursday April 10, 2003

Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Then, what is the likelihood of

π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs a0Fair = ½, aoLoaded = ½)

½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ × (1/6)10 × (0.95)9 = .00000000521158647211 = 0.5 × 1 0-9
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Example: the dishonest casino

So, the likelihood the die is fair in all this run
is just 0.521 × 10-9

OK, but what is the likelihood of

π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 
Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded, Loaded) … P(4 | Loaded) =

½ × (1/10)8 × (1/2)2 (0.95)9 = .00000000078781176215 = 7.9 × 10-10

Therefore, it is after all 6.59 times more likely that the die is fair all the way, 
than that it is loaded all the way.
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Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood π = F, F, …, F?

½ × (1/6)10 × (0.95)9 = 0.5 × 10-9, same as before

What is the likelihood

π = L, L, …, L?

½ × (1/10)4 × (1/2)6 (0.95)9 = .00000049238235134735 = 0.5 × 10-7

So, it is 100 times more likely the die is loaded
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The three main questions on HMMs

1. Evaluation

GIVEN a HMM M, and a sequence x,
FIND Prob[ x | M ]

2. Decoding

GIVEN a HMM M, and a sequence x,
FIND the sequence π of states that maximizes P[ x, π | M ]

3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence x,

FIND parameters θ = (ei(.), aij) that maximize P[ x | θ ]
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Let’s not be confused by notation

P[ x | M ]: The probability that sequence x was generated by 
the model

The model is: architecture (#states, etc)
+ parameters θ = aij , e i(.)

So, P[ x | θ ], and P[ x ] are the same, when the architecture, and 
the entire model, respectively, are implied

Similarly, P[ x, π | M ] and P[ x, π ] are the same

In the LEARNING problem we always write P[ x | θ ] to emphasize 
that we are seeking the θ that maximizes P[ x | θ ]


