
Hidden Skills that Support Phased and Agile Requirements Engineering

Ben Kovitz
bkovitz@acm.org

Abstract

Phased development does requirements engineering in
one or a small number of extended phases occurring early
in a project. Agile development also does requirements
engineering, but in thousands of small conversations
spread throughout the development lifecycle. Each
depends on subtly different skills and expertise to perform
its practices—agile development depending heavily on
ability to change working code, phased development
depending heavily on foresight.

This paper surveys the special skills that each style of
requirements engineering depends on in order to promise
and deliver.

1. There’s no escape

Suppose a customer asks you to build an order-entry
system for some new biological-research gizmo that
requires extensive and unusual configuration for each unit
ordered. Configuration will involve reading computerized
lab results, downloading genomic data from the Internet,
and combining all this information in complex ways.
Neither you nor your team of programmers knows much
about this field. How will you and the programmers learn
the vast amount of knowledge and customer decisions
required to implement the system?

One approach, which we will call phased development,
is to acquire this information early, in a special phase that
occurs prior to coding (aside from prototypes). Hopefully,
by stabilizing and understanding this information early,
we can make wise design decisions before coding,
prevent costly recoding, and deliver a working system by
a predictable date. We’ll be able to make an agreement
with the customer stating precisely what we will deliver
and when, and we will know that we can fulfill our part of
the agreement.

Another approach, which we will call agile
development, is to acquire the same information
concurrently with coding, in thousands of small
conversations [1]. We’ll write code with incomplete
knowledge, fully expecting to rewrite it as we acquire
new knowledge. Hopefully, we will reduce risk by
delivering partial but highest-priority business value

early. We will greet each coding “mistake” as an
opportunity to learn and to allow the customer to change
and refine requirements as his own understanding changes
or as the business situation changes—leading over time to
a system that is always finely tuned to both the current
needs of the business and the available resources for
software development.

Notice that in both approaches, the development team
must acquire the same information and the customer must
make the same decisions about the system. Of course the
needed information is most commonly called
requirements, and the job of specifying it and deciding it
is most commonly called requirements engineering.

The principal difference between phased and agile
development, then, is not whether to do requirements
engineering, but when to do it. Phased development does
requirements engineering in an early phase that precedes
the majority of coding. Agile development does
requirements engineering continuously throughout the
project. Phased development usually embodies the
requirements in a written document, and agile
development does not [1, 2].

1.1. Promising and delivering

Why does anyone care? As long as you do a good job
of requirements engineering, what does it matter whether
you do it in a phase or continuously?

 The decision matters because it affects what promises
you make to the customer, and what skills and expertise
you need in order to deliver. Typically (though not
necessarily), developers in an agile project promise very
small deliverables which they release to the customer
once per “iteration”—one to three weeks, on most
projects [3]. Beyond the current iteration, they don’t offer
the customer much certainty about precisely what
functionality will be delivered on a given date.

Typically in a phased project, the developers promise a
large set of specific features by a specific date. Only the
phased approach can do this, because only in the phased
approach are the features defined in enough detail for
such a promise to be meaningful—combining both a
precise delivery date and precise delimitation of scope.

In this paper, we’ll examine the special skills that the
development team must possess in order to deliver on its

promises predictably and economically. We’ll see that
success for each style of requirements engineering
depends on the developers’ possessing very different sets
of skills. Some of these skills might be surprising, and
most are not currently taught in universities.

While most of the skills are needed in some degree for
both styles of development, we’ll focus on skills that are
pushed to extraordinary levels—levels that would be hard
to anticipate without personally experiencing each style of
development.

2. Skills in agile development

The principal skill in agile development is modifying
working source code in response to concrete interaction
and feedback. In agile development, you always have a
live, working system. You make a small change, get the
whole system working again, make another small change,
and so on. The major difficulty to be overcome through
special skills and practices is making continuous
modification economical.

Programmers in a great many software shops live in
terror of making even small changes to legacy code.
“How can I be sure I’m not introducing a bug?” If
software is anything, it’s complicated. Seemingly minor
code changes often have unexpected consequences.

In agile methods, it is not enough for code to be
correct. The code must also be modifiable in such a way
that we can easily tell if any given modification is also
correct. Only in this way can we make continuous code
modification economical.

Extreme Programming (XP), the best-known agile
method, solves this problem through a variety of
interconnected practices. Because the rules of these
practices are described in depth elsewhere [4, 5], we’ll
describe only the most fundamental here, on our way
toward understanding the complex skills that the practices
depend on.

Test First. XP requires programmers to write a failing
unit test for each bit of code before writing the code. Thus
the software and a highly refined test suite grow together.
Coding becomes a fast cycle of making a small change,
seeing what tests fail, and making any needed changes to
get 100% of the unit tests to pass again. The unit tests
function as a project-specific debugger, pointing you to
the subroutine that has gone wrong each time a new bug
is introduced.

Refactoring. Refactoring is the act of changing
working code so it still does the same thing but in a way
that is easier to understand and modify. Programmers are
thus free start with clumsy designs or inelegant code and
continuously simplify.

Pair Programming. All production code is written by
two programmers together: one at the keyboard, one
looking over the other’s shoulder for errors. Thus each

line of code is reviewed as it is typed in. If the “observer”
finds code difficult to understand, the “driver” is
prompted to change it immediately. Pairing spreads
knowledge of the code throughout the team, making
everyone familiar enough with the system to modify any
part of it.

Small Releases and On-Site Customer. The
development team releases a usable new version of the
software once per iteration. Any “user story” (customer-
specified functionality) that is too large to implement in
one iteration, complete with unit tests, must be broken
into smaller chunks. During the iteration, users or domain
experts work directly with the programmers, answering
questions about details and resolving misunderstandings
as they come to light. Decisions made by the on-site
customer are embodied in acceptance tests (usually
automated, not to be confused with the unit tests).

So in XP, code is made maintainable by the extensive
unit-test suite and by continuously reworking the code to
keep it simple and easy to understand. New ways to make
the code simpler go into the code as people discover
them. Gaps and inconsistencies in requirements are ironed
out as they become apparent through writing tests.

Through these practices (and a number of others not
covered here [6]), XP teams achieve an extraordinarily
high degree of both code correctness and code
modifiability. In contrast to expectations, the source code
does not become more expensive or difficult to change
over time. It actually becomes easier, because refactoring
tends to break the code into modules tuned to the kinds of
requests that the customer has really been making. After a
year of delivering, implementing a new user story is often
a matter of tying together or slightly modifying a few
existing classes.

What does it take, though, to carry out the XP practices
successfully? Just reading about the practices in a book is
not enough to make a person good at them—good enough
to make promises to a paying customer and be sure of
delivering. A programmer with decades of experience can
find starting on an XP project dizzying and upsetting,
because his prior experience may not have developed the
peculiar skills that XP depends on most heavily.

2.1. Breaking big things into tiny things

Typically a programmer or team is given a problem
that is too large to solve in a few lines of code: draw
molecules on the screen, look up information in a
password-protected database on the Internet, etc. Rather
than think and try to solve the whole problem at once, XP
asks developers to find the smallest meaningful thing they
could implement right now—preferably in a few minutes.

While breaking down large procedures is basic to all
forms of software development (for example, “functional
decomposition”), XP takes it to an extreme seldom

imagined outside the agile world. The extreme is not just
the tininess of the tasks—many taking minutes or even
seconds—it’s the purpose that they serve in the process.

XP uses tiny tasks, not as elements of a detailed plan to
reach a result known precisely in advance, but to explore
the unknown in a productive and low-risk way. The
programmers often do not know what they will do after
completing the current task. They do the current task in
order to find out. Each completed bit of functionality
teaches them something about the problem, putting them
in a better position to see what to do next. The next task
may be to ask the customer a question, add a new test
case that will “break” the code just written, start a new
class, or even totally rewrite what was just written.

This skill of chipping away at large jobs, continuously
relying on coding to bring you new insights that you will
apply as you acquire them, cannot be taught by simply
giving someone a set of step-by-step instructions. That’s
what makes it a “skill” for purposes of this paper.
Experienced programmers who haven’t tried XP often
find it difficult to think of coding tasks that do not require
full understanding of the problem. They find it hard to
think of easy tasks, and easy to think of hard tasks.

The reason step-by-step instructions can’t substitute
for this skill is because each new big task is unique and
must be broken down in a different way. What, for
example, would make a good first microtask for drawing
molecules on the screen? Draw a circle? Draw a graph?
Make a text version? Make a data structure for one atom?
It depends on the constellation of a thousand factors never
to be seen again: your current understanding of chemistry,
the graphics libraries available to you, your familiarity
with those libraries, the current state of the code, your pair
partner’s current skills, etc.

Nearly every XP practice calls for breaking big things
into things tinier than one might think possible. User
stories must be broken into functionality small enough to
deliver in one iteration and still deliver business value
immediately. To be assigned to programmers, user stories
must be broken into engineering tasks small enough to
complete in no more than three days yet still perform
some meaningful, testable function. Classes continually
get broken into smaller classes. Subroutines get broken
into smaller subroutines. Programmers need to break large
refactoring jobs into tiny refactorings—often changing
one line, or changing one variable name. Big refactorings
are frowned upon because they tend to wander into long
periods during which each partial change cascades into
more partial changes that need to be made before the tests
can pass again.

Notice that this skill, like all skills, admits of better and
worse. This is different from knowledge of a certain fact
or procedure: you either know it or you don’t. Probably
no one will ever hit on the best microtask to do next, but
that’s not necessary. A great many possible microtasks

can work just fine as starters. Some are better and some
are worse. The more highly skilled the developers, the
better microtasks they’ll think of, and the more quickly
they’ll deliver a usable product. Below a certain skill
level, though, they’ll simply be befuddled when presented
with a large task.

2.2. Giving up control

In XP, any code that you write, someone else will
probably rewrite, since your code will probably give them
ideas for how to improve it. You must continually let
code develop in ways that you yourself would never do.
This lets designs emerge that are better than any
individual could have thought of alone.

XP thus requires that programmers give up control to
an extraordinary degree—a skill that many programmers
not only lack, but resist acquiring.

Each member of a pair that works well tends to report
that the other person had most of the ideas and did most
of the work. The experience tends to be euphoric, and the
resulting code astounding in its clarity and simplicity—
even to the participants. The pair partners always learn
from each other: seniors from juniors as well as juniors
from seniors and peers from peers.

But when either partner tries to hold personal control
over the code, the pairing experience can be agonizing.
The partners argue over every tiny decision. Rather than
let the code show them the way in tiny steps, they try to
persuade their partner to do it their way. They start
offering reasons to consider instead of offering code to
improve or tiny tasks to perform.

If you feel personal ownership of the code, if you insist
on holding true to an architectural vision invented prior to
coding, if you insist on preventing your pair partner from
doing anything “wrong”, you will block one of the
principal mechanisms by which XP creates reliable and
maintainable code: the operation of many minds, each
examining and improving the products of all the others.

Even the skill of doing tiny tasks is a form of giving up
control. You have to code without knowing in advance
how things will turn out. Many programmers like solving
big problems in their heads. They hate imperfection, and
they especially hate letting other people see their mistakes
or improve their code. It takes wisdom to intentionally
allow mistakes to happen because mistakes enlighten
more quickly and effectively than argument. It takes
wisdom, when you think your partner’s idea is stupid, to
tell yourself, “Either I am wrong or he will learn,” and
then say, “Okay, let’s try it.” Most likely, when you let
him try it, you both learn, because a better design emerges
than either of you can imagine now. The temptation to
prevent mistakes and backtracking is powerful, but the
developers must overcome it for XP to work.

Following the XP rules is another form of giving up
control. Most arguments between pair partners can easily
be resolved by doing a smaller task rather than a larger
task, coming up with a test case instead of discussing
architecture, separating refactoring from implementing
new functionality, agreeing to try both ideas and then re-
evaluate, etc. Indeed one of the functions of pairing is to
“keep each other honest”: to help the other person
overcome temptations. Some programmers, though, resist
when reminded. Some get angry, some resort to trickery
to escape the rules, and some make the pairing experience
so unpleasant for their partners that they regain control
simply because no one will work with them.

2.3. Writing meaningful tests

Many experienced programmers, when called upon to
write a test before writing code, find themselves in
cognitive vertigo. “How am I supposed to write a test for
a subroutine that isn’t even defined yet?”

Yet test-driven design is one of the principal
mechanisms through which XP keeps code simple and
comprehensible. Writing a tiny test case first, and then
writing code to pass just that test, leads you to define the
simplest interfaces and always implement the bare
minimum of functionality. [7] The design tends to
become simple, and the unit tests serve as executable
documentation of the intent of each subroutine.

Testing is a skill, and it’s a skill that many
programmers have not acquired. There is no step-by-step
procedure to tell you how to make a test case. Rather,
through experience, you learn a myriad of ways to make
simple, meaningful, deterministic tests. To take one little
example, to test code that generates random results (say,
in a simulator), you pass the constructor a random-
number generator object. The test seeds it with a known
value, while production code lets it run indeterministi-
cally. GUI code can be especially difficult to unit-test.
Over time, you learn a hundred little ways to separate the
GUI code from the code that performs the underlying
computations. You learn the trick of passing a “mock
object” which substitutes for the GUI objects, logging all
of the subroutine calls it received. Any kind of interaction
with external entities, whether over a network or though a
user interface, tends to present problems. Tests for
multithreaded code can be deceptive as well as difficult.

Programmers sometimes feel tempted to write tests by
pasting the output of the code into the test. Sometimes
there’s value in that, but programmers can often find ways
to make tests more meaningful by looking for other
angles from which to examine the output. A subroutine
that calculates a mathematical function can test for the
intended properties of the function as well as specific
known values. For example, if the function is intended to
be periodic, the test code can verify the periodicity by

comparing the results of two calls. It takes discipline and
experience to dig for these other angles.

This skill is so highly varied, it’s mostly learned
through pairing, which brings us to the next skill.

2.4. Conversation

In many organizations, programmers spend most of
their hours in solitude and silence. Not in XP.

Rather than relying on written documents, XP relies
most heavily on source code and in-person conversation
to communicate. It follows that XP depends heavily on
social skills. It’s not enough to be a good coder. You need
the skill of both listening to and making yourself
understood to another person. Since disagreements among
programmers are common, you need the skill of
presenting an opposing idea in a way that doesn’t offend
the other person’s ego. A simple but often neglected skill
is knowing when to interrupt and when to let your pair
partner finish the current task while you quietly jot down
your idea.

While conversational skill is pretty basic to nearly all
software development (especially the requirements phase
of phased development), it plays an especially important
role in XP because the programmers talk directly with the
customer. It is through these conversations that XP
performs requirements engineering. It is through these
conversations that trust between customer and developer
is built or destroyed.

The customer, too, must be willing and able to
converse. For an XP project to succeed, the users or
domain experts must be available to the programmers as
well as politically in a position to make authoritative
decisions on the spot. A customer who takes the attitude
of, “I want to throw the specification over a wall and not
hear from you again until you’ve implemented it exactly
as I’ve written it” undermines the foundation of XP:
continuous feedback and small course-corrections.

All of the XP practices aim at supplying people real
information: the concrete, here-and-now truth of what the
code is doing, unexpected difficulties as soon as they
arise, and so on. If the customer won’t listen well enough
to answer questions, or can’t be bothered with details, the
developers are cut off from business priorities and domain
knowledge. Requirements engineering halts, and the
viability of the project comes into doubt.

2.5. Object-oriented design

Object orientation’s primary advantage is that it
reduces the amount of context you need in order to
understand a given snippet of code. XP draws upon this
aspect of object-orientation to give programmers license
to change any code at any time—because they can

understand it at a glance, or with very little research
elsewhere in the code.

Refined XP code typically consists of many small,
simple classes and tiny subroutines. Many subroutines are
just one line long, their purpose being to have a simple
name that can be used elsewhere in code to express intent.
Most or all of the code is uncommented, because the code
itself, together with unit tests, communicates the human
intent.

Programmers who’ve never seen code at this level of
refinement may not know what XP demands. They may
put in large “design patterns” from books where simple
solutions would do, undermining the comprehensibility
needed to keep the code modifiable. An especially strong
temptation is to use object-oriented techniques to write
clever code that a reader cannot understand without first
understanding a great deal of other code.

Again, the skill of object-oriented design grows
through experience refactoring many classes and cannot
be taught in the form of simple rules (except for “once
and only once” [4, 8]). Most of the skill consists of seeing
tiny ideas for improvement rather than overarching
architectural ideas—contrary to the intuitions of many
programmers. For example, you might pass a
“configuration object” to a constructor rather than a long
list of parameters. With that in place, you can add new
parameters to the constructor without modifying existing
code that calls it with fewer parameters. There is no limit
to the number of such small, helpful techniques a
programmer can learn.

2.6. Tools for fast cycle times

Finally, agile development depends crucially on tools
that enable fast cycle times. “Ten minutes to green bar” is
the XP rule of thumb that says you usually should go
from introducing a failing test to getting all the unit tests
running again in no more than ten minutes. If compilation
takes more than ten minutes, then this goal cannot be
achieved. Any slowness in the compiler or development
tools will be “leveraged” to slow down every aspect of the
project. It would have been difficult to do agile
development in the days of punch cards.

Fast cycle times can be undermined in a variety of
ways. A geographically dispersed team causes more
problems for agile development than phased
development, due to the former’s greater need for quick,
informal conversation. It’s difficult to pair effectively
when you’re not physically in the same room. If the
software consists of multiple versions on different
branches in the source-control system, it may not be
feasible to refactor code in small bites. Each refactoring
would occur on only one branch, resulting in confusion
for programmers moving from one branch to another for
different jobs.

3. Skills in phased development

The principal skill in phased development is
foresight—accurately predicting the future without
concrete interaction and feedback (except prototypes).
The only feasible way to make plans without feedback
from actual construction of the product is by interacting
with a representation of the product or the jobs involved
in constructing it. Thus the key to making phased
development work is to have a trustworthy representation.

The representation, whether in paper or in software,
must allow you to perform operations on it that are
analogous to actually doing the construction. You must be
able to ask questions of it and it must give you answers
that accurately match the reality to come when real
construction begins.

Planning and estimating with representations is
commonplace in non-software forms of engineering.
Electrical engineers draw schematic diagrams, architects
and civil engineers draw blueprints, mechanical engineers
draw orthographic projections. Even figuring the
capacitance of a circuit on a hand calculator is
manipulation of a representation.

All of these work because the elements of the
representation map in a simple and direct way to
components or measurable properties of the constructed
artifact. A transistor symbol on a schematic diagram maps
to a real transistor in the product. Looking just at the
diagram, you can tell whether the circuit will do a job that
you can precisely define in advance. You can even tell
how much the transistor adds to the cost of the product.

Software development presents a special difficulty for
the representation approach. The product—a computer
program—is itself a description, and indeed the vast
majority of software development consists of inventing
appropriate terms and structure for the description.
Electrical engineers don’t routinely conceive of new kinds
of components or invent new ways of describing them.
For computer programmers, the crafting of ways of
describing is daily work.

What makes a computer program likely to be bug-free
is not physical materials, but the faithfulness of its
representations (data structures and procedures) to both
the reality they model and the cognitive needs of the
programmers who create and verify them.

A requirements document or functional specification is
thus a representation of representations yet to be created.
It describes properties of descriptions yet to be written.
This brings us to the first and perhaps most basic skill of
phased development.

3.1. Technical writing

Writing a natural-language requirements document
calls for technical writing at the highest skill level. To

serve as a basis for phased development, the descriptions
it contains must have numerous attributes, such as
completeness, correctness, non-ambiguity, and so forth, as
set forth in standards such as [9]. We’ll examine some of
the standard attributes, plus a few more.

First, the document must be lucid enough that readers
can easily spot gaps or internal contradictions, if there are
any. To trust the document, the text must be so lucid that
readers can be confident that if they see no gaps or
contradictions, the reason is that there really are none.

The document alone must do this job, without the aid
of trying to implement its descriptions in executable code.
If gaps or contradictions emerge in later phases, during
coding, then the document has failed.

Second, the document must be interpreted exactly the
same way by both programmers and customer. If there is
any dispute about what belongs in the software or what
doesn’t, the developers must be able to resolve it by
looking in the document and not asking the customer. In
fixed-bid contracts, the document exists partly to protect
the programmers against the customer interpreting their
agreement to include more development, partly to protect
the customer against the developers interpreting the
agreement to include less. In these projects, the document
must settle every possible question about scope in
advance of coding. (In in-house projects, non-ambiguous
writing is not quite as important, as long as the
ambiguities don’t significantly affect the schedule.)

Third, the document must be readable enough that the
developers and customer actually read it. In many
projects, programmers skim through requirements
documents or ignore them completely. Often customers
don’t read requirements documents. Many people find
reading requirements documents boring and difficult. If
they have a question or want to say something, they prefer
to speak in person. This is quick and easy. In face-to-face
conversation, people can ask, get an answer, and put the
answer in their own words to confirm that they’ve
understood correctly. The document must communicate
so clearly that two-way conversation is not required—or
preferred.

To put this third property another way, the document
must communicate roughly as well as in-person
conversation [10]. When you ask a person a question, you
don’t need to look through a table of contents or index, or
piece together little clues from all throughout a document.
You can ask your question in speech that comes to you
naturally, and the other person can compose an answer
from the totality of his knowledge, tailored to just your
question and your needs—in a few seconds.

All of the above properties are achievable with a high
level of technical-writing skill. Like writing tests first or
breaking big classes into small classes, the skill of
technical writing consists of a wealth of knowledge of
different approaches, good judgement in choosing an

approach for the job at hand, and ability to invent new
approaches for each new situation.

Many requirements engineers do not possess this skill.
Some look down upon technical-writing skills, such as
framing clear sentences, saying one thing at a time, giving
examples, structuring the document to fit the audience,
and so on, as “mere secretarial work” or irrelevant to their
jobs. Informing a system analyst that people are ignoring
his work can cause professional humiliation.
Consequently an analyst’s poor technical-writing skills
may go unaddressed for years or permanently.

Fourth and finally, the requirements document must be
completed quickly enough to enable development to
start—and deliver—in time for the product to provide
maximum business value.

Writing a useful requirements document is possible,
but it takes time. It takes a great deal of time and thought
to understand a large software system. There is much
more to the job than merely collecting statements from
the customer. The requirements engineer must find a way
to cognitively structure the information so that people can
easily understand it and easily see gaps or internal
contradictions. Only when something is well understood
can a person express it lucidly, unambiguously, readably,
etc. The time taken for so much forethought may itself
endanger the schedule even if the resulting requirements
document renders coding a breeze.

Given the above difficulties, many practitioners of
phased development have evolved a compromise
approach. They make the requirements document a
summary of conversations between the customer and the
developers. Rather than making the document so refined
that it can introduce a new programmer to the project on
its own, or covers every detail, the document assumes that
its readers participated in the elicitation. This enables
people to write the document with enough accuracy to
help the programmers do their work, without demanding a
huge investment of time or exceptional technical-writing
skills. It adds some risk to the schedule, and makes
development contingent on the programmers’ remaining
with the team until delivery, but these risks may be
acceptable in many projects.

3.2. A battery of proven methods

To serve phased development, a requirements
document must be backed up by programmers who can
translate the requirements into a working product in
known time. This means that the programmers must be
able to determine which components and subcomponents
they’ll need to build, and how long each will take—with
enough accuracy to calculate development time and
resources for a project lasting several months or perhaps
more than a year before deployment.

Because “construction” of software is really much
more like drawing a blueprint than constructing a
building, such precise foreknowledge of development
tasks and time is rare. Often programmers work on tasks
they’ve never encountered before. The majority of their
time is spent thinking and understanding, not typing in
source code. Once they’ve found a description that fits the
task well, they can code it quickly. Before they’ve found
such a description, predicting the time required for the job
is difficult.

In software, once a form of description is understood
especially well, like a grammar or a GUI widget, someone
automates it with a standard component or language. This
changes the task into using the new tool, and because this
can be done faster than coding from scratch, it raises
customer expectations of software developers. This brings
us to our next skill.

3.3. Negotiation

In practice, the requirements phase is really a
negotiation phase. The customers and developers try to
find a set of features that they can implement within a
time that delivers acceptable return on investment for the
customer. Especially in phased development, the
developers can feel a great deal of pressure to make
promises that they can’t keep. The intangibility of
software tempts them into thinking they can do more than
they really can [11], and many customers leverage this
optimism into one-sided contracts.

So, during the requirements phase, the requirements
engineer often finds himself in the role of negotiator,
trying to find a realistic schedule and present it in a way
that is acceptable to the customer. Many requirements
engineers are familiar only with the technical side of
software development and are not prepared for the kind of
gamesmanship that occurs in negotiation with a savvy
customer. Yet this negotiation may be the single most
important factor in the success of the project. In larger
organizations, politics often overrides technical factors,
and phased development puts the requirements engineer
into the thick of politics—whether he knows it or not.

Developers who know when to say “no”—who can
state bluntly that they lack the kind of proven know-how
needed to implement a certain component in a known
time—provide a crucial aid to the negotiation process.
However, many developers feel a strong temptation to
always say “yes” lest they appear less competent than
their co-workers or competitors.

3.4. Advance prioritization

Finally, for successful phased development, the
customer must be able to prioritize details far in advance
of delivery. The requirements engineer needs to guide the

customer early to see all problem-domain details that may
become relevant later so the customer can prioritize them
before major design decisions are made. The customer
must take responsibility for these decisions, and for the
costs, in both time and money, for changing them later.

For example, during elicitation the customer might
state that one of the computations he needs the software to
perform requires data from a database on the Internet. It’s
up to the requirements engineer to ask how often the data
changes, how often the computations are performed, etc.,
since these have great impact on what kind of design
architecture will best fit the customer’s needs. Changing it
late may undermine hundreds of design decisions and
significantly delay release of the software, possibly
throwing the customer out of business. The ability to
anticipate and prevent such problems grows only from
years of experience with real software development.

Acknowledgements

Thanks to Asim Jalis for endless brainstorming and
war stories, and to Daniel Berry for some much-
appreciated encouragement.

References

[1] Ron Jeffries. “Natural Documentation,” XP Magazine,
October 7, 2001.

[2] Ron Jeffries. “Essential XP: Documentation,”
XP Magazine, November 21, 2001.

[3] Ron Jeffries. “What’s in it for the business?”
XP Magazine, September 30, 2001.

[4] Kent Beck. Extreme Programming Explained.
Addison-Wesley, 1999.

[5] Martin Fowler and Jim Highsmith. “The Agile
Manifesto.” Software Development, August, 2001.

[6] Anonymous. Wiki page: http://www.c2.com/cgi/wiki?
ExtremeProgrammingCorePractices, as of June, 2002.

[7] Kent Beck. Test-Driven Development by Example.
Forthcoming.

[8] Martin Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[9] “Recommended Practice for Software Requirements
Specifications,” IEEE Standard 830-1998, June 25, 1998.

[10] Martin Fowler. “The Almighty Thud,” Distributed
Computing, November/December 1997.

[11] Tom DeMarco. Why Does Software Cost So Much?
Dorset House, 1995.

