
1

jchapin • 30-Mar-99 • 1

6.170 – laboratory in software engineering
lecture 19 – march 30, 1999
Prototyping

John Chapin
Lab for Computer Science
MIT

jchapin • 30-Mar-99 • 2

Outline

• Development models
• Prototyping

• things to learn
• dangers

• Tomorrow: sit with teammates
• For Thursday section: read entire PS5 handout carefully,

 think about where the challenges are

2

jchapin • 30-Mar-99 • 3

Hacking model

Build first
version

Modify
until client
is satisfied

Operate

jchapin • 30-Mar-99 • 4

Hacking model discussion

• No spec: figure out spec as you build the system

• Used for: perl script that parsed your midcourse
evaluations

• If applied to something too complex:
• Lots of rework
• High costs at a late stage

3

jchapin • 30-Mar-99 • 5

Waterfall model

Analyze
requirements

Design

Implement

Test

Operate

behavior spec

component
spec

code

application, certification

Build first
version

Modify
until match

spec

jchapin • 30-Mar-99 • 6

Discussion of waterfall model

• Used for: implementing WtDigraph and Table in ps2
• Waterfall model works well when:

• A set of high quality, stable user requirements exist
• The developers have previously built similar systems
• The project is not very complex

» [faulk97]

• Otherwise: lots of rework, high late-stage costs

• Why? The developers get it wrong the first time.

4

jchapin • 30-Mar-99 • 7

Prototyping model

Analyze
requirements

Design

behavior spec

component spec

Implement

Test

Operate

code

application, certification

Build
prototype

Critique
prototype

jchapin • 30-Mar-99 • 8

Discussion of prototyping model

• Used for: our implementation of PS5
• Often multiple prototypes
• Not hacking

• carefully design prototypes
• discard prototypes rather than change-until-done

• Lots of wasted work?
• Fred Brooks: Plan to throw one away, you will anyway
• also, much cheaper if mistakes discovered early

• Note: there are more sophisticated models, notably
the "spiral model" which adds risk analysis

5

jchapin • 30-Mar-99 • 9

Two kinds of prototypes

• Prototype as part of requirements analysis:
• learn the customer's needs more precisely
• build a mock-up, demo it, get feedback
• for example, simulate the GUI in Macromind Director
• to do well, needs usability lab or simulation environment

• Prototype as part of design:
• implement part of the design, critique it
• find gotchas early on
• discover cleaner structure
• make better feature tradeoffs
• one developer can do it on their own

• Today we only consider design prototypes

jchapin • 30-Mar-99 • 10

outline of rest of talk

• what you can learn from a prototype about:
• specs
• gotchas
• dynamic effects

• how to prototype effectively

6

jchapin • 30-Mar-99 • 11

Learn how to use a module

• code provided by others may have specs that are:
• ambiguous
• incomplete or incorrect
• so complex you can't be sure you have satisfied the

preconditions
• want to reuse their code anyway
• have to "try out" the desired operations
• examples

• planning courses for a Course VI major
• activating & using COM objects under Windows
• controlling a UNIX SVR4 STREAMS module

jchapin • 30-Mar-99 • 12

Learn how to implement a spec

• specs you are asked to implement may be
• ambiguous
• incomplete or incorrect
• too complex

• must implement correctly anyway
• "correct" in this context: system behaves as desired when

your implementation is composed with existing clients
• examples:

• going on a first date
• redrawing efficiently when animating under Swing
• implement an internet router

7

jchapin • 30-Mar-99 • 13

Learn subtleties of a spec

• hard problems may lurk inside innocuous specs
• build prototype to understand specs better
• examples:

• Friend says "meet me in the infinite corridor at 11 AM"
• In Java try-catch-finally, finally clause always runs

– what about when a thread exits due to an uncaught
exception?

jchapin • 30-Mar-99 • 14

Learn cases missed in a design

• easy to miss cases when doing design
• build prototype to learn whether design handles all cases

• what should you take in your backpack on a long hiking
trip? Easy to forget something if you've never hiked
before.

• Air traffic control:
airplane is removed from the system after it has landed

– no LANDED message
– system must guess: over runway, no radar data
– what about aborted landings? oops

8

jchapin • 30-Mar-99 • 15

Dynamic effects: performance

• Can't analyze performance details without a working
system

• Fixing perf. problems may require major design changes
• Build prototype to study:

• Which paths are the common case?
• Which data structures will have many entries?
• How fast are other system components (eg. Swing)

• Example:
• Can you redraw everything on screen each time the ball

moves in your gizmoball game?

jchapin • 30-Mar-99 • 16

Start with questions

• A prototype is code built to answer questions
• So, be clear what questions you are trying to answer!

• Write down the list of questions in advance
• Use the list to decide:

• what functionality to implement
• what to test
• when to discard and restart

9

jchapin • 30-Mar-99 • 17

Keep a lab notebook
• Prototype answers other questions too
• Every decision you make gives valuable information

• what design options did you consider?
• why did you choose the options you did?
• what did you try then change because it didn't work?

• Keep a thorough lab notebook
• never erase/throw out notes (use a bound book)
• keep sequential

• These records improve your ability to:
• critique prototype
• get the final design right
• justify decisions in the final design

jchapin • 30-Mar-99 • 18

Pitfall #1: worthless prototype

• Waste of time scenario:
• Day 1: receive assignment, read quickly
• Day 2-7: have fun hacking prototype
• Day 8-10: think carefully about spec and design

 realize that prototype doesn't fulfill spec
• Day 11: start over

• To make prototype useful:
• Do best possible design effort first
• Keep list of questions that arise, use to drive prototype

10

jchapin • 30-Mar-99 • 19

Pitfall #2: pressure to reuse code

• Disaster scenario:
• one week to final deadline
• prototype works "sort of"
• no time to discard and restart,

let's keep working on this version

• Avoiding disaster:
• keep prototype work focused on the list of questions
• set a milestone for finishing prototype phase
• leave enough time to redesign and implement from

scratch

jchapin • 30-Mar-99 • 20

Pitfall #3: second system effect

• Disaster scenario
• prototype done carefully, finished early
• that was easy!
• let's add a few neat features in the redesign
• oops, now too complex, hard to get even basic features

working right
• Huge difference in effort required to get it 100% right vs

90% right
• Avoiding disaster:

• identify opportunities for extensions when doing proto.
• leave hooks in the redesign to add the extensions
• but get the basic functionality completely done first

