Hints on usingATEX to produce PDF

Sean R. Eddy
HHMI & Washington University School of Medicine

Version 1.1
31 July 2001

The purpose of this document is to recommend how to writdXLpaper in such a way that it can be easily
typeset in either PostScript or PDF formats, for printing or electronic publishing, respectively.

The information in this document is derived partly from relevant documentation and partly from trial and error. As
neither source of information is entirely reliable, caveat emptor.

The problem: bitmap fonts

IATEX together withdvips produces excellent PostScript for printing. In principle you can convert a PostScript file
to PDF usingps2pdf , part of the free Ghostscript package. Unfortunately this is exactly what yootdeant to do.

The main problem is fontglvips , left to its own devices, will use bitmapped (“Type 3”) fonts instead of scalable
Type 1 fonts. Therefore the apparently simple procedure of:

> latex foo.tex
> dvips -0 foo.ps foo.dvi
> ps2pdf foo.ps

often doesn’t work too well. The file may print fine, but it will look horrible on any computer display (e.g. the Adobe
Acrobat viewer). One common way around the problem is to use one of the fonts that’s built-in to PDF, such as Times
or Helvetica, instead oRTEX’s default Computer Modern fonts. However, this doesn't fix all your problems, only
most of them; and maybe you really do want Computer Modern.

To check in Acrobat if your PDF file is using any ugly Type 3 bitmap fonts, go to¥ilBocument Info> Fonts
and look in the Font Info window. What you want to see is all Type 1 scalable fonts being used.

The solution: pdflatex
Usepdflatex to generate PDF directly from yoWfTEX source files:
> pdflatex foo.tex
pdflatex has some quirks with how it deals with figures and (especially)¢lgamp package we use for

producing Feynman diagrams. Those quirks necessitated this document.

A suboptimal alternative: ps2pdf

You can produce reasonable PDF files from PostScript if you take a few special steps. This is not recommended, but
the reasons that it fails are possibly instructive. The commands you want are these:

> latex foo.tex
> dvips -Ppdf -GO -0 foo.ps foo.dvi
> ps2pdf foo.ps

The key points are:

e The-Ppdf option makesivips embed Type 1 fonts. This has no effect on PDF built-in fonts like Times, but
is absolutely essential for the default Computer Modern fonts.

e The-GO is necessary though | don't understand what it does, and you may not think it's needed if you were to
take a quick glance at a document prepared without it. However, look close; without it, certain combinations of
letters such as the “fi” in “final” will appear asfasign instead.

e You mustuse a ghostscript version 6.00 or this will not work. Older ghostscript versions would not em-
bed Type 1 fonts properly. Most current UNIX installations, including Linux distributions, are shipping with
ghostscript 5.10 or 5.50. The current release of ghostscript is 7.00 and is freely available.

e If you're using the defaultATEX font, you have to have Type 1 fonts available for Computer Modern. Free
versions of these seem to be part of the standard Linux kpathsea installation, in a font packadpueslied .

Although this will deal with almost everything, certain symbols apparently are still not rendered properly, such as
an= (equals) sign, and that's annoying.

Nonetheless, sometim@s2pdf may save you. This might happen especially with producing figures, where
pdflatex seems particularly finicky about file formats. | had an example of a figure that was produégKitoy
including three PostScript .ps files, and | didn’t have access to the origmgilot scripts that made the files. No
amount of fiddling (including the obvious of hacking the figures into .eps format, and epstgpdf to convert
to .pdf) gave me something thatiflatex ~ would include properly. However, | was able to Uatex; dvips;
ps2pdf to create a figure8.pdf with all Type 1 fonts.

Choosing Times fonts - issues with math

By default, ETEX uses Computer Modern fonts for both text mode and math mode.

| don't like Computer Modern; it's too thin for my taste. It also makes your document instantly recognizable as a
IATEX document. | prefer a little more mystery. You can change the text font to Times (my current favorite) simply by
using\usepackage{times} but that only change the text, not the font used for math. Ideally you'd use the same
font family for both text and math. You get this by also usingepackage{\mathtime}

Unfortunately math fonts are complex, and there don’t seem to be any free versions of scalable Type 1 math Times
fonts. Commercial math Times fonts are available from Y&Y. If you usentiaghtime package, and you don’t have
the Y&Y fonts, you're going to get bitmap fonts in your PDF, and that’s bad.

A reasonable compromise can be achieved by usingtitbptmx package instead, which uses readily available
scalable Type 1 fonts. My documents (including this one) start with:

\usepackage{times,mathptmx}

An example equation:

M= S fux log, 0 1)
] = XIZXJ_ XiX; J, in ij :
The mathptmx package will work for almost all equations, but be warned that it apparently does not include
a full set of symbol fonts. Th@RNA paper, for instance, included so many crazy symbolsrfsthptmx wasn’t
sufficient, so | typeset text in Times and math in Computer Modern.

Including figures

For figure inclusion, | recommend tiggaphicx package. Including the package is a little complex because we want
to set it up for PDF versus dvips output. The basic boilerplate for including the package and then importing a figure
is:

\ifx\pdfoutput\undefined
\usepackage[dvips]{graphicx}
\else

\usepackage[pdftex]{graphicx}
\fi
\begin{document}

\includegraphics{filename}

Each figure should be produced as an Encapsulated Postscfifgfitane.eps , and theepstopdf converter
should be used to produfilename.pdf as a duplicate in PDF format:

> epstopdf filename.eps

Almost any drawing program can export Encapsulated PostScript. | recommend Adobe lllustrator for most purposes.

The rationale for needing two copies of the file is as follovegex can import Encapsulated Postscript (EPS)
files. pdflatex can import PDF (.pdf), TIFF (.tif), JPEG (.jpg), PNG (.png) , and MetaPost PostScript (.mps) files.
How do we produce a source file that can be turned into either PostScriptlatet dvips) or PDF (with
pdflatex) if the two approaches need their figures in different formats?

The\includegraphics command of thegraphicx package fortunately does not need a filename exten-
sion. It will search for an appropriate format. Therefore, if we have figurel available adidpatbl.eps and
figurel.pdf , and our source file containmcludegraphics{figurel} , pdflatex will automagically
importfigurel.pdf andlatex will import figurel.eps

An example:

The code snippet for that:

\begin{center}
\includegraphics[width=4in}{plan7}
\end{center}

latex doesn't care about the suffixes on your files, but it won't be able to find them unless you either use
standard suffixes or give the full filename (e\mcludegraphics{epsfigure.1} will work). pdflatex
on the other hand, rigorously enforces that your included files must have standard suffixes. This can become a problem
- see the section below on Feynman diagrams.

Don't produce figures in .ps (PostScript), use .eps (Encapsulated PostScript) instead.
Preparing figures in Illustrator

When preparing the figure, use Times font for all text labels if possible; else use another PDF built-in font, like
Helvetica. When you export the file in EPS format, choose:

e no thumbnails
e NO preview

e do not include fonts (this is the default)

epstopdf apparently can’t convert fancy EPS files that include thumbnails and/or previews; | don't think
\includegraphics can deal with them either.

If you have trouble witheps2pdf , an alternate strategy is to use lllustrator’s “Save As” to save twice, once in
EPS and once in PDF format.

If you include fonts, that will let you use fonts in the figure other than the standard PDF fonts, and they will be
“faithfully” rendered in the PDF file - except that Acrobat will struggle with the rendering, and any fonts besides the
built-in PDF fonts will look ugly. PostScript printing, on the other hand, will be fine if you include fonts.

Since you're not including fonts, any font that isn’t a built-in PDF font will be replaced by a typewriter font, which
is probably not what you want. Use vanilla Times. (Times New Roman is not a PDF built-in.)

An example of various fonts in an lllustrator figure where I've included the fonts:

Helvetica

Times New Roman
Arial

Courier

Times

Garamond

as opposed to not including the fonts:

Helvetica

Times New Roman
Arial

Courier

Times

Garamond

Note that the built-in fonts (Helvetica, Courier, Times) render identically, whereas the others are rendered as
Courier in the second case and as ugly in the first case. Not including the fonts makes the files smaller. Illustrator EPS
files are huge, but the PDF files after conversion are nice and small (they’re compressed).

If you just see a bunch of dots, you've got an old Adobe Acrobat reader. Upgrade your reader to at least Acrobat4.

PDF-only or PostScript-only conditional inclusion

Sometimes there’s just no getting around the fact that you want something special to happen in the PDF files that
you're distributing electronically versus the PostScript files you send to the printer.

A good example is figures: you probably want to produce a single PDF file containing the entire paper, but if one
or more of your figures are in JPEG, PNG, or (especially, for photographic illustrations) TIFF format, ndigXal L
can't handle these. The strategy heredsditional code inclusioim your source file.

We saw conditional inclusion earlier when we includeddghaphicx package. My boilerplate code is actually
a little more complex than that example, in that | define a spé&fpalf toggle at the same time. The code in my
preambles looks like:

\newif\ifpdf
\ifx\pdfoutput\undefined
\pdffalse
\typeout{Configured for dvips (PS not PDF)}
\else
\pdftrue
\typeout{Configured for PDF output.}
\fi

\ifpdf

\usepackage[pdftex]{graphicx} % comment out if not using graphicx
\else
\usepackage[dvips]{graphicx} % comment out if not using graphicx

\fi

This is pretty general code - just comment outdingphicx lines if you're not using graphics.
Now, we can do things like the following in our paper:

\ifpdf
. voila, a little photo in PNG:
\begin{center}
\includegraphics|[width=0.5in]{photo}
\end{center}
\else
. but we can’t show you the result since we're formatting for dvips.

\fi

... voila, a little photo in PNG:

A reasonable strategy for papers would be to do conditional inclusion at the end of the paper. That way the figures
appear as the last pages of the PDF (standard for submitted manuscripts), and you can print the individual figure files
to a high-quality color printer yourself for submitting the hardcopy manuscript.

Using the feynmp package for Feynman diagrams

Our descriptions of RNA structure grammars use Feynman diagrams extensively, usiegniing package from
Thorsten Ohl.

feynmp works by generating a MetaPost .mp file the first time jatex the file. Then you process the .mp
file with mpost to generate a pair of files for each figure: .1, .2, etc. are MetaPost PostScript files for the diagrams,
and .t1, .t2, etc. are LaTeX commands for the labels. Then in a sdatexd passfeynmp detects that these files
exists, and includes them. That is:

> latex myfile.tex % generates feynfigs.mp and myfile.dvi
> mpost feynfigs.mp % generates feynfigs.1, feynfigs.tl, etc.
> latex myfile.tex % generates myfile.dvi which is complete.

Well. This would be fine 4 pdflatex would recognize the foo.1 as a file with a legitimate suffix. But it doesn't.
We're stuck. Except..pdflatex will import files with the .mps suffix as MetaPost PostScript, so the problem is
limited just to file naming conventions. That makes it easy to hack around.

The solution I'm recommending is two-fold. First, | hackegnmp.sty itself, to create a modified version that
will try to include filenames of the form “fool.mps” instead of “foo.1”. The modified stylefégnmp-pdf.sty
is included with the package that this document came with, and the context diff is included at the end of the paper. We
include it with a conditional in the preamble, as in:

\ifpdf
\usepackage{feynmp-pdf}
\else
\usepackage{feynmp}
\fi

Second, we write a little Perl wrapper aroungost to rename the foo.1, foo.2, etc. files it generates to fool.mps,
foo2.mps, etc. This scriphpost-pdf.pl is included with the package that this document came with, and the code
is included at the end of the paper.

An example of a Feynman diagram produced by this strategy:

which was produced with thigynmp code:

\begin{fmffile{feynfigs}

\begin{center}

\begin{fmfgraph*}(100,75) \fmfpen{thick}
\fmfleft{i1,i2} \fmfright{o1,02}
\fmf{fermion}{il,v1,01} \fmf{fermion}i2,v2,02}
\fmf{photon,label=q}v1,v2} \fmfdot{vl,v2}

\end{fmfgraph*}

\end{center}

\end{fmffile}

and the following commands:
> pdflatex latex_guide.tex

> mpost-pdf.pl feynfigs.mp
> pdflatex latex_guide.tex

Appendix

Software versions

I’'m on a Mandrake 7.x Intel/Linux system using the following free software:

Program Package & version
IATEX kpathsea 3.3.1
pdflatex kpathsea 3.3.1
dvips 5.86

ps2pdf ghostscript 7.0

All of these came standard on my Linux system with the exception of the latest Ghostscript. Ghostscript is optional;
it's only needed to demonstrate getting the most out of a suboptimal solps@pdf conversion.

*** feynmp.sty Sun Jul 29 17:11:09 2001
--- feynmp-pdf.sty Sun Jul 29 17:10:40 2001

Kkkkkkkkkkkkkkkk

k% 1 3 *kkk
’

- 1,9 -
%% This file was modified from its original version.
%% It reads filenames of the form filenamel.mps instead of
%% filename.1, for better pdflatex compatibility.
%% SRE, Sun Jul 29 17:10:03 2001
%9%6%%%% %% %% %% % %% %% %% % %% %% %% % %% %% % %% %% % %% %% %% %% % %% %6 %% %% %% % %% %% %% % Yo
%%
%%
%% This is file ‘feynmp.sty’,
%% generated with the docstrip utility.
*kkkkkkkkkkkkkk
*k% 155’164 *kkk
\fmf@graph{#1}{#2}%
\def\fmfkeep##1{\fmf@keep{#1}{#2H##1}}%
\leavevmode
! \IfFileExists{\thefmffile.\thefmfgraph}%
! {\includegraphics{\thefmffile.\thefmfgraph}}%
{\typeout{%
! feynmp: File \thefmffile.\thefmfgraph\space not found:""J%
feynmp: Process \thefmffile.mp with MetaPost and then %
reprocess this file.}}%
\ignorespaces}
--- 161,170 ----
\fmf@graph{#11#2}%
\def\fmfkeep##1{\fmf@keep{#1H#2}{##1}}%
\leavevmode
! \IfFileExists{\thefmffile\thefmfgraph.mps}%
! {\includegraphics{\thefmffile\thefmfgraph}}%
{\typeout{%
! feynmp: Hey, File \thefmffile\thefmfgraph.mps\space not found:""J%
feynmp: Process \thefmffile.mp with MetaPost and then %
reprocess this file.}}%
\ignorespaces}
*kkkkkkkkkkkkkk
*k%k 174]183 *kkk
\begin{picture}(#1,#2)
\fmf@graph{#1}{#2}%
\def\fmfkeep##1{\fimf@keepstar{#1}{#2H##1}}%
! \IfFileExists{\thefmffile.\thefmfgraph}%
! {\put(0,0){\includegraphics{\thefmffile.\thefmfgraph}}}%
{\typeout{%
! feynmp: File \thefmffile.\thefmfgraph\space not found:""J%
feynmp: Process \thefmffile.mp with MetaPost and then %
reprocess this file.}}%
\ignorespaces}
--- 180,189 ----
\begin{picture}(#1,#2)
\fmf@graph{#1}{#2}%
\def\fmfkeep##1{\fimf@keepstar{#1}{#2H{##1}}%
! \IfFileExists{\thefmffile\thefmfgraph.mps}%
! {\put(0,0){\includegraphics{\thefmffile\thefmfgraph}}}%
{\typeout{%
! feynmp: File \thefmffile\thefmfgraph.mps\space not found:""J%
feynmp: Process \thefmffile.mp with MetaPost and then %
reprocess this file.}}%
\ignorespaces}

8

Figure 1: Context diff of the modifications to feynmp.sty

#! Jusr/local/bin/perl

Renames MetaPost files to .mps files, so pdflatex will read them.
Usage: mpost-pdf.pl <.mp file>

#

Example:

pdflatex foo.tex % generates .mp file and incomplete .dvi
mpost-pdf.pl feynfigs.mp % generates feynfigsl.mps, feynfigs.tl, etc.
pdflatex foo.tex % generates complete .dvi file

$mpfile = shift;

if ($mpfile =~ /AS+)\.mp/) { $basename = $1; }
else { die "$mpfile doesn’t end in .mp, | don't recognize it"; }

$output = ‘mpost $mpfile;
print $output;

if ($output =" /(\d+) output file.? written:/) {
$n = $1;
for ($i = 1; $i <= $n; $i++) {
rename "$basename.$i", "$basename$i.mps” || die "rename failed at $i";
print "Renamed $basename.$i --> $basename$i.mps\n";

Figure 2: Perl code fompost-pdf.pl

