
1

Hidden Markov Models

Lecture 5, Tuesday April 15, 2003

Review of Last Lecture

Lecture 2, Thursday April 3, 2003

Lecture 5, Tuesday April 15, 2003

Time Warping

Definition: α(u), β(u) are connected by an approximate
continuous time warping (u0, v0), if:

u0, v0 are strictly increasing functions on [0, T], and
α(u0(t)) ≅ β (v0(t)) for 0 ≤ t ≤ T

α(t)

β(t)

0 T

u0(t)

v0(t)

Lecture 5, Tuesday April 15, 2003

Time Warping

v

u
0

0

1 2

1
2

M

N Define possible steps:

(∆u, ∆v) is the possible
difference of u and v

between steps h-1 and h

(1, 0)
(∆u, ∆v) = (1, 1)

(0, 1)

Lecture 5, Tuesday April 15, 2003

Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)
• Alphabet Σ = { b1, b2, …, bM }
• Set of states Q = { 1, ..., K }
• Transition probabilitiesbetween any two states

aij = transition prob from state i to state j

ai1 + … + aiK = 1, for all states i = 1…K

• Start probabilities a0i

a01 + … + a0K = 1

• Emission probabilities within each state

ei(b) = P(x i = b | πi = k)

ei(b1) + … + ei(bM) = 1, for all states i = 1…K

K

1

…

2

Lecture 5, Tuesday April 15, 2003

The three main questions on HMMs

1. Evaluation

GIVEN a HMM M, and a sequence x,
FIND Prob[x | M]

2. Decoding

GIVEN a HMM M, and a sequence x,
FIND the sequence π of states that maximizes P[x, π | M]

3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence x,

FIND parameters θ = (ei(.), aij) that maximize P[x | θ]

2

Lecture 5, Tuesday April 15, 2003

Today

• Decoding

• Evaluation

Problem 1: Decoding

Find the best parse of a sequence

Lecture 5, Tuesday April 15, 2003

Decoding

GIVEN x = x1x2 ……xN

We want to find π = π1 , ……, πN,
such that P[x, π] is maximized

π* = argmaxπ P[x, π]

We can use dynamic programming!

Let Vk(i) = max{π1,… ,i-1} P[x1…xi-1, π1, …, πi-1, x i, πi = k]

= Probability of most likely sequence of states ending at
state πi = k

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

Lecture 5, Tuesday April 15, 2003

Decoding – main idea

Given that for all states k,
and for a fixed position i,

Vk(i) = max{π1,…, i-1} P[x1…xi-1, π1 , …, πi-1, xi , πi = k]

What is Vk(i+1)?

From definition,
Vl(i+1) = max{π1,…,i} P[x1 …xi, π1 , …, πi, x i+1, πi+1 = l]

= max{π1,…,i} P(xi+1, πi+1 = l | x1…x i,π1 ,…, πi) P[x1…xi , π1 ,…, πi]
= max{π1,…,i} P(xi+1, πi+1 = l | πi) P[x1…x i-1, π1, …, πi-1, x i, πi]
= maxk P(xi+1, πi+1 = l | πi = k) max{π1,…,i-1} P[x1…x i-1,π1 ,…,πi-1, xi,πi=k]
= el(xi+1) maxk ak l Vk(i)

Lecture 5, Tuesday April 15, 2003

The Viterbi Algorithm

Input: x = x1… …xN

Initialization:
V0(0) = 1 (0 is the imaginary first position)
Vk(0) = 0, for all k > 0

Iteration:
Vj(i) = ej(x i) × maxk ak j Vk(i-1)

Ptrj(i) = argmaxk ak j Vk(i-1)

Termination:
P(x , π*) = maxk Vk(N)

Traceback:
πN* = argmaxk Vk(N)
πi-1* = Ptrπi (i)

Lecture 5, Tuesday April 15, 2003

The Viterbi Algorithm

Similar to “aligning” a set of states to a sequence

Time:
O(K2N)

Space:
O(KN)

x1 x2 x3 ………………………………………..xN

State 1

2

K

Vj(i)

3

Lecture 5, Tuesday April 15, 2003

Viterbi Algorithm – a practical detail

Underflows are a significant problem

P[x1 ,…., xi , π1 , …, πi] = a0π1 aπ1π2……aπi eπ1(x1)……eπi(xi)

These numbers become extremely small – underflow

Solution: Take the logs of all values

Vl(i) = log ek(xi) + maxk [Vk(i-1) + log ak l]

Lecture 5, Tuesday April 15, 2003

Example

Let x be a sequence with a portion of ~ 1/6 6’s, followed by a portion of ~ ½
6’s…

x = 123456123456…12345 6626364656…1626364656

Then, it is not hard to show that optimal parse is (exercise):

FFF…………………...F LLL………………………...L

6 nucleotides “123456” parsed as F, contribute .956×(1/6)6 = 1.6×10-5

parsed as L, contribute .956×(1/2)1×(1/10)5 = 0.4×10-5

“162636 ” parsed as F, contribute .956×(1/6)6 = 1.6×10-5

parsed as L, contribute .956×(1/2)3×(1/10)3 = 9.0×1 0-5

Problem 2: Evaluation

Find the likelihood a sequence is
generated by the model

Lecture 5, Tuesday April 15, 2003

Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state π1 according to prob a0π1

2. Emit letter x1 according to prob eπ1(x1)
3. Go to state π2 according to prob aπ1π2

4. … until emitting xn

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xn

2

1

K

2

0

e2(x1)

a02

Lecture 5, Tuesday April 15, 2003

A couple of questions

Given a sequence x,

• What is the probability that x was generated by the model?

• Given a position i, what is the most likely state that emitted xi?

Example: the dishonest casino

Say x = 12341623162616364616234161221341

Most likely path: π = FF… …F
However: marked letters more likely to be L than unmarked letters

Lecture 5, Tuesday April 15, 2003

Evaluation

We will develop algorithms that allow us to compute:

P(x) Probability of x given the model

P(xi…xj) Probability of a substring of x given the model

P(πI = k | x) Probability that the i th state is k, given x

A more refined measure of which states x may be in

4

Lecture 5, Tuesday April 15, 2003

The Forward Algorithm

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

P(x) = Σπ P(x, π) = Σπ P(x | π) P(π)

To avoid summing over an exponential number of paths π, define

fk(i) = P(x1…xi, πi = k) (the forward probability)

Lecture 5, Tuesday April 15, 2003

The Forward Algorithm – derivation

Define the forward probability:

fl(i) = P(x1…x i, πi = l)

= Σπ1…πi-1 P(x1…x i-1, π1,…, πi-1, πi = l) el(xi)

= Σk Σ π1…πi-2 P(x1 …xi-1, π1,…, πi-2, πi-1 = k) ak l el(xi)

= e l(xi) Σk fk(i-1) ak l

Lecture 5, Tuesday April 15, 2003

The Forward Algorithm

We can compute fk(i) for all k, i, using dynamic programming!

Initialization:
f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:

fl(i) = el(x i) Σk fk(i-1) ak l

Termination:

P(x) = Σk fk(N) ak0

Where, ak0 is the probability that the terminating state is k (usually = a0k)

Lecture 5, Tuesday April 15, 2003

Relation between Forward and Viterbi

VITERBI

Initialization:
V0(0) = 1
Vk(0) = 0, for all k > 0

Iteration:

Vj(i) = ej(x i) maxk Vk(i-1) ak j

Termination:

P(x , π*) = maxk Vk(N)

FORWARD

Initialization:
f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:

fl(i) = el(x i) Σk fk(i-1) ak l

Termination:

P(x) = Σk fk(N) ak0

Lecture 5, Tuesday April 15, 2003

Motivation for the Backward Algorithm

We want to compute

P(πi = k | x),

the probability distribution on the i th position, given x

We start by computing

P(πi = k, x) = P(x1 …xi, πi = k, xi+1…xN)
= P(x1…xi, πi = k) P(x i+1…xN | x1…xi, πi = k)
= P(x1…xi, πi = k) P(x i+1…xN | πi = k)

Forward, fk(i) Backward, bk(i)

Lecture 5, Tuesday April 15, 2003

The Backward Algorithm – derivation

Define the backward probability:

bk(i) = P(xi+1…xN | πi = k)

= Σ πi+1…πN P(xi+1,xi+2 , …, xN, πi+1, …, πN | πi = k)

= Σl Σ πi+1…πN P(xi+1,xi+2 , …, xN, πi+1 = l, πi+2 , …, πN | πi = k)

= Σl el(xi+1) ak l Σ πi+1…πN P(xi+2, …, xN, πi+2, …, πN | πi+1 = l)

= Σl el(xi+1) ak l bl(i+1)

5

Lecture 5, Tuesday April 15, 2003

The Backward Algorithm

We can compute bk(i) for all k, i, using dynamic programming

Initialization:

bk(N) = ak0, for all k

Iteration:

bk(i) = Σl el(x i+1) ak l bl (i+1)

Termination:

P(x) = Σl a0l el(x1) bl(1)

Lecture 5, Tuesday April 15, 2003

Computational Complexity

What is the running time, and space required, for Forward, and B ackward?

Time: O(K 2 N)
Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs
Forward/Backward: rescaling at each position by multiplying by a

constant

Lecture 5, Tuesday April 15, 2003

Posterior Decoding

We can now calculate

fk(i) bk(i)
P(πi = k | x) = –––––––

P(x)

Then, we can ask

What is the most likely state at position i of sequence x:

Define π^ by Posterior Decoding:

π^
i = argmaxk P(π i = k | x)

Lecture 5, Tuesday April 15, 2003

Posterior Decoding

For each state,

Posterior Decoding gives us a curve of

likelihood of state for each position

That is sometimes more informative than Viterbi path π*

A+ C+ G+ T+

A- C- G- T-

A modeling Example

CpG islands in DNA sequences

Lecture 5, Tuesday April 15, 2003

Example: CpG Islands

CpG nucleotides in the genome are frequently methylated

(Write CpG not to confuse with CG base pair)

C → methyl-C → T

Methylation often suppressed around genes, promoters
→ CpG islands

6

Lecture 5, Tuesday April 15, 2003

Example: CpG Islands

In CpG islands,

CG is more frequent

Other pairs (AA, AG, AT…) have different frequencies

Question: Detect CpG islands computationally

Lecture 5, Tuesday April 15, 2003

A model of CpG Islands – (1) Architecture

A+ C+ G+ T+

A- C- G- T-

CpG Island

Not CpGIsland

