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Large-Scale Global Alignments 

Multiple Alignments

Lecture 10, Thursday May 1, 2003
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ARACHNE:  Steps to Assemble a Genome

1.  Find overlapping reads

4.  Derive consensus sequence ..ACGATTACAATAGGTT..

2.  Merge good pairs of reads into longer 
contigs

3.  Link contigs to form supercontigs
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3. Link Contigs into Supercontigs

Too dense: 
Overcollapsed?

(Myers et al. 2000)

Inconsistent links: 
Overcollapsed?

Normal density
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Find all links between unique contigs

3. Link Contigs into Supercontigs (cont’d)

Connect contigs incrementally, if ≥ 2 links
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Fill gaps in supercontigs with paths of overcollapsed contigs

3. Link Contigs into Supercontigs (cont’d)
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Define G = ( V, E )
V :=  contigs
E := ( A, B ) such that d( A, B ) < C 

Reason to do so: Efficiency; full shortest paths cannot be computed

3. Link Contigs into Supercontigs (cont’d)

d ( A, B )
Contig A

Contig B
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3. Link Contigs into Supercontigs (cont’d)

Contig A Contig B

Define T: contigs linked to either A or B

Fill gap between A and B if there is a path in G passing only fr om 
contigs in T 
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4. Derive Consensus Sequence

Derive multiple alignment from pairwise read alignments

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive each consensus base by weighted voting
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Simulated Whole Genome Shotgun

• Known genomes
Flu, yeast, fly, Human chromosomes 21, 22

• Make “realistic” shotgun reads 

• Run ARACHNE

• Align output with genome and compare
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Making a Simulated Read

Simulated reads have error patterns taken from random real reads

ERRORIZER

Simulated read

artificial 
shotgun read

real read
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Human 22, Results of Simulations

263241Avg base qual

6791.197.3% > 2 kb 

4.1 Kb3 Mb3 MbN50 scaffold

2.0 Kb10.6 Kb142 KbMean contig

2.7 Kb15 Kb353 KbN50 contig

3 X/ 0 X5 X /      0.5 X10 X / 0.5 XPlasmid/ Cosmid
cov
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Neurospora crassa Genome  (Real Data)

• 40 Mb genome, shotgun sequencing complete (WI-CGR)

Coverage:
1705 contigs
368 supercontigs

• 1% uncovered  (of finished BACs)

• Evaluated assembly using 1.5Mb of finished BACs

Efficiency:
Time: 20 hr
Memory: 9 Gb

Accuracy:
< 3 misassemblies
compared with 1 Gb of 
finished sequence

Errors/106 letters:
Subst . 260
Indel :  164
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Mouse Genome

Improved version of ARACHNE assembled the mouse genome

Several heuristics of iteratively:
Breaking supercontigs that are suspicious
Rejoining supercontigs

Size of problem: 32,000,000 reads

Time: 15 days, 1 processor
Memory: 28 Gb

N50 Contigsize: 16.3 Kb à 24.8 Kb 
N50 Supercontig size: .265 Mb à 16.9 Mb
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Next few lectures

More on alignments
Large -scale global alignment – Comparing entire genomes

Suffix trees, sparse dynamic programming
MumMer, Avid, LAGAN, Shuffle-LAGAN

Multiple alignment – Comparing proteins, many genomes
Scoring, Multidimensional -DP, Center-Star, Progressive alignment
CLUSTALW, TCOFFEE, MLAGAN

Gene recognition
Gene recognition on a single genome

GENSCAN – A HMM for gene recognition

Cross-species comparison-based gene recognition
TWINSCAN – A HMM
SLAM – A pair-HMM

Rapid Global Alignments

How to align genomic sequences in (more or less!) 
linear time
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Motivation

• Genomic sequences are very long:

– Human genome = 3 x 109 –long
– Mouse genome = 2.7 x 109 –long

• Aligning genomic regions is useful for revealing common gene 
structure

– Useful to compare regions > 1,000,000 -long
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Main Idea

Genomic regions of interest contain ordered islands of similarity
– E.g. genes 

1. Find local alignments
2. Chain an optimal subset of them
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Outline

• Methods to FIND Local Alignments

– Sorting k-long words
– Suffix Trees

• Methods to CHAIN Local Alignments

– Dynamic Programming
– Sparse Dynamic Programming
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Methods to FIND Local Alignments

1. Sorting K-long words
BLAST, BLAT, and the like

2. Suffix Trees
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Finding Local Alignments: 
Sorting k-long words

Given sequences x, y:

1. Write down all 
(w, 0, i): w = xi+1…x i+k
(z,  1, j): z  = y j+1…y j+k

2. Sort them lexicographically

3. Deduce all k-long matches between x and y

4. Extend to local alignments
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Sorting k-long words: example

Let x, y be matched with 3-long words:

x = caggc: (cag,0,0), (agg,0,1), (ggc,0,2)
y = ggcag: (ggc,1,0), (gca,1,1), (cag,1,2)

Sorted: (agg,0,1),(cag,0,0),(cag,1,2),(ggc,0,2),(ggc,1,0),(gca,1,1)

Matches:
1. cag: x1x2x3 = y3y4y5
2. ggc: x3x4x5 = y1y2y3
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Running time

• Worst case: O(NxM)

• In practice: a large value of k results in a short list of matches

Tradeoff:

Low k: worse running time

High k:  significant alignments missed

PatternHunter:

Sampling non-consecutive positions increases the likelihood to detect a 
conserved region, for a fixed value of k – refer to Lecture 3
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Suffix Trees

• Suffix trees are a method to find all maximal matches between 
two strings (and much more)

Example: 
x = dabdac

d   a b   d   a   c

ca

b
d

a
cc

cc
a

d
b

1

4

2
5

6
3
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Definition of a Suffix Tree

Definition:
For string x = x1 …x m, a suffix tree is:

– A rooted tree with m leaves
Leaf i: x i…xm

– Each edge is a substring
– No two edges out of a node, start with same letter

It follows, every substring corresponds to 
an initial part of a  path from root to a leaf
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Constructing a Suffix Tree

• Naïve algorithm: O( N2 ) time

• Better algorithms: O( N ) time
(outside the scope of this class – too technical and not so interesting)

Memory: O( N ) but with a sizeable constant
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Naïve Algorithm to Construct a Suffix Tree

1. Initialize tree T: a single root node r

2. Insert special symbol $ at end of x

3. For j = 1 to m

• Find longest match of xi…xm to T, starting from r

• Split edge where match stops: new node w

• Create edge (w, j), and label with unmatched portion of xi …xm
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Example of Suffix Tree Construction

1

x = d a b d a $

d   a b   d   a   $

1. Insert    d a b d a $

a

b
d

a
$
2

2. Insert    a b d a $

$
a

d
b

3

3. Insert    b d a $

$

4

4. Insert    d a $

$

5

5. Insert    a $
$

6

6. Insert    $

Lecture 10, Thursday May 1, 2003

Faster Construction

Several algorithms

O( N ) time, 

O( N ) memory with a big constant

Technical but not deep, outside the scope of this course

Optional: Gusfield, chapter 6
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Memory to Store Suffix Tree

• Can store in O( N ) memory!

• Every edge is labeled with (i, j):
(i,j) denotes xi …x j

• Tree has O( N ) nodes

Proof:
1. # leafs ≥ # nodes – 1
2. # leafs = |x|
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Application: Find all Matches Between x and y

1. Build suffix tree for x, mark nodes with x

2. Insert y in suffix tree, mark all nodes y “passes from” with y

– The path label of every node marked both 0 and 1, is a common 
substring
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Example of Suffix Tree Construction for x, y

1

x = d a b d a $
y = a b a d a $

d   a b   d   a   $
1. Construct tree for x

a

b
d

a
$
2

$
a

d
b

3

$

4

$

5

$
6

x
x

x

6. Insert    a $

5

6

6. Insert    $

4. Insert    a d a $

d
a
$
3

5. Insert    d a $

y

4

2. Insert    a b a d a $

a

y

d
a
$
1

y

y
x

3. Insert    b a d a $ a
dy

2

a
$

x
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Application: Online Search of Strings on a 
Database

Say a database D = { s1 , s2, …sn }
(eg. proteins)

Question : given new string x, find all matches of x to database

1. Build suffix tree for {s1,…, sn}
2. All new queries x take O( |x| ) time

(somewhat like BLAST)
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Application: Common Substrings of k 
Strings

• Say we want to find the longest common substring of s1, s2,  
…sn

1. Build suffix tree for s1,…, sn

2. All nodes labeled {si1, …, sik} represent a match between si1,  
…, sik


