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Hidden Markov Models

Lecture 5, Tuesday April 15, 2003

Review of Last Lecture

Lecture 2, Thursday April 3, 2003

Lecture 5, Tuesday April 15, 2003

Time Warping

Definition: α(u), β(u) are connected by an approximate 
continuous  time warping (u0, v0), if:

u0, v0 are strictly increasing functions on [0, T], and
α(u0(t)) ≅ β (v0(t)) for 0 ≤ t ≤ T
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Time Warping
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Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)
• Alphabet Σ = { b1, b2, …, bM }
• Set of states Q = { 1, ..., K }
• Transition probabilitiesbetween any two states

aij = transition prob from state i to state j

ai1 + … + aiK = 1,   for all states i = 1…K

• Start probabilities a0i

a01 + … + a0K = 1

• Emission probabilities within each state

ei(b) = P( x i = b | πi = k)

ei(b1) + … + ei(bM) = 1,   for all states i = 1…K
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The three main questions on HMMs

1. Evaluation

GIVEN a HMM M, and a sequence x,
FIND Prob[ x | M ]

2. Decoding

GIVEN a HMM M, and a sequence x,
FIND the sequence π of states that maximizes P[ x, π | M ]

3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence x,

FIND parameters θ = (ei(.), aij) that maximize P[ x | θ ]
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Today

• Decoding 

• Evaluation

Problem 1: Decoding

Find the best parse of a sequence
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Decoding

GIVEN x = x1x2 ……xN

We want to find π = π1 , ……, πN,
such that P[ x, π ] is maximized

π* = argmaxπ P[ x, π ]

We can use dynamic programming!

Let Vk(i) = max{π1,… ,i-1} P[x1…xi-1, π1, …, πi-1, x i,  πi = k]

= Probability of most likely sequence of states ending at 
state πi = k
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Decoding – main idea

Given that for all states k, 
and for a fixed position i,

Vk(i) = max{π1,…, i-1} P[x1…xi-1,  π1 , …, πi-1, xi , πi = k]

What is Vk(i+1)?

From definition, 
Vl(i+1) = max{π1,…,i} P[ x1 …xi,  π1 , …, πi, x i+1, πi+1 = l ]

= max{π1,…,i} P(xi+1,  πi+1 = l | x1…x i,π1 ,…, πi)  P[x1…xi , π1 ,…, πi ]
= max{π1,…,i} P(xi+1,  πi+1 = l | πi ) P[x1…x i-1, π1, …, πi-1, x i, πi]
= maxk P(xi+1,  πi+1 = l | πi = k) max{π1,…,i-1} P[x1…x i-1,π1 ,…,πi-1,  xi,πi=k]
= el(xi+1) maxk ak l Vk(i)
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The Viterbi Algorithm

Input: x = x1… …xN

Initialization:
V0(0) = 1 (0 is the imaginary first position)
Vk(0) = 0, for all k > 0

Iteration:
Vj(i) = ej(x i ) × maxk ak j Vk(i-1)

Ptrj(i) = argmaxk ak j Vk(i-1)

Termination:
P(x , π*) = maxk Vk(N)

Traceback:
πN* = argmaxk Vk(N)
πi-1*  = Ptrπi (i)
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The Viterbi Algorithm

Similar to “aligning” a set of states to a sequence

Time:
O(K2N)

Space:
O(KN)

x1 x2 x3 ………………………………………..xN

State 1

2

K

Vj(i)
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Viterbi Algorithm – a practical detail

Underflows are a significant problem

P[ x1 ,…., xi , π1 , …, πi ] =  a0π1 aπ1π2……aπi eπ1(x1)……eπi(xi)

These numbers become extremely small – underflow 

Solution: Take the logs of all values

Vl(i) = log ek(xi) + maxk [ Vk(i-1) + log ak l ]
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Example

Let x be a sequence with a portion of ~ 1/6 6’s, followed by a portion of ~ ½ 
6’s…

x = 123456123456…12345 6626364656…1626364656

Then, it is not hard to show that optimal parse is (exercise):

FFF…………………...F LLL………………………...L

6 nucleotides “123456” parsed as F, contribute .956×(1/6)6 = 1.6×10-5

parsed as L, contribute .956×(1/2)1×(1/10)5 = 0.4×10-5

“162636 ” parsed as F, contribute .956×(1/6)6 = 1.6×10-5

parsed as L, contribute .956×(1/2)3×(1/10)3 =  9.0×1 0-5

Problem 2: Evaluation

Find the likelihood a sequence is 
generated by the model
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Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state π1 according to prob a0π1

2. Emit letter x1 according to prob eπ1(x1)
3. Go to state π2 according to prob aπ1π2

4. … until emitting xn
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A couple of questions

Given a sequence x,

• What is the probability that x was generated by the model?

• Given a position i, what is the most likely state that emitted xi?

Example: the dishonest casino

Say x = 12341623162616364616234161221341

Most likely path: π = FF… …F
However: marked letters more likely to be L than unmarked letters
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Evaluation

We will develop algorithms that allow us to compute:

P(x) Probability of x given the model

P(xi…xj) Probability of a substring of x given the model

P( πI = k | x) Probability that the i th state is k, given x

A more refined measure of which states x may be in



4

Lecture 5, Tuesday April 15, 2003

The Forward Algorithm

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

P(x) =  Σπ P(x, π)   =  Σπ P(x |  π) P( π) 

To avoid summing over an exponential number of paths π, define 

fk(i) = P(x1…xi,  πi = k) (the forward probability)
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The Forward Algorithm – derivation

Define the forward probability:

fl(i) = P(x1…x i, πi = l) 

= Σπ1…πi-1 P(x1…x i-1, π1,…, πi-1, πi = l) el(xi)

= Σk Σ π1…πi-2 P(x1 …xi-1,  π1,…, πi-2,  πi-1 = k) ak l el(xi)

= e l(xi) Σk fk(i-1) ak l
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The Forward Algorithm

We can compute fk(i ) for all k, i, using dynamic programming!

Initialization:
f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:

fl(i) = el(x i)  Σk fk(i-1) ak l

Termination:

P(x) = Σk fk(N) ak0

Where, ak0 is the probability that the terminating state is k (usually = a0k)
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Relation between Forward and Viterbi

VITERBI

Initialization:
V0(0) = 1
Vk(0) = 0, for all k > 0

Iteration:

Vj(i) = ej(x i) maxk Vk(i-1) ak j

Termination:

P(x , π*) = maxk Vk(N)

FORWARD

Initialization:
f0(0) = 1
fk(0) = 0, for all k > 0

Iteration:

fl(i) = el(x i) Σk fk(i-1) ak l

Termination:

P(x) = Σk fk(N) ak0
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Motivation for the Backward Algorithm

We want to compute

P( πi = k | x),

the probability distribution on the i th position, given x

We start by computing

P( πi = k, x) = P(x1 …xi, πi = k, xi+1…xN)
= P(x1…xi, πi = k) P(x i+1…xN | x1…xi, πi = k) 
= P(x1…xi, πi = k) P(x i+1…xN | πi = k) 

Forward, fk(i) Backward, bk(i)
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The Backward Algorithm – derivation

Define the backward probability:

bk(i) = P(xi+1…xN | πi = k) 

= Σ πi+1…πN P(xi+1,xi+2 , …, xN,  πi+1, …, πN | πi = k)

= Σl Σ πi+1…πN P(xi+1,xi+2 , …, xN,  πi+1 = l, πi+2 , …, πN | πi = k)

= Σl el(xi+1) ak l Σ πi+1…πN P(xi+2, …, xN,  πi+2, …, πN |  πi+1 = l)

= Σl el(xi+1) ak l bl(i+1)
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The Backward Algorithm

We can compute bk(i) for all k, i, using dynamic programming

Initialization:

bk(N) = ak0, for all k

Iteration:

bk(i) = Σl el(x i+1) ak l bl (i+1)

Termination:

P(x) = Σl a0l el(x1) bl(1)
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Computational Complexity

What is the running time, and space required, for Forward, and B ackward?

Time:   O(K 2 N)
Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs
Forward/Backward: rescaling at each position by multiplying by a

constant
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Posterior Decoding

We can now calculate

fk(i) bk(i)
P( πi = k | x) = –––––––

P(x)

Then, we can ask

What is the most likely state at position i of sequence x:

Define π^ by Posterior Decoding:

π^
i = argmaxk P(π i = k | x)
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Posterior Decoding

For each state, 

Posterior Decoding gives us a curve of 

likelihood of state for each position

That is sometimes more informative than Viterbi path π*

A+ C+ G+ T+

A- C- G- T-

A modeling Example

CpG islands in DNA sequences
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Example: CpG Islands

CpG nucleotides in the genome are frequently methylated

(Write CpG not to confuse with CG base pair)

C → methyl-C → T

Methylation often suppressed around genes, promoters
→ CpG islands
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Example: CpG Islands

In CpG islands,

CG is more frequent

Other pairs (AA, AG, AT…) have different frequencies

Question: Detect CpG islands computationally
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A model of CpG Islands – (1) Architecture

A+ C+ G+ T+

A- C- G- T-

CpG Island

Not CpGIsland


