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Gene Prediction Algorithms 
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The main purpose of this paper is to conduct a literature review on gene prediction algorithms, i.e. 
algorithms devoted to predict protein coding regions within the genome of an organism. As soon 
as genomic sequence data becomes available, correct identification of the gene structure is 
essential since it constitutes a prerequisite for future biological experiments. However, gene 
annotation is far from self-evident and in general prone to errors. The widely used approach for 
genome annotation consists of first employing homology methods, also called extrinsic methods, 
and then gene prediction methods or intrinsic methods. 
 
Introduction 
The genomic era is here. Every day in labs around the 
globe new sequence data becomes available and currently 
whole-genome sequences of roughly 800 organisms are 
either complete of being determined. This outstanding 
result leads us to an even more challenging task, the 
characterization of existing data and to gene prediction. In 
recent years many computational approaches have come 
to scene to shorten the gap and the aim of this review is to 
briefly discuss the different proposed models. 
 
Comparative genomics methods 
The idea of homology comparison between two 
sequences falls within the concept of evolution, in which 
divergence between two homologous sequences is the 
result of continuous accumulation of mutations over the 
evolutionary time separating them.  
Basically the model for homology comparison assumes 
that only point-mutations are possible, namely only 
substitutions, insertions, and deletions occurred; and that 
no particular site was mutated more than once. The latter 
is sometimes regarded as the infinite sites model. In order 
to quantify the difference between two given sequences, 
the model defines a cost scheme for each type of mutation 
(for ex. BLOSUM and PAM matrices) and the total 
distance between the sequences is obtained as the sum of 
individual costs. Variations of this model include different 
penalties for point mutations and for accumulated 
insertions or deletions (gap penalty). The algorithm 
proposed by Smith-Waterman is widely used for local 
sequence alignment, i.e. for search of a stretch of 
sequence (the query sequence) against a database with 
sequences of a large number of different organisms.  
Once the alignment is produced and its score is reported, 
the statistical significance is tested. To this end, the query 
sequence is randomized and a distribution of alignment 
scores is obtained. From this distribution the P-value is 
calculated as the probability that the score exceeds the 
score of the optimal alignment. The Expect value (E 
parameter) is also computed and represents the number of 
times a match equivalent or a better to the one obtained 
would be expected to occur in a database search by 
chance. The lower the E value, the more significant the 
score. The availability of closely related genomes makes 
it possible to carry out genome-wise comparisons and 
analyses of synteny. When two genomes have only 

 
recently diverged, the order of many genes, gene 
numbers, gene positions and even gene structures (exon–
intron organization, splice site usage, and so on) remain 
highly conserved. New genes can also be identified from 
direct genome comparisons. By comparing the genomes 
of several closely related species, conserved regulatory 
regions can also be easily identified. For these reasons, 
making use of comparative genomic data is a key 
challenge for the gene-prediction field. One problem with 
this approach is that no homologue will be found if the 
database does not contain a sufficiently similar sequence. 
Genes may indeed be species-specific and may not have a 
homologue in another species. Nevertheless, in some 
cases long divergent species can be of great aid in finding 
previously overlooked genes. An example of this situation 
follows, where newly available genomic sequence of the 
Fugu rubripes (Pufferfish) aided in the identification of 
new human genes. 
 
Identification of Novel Human Putative Gene Loci [1] 
Although three-quarters of predicted human proteins have 
a strong match to Fugu, approximately a quarter of the 
human proteins have highly diverged from or have no 
pufferfish homologs, highlighting the extent of protein 
evolution in the 450 million years since both organisms 
diverged. All the predicted Fugu proteins were searched 
against the human EnsEMBL peptides, resulting in 
matches for 27,779 Fugu proteins with a Blast expect 
score threshold of less than 10-3. This accounted for 
22,386 EnsEMBL human peptides. Of the 8761 Fugu 
proteins below this threshold, a further 1800 matched 
against the masked human genomic sequence when 
tblastn was used. Of these, a large number were short 
matches, which may represent missing exons from gene 
predictions; however, some represent potentially novel 
human gene loci. To establish the relation between the 
matching proteins and existing human gene loci, these 
putative proteins from Fugu gene predictions were used 
as input to attempt to build human genes through an 
EnsEMBL human pipeline. Predictions that overlapped 
with or were contained within existing loci of human 
EnsEMBL were eliminated, resulting in 1260 predictions 
that were apparently novel. After filtering for low 
complexity peptides, the remainder were further searched 
against the National Center for Biotechnology 
Information (NCBI) nonredundant protein database. A 
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Gene-prediction terms and concepts [6] 
 
Linear Discriminant Analysis and Quadratic Discriminant Analysis 
Statistical pattern-recognition methods that are used to categorize samples into two classes. Once samples have been 
represented as points in space, linear discriminant analysis (LDA) finds an optimal plane surface that best separates 
points that belong to two classes. Quadratic discriminant analysis (QDA) finds an optimal curved (quadratic) surface 
instead. Both methods seek to minimize some form of classification error.  
 
Perceptron Method 
A machine learning algorithm for pattern recognition or classification. A perceptron method is based on a simple 
neural network that begins with an arbitrary initial plane and then iteratively moves the plane in a way that tries to 
reduce the classification error at each step.  
 
Hidden Markov Models 
Hidden Markov Models (HMMs) represent a system as a set of discrete states and as transitions between those 
states, each of the possible transitions having an associated probability. Markov models are “hidden” when one or 
more of the states cannot be observed directly. HMMs are valuable in bioinformatics because they allow a search or 
alignment algorithm to be built on firm probability bases, and it is straightforward to train the parameters (transition 
probabilities) with known data. 
 
Hexamer-Coding Measures 
Some methods interpret sequences as successions of words (so-called because nucleotides are not independent of 
each other, but tend to occur together as if in a word) of length k (k-tuples); 6-tuples are called hexamers. In-frame 
hexamer frequencies in a region of DNA have traditionally been used as a powerful way of discriminating coding 
regions from non-coding regions, as some words are more likely to be present in either type of DNA.  
 
Weight Matrix Method and Weight Array Method 
Used for scoring a signal motif site. In the weight matrix method (WMM), a score s(x,b) is assigned to each position 
x for each base pair b, such that the total score of a motif site can be calculated as the sum of scores at all positions 
in the site. In the weight array method (WAM), a score s(x,w) is assigned to each position x for each word w of 
length k (when k = 1, the two methods are the same). 
 
Maximal-Dependence Decomposition (MDD) Donor Matrices 
A set of donor splice-site weight matrices that are generated using the WMM, each of which is built for a different 
class of splicing donor sites in such a way that the dependence between nucleotide positions is minimized. 
 
Decision Tree 
A classification scheme, which can be used, for example, to split a sample into two subsamples according to some 
rule (feature variable threshold). Each subsample can be further split, and so on. 
 
Artificial Neural Networks 
The key element of the artificial neural network (ANN) model is the novel structure of the information processing 
system. It is composed of many highly interconnected processing elements that are analogous to neurons and are 
tied together with weighted connections that are analogous to synapses. Once it is trained on known exon or intron 
sample sequences, it will be able to predict exons or introns in a query sequence automatically. 
  

 

total of 961 predictions remained that did not overlap with 
existing human proteins. About half have some nonhuman 
match in the NCBI nonredundant database; the remainder 
were not classifiable by homology. These predicted 
proteins represent novel putative gene loci in human. 
 
Linear Discriminant Analysis 
Linear Discriminant Analysis is a classical statistical 
approach that falls within the Supervised Learning 
Paradigm. It is widely used for classifying samples of 
unknown classes, based on training samples with known 
classes. In order to distinguish one class object from 
another, two things are needed [7]. Firstly, a set of 

 

feature variables X = {xα: α=1,…,p} and secondly a 
decision rule (i.e. classifier) C such that given the 
measured values xi for the ith object, C would be able to 
map it into either class I or class II. In practice, choosing 
the set of feature variables that is most discriminative 
with respect to the two classes is the key. For example, 
the sex hormone level is a much better discriminative 
feature variable than the color of skins when classifying 
people into males and females. Although there are many 
systematic methods for selecting better feature variables, 
it is still like a black art, which depends heavily on the 
master’s insight to the nature of the subject. We can 
represent the N objects to be classified as N sample points 
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xi in the p-dimensional feature space. Discriminant 
theory is to provide us with the mathematical tools for 
finding the optimal classifier in the sense of minimizing 
the classification errors. The optimal classifier in LDA is 
a hyperplane in p-dimensional space. In particular cases 
it is desirable to choose more complicated classifiers. To 
this end, the original feature space is transformed to a 
new (possible infinite dimensional) space through a 
kernel function and then the optimal separating 
hyperplane is computed. In general various kernel 
functions are used and the one that achieves best 
discrimination is kept. This corresponds to finding the 
optimal separating hyperplane in a new (transformed) 
space.  
 
Perceptron Method 
A single-layer perceptron network consists of one or 
more artificial neurons in parallel. Each neuron in the 
single layer provides one network output, and is usually 
connected to all of the external (or environmental) 
inputs. The following graph shows a one neuron single-
layer perceptron: 

 

 
 
The output is obtained as follows: 
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where p is the number of inputs. 
The perceptron learning algorithm was originally 
developed by Frank Rosenblatt in the late 1950s and it 
works as follows:  
 

• Initialize the weights wj to small random numbers. 
• Present a vector to the neuron inputs.  
• Update the weights according to:  
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where xt is the input vector at time t, wt are the weights 
at time t and yt is the desired output (yt = -1 if xj is in 
class I and yt = +1 if xj is in class II) for the input vector. 
Learning only occurs when an error is made,  

 

otherwise the weights are left unchanged. The classifier 
produced is equivalent to finding a separating plane 
between the objects of different classes. 
Single-layer perceptron networks have many limitations 
and are not computationally complete. They find 
application in the special type of patterns characterized 
as linearly separable. To solve this problem a multi-
layer perceptron can be constructed. For example, a 2-
layer perceptron looks like this: 

 

 
 

This scheme is capable of producing more complex 
classifiers and then achieve correct sorting of the objects 
in the feature space. It is comprised of a hidden layer of 
neurons connected to the inputs xj through a weights 
matrix wjk, and also connected to the output neurons (in 
this case only one) through the weights matrix Wik (a 
vector if there is only one output neuron). 
 
Hidden Markov Models 
A Hidden Markov Model (HMM) is a particular class of 
statistical model for sequences of discrete symbols. The 
model consists of a finite set of states, each of which can 
emit a symbol from a finite alphabet with a fixed 
probability distribution over those symbols, and a set of 
transitions between states, which allow the model to 
change its state after a symbol is emitted. The transition 
and emission probabilities may differ between states. 
Parsing a natural biological sequence into non-coding 
versus coding region simply consists in determining if a 
given region is more likely to be generated by the 
coding versus the non-coding Markov models 
(previously built using training sets). The model is 
conceptualized as starting in a designated start state, 
transitioning stochastically from state to state for some 
variable number of time units, and then terminating 
when a designated final state is reached, all the while 
emitting symbols (one per state) which when 
concatenated together in time order form the output 
sequence of the model.  
In the case of gene prediction using a HMM, a DNA 
sequence is partitioned into disjointed fragments (the 
states), namely exons and introns. If the conditional 
probability P(s|q) of finding a base s in state q (which 
might depend on neighboring bases as specified by the 
probability model) and the transition probability T(q|q′)  
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of finding state q after state q′, for any possible 
assignment (called a parse Φ) of states {qi: i = 1,2,…,N} 
are known, the joint probability is given by: 
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The Viterbi algorithm can be used to find the most 
probable parse Φ* [8] corresponding to the optimal 
transcript (exon or intron) prediction. The advantage of 
HMMs is that more states (such as intergenic regions, 
promoters, UTRs, poly(A) and frame- or strand-
dependent exons and introns) can be added, as well as 
flexible transitions between the states, to allow partial 
transcripts, intron-less genes or even multiple genes to 
be incorporated into a model. Multiple transcript 
predictions (which might correspond to alternatively 
spliced transcripts) can also be obtained by using sub-
optimal parses. Here is an example of a simple HMM 
for gene prediction: 
 

 
  
Some positive aspects of the HMM approach include: 
 

• Flexible model for dealing with probabilistic 
processes. 

• Does not directly rely on significant similarities 
with known genes. 

 
 
Negative aspects include: 
 

• Complicated models need a great deal of training 
data.  

• Gene prediction is biased toward genes with similar 
features to those used as training set. 

 

Hexamer-Coding Measures 
A wide variety of protein coding measures were 
proposed and applied to the analysis of genomic 
sequences [10]. The amount of sequence data available 
led to the discovery that exons and introns exhibit a 
distinct usage of nucleotide words. This global property 
probably results from the combination of codon 
preference with other characteristic periodicities. The 
contrast in the usage of six nucleotide words (hexamers) 
was found to be the best single property to predict 
whether a window of vertebrate genomic sequence was 
coding or non-coding. The accuracy of the best coding 
measure was ~70% (i.e., 1/3 of the coding exons were 
missed, and 1/3 of the ones predicted are not real) for 
coding windows of at least 50 nucleotides in length. 
With little prospect of finding better coding measures, 
scientists in the field began to try various combinations 
of the existing methods, hoping to improve the overall 
accuracy of predictions. A straightforward, but effective, 
way of implementing this concept was through a visual 
interface, simultaneously displaying graphical 
representations of the selected coding measures as well 
as signal information (such as start/stop codons and 
splice sites). This approach, pioneered by Staden, 
Legouis et al., used a semi-automated protocol to 
successfully identify the gene for Kallmann syndrome 
from a 67 kb genomic contig containing only two 
internal exons (141 + 222 coding nucleotides). The 
protocol combined (i) the selection of all ORFs larger 
than 50 bp and flanked by reasonable consensus 
acceptor and donor splice sites, (ii) ranking the 
candidate exons according to the hexamer coding 
measure and (iii) scanning the candidate exons for 
similarity against protein sequence databases. 
 
Decision tree 
Well established machine learning techniques, decision 
tree classifiers have been introduced by Salzberg [12] 
for solving the problem of discriminating coding and 
non-coding DNA [10]. The internal nodes of a decision 
tree are property values that are tested for each sub 
sequence passed to the tree. Properties can be various 
coding measures (e.g., hexamer frequency) or signal 
strengths. The bottom nodes (leaves) of the tree contain 
class labels to be finally associated with the sub 
sequence. Once classified, the various components are 
assembled into an optimal gene model using a dynamic 
programming approach. Briefly, the dynamic 
programming algorithm is a well established recursive 
procedure for finding the optimal (e.g., minimal cost or 
top scoring) pathway among a series of weighted steps. 
For example, coding measures and signal strengths can 
be used to compute scores for all subintervals in the test 
sequence. There are cases in which a neural network is 
used to combine the various measures into a log-
likelihood ratio for each subinterval to exactly represent 
an intron or exon. A dynamic programming approach is 
then used to find the optimal combination of introns and 
exons.  
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Weight Matrix Method and Weight Array Method 
Numerous models of biological signal sequences such as 
donor and acceptor splice sites, promoters, etc, have 
been constructed in the past years [11]. One of the 
earliest and most influential approaches has been the 
Weight Matrix Method (WMM) introduced by Staden 

[13], in which the frequency (i)
jp  of each nucleotide j at 

each position i of a signal of length n is derived from a 
collection of aligned signal sequences and the product 
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of generating a particular sequence X={x1,x2,…,xn}. A 
generalization of this method, termed Weight Array 
Model (WAM), was applied by Zhang & Marr [14], in 
which dependencies between adjacent positions are 
considered. In this model, the probability of generating a 
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where )i,i(
k,jp 1−  is the conditional probability of 

generating nucleotide Xk at position i, given nucleotide 
Xj at position i-1 (which is estimated from the 
corresponding conditional frequency in the set of 
aligned signal sequences). Of course, higher-order 
WAM models capturing second-order (triplet) or third-
order (tetranucleotide) dependencies in signal sequences 
could be used in principle, but typically there is 
insufficient data available to estimate the increased 
number of parameters in such models. WMM models 
are used for certain types of signals and modified WAM 
models can be derived for acceptor splice sites. Here, 
another model termed as Maximal Dependence 
Decomposition (MDD), is introduced to model donor 
splice sites. 
 
Maximal Dependence Decomposition 
The goal of the Maximal Dependence Decomposition 
procedure is to generate, from an aligned set of signal 
sequences of moderate to large size (i.e. at least several 
hundred or more sequences), a model which captures the 
most significant dependencies between positions [11] 
(allowing for non-adjacent as well as adjacent 
dependencies), essentially by replacing unconditional 
WMM probabilities by appropriate conditional 
probabilities provided that sufficient data is available to 
do so reliably. Given a data set D consisting of N 
aligned sequences of length k, the first step is to assign a 
consensus nucleotide or nucleotides at each position. Ci 
is the consensus indicator variable (1 if the nucleotide at 
position i matches the consensus at i, 0 otherwise) and 
the Xj is the nucleotide indicator, identifying the 
nucleotide at position j. Then, for each pair of positions, 
the 2Χ  statistic is calculated for Ci versus Xj, for each 
i, j pair with i≠j. If no significant dependencies are 
detected (for an appropriate P-value), then a simple 
WMM should be sufficient. If significant dependencies 
are detected, but they are exclusively or predominantly 
between adjacent positions, then a WAM model may be  

 

appropriate. If, however, there are strong dependencies 
between non-adjacent as well as adjacent positions, then 
we proceed as follows: (i) Calculate, for each position i, 
the sum ∑ ≠

=
ij jii )X,(CS 2Χ , which is a measure of 

the amount of dependence between the variable Ci and 
the nucleotides at the remaining positions of the site; 
and (ii) choose the value i1 such that 1iS  is maximal and 

partition D into two subsets: 1iD  all sequences which 

have the consensus nucleotide(s) at position i1; and 

1i
D  all sequences which do not. Now repeat steps (i) 

and (ii) on each of the subsets, 1iD  and 
1i

D  and on 

subsets thereof, and so on, yielding a binary subdivision 
tree.  
 
Artificial Neural Networks 
One can simply view a neural network [15] as a parallel 
computational model comprised of a large number of 
adaptive processing units (neurons). The neurons 
communicate through a large set of interconnections 
with variable strengths (weights) in which the learned 
information is stored. 
Neural networks have several unique characteristics and 
advantages as tools for the molecular sequence analysis 
problem. A very important feature of these networks is 
their adaptive nature, where learning by example 
replaces conventional programming in solving 
problems. This feature makes such computational 
models very appealing in application domains where one 
has little or incomplete understanding of the problem to 
be solved, but where training data are readily available. 
Owing to the large number of interconnections between 
their basics processing units, neural networks are error-
tolerant, and can deal with noisy data. Neural network 
architecture encodes information in a distributed 
fashion. This inherent parallelism makes it easy to 
optimize the network to deal with a large volume of data 
and to analyze numerous input parameters. Flexible 
encoding schemes can be used to combine 
heterogeneous sequence features for network input. 
Finally a multilayer network is capable of capturing and 
discovering high-order correlations and relationships in 
input data. 
A neural network is characterized by (i) its pattern of 
connections between the neurons (called its 
architecture), (ii) its method of determining the weights 
on the connections (called its training, or learning, 
algorithm) and (iii) its activation function. 
 
Neural Networks Architecture 
A neural network consists of a large number of simple 
processing elements called neurons. The arrangement of 
neurons into layers and the connection patterns within 
and between layers is called the network architecture. 
Each neuron is connected to other neurons by means of 
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directed communication links, each with an associated 
weight. The weights represent information being used 
by the net to solve a problem. Each neuron has an 
internal state, called de activation level, which is a 
function of the inputs it has received. An activation 
function is used to map any real input into a usually 
bounded range, often 0 to 1 or -1 to 1. 
In feedforward (FF) nets, the signals flow from the input 
units to the output units, in a forward direction: the input 
units receive signals from the outside world; the output 
units present the response of the net. A multilayer FF net 
is a net with one or more hidden layers between the 
input units and the output units. In a fully connected net 
every node in each layer is connected to every other 
node in the adjacent forward layer. If, however, some of 
the communication links are missing from the network, 
we say that the network is partially connected.  
 
The Simplest Neural Network 
The simplest example of a neural network is the 
Perceptron (Rosenblatt), used for the classification of 
the special type of patterns characterized as linearly 
separable. A perceptron has only two layers—input and 
output layers. It computes a linear combination of the 
network inputs and applies the net input to produce the 
output using a threshold output function. An elementary 
perceptron consists of a single output neuron with 
adjustable synaptic weights and a threshold. The 
threshold can be treated as a synaptic weight connected 
to a fixed input of value 1. Such a fixed input unit is 
called a bias unit. One can use the elementary 
perceptron to solve a pattern classification problem with 
only two classes. To perform classification with more 
than two classes requires the use of more output 
neurons. 
The weights of the perceptron can be adapted on an 
iteration-by-iteration basis, using an error-correction 
rule known as the perceptron convergence theorem 
(Minsky and Papert). The theorem guarantees that if a 
solution exists, the perceptron learning rule will, in a 
finite number of steps, converge to the correct weights 
that produce correct output values for all training 
patterns. 
 
Application to the Gene Identification Problem 
One important area of application of the neural network 
model is for gene identification. The gene identification 
problem is tackled by two complimentary approaches: 
gene search by signal and gene search by content 
(Staden). The search by content methods use various 
coding measures to determine the protein-coding 
potential of sequences. The search by signal methods 
identify signal sequences, such as splice sites, which 
delimit coding regions. Neural networks provide an 
attractive model in which sequence features for both 
signal and content can be combined and weighted to 
improve predictive accuracy. 
The identification and analysis of other signals, binding 
sites or regulatory sites, such as promoters, ribosome-
binding sites, and transcriptional initiating and  

 

terminating sites, are also important for the studies of 
gene regulation and expression. Common approaches to 
finding functional signals include the consensus 
sequence method, the weight matrix method and the 
neural network method. Neural networks allow the 
incorporation of both positive and negative examples, 
the detection of higher-order and long-range 
correlations, and are not based on the assumption of 
positional independence. As a result, neural networks 
are found to be superior to other methods in many 
studies. 
 
A Different Approach 
Another approach to the problem of gene prediction was 
borrowed [2] and [3] from the field of Digital Signal 
Processing (DSP). Genomic information is digital in a 
real sense, it comes in sequences (character strings) 
where each element is one out of a finite number of 
possible entities. DSP techniques deal with numerical 
sequences rather than character strings, so a proper map 
from characters to numbers is needed before DSP tools 
can be used. Of course there are infinite many possible 
mappings available but, since the goal is to predict the 
location of coding regions within a portion of DNA 
sequence, an optimization problem is set in which the 
parameters (mapping) are determined as the set of 
values maximizing the predictive power.   
 
The spectra of DNA 
Assume that we assign the numbers a, t, c, g to the 
characters A, T, C, G, respectively. Then a DNA 
sequence of length N can be represented [3] as follows: 
 

x[n]=a⋅uA[n]+t⋅uT[n]+c⋅uC[n]+g⋅uG[n] 
 

n=0,1,2,…,N-1 
 
Where uX[n] represents a binary indicator function for 
the corresponding nucleotide, it takes the value 1 at 
index n if the corresponding nucleotide is present at that 
position, and takes the value 0 otherwise.  
For pure DNA character strings (i.e. without assigning 
numerical values) the Discrete Fourier Transform 
(DFT) of the indicator sequences (designated as UX[k]) 
represent the frequency content of each nucleotide. 
Combining all four contributions we get: 
 

2222 ]k[U]k[U]k[U]k[U]k[S GCTA +++=  
 
This quantity can be used as a measure of the total 
spectral content of the DNA sequence at frequency k. In 
particular, the frequency k=N/3 corresponds to a period 
of three samples (the length of each codon) and it has 
been shown [2], [4], [5] that a protein coding region in 
DNA typically has a peak at that frequency, while non-
coding regions have a much smaller value. For example, 
the figure in the next page shows the spectrum of a 
length N=1176 coding region in the genome of 
Caenorhabditis Elegans, showing the peak at k=392. 
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Spectra of a coding region in the worm genome 
 
If we define the following normalized DFT coefficients 
(random variables) at frequency k=N/3: 
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Then for each segment of length N (multiple of three) of 
a DNA sequence there corresponds a complex number 
W. We can think of |W| as being a random variable and 
for properly chosen values of a, t, c and g it has proved 
[3] to be a good predictor of whether or not a given 
DNA segment belongs to a coding region. We can 
obtain the statistical properties of A, T, C and G (their 
mean and standard deviation) collecting a large number 
of  samples from protein coding regions of DNA and 
maximize the discriminatory capability of |W| setting the 
correct optimization problem. The following example 
tests the ability of the predictor when applied to a DNA 
segment of C. Elegans which contains the gene 
designated as F56F11.4a. The graph shows the 
magnitude of the predictor in the top part and the 
exon/intron structure of the gene in the bottom part. 
 

 
Exon prediction over F56F11.4a of C. Elegans 
 
We see from the picture the power of the predictor in 
this particular case. 
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