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Hidden Markov Models

Lecture 6, Thursday April 17, 2003

Review of Last Lecture

Lecture 6, Thursday April 17, 2003

Lecture 7, Tuesday April 22, 2003

1. When the true underlying states are known

Given x = x1… xN

for which the true π = π1 … πN is known,

Define:

Ak l = # times k→l transition occurs in π
Ek(b) = # times state k in π emits b in x

We can show that the maximum likelihood parameters θ are:

Ak l Ek(b )
ak l = ––––– ek(b) =   –––––––

Σi  Ak i Σc Ek(c)
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2. When not – The Baum-Welch Algorithm

Initialization:
Pick the best-guess for model parameters

(or arbitrary)

Iteration:
Forward
Backward
Calculate Ak l, Ek(b)
Calculate new model parameters ak l,  ek(b)
Calculate new log -likelihood P(x |  θ)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x|  θ) does not change much
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Alternative: Viterbi Training

Initialization: Same

Iteration:

Perform Viterbi, to find π*

Calculate Ak l, Ek(b) according to π* + pseudocounts
Calculate the new parameters ak l, ek(b)

Until convergence

Notes:
• Convergence is guaranteed – Why?

• Does not maximize P(x |  θ)
• In general, worse performance than Baum -Welch

• Convenient – when interested in Viterbi parsing, no need to implement 
additional procedures (Forward, Backward)!!

Variants of HMMs
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Higher-order HMMs

The Genetic Code

3 nucleotides make 1 amino acid

Statistical dependencies in triplets

Question:

Recognize protein-coding 
segments with a HMM
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One way to model protein-coding regions

P(xixi+1 xi+2 |  xi-1 xixi+1)

Every state of the HMM emits 3 
nucleotides

Transition probabilities:

Probability of one triplet, given 
previous triplet    P( πi,  |  πi-1)

Emission probabilities: 

P(xixi-1 xi-2 |  πi ) = 1/0
P(xi-1 xi-2 xi-3 |  πi-1 ) = 1/0

AAA AAC

AAT

TTT

…

…
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A more elegant way 

Every state of the HMM emits 1 
nucleotide

Transition probabilities:

Probability of one triplet, given 
previous 3 triplets    

P( πi,  |  πi-1,  πi-2 , πi-3)

Emission probabilities: 

P(xi |  πi)

Algorithms extend with small 
modifications

A C

G T

Lecture 7, Tuesday April 22, 2003

Modeling the Duration of States

Length distribution of region X:

E[lX] = 1/(1-p)

• Exponential distribution, with mean 1/(1-p)

This is a significant disadvantage of HMMs

Several solutions exist for modeling different length distributions

X Y

1-p

1-q

p q
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Solution 1: Chain several states

X Y

1-p

1-q

p

qXX

Disadvantage: Still very inflexible
lX = C + exponential with mean 1/(1-p)
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Solution 2: Negative binomial distribution

l-1
P(lX = n) = n-1 pl-n(1-p)n

X

p

XX

p

1 – p 1 – p 

p
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Solution 3: Duration modeling

Upon entering a state:

1. Choose duration d, according to probability distribution
2. Generate d letters according to emission probs
3. Take a transition to next state according to transition probs

Disadvantage: Increase in complexity:
Time: O(D2)
Space: O(D)

Where D = maximum duration of state

X

Connection Between Alignment 
and HMMs
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A state model for alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
IMMJMMMMMMMJJMMMMMMJMMMMMMMIIMMMMMIII

M
(+1,+1)

I
(+1, 0)

J
(0, +1)

Alignments correspond 
1-to- 1 with sequences 
of states M, I, J
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Let’s score the transitions

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC
IMMJMMMMMMMJJMMMMMMJMMMMMMMIIMMMMMIII

M
(+1,+1)

I
(+1, 0)

J
(0, +1)

Alignments correspond 
1-to- 1 with sequences 
of states M, I, J

s(xi, yj)

s(xi, yj) s(xi, yj)

-d -d

-e -e

-e

-e
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How do we find optimal alignment according to 
this model?

Dynamic Programming:

M(i, j): Optimal alignment of x1 …xi to y1…yj ending in M

I(i, j): Optimal alignment of x1 …xi to y1…yj ending in I

J(i, j): Optimal alignment of x1 …xi to y1…yj ending in J

The score is additive, therefore we can apply DP recurrence 
formulas
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Needleman Wunsch with affine gaps 
– state version

Initialization:
M(0,0) = 0; M(i,0) = M(0,j) = -∞, for i, j > 0
I(i,0)    = d + i×e; J(0,j)   = d + j×e

Iteration:
M(i-1, j-1)

M(i, j) = s(xi, yj) + max I(i -1, j-1)
J(i -1, j -1)

e + I(i -1, j)
I(i , j)   = max e + J(i , j-1)

d + M(i-1, j-1)

e + I(i -1, j)
J(i , j)  = max e + J(i , j-1)

d + M(i-1, j-1)

Termination:
Optimal alignment given by  max {  M(m, n), I(m , n), J(m, n) }
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Probabilistic interpretation of an alignment

An alignment is a hypothesis that the two sequences are related by 
evolution

Goal:

Produce the most likely alignment

Assert the likelihood that the sequences are indeed related
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A Pair HMM for alignments

M
P(xi, yj)

I
P(xi)

J
P(yj)

1 - 2δ

1- δ - 2ε

δ

ε

δ

ε

εε

1- δ - 2ε

BEGIN

END

M JI
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A Pair HMM for alignments

M
P(xi, yj)

I
P(xi)

J
P(yj)

1 - 2δ - τ

1- δ - 2ε - τ

δ

ε

δ

ε

εε

1- δ - 2ε - τ

BEGIN

END

τ

M

1 - 2δ - τ

JI

δ
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A Pair HMM for not aligned sequences

BEGIN I
P(xi)

END
BEGIN

J
P(yj)

END
1 - η

1 - η

1 - η

1 - η

η η

P(x, y | R) = η(1 – η) m P(x1) …P(xm) η(1 – η)n P(y1)…P(yn) 

=  η2(1 – η) m+n Π i P(xi) Π j P(yj)

Model R
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To compare ALIGNMENT vs. RANDOM hypothesis

Every pair of letters contributes:

(1 – 2δ – τ) P(xi , yj) when matched

ε P(xi) P(yj) when gapped

(1 – η)2 P(xi) P(yj) in random model

Focus on comparison of

P(xi, yj)    vs.    P(xi) P(yj)

M
P(xi, yj)

I
P(xi)

J
P(yj)

1 - 2δ - τ

1- δ - 2ε -τ

δ

ε

δ

ε

εε

1- δ - 2ε -τ

BEGIN
I

P(xi)
END

BEGIN
J

P(yj)
END

1 - η

1 - η

1 - η

1 - η

η η
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To compare ALIGNMENT vs. RANDOM hypothesis

Idea:
We will divide alignment score by the random score, 
and take logarithms

Let 
P(xi, yj) (1 – 2δ – τ)

s(xi, yj ) = log  ––––––––––– +   log –––––––––––
P(xi ) P(yj ) (1 – η )2

δ(1 – ε – τ ) P(xi ) 
d = - log ––––––––––––––––––––––

(1 – η) (1 – 2δ – τ) P(xi) 

ε P(xi ) 
e = - log –––––––––––

(1 – η) P(xi) 

Every letter b in random 
model contributes 

(1 – η ) P(b)
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The meaning of alignment scores

Because δ, ε, are small, and η, τ are very small, 

P(x i, y j) (1 – 2δ – τ) P(xi, yj ) 

s(xi, yj ) = log  ––––––––––– +   log ––––––––––– ≅ log –––––––––––

P(xi ) P(yj ) (1 – η )2 P(xi ) P(yj )

δ(1 – ε – τ )

d = - log –––––––––––––––––– ≅ - log δ
(1 – η) (1 – 2δ – τ)

ε
e = - log ––––––– ≅ - log ε

(1 – η)

Lecture 7, Tuesday April 22, 2003

The meaning of alignment scores

The Viterbi algorithm for Pair HMMs corresponds exactly to the 
Needleman-Wunsch algorithm with affine gaps

However, now we need to score alignment with parameters that 
add up to probability distributions

δ: 1/mean arrival time of next gap

ε: 1/mean length of next gap

affine gaps decouple arrival time with length

τ: 1/mean length of conserved segments (set to ~0)

η: 1/mean length of sequences of interest (set to ~0)
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The meaning of alignment scores

Match/mismatch scores:
P(xi, yj) 

s(a, b) ≅ log –––––––––––
P(xi) P(yj)

Example:
Say DNA regions between human and mouse have average conservation of 50%

Then P(A,A) = P(C,C) = P(G,G) = P(T,T) = 1/8 (so they sum to ½)
P(A,C) = P(A,G) =……= P(T,G)       = 1/24       (24 mismatches, sum to ½)

Say P(A) = P(C) = P(G) = P(T) = ¼

log [ (1/8) / (1/4 * 1/4) ] = log 2 = 1, for match
Then, s(a, b) =   log [ (1/24) / (1/4 * 1/4) ] = log 16/24 = -0.585

Note: 0.585 / 1.585 = 37.5

According to this model, a 37.5%-conserved sequence with no gaps would score on average 
0.375 * 1 – 0.725 * 0.585 = 0 

Why? 
37.5% is between the 50% conservation model, and the random 25% conservation model !
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Substitution matrices

A more meaningful way to assign match/mismatch scores

For protein sequences, different substitutions have dramatically
different frequencies!

BLOSUM matrices:

1. Start from BLOCKS database (curated, gap-free alignments)
2. Cluster sequences according to % identity
3. For a given L% identity, calculate Aab: # of aligned pos a- b
4. Estimate 

P(a) = (Σb Aab)/(Σcd Acd); P(a, b) = Aab/(Σcd Acd)
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BLOSUM matrices

BLOSUM 50 BLOSUM 62

(The two are scaled differently)
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