
A CIRCULAR MODEL FOR SOFTWARE DEVELOPMENT

Marvin J. Carr

McDonnell Douglas Electronic Systems Company
5301 Bolsa Ave.

Huntington Beach, California 92647

INTRODUCTION

Software development in the 50's and 60's consisted
of designing to some level of detail sufficient to see how
most of the parts fit together, coding and designing at the
same time, and then fixing the code to make the system
operate to the user's satisfaction. Software developed in
this manner was very difficult to maintain and almost
impossible to enhance. This lead to a successive
stagewise model of software development in which the
current stage or phase was completed before continuing
on to the next stage. In 1970 the Waterfall model [11,
Figure 1, was presented which incorporated feedback
loops between the stages, thus ensuring that problems
were resolved at the correct level. As the computer
industry matured and hardware became smaller, faster,
and cheaper, computer systems have grown larger and
more complex. As a result, the methodology used to
produce software has correspondingly grown in
complexity. It's no longer a "one shot" process where the
project follows the strict design, code, test, and delivery
method depicted in the Waterfall model. In a growing
number of systems, and certainly in sophisticated weapon
systems, it's necessary to build and operate a portion of

I Requirements ~
Specification

Product
Specification

Detailed ~
Design [~N~

Unit Test

~s~em I Integration

Figure 1. Waterfall Model

COPYRIGHT 19,89 BY THE ASSOCIATION FOR COMPUTING MACHINERY, INC.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title o| the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

the system before the requirements for the entire system
can be thoroughly understood. A clear statement of the
dilemma that faces all software engineers was made by
David Parnas and Paul Clements [2] when they
commented that; "People who commission a system don't
know exactly what they want." Very often the system
specification, in whatever form it takes, contains
statements of requirements that are not completely
understood, that are ambiguous, and that are subject to
change. This "fuzz" factor is the most difficult problem
for software engineers. The elimination of the fuzz
factor, in most cases, does not occur until later in the life
cycle when the customer finally has some first hand
operational experience with the subject system. Even
then the customer, through experience, will require
additional features and/or existing features changed.

Fred Brooks [3} very succinctly described the problem
this way;

"The hardest single part of building a software
system is deciding precisely what to build. No
other part of the conceptual work is as difficult
as establishing the detailed technical
requirements, including all the interfaces to
people, machines, and other software systems.
No other part of the work so cripples the
resulting system if done wrong."

Existing software life-cycle models fail to deal
adequately with all the problems intrinsic in the
development of large, complex, software intensive
systems. The Spiral model [4], Figure 2, addresses the
limitations of other development models, such as the
Waterfall model, in the areas of iterative development
and prototyping, however, the spiral model addresses
internal development where requirements evolve rather
than contract acquisition of software where requirements
are specified. The Spiral model also does not address the
type of incremental development espoused by Ada design
methodologists [5][6]. The Aria development
methodology most commonly expressed is one that
specifies the requirements, designs an architecture and
implements the design at the highest level and then fills in
lower levels of abstraction as the system is decomposed.
Another aspect that is not thoroughly accounted for is the
process of ensuring that requirements are understood
prior to implementation.

The software development paradigm presented here
proposes a software life cycle model that not only
addresses resolving requirements, prototyping and Ada
incremental development, but also provides a method to

'129

~,~,~',~,

altematlvee. cc, nmtmlntll

I Implement ! Acc°f~'t~mc° ! lUG1 ~It J,.., ,''I''~''~'~
Plan neat ph~ee I aUon ~ ~ | ~

Figure 2. Spiral Model

handle the total software life cycle in a continuum without
discontinuities that are inherent in other models.

THE CIRCULAR MODEL

The Circular Model, Figure 3, was developed out of

I ..¢ S

Figure 3. Circular Model

the need for a process that could be used not only for
current methodologies, but also for methodologies that
are emerging in Object Oriented Development (ODD)
and in particular, Aria development. As will be addressed
later in this paper, the circular model can accommodate
previous models as a matter of course, thus allowing the
appropriate combination of models for each software
situation.

The circular model consists of two interdependent
cycles (see Figure 3). The entry point into the circular
model is in the center at point E. Cycle 1 defines the
system and plans the overall development. Requirements
are analyzed and planning is done to lay out the
development activities such that the system is built in the

most efficient manner. Progressing from one stage to
another involves a review of the products of the current
stage. These reviews involve the customer to ensure that
the system is meeting the specified requirements. Cycle 1
consists of three stages (1-3):

1. Define Concepts

• Feasibility studies
• Requirements analysis
• Risk analysis
• User's interface prototype

2. Generate Definition

• Requirements analysis
• Functional analysis
• Functional prototype
• Risk analysis

3. Evaluate Requirements

• Requirements validation
• Functional prototype
• Risk analysis

Cycle 2 is concerned with implementing the system
defined in cycle 1. Cycle 2 consists of three stages (4-6):

4. Analyze

• Preliminary design/review
• Detailed design/review
• Risk analysis

5. Build (Implementation)

• Code and unit test
• Subsystem integration
• System integration

6. Evaluate System

• Independent test
• Acceptance test
• Operational demonstration

There are three major decision points in the circular
model; A, B, and C. Decision point A controls the
transition of the process into cycle 2. If the results of
evaluating the requirements (stage 3) indicates that the
proposed solution generated during stage 2 does not
satisfy the customer's requirements then cycle 1 is
repeated. This is an extremely important point. The
traditional approach is to rush into the design phase
before the requirements are thoroughly understood.
Many systems have faltered and not met expectations just
because of "fi¢zz" in the requirements. Cycle 1 is
repeated as many times as necessary to adequately define
and clarify requirements.

Decision point B provides the mechanism to resolve
anomalies between requirements and design before
coding commences. (In Ada, implementing
specifications may be considered part of the design,
implementing bodies may be considered coding,
depending on the circumstances.) The resolution of
requirement-design anomalies are fed into cycle 1 to
perform a total system impact analysis. This saves
expensive rework of code during integration to account
for adverse affects on other parts of the system.

130

Decision point C, crossing the boundary of cycle 2 to
denote completion of the system, brings an orderly end to
the life cycle model. The boundary point crossing occurs
when the criterion for satisfactory performance of the
system is met. Decision point C also provides for
re-assessment of the system if the evaluation conducted
during stage 6 shows the product did not meet all the
system requirements. In the case of incremental delivery,
decision point C also provides the mechanism for
delivering the completed increment to the customer as
well as feeding the completed increment back into cycle 1
for assessment and planning for the next incremental
delivery.

CYCLE 1
Cycle 1, Figure 4, is concerned with definition of the

system. During the Define Concepts stage (stage 1) the
objectives of the system are elaborated through the
analysis of the customer supplied system specification.
(This customer supplied specification forms the basis for
the construction of the system.) A document that
describes the operation of the system is written detailing
the system's objectives and how the objectives are
envisioned to be accomplished. Included in the concepts
of operation document are detailed descriptions of the
user's interfaces. Stage 1 has a high degree of customer
interaction to ensure that the customers needs are fully
understood. Prototyping the customer interface is a great
aid in stage 1 to help understand and develop the
operational aspects of the system. When the operation of
the system has been defined and approved by the
customer, the system advances to Stage 2.

Stage 2, Generate System Definition, is concerned
with producing the top level specifications for the
software. A top level system design is formulated by
decomposing the total software system into software
subsystems (in 2167A terminology the subsystems could
be Computer Software Configuration Items (CSCIs).)
Frequently this process will identify areas of uncertainty
that are significant sources of project risk. If so, the next
stage, Evaluate Requirements, formulates a cost effective
strategy for resolving the sources of risk. This may
involve prototyping, simulation, analytic modeling, or

combinations of these and other risk management
techniques. Cycle 1 is then repeated taking into account
and analyzing the risk reduction solution's impact on the
overall system specification. Cycle 1 is repeated until all
aspects of the system are satisfactorily addressed.

The specification of software requirements is one of
the products of cycle 1. This specification identifies the
major subsystems and their time phased implementation
plan. As most often is the case, there are subsystems
which are dependent upon capabilities contained in other
subsystems being operational before verification of the
dependent subsystem can take place. Software
development methodologies that are currently being used
do not directly allow for this timed phasing of
development to take place in an orderly manner. The
circular life cycle model provides for time phased
development to take place at decision point A. At
decision point A, the portion of the software that has been
designated for implementation is put into cycle 2 while
the rest of the software is held in cycle 1 awaiting the
results of implementation of dependent capabilities.

CYCLE 2

The boundary crossing from cycle 1 to cycle 2,
decision point A, occurs when the customer and
contractor make the decision that the system is
adequately understood and specified. (Adequately means
that the abstraction of the system that is being
transitioned into cycle 2 can be implemented in its

entirety.)
Cycle 2, Figure 5, is where the selected proposal for

the system is put into action. The Analyze stage consists
of designing the software to a detail where coding can
easily take place. This is accomplished by performing the
design and validating the design against the specifications
detailed during cycle 1. Normally this consists of
detailing the design in a Program Design Language (PDL)
such as Ada PDL.

The Analyze stage ends when the software design
satisfactorily passes the design review (decision point B).
The decision to enter the Build stage is based upon a
complete design that contains no open items, i.e., no

/

4

Figure 4. Cycle 1 Figure 5. Cycle 2

131

. 7 . _ -', • "

infamous TBDs (To Be Determined). The Preliminary
Design Review (PDR) and the Critical Design Review
(CDR) are held in the Analyze stage.

It is possible that at any point during the Analysis
stage an anomaly in the design process can occur that has
to be corrected by modification of the system
specifications before further action is taken. If this is the
case then cycle 1 is re-entered (decision point B) to
modify the specification and ensure that the modification
does not have an adverse affect on the rest of the system.
The point stressed here is that cycle 1 must be re-entered
to ensure that a complete analysis of the impact that the
anomaly has on the rest of the system is accomplished
before implementation takes place.

If problems occur during the build stage that reflect
back into the requirements or design, the design was not
complete and implementation should never have been
started. At decision point B all risk factors must be
resolved. Risks are resolved through prototyping the risk
areas uncovered during design and feeding the results
back into the design activities.

The Build stage is entered when the design of the
current abstraction has been accepted by the customer or
the customer's representative. In this stage, the design is
coded, unit tested and integrated to form the product that
is to be delivered. It must be re-emphasized here that the
build stage should never be entered with existing
design/requirements problems.

The Evaluate System stage consists of integrating the
product with the rest of the system, independent testing
and formal acceptance testing to demonstrate the system
satisfies the requirements specification. At the end of the
Evaluate System stage the software is delivered to the
customer and the project is completed.

The possibility exists that the system will not pass
evaluation. In this case it must be determined if further
design needs to be done or if further requirements
analysis needs to be done. The Analyze stage is entered
for further design resolution; cycle 1 is re-entered for
requirements analysis.

Two or more software components may be developed
concurrently as long as the components are independent
and do not rely on another part being complete in order to
function properly. Starting cycle 2 of a dependent part of
the system before the dependency has been completed
poses a risk to the project. This risk has to be evaluated
before action is taken.

RECURS IVE/PARALLEL DEVELOPMENT

Recursive development of software, such as that used
in Ada design methodologies, is the time-phased
development of capabilities such that each succeeding
capability either uses part or all of capabilities already
implemented; parallel development is concurrent
development of software components that have no
dependencies on each other. To accomplish this type of
software development the circular model is used in a
recursive manner (see Figure 6). The first time through
cycle 1 defines the overall system and plans the
time-ordered implementation of capabilities. The first
capability or capabilities to be developed are transition

'xs',~m \'\ I ~i.i!io:/ /

).. ' - U . /

iiiiiiiii!iiiii ii!iii ,,
,~ ililiiiiiiiiiii!~

Figure 6. Recursive Use of the Circular Model

into cycle 2. At the end of cycle 2, cycle 1 is re-entered
with the newly completed component and the next
component is transitioned into cycle 2. The reason for
re-entering cycle 1 with the newly developed software is
to evaluate the completed software to ensure system
requirements and operational concepts are still being
met, and to finish the planning for implementation of the
next capability.

It is most likely during the analyze phase that the
design is abstracted to lower and lower levels, which may
be able to be placed in their own recursive/parallel
development cycles. This is shown in Figure 6 as the
shaded arrow from the analyze stage pointing to a smaller
representation of the circular model. At the end of cycle
2, the first capability is delivered and also re-enters cycle
1 for evaluation and integration into succeeding
capabilities. The next capability to be developed is then
put into cycle 2. This series of events continues until the
entire system has been developed and delivered to the
customer.

PROTOTYPING

Prototyping of the system can take place at any time
during cycle 1 or cycle 2 in parallel with the activities of
each stage. During each stage, technical information
obtained from the prototype is continually fed into the
design process to aid in the design and implementation.
An important aspect of cycle 1 is the role that prototyping
plays in the evaluation of system requirements. In the
past there was no model to represent the evaluation of the
prototype to ensure it was solving the correct problem and
that the technology to solve the problem was integrated
into the main stream design process. In the circular
model, the results of the prototyping activity are
continually fed into the activities of each stage.

WATERFALL MODEL EMULATION

The circular model adapted to the Waterfall approach
of software development is shown in Figure 7. Included
are the reviews for each stage of the Waterfall model.

132

f
\ ii!i I{' ~i:~!ii~i:i!i:i

....... ~:~<~!~ii:iiiiiiii;iiiiii~

=;9)

Review

Figure 7. Waterfall Process

The advantage of the circular model can be seen when
looking at the Waterfall model in the circular model
context. Using the Waterfall model requires that all the
requirements be specified before design commences or
design is done with some of the requirements still in the
"fuzzy" state.

CONCLUSIONS

The circular model is recognized by many McDonnell
Douglas Electronic Systems Company (MDESC)
projects. Several Ada projects are currently using this
model. A corporate metric activity is also using the
circular model as the basis for defining the collection
points of metric data.

Further elaboration of the steps of recursive/parallel
development needs to be performed. In particular,
further refinement of the methods of requirements
verification and validation need to be worked into the
model's methodology.

ACKNOWLEDGMENTS

I would like to thank Bill Halley and Robert Ensey for
their patience with me during our frequent theoretical
discussions and for their contributions in reviewing this
paper.

REFERENCES

[11 Royce, Winston W., "Managing the Development of
Large Software Systems: Concepts and
Techniques," Proceedings, WESCON, August
1970.

[2] Parnas, David L., and Clements, Paul C., "A
Rational Design Process: How and Why to Fake It",
IEEE Trans. SW Eng., Vol. SE-12, No. 2,
February 1986

[3] Brooks, F.R., Jr., "No Silver Bullet, Essence and
Accidents of Software Engineering", Computer, vol
20, no. 14, 1987.

[4] Boehm, Barry W., "Spiral Model of Software
Development and Enhancement," A~M Software
Engineering Notes, Vol. 11, No. 4, August 1986.

[5] Berard, Ed V., Object Oriented Design, 1988, EVB
Software Engineering Inc., Frederick, Maryland

[6] Firesmith, Donald G., Ada Project Management,
Version 6.1, 1988, Fort Wayne, Indiana.

133

• . 2 •

