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Hidden Markov Models

Lecture 6, Thursday April 17, 2003

Review of Last Lecture

Lecture 6, Thursday April 17, 2003
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Decoding

GIVEN x = x1x2 ……xN

We want to find π = π1, ……, πN ,
such that P[ x, π ] is maximized

π* = argmaxπ P[ x, π ]

We can use dynamic programming!

Let Vk(i) = max{π1,…,i-1} P[x1 …xi-1,  π1 , …, πi-1, x i, πi = k]

= Probability of most likely sequence of states ending at 
state πi = k
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The Viterbi Algorithm

Similar to “aligning” a set of states to a sequence

Time:
O(K2N)

Space:
O(KN)

x1 x2 x3 ………………………………………..xN

State 1

2

K

Vj(i)
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Evaluation

Compute:

P(x) Probability of x given the model

P(xi…xj) Probability of a substring of x given the model

P( πI = k | x) Probability that the ith state is k, given x
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The Forward Algorithm

We can compute fk(i ) for all k, i, using dynamic programming!

Initialization:
f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:

fl(i) = el(x i)  Σk fk(i-1) ak l

Termination:

P(x) = Σk fk(N) ak0

Where, ak0 is the probability that the terminating state is k (usually = a0k)
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The Backward Algorithm

We can compute bk(i) for all k, i, using dynamic programming

Initialization:

bk(N) = ak0, for all k

Iteration:

bk(i) = Σl el(x i+1) ak l bl (i+1)

Termination:

P(x) = Σl a0l e l(x1) bl(1)
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Posterior Decoding

We can now calculate

fk(i) bk(i)
P( πi = k | x) = –––––––

P(x)

Then, we can ask

What is the most likely state at position i of sequence x:

Define π^ by Posterior Decoding:

π^
i = argmaxk P(π i = k | x)
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Today

• Example: CpG Islands

• Learining
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Implementation Techniques

Viterbi: Sum-of-logs

Vl(i) = log ek(x i) + maxk [ Vk(i-1) + log ak l ]

Forward/Backward: Scaling by c(i )

One way to perform scaling:

fl(i) = c(i ) × [el(x i) Σk fk(i-1) ak l]
where c(i ) = 1/( Σk fk(i))

bl(i): use the same factors c(i )

Details in Rabiner’s Tutorial on HMMs, 1989

A+ C+ G+ T+

A- C- G- T-

A modeling Example

CpG islands in DNA sequences
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Example: CpG Islands

CpG nucleotides in the genome are frequently methylated

(Write CpG not to confuse with CG base pair)

C → methyl-C → T

Methylation often suppressed around genes, promoters
→ CpG islands
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Example: CpG Islands

In CpG islands,

CG is more frequent

Other pairs (AA, AG, AT…) have different frequencies

Question: Detect CpG islands computationally
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A model of CpG Islands – (1) Architecture

A+ C+ G+ T+

A- C- G- T-

CpG Island

Not CpGIsland
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A model of CpG Islands – (2) Transitions

How do we estimate the parameters of 
the model?

Emission probabilities: 1/0

1. Transition probabilities within CpG
islands

Established from many known 
(experimentally verified) 
CpG islands

(Training Set)

2. Transition probabilities within other 
regions

Established from many known non-CpG
islands

.182.384.355.079T

.125.375.339.161G

.188.274.368.171C

.120.426.274.180A

TGCA+

.292.292.239.177T

.208.298.246.248G

.302.078.298.233C

.210.285.205.300A

TGCA-
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Parenthesis – log likelihoods

-0.679+0.393+0.573-1.169T

-0.730+0.331+0.461-0.624G

-0.685+1.812+0.302-0.913C

-0.803+0.580+0.419-0.740A

TGCA

A better way to see effects of 
transitions:

Log likelihoods

L(u, v) = log[ P(uv | + ) / P(uv | -) ]

Given a region x = x1…xN
A quick-&-dirty way to decide 

whether entire x is CpG

P(x is CpG) > P(x is not CpG) ⇒

Σi L(x i, xi+1) > 0
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A model of CpG Islands – (2) Transitions

What about transitions between (+) and (-) states?
They affect 

Avg. length of CpG island

Avg. separation between two CpGislands

X Y

1-p

1-q

p q

Length distribution of region X:

P[lX = 1] = 1-p
P[lX = 2] = p(1 -p)
…
P[lX= k] = pk(1 -p)

E[lX] = 1/(1 -p)

Exponential distribution, with 
mean 1/(1-p )
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A model of CpG Islands – (2) Transitions

No reason to favor exiting/entering (+) and ( -) regions at a particular nucleotide

To determine transition probabilities between (+) and (-) states

1. Estimate average length of a CpGisland: lCPG = 1/(1-p) ⇒ p = 1 – 1/lCPG

2. For each pair of (+) states k, l, let ak l ← p × ak l

3. For each (+) state k, (-) state l, let ak l = (1 -p)/4
(better: take frequency of l in the ( -) regions into account)

4. Do the same for (-) states

A problem with this model: CpG islands don’t have exponential length distribution

This is a defect of HMMs – compensated with ease of analysis & computation
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Applications of the model

Given a DNA region x,

The Viterbi algorithm predicts locations of CpGislands

Given a nucleotide xi, (say xi =  A )

The Viterbi parse tells whether xi is in a CpG island in the most likely 
general scenario

The Forward/Backward algorithms can calculate

P(x i is in CpG island) = P(πi = A+ | x)

Posterior Decoding can assign locally optimal predictions of CpGislands

π̂ i = argmaxk P(πi = k | x)
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What if a new genome comes?

We just sequenced the porcupine genome

We know CpG islands play the same role in this 
genome

However, we have no known CpG islands for 
porcupines

We suspect the frequency and characteristics of CpG
islands are quite different in porcupines

How do we adjust the parameters in our model?

- LEARNING

Problem 3: Learning

Re-estimate the parameters of the 
model based on training data
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Two learning scenarios

1. Estimation when the “right answer” is known

Examples: 
GIVEN: a genomic region x = x 1…x1,000,000 where we have good 

(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, 
as he changes dice and produces 10,000 rolls

2. Estimation when the “right answer” is unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

QUESTION: Update the parameters θ of the model to maximize P(x |θ)
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1. When the right answer is known

Given x = x1…xN
for which the true π = π1 … πN is known,

Define:

Ak l = # times k→l transition occurs in π
Ek(b) = # times state k in π emits b in x

We can show that the maximum likelihood parameters θ are:

Ak l Ek(b )
ak l = ––––– ek(b) =   –––––––

Σi  Ak i Σc Ek(c)
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1. When the right answer is known

Intuition:When we know the underlying states,
Best estimate is the average frequency of 
transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting:
P(x |θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe 

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
π = F, F, F, F, F, F, F, F, F, F

Then:
aFF = 1; aFL = 0
eF(1) = eF(3) = .2; 
eF(2) = .3; e F(4) = 0; eF(5) = eF(6) = .1 
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Pseudocounts

Solution for small training sets:

Add pseudocounts

Ak l = # times k→l transition occurs in π + rk l

Ek(b) = # times state k in π emits b in x + rk(b)

rk l, rk(b) are pseudocounts representing our prior belief

Larger pseudocounts ⇒ Strong priof belief

Small pseudocounts ( ε < 1): just to avoid 0 probabilities
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Pseudocounts

Example: dishonest casino

We will observe player for one day, 500 rolls 

Reasonable pseudocounts: 

r0F = r0L = rF0 = r L0 = 1;
rFL = rLF = rF F = rLL = 1;
rF(1) = r F(2) = … = r F(6) = 20 (strong belief fair is fair)
rF(1) = r F(2) = … = r F(6) = 5 (wait and see for loaded)

Above #s pretty arbitrary – assigning priors is an art
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2. When the right answer is unknown

We don’t know the true Ak l , Ek(b)

Idea:

• We estimate our “best guess” on what Ak l, Ek(b) are

• We update the parameters of the model, based on our guess

• We repeat
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2. When the right answer is unknown

Starting with our best guess of a model M, parameters θ :

Given x = x1…xN

for which the true π =  π1 …πN is unknown,

We can get to a provably more likely parameter set θ

Principle: EXPECTATION MAXIMIZATION

1. Estimate Ak l , Ek(b) in the training data
2. Update θ according to Ak l , Ek( b)
3. Repeat 1 & 2, until convergence
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Estimating new parameters

To estimate Ak l:

At each position i of sequence x,

Find probability transition k→l is used:

P(πi = k, πi+1 = l | x) = [1/P(x)] × P(πi = k, πi+1 = l, x1…xN) = Q/P(x )

where Q = P(x 1…x i, πi = k, πi+1 = l, xi+1…xN) =
= P(πi+1 = l, x i+1…xN | πi = k) P(x 1…x i, πi = k) =
= P(πi+1 = l, x i+1x i+2…xN | πi = k) fk(i) =
= P(x i+2…xN | πi+1 = l) P(x i+1 | πi+1 = l) P(πi+1 = l | πi = k) fk(i) =
= bl(i+1) el (x i+1) ak l fk(i)

fk(i) ak l el(x i+1) bl (i+1)
So: P (πi = k, πi+1 = l | x, θ) =   ––––––––––––––––––

P(x | θ)
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Estimating new parameters

So,
fk(i) akl el(xi+1) bl(i+1)

Akl = Σi P(π i = k, π i+1 = l | x, θ) = Σi –––––––––––––––––
P(x | θ)

Similarly,

Ek(b) = [1/P(x)]Σ {i | xi = b} fk(i) bk(i)
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Estimating new parameters

If we have several training sequences, x1, …, xM, each of length N,

fk(i) ak l el(xi+1) bl(i+1)

Ak l = Σ j Σ i P( πi = k, πi+1 = l | x, θ) = Σ j Σ i –––––––––––––––––
P(x | θ)

Similarly,

Ek(b) =Σ j (1/P(xj))Σ {i | xi = b} fk(i) bk(i)
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The Baum-Welch Algorithm

Initialization:
Pick the best-guess for model parameters

(or arbitrary)

Iteration:
Forward
Backward
Calculate Ak l, Ek(b)
Calculate new model parameters ak l,  ek(b)
Calculate new log-likelihood P(x | θ)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | θ) does not change much
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The Baum-Welch Algorithm – comments

Time Complexity:

# iterations × O(K2N)

• Guaranteed to increase the log likelihood of the model

P(θ | x) = P(x , θ) / P(x ) = P(x | θ) / ( P(x )  P (θ) )

• Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

• Too many parameters / too large model: Overtraining
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Alternative: Viterbi Training

Initialization: Same

Iteration:
Perform Viterbi, to find π*

Calculate Ak l, Ek(b) according to π* + pseudocounts
Calculate the new parameters ak l, ek(b)

Until convergence

Notes:
• Convergence is guaranteed – Why?
• Does not maximize P(x | θ)
• In general, worse performance than Baum -Welch

• Convenient – when interested in Viterbi parsing, no need to implement 
additional procedures (Forward, Backward)!!
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Exercise – Submit any time – Groups up to 3

1. Implement a HMM for the dishonest casino (or any other simple 
process you feel like)

2. Generate training sequences with the model

3. Implement Baum-Welch and Viterbi training

4. Show a few sets of initial parameters such that
a. Baum-Welch and Viterbi differ significantly, and/or
b. Baum-Welch converges to parameters close to the model, and to 

unreasonable parameters, depending on initial parameters

• Do not use 0-probability transitions
• Do not use 0s in the initial parameters
• Do use pseudocounts in Viterbi

This exercise will replace the 1-3 lowest problems, depending on thoroughness


