
A Rapid Development Process with UML
Giuliano Armano

DIEE, Dipartimento di Ingegneria Elettrica ed Elettronica,
University of Cagliad

Piazza d'Arrni
1-09123, Cagliad (Italy)
Tel. +39-70-675.5878

armano@diee.unica.it

Michele Marchesi
DIEE, Dlpartimento di Ingegneda Elettdca ed Elettronica,

University of Cagliari
Pim,7a d'Arrni

1-09123, Cagliad (Italy)
Tel. +39-70-675.5899

michele@diee.unica.it

ABSTRACT

Since "design-oriented" life-cycles came to their maturity,
dramatic cha-ges have been introduced as far as
programming tools and computer hardware are concerned.
Such changes made it possible to develop applications
focusing on refactoring rather than on analysis and design_
The underlying hypothesis is that by adopting suitable
tools and target languages, refactoring would possibly cost
less than the overhead introduced by modern A&D
techniques_ Recently, extreme programming has been
proposed as an alternative to a "design-oriented" life-
cycle.

In this paper we describe a software application developed
using a software life-cycle that basically follows the
guidelines suggested by extreme prograrvm/ng. Such an
approach requires highly expressive programming
languages and powerfid CASE tools. UML has been
selected as the underlying modeling language throughout
the whole process, for it incorporates well-known
diagrams for describing a software application ~ o m
different perspectives. Smalltalk has been selected as
target language, as it allows fast prototyping and early
delivery. We claim that, for small and medium-sized
projects, a fife-cycle based on refactoring and supported
by suitable languages and tools allows team productivity
to be greatly enhanced.
Keywords
Software Life-Cycle, Object-Oriented Analysis and Design,
Minimal Methodologies, Exlreme Programming, Refaztoring.

1. I N T R O D U C T I O N
Object-oriented technology is extensively used in the field
o f software engineering. In particular, it appears to be the
most suitable approach to perform conceptuedization,
analysis, design and implementation, all within a couu.uton
f~amework. Up to 1997 more than 50 methods have been
proposed and used to support object-oriented life-cycle
software development (e.g., Beech [2] OOSE [7], OMT
[11], Shlaer-Mellor [13], Wirfs-Brock [14], Coad-
Yourdon [4]).

The standardization o f the well known u m f i e d Modeling
Language ([3]) has dramatically changed the scope in
object-oriented software development. In fact, the
introduction of a standard language for describing

information, functional, and control models within the
fi'amework o f object-oriented technology has made it
possible m tackle software development issues f rom a
common perspective. UML does not incorporate any
particular process; however it encourages a process based
on use cases [7], centered upon the architecture, iterative
and, possibly, incremental.

Since U M L has been standardized by OMG, their authors
have been attempting to define a process general enough
to be applied in most applications. This work leads to the
definition o f the so-called Unified Process t ([8], [9]). UP
aims to apply software "best-practices" starling f rom the
concept o f "software generation".

According to UP, a software product is created in an
initial development cycle, and it will evolve into its next
generation by repeating a sequence o f four phases:
inception, elaboration, construction, and transition.
According to the proposal o f Boehm [1], each phase
defines a point in time (a milestone) based on clear
criteria. Thus, the above phases end up with the following
milestones: life-cycle objective, life-cycle architecture,
initial operational capability, and product release,
respectively_ Several iterations occur within a software
generatinn, so that inception, construction, transition, and
elaboration are different sc~nm-ios for iterations. It is
worth pointing out that each iteration incorporates
requirements eficitafion, analysis, design, and
implementation as core processes workflows, although the
time spent on each "classical" workflow depends on the
point in which the iteration occurs during the software
generation. Roughly spealdng, during inception
preFmfinary iterations most o f the time is spent on
pl~rming and requirements elicitation; during elaboration
on requirements elicitation, analysis and design; during
construction on implementation and testing; during
ITansition on testing and deployment.

Several alternatives have been proposed that criticize the
overhead introduced by a classical "design-oriented"
approach, trying to simplify the software development
cycle by concenlrating on implementation, testing and
refactoring (e.g., Minimal Methodologies [5], Serum

I UP in the following.

Methodology [12], Extreme Programming z [6]). As this
paper is mainly concerned with XP, let us now illustrate
how it defines its own '~oest software practices".

The rationale that supports the "extreme way" is that
requirements will not be known at the beginning, as they
will change along the way. Thus, instead o f trying to
capture and analyze requirements separately, it is better to
define an alternative approach able to incorporate the
design-for-change in a natural way. In other words, XP
techniques stem fxom the consideration that life-cycle
processes based on formal or semi-formal techniques
inlxoduce an overhead that might cost as nmch as
(possibly more th~n) an approach based on refactoring,
basically played at the /mplementation level. O f course,
such a consideration could not be effective until languages
and tools able to support Rapid Application Development
[10] became cotmaton practice. It is worth pointing out
that XP was conceived within Smalltalk environmeuts.
Due to its memory requirements, in the past Smalltalk was
typically run on powerful (and expensive) coraputer
systems, whereas nowadays it can be easily run on
personal computers and used as a target language for
iterative prototyping (which is the natural support for XP).

As a consequence o f the underlying approach, the
"extreme way" ends up with an iterative process strongly
based on refactoxing, testing, and a non-hierarchieal team
organization. The rule o f thumb that higldights the process
is "build fur change instead o f budding for the future".
Thus, when a change is required, only "the simplest thing
that could possibly work" is done, followed by a
'~e rc i l e ss" refactoring.

The processes we have been outlining are very similar
when considering their "natural" bias towards an

in the space o f the architectural solutions that may be
identified m solve a given problem. In particular, whereas
the former basically follows a rather classical approach
that uses A&D to avoid spending time in refactoring, the
latter bases its process precisely on refactoring.

In this paper we describe a process that basically follows
the gu/delines suggested by XP, although here refaetoring
is incorporated within round-ITip-engineering activities.
Within such a process, U M L and Smalltalk arc used as
modeling and target language, respectively. The former
has been selected because it incorporates well-known
diagrams for describing a software application f rom
different perspectives (e.g., Use Cases, as well as Class,
Interaction, State, and Deployment Diagrams), whereas
the latter has been adopted as it allows fast prototyping
and early delivery_

2. T H E P R O C E S S
In the process we propose, used on a real project, we
follow a spiral model where a complete round generates a
software generation. For the sake o f clarity, we preserved
a process based on phases, as defined by UP, where
iterations occur within different scenarios, depending on
the phase currently being undertaken. O f course, the way
core processing workflows (such as requirements
elicitation, analysis, design, implementation, test, and
deployment) arc dislzibutcd along the life-cycle o f a
software generation has been customized following "XP-
like" recouuuendations.

The main difference between XP and the life-cycle we
adopted is on the scope o f refaetoring activities: whereas
XP basically adopts refactoring at the /raplementation
level, our approach extends it to design and analysis.
F rom our point o f view, this may be seen as a natural

Inception Elaboration Construction Transition

Business Modeling high decreasing almost none none

Requirements low-increasing high-medium decreasing-low low

Analysis & Design almost none high decreasing-low none

Implementation none increasing high almost none

Test none low high decreasing

Deployment none none increasing high

-10% -30% -50% -10%

Table 1. Life cycle phases together with core processing worlcflows in the Unified Process.

evolutioo.ary life-cycle. In fact, iterative software
development is widely accepted within the software
engineers community, as an essential characteristic o f
modern life-cycles. On the other hand, UP and XP are
very different in the way they try to get a (local) rninirmtm

z XP in the following.

evolution o f the extreme way, as it continues to focus on
refaetoring, while extending it to modeling activities. A
supporter o f "pure" extreme progrsmming would rather
point out that such a choice leads back to a classical
scheme, e , hAncing the overhead due to analysis and
design versus implementation and testing. To extend
refactoring without coming up against such a drawback, a
tool able to perform round-trip engineering has to be

5

adopted, in order to facilitate moving f rom one level o f
abstraction to another.

For the sake o f sirr~plicity, while illustrating the process
we adopted, we shall refer to the four main phases
proposed b y UP (i.e., inception, elaboration, construction,
and transition). Before going into further details, let us
illustrate a cross-reference table that basically recalls how
and when core processing werkflows occur within the
phases defined in UP. As reported in Table I , about 80%

strictly depends on the selected target language
(Smalltalk), which strongly encourages and facilitates it.

To set up an environm~ut able to support the proposed
process, two different tools, i.e., Rational T M Rose and
U M L T A L K , have been used. The former is a well known
commercial tool. The tatter, developed at our departruent,
is a tool able to update (or generate) an UM.L-compliant
model starting f~om an application written in Smalltalk
and vice-versa. 3 U M L T A L K can also export its internal

Inception Elaboration Construction Transition

Business Model ing high decreasing almost none none

Requirements low-increasing high-medium medium low

Analysis & Design almost none high medium none

Implementation none medium high almost none

Test none medium high decreasing

Deployment none medium medium medium

- 1 0 % - 1 0 % 75% - 5 %

Table 2. Life cycle phases together with core processing workflows in the proposed process.

o f the time required to deliver a software release is spent
on elaboration and construction, their ratio being about
60%.

The same cross-reference table is used to show the main
characteristics o f the process we adopted. As reported in
Table 2 (italics have been used to stress where a change
occmTed), almost the same amount o f time required to
deliver a software release is spent on elaboration and
construction, but their ratio changes (less than 15%). This
basical ly means that elaboration has been "lightened" with
respect to consUuction. In particular, let us point out that:

- r e q ~ e m e n t s elicitation and A & D activities have been
part/ally moved to the construction phase. This is
basically due to the choice o f lightening elaboration
while increasing construction (by extending refactoring
to analysis and design through a round-trip-engineering
approach);

- implementat ion starts early (i.e., during the elaboration
phase). In fact, coding is used at an early stage to verify
critical, ambiguous, or incomplete requirements, as well
as to anticipate the implementat ion o f aspects deemed
crucial for the system to be developed;

- testing activities are pervasive and basically follow the
implemcntat ion 's workf low profile. In fact, according to
XP, testing activities are very important and require a
separate effort, usually aimed at implementing "test
classes" (one for each class defined within the s y s t e m to
be developed);

- d e p l o y m e n t occurs at each iteration; i.e., it is not
delayed until the transition phase starts_ Such a choice

representations into a "Petal" file format, 4 thus leaving
the possibility o f feeding Rose w/th a model created f rom
a Smalltalk application. The reverse operation is also
feasible, i.e., U M L T A L K can update a Smalltalk
application (or generate a Smalltalk skeleton) starting
f rom a model imported f rom Rose. Such a capabil i ty has
been used extensively within the applicat ion ' s
development, thus giving rise to a round-trip-engineering
activity.

Let us now concentrate our attention on the process we
propose b y considering each single phase o f it:

- Incept ion

According to the "extreme way", user requirements are
represented b y means o f use cases (called *'user stories" in
XP terminology), collected during brainstorming meetings
held with domain experts. Use cases are basically a imed at
eliciting domain classes f rom users. As use cases are an
informal text-based description, we do not spend t ime on
this issue, since the usuaJ sensible recommendat ions apply
to them (predeflned structure, non ambiguous
terminology, no redundant descriptions, etc.).

- Elaborat ion

Elaboration consists in performing analysis, defining the
overall sys tem architecture, and attainin____g a prelhninary

3 l_e., to update a Smalltalk apphcat ion (or generate the skeleton o f it)
s tart ing ffi'mn a corresponding UNIL-complmnt model.

4 A n y Rose model (by default) is stored us ing an internal file format
called "Petal".

6

design o f the application. In the presented approach, these
three activities are pe r fo l~ed in the following steps.

I. Analysis is done using Class-Responsibility-
Collaboration cards [14]. Here the focus is on
characterizing classes related to the dome.in for which
the application is intended to be run. This activity is
usually started with brainstorming meetings, aimed at
recording on actual CRC cards (with responsibilities
and collaborations) the classes found examining and
discussing use cases.

Then, these cards are trausferred to U M L class
diagrams, drawn using only the subset o f U M L
primitives that allow to implement CRC basic
concepts. In particular:

- p a c k a g e s are used to partition the system into
subsystems;

- classes (without atvributes and operations) are used
to represent CRC cards;

- class "documentation" slots are used to hold class
descriptions and their responsibilities;

- d e p e n d e n c y relationships are used to represent
collaborations;

- inheritance relationships are used to represent the
corresponding inheritance between classes annotated
on the cards;

- notes are used to con~nent the diagr~am~

In this way, the CRC analysis is documented with well
defined diagrams, which can be incrementally
modified. These diagrams are the starting point for the
subscquent step.

2. System architecture defin/tion is aimed at expanding
the abstract view recorded with CRC cards and leads
to fi~rthcr refine classes in terms o f their attributes and
operations. Now the focus is on adding structural
inforn3ation to domain classes. Furthelrrnore, extra
classes, strictly related to the application to be
developed but still "visible" to the user, 5 can bc added
to the model.

The class responsibilities elicited in the previous step
become atl~'butes, associations, and operations.
Collaborations are used to specify and refine
operations, and to check the consistence of the model.
Very often, collaborations links become associations
and aggregations, since the fact that two classes
collaborate reflects their structural dependencies.

At this level o f detail, further classes and
responsibilities that may arise are added to the model,
and are also incorporated into the CKC analysis by
means o f an iterative process. Moreover, other ciasses
belonging to the user interface or other subsystems are

5 E.g., interface classes, protocols, controllers, etc.

defined and added to the resulting architecture.
Packages are typically used to characterize high-level
subsystems that exhibit a high degree o f internal
cohesion and external decoupling. Packages derived
f~om the analysis can be further expanded, and other
packages can be added, holding the added subsystems.

This activity is performed with extensive use o f U M L
class diagrams, drawn using Rational Rose.

3. Design builds upon the overall architecture definition.
In this step, further details are added to the model. For
instance, let us consider an agency and its officiers.
During analysis it is specified that an agency has the
responsibility to know its officers and to query their
properties. This is reflected in agency responsibilities
and in a collaboration bctwcen the two classes. During
architecture definition these CRC concepts become an
aggregation between an agency and its officers (an
agency contains zero or more officers), and operations
to manage such aggregation and to query the officers.
During design it is specified that the aggregation is
implernented using an ordered collection, and that
officers are uniquely identified by an internal code.

Beside the auginentation o f the model derived ~ o m
analysis, while perfoxming design all user interfaces
are fully specified describing the/r widgets, events and
call-back messages. Furtherraore, the p=tmanent
storage o f data is defined designing the database
schema or the file formats, and the interfaces with
external systems and devices are specified.

Eventually, the design model, written in UML, is
automatically Wan~formed into a set o f Smalltalk
classes, each with proper data structure, comments,
(automatically generated) access methods, and the
skeletons o f other methods.

It is worth pointing out that state transition diagrams are
routinely used to represent the dynamic behavior o f a
class. On the other hand, collaboration, sequence and
activity diagram~ o f U/VIL are used very seldon~ i f ever.
The only motivation to use these diagrams is to document
a complex scenario o f interaction among objects, in order
to make the model more understandable.

The whole elaboration phase has been kept as
"lightweight" as possible, so as not to move too far f rom
the "ex~eme way".

- C o n s t r u c t i o n

Construction consists in irr~lementing and testing the
system to be developed. While in~lementing the system,
several iterations may occur, basically centered upon
refactoring. As already pointed out, refactoring does not
usually occur just at the implementation level, i.e., it
usually involves design activities, the overall architecture
deRnition, and analysis (possibly together with further
requirements elicitation). As a matter o f fact, a round-trip-

engineering process has to be implemented during the
construction phase. To put R into practice, U M L T A L K is
employed to link Smalltalk and Rose together. Starting
ffrom the initial arch/tecture developed using Rose (during
elaboration), U M L T A L K can then be used (during
construction) to import such an architectural description
and to produce a Srnall ta~ skeleton o f the program. At
this point, SmaJ.ltaJk coding can be performed until a
change at the design or analysis level is required. In order
to do this, the Smalltalk code is used as a source for
updatin__g the corresponding U M L T A L K model. In
particular, new methods may have to be incorporated into
the model, and/or methods description may have to be
updated according to the existing Smalltalk code.

Once performed a coding session, U M L T A L K can be
used to export the model in a "Petal" file format_ In this
way, when needed, Rose m a y be fed back and realigned
with the updated model. 6 The problem o f realiEning
model and code arises also when changes are performed
within Rose. In such a case, they have to be U'ansferred
down to the Smalltalk code. Couaztanication between a
Rose model and the corresponding Smalltalk code is
per formed by using U M L T A L K again, this t ime
proceeding in the opposite direction. As a result, a round-
trip-engineering process is implemented while performing
conslruction. In practice, U M L T A L K is basically used as
a front-end to get Smalltalk applications being dealt with
using a standard tool able to per form modeling according
to a UMI,-compliant representation.

Let us note that the round-trip is performed starting f rom
the architectural level, and does not extend up to the CRC
analysis level. In this way, the "structured" class diagrams
arc kept updated as U M L documentation o f the system.
On the other hand, the CRC diagrams reflect only the
initial efforts in the development o f the system.

As far as testin~ is concerned, it is worth noting that it is
strictly coupled with implementation activities. In
particular, for each class that belongs to the system being
developed, a corresponding test-class must be defined and
implemented. Thus, testing activities are uniformly
distributed within an iteration instead o f occurring mainly
at the end o f it.

During construction, at each iteration, one or more
subsystems arc partially refined and implemented. The
outcome o f each iteration is a prototype that incorporates
part o f the required functionalities. I t is worth noting that
the whole approach is iterative, and incremental. In fact,
high-level subsystems may be developed separately
according to a typical incremental approach, and
implementat ion activities feed back design and/or
analysis.

6 The "Semantics" field of each operation has beam selected and used to
keep information about the Smalltalk code within Rose.

- T r a n s i t i o n

Transition consists in working on the application with the
goal o f delivering it to the end user. In UP, once the
construction phase has been completed, usually several
problems occur while attempting to adapt it to the working
cnvironrramt, trying to implement features that have been
postponed, correcting some problems, etc. In particular,
the act o f adapting the application to the working
environment involves deployment activities, which should
typically occur at the transition phase. On the contrary, in
the process we adopted, deployment is performed at the
end o f each iteration. In this way, the transition phase
results in a very "light" activity. In fact, such an approach
is strictly related to the target language (Sma]]talk) which,
f rom a conceptual point o f view, does not distinguish
between system and user-defined classes. Thus, m some
sense, the system is always "'ready-to-use" and would need
a light deployment activity even i f the application were
developed using Distributed Smal.ltalk.

3 . E X P E R I M E N T A L R E S U L T S
W e developed a sys tem that falls within the class o f
business-oriented internet services. The system provides
both an on-line and an off-line front-end. The former
cons/sts o f a web service supplied to any potential
business-man searching for a grant by the European
Co~mmmity, the state, and other national or regional
bodies to set up a f inn in Sardinia. The latter consists o f a
local service supporting domain experts in updating the
infomaation about grants.

After starting an internet connection by means o f a
standard web browser, the user is typically asked
information about the business to be undertaken or
improved. Depending on the given user profile, the sys tem
queries a data base contsining information about all
availabl© grants, and selects the information that match the
useer profile. Results are automatically reported to the user
by means o f dynamic web pages. At this point, she/he can
concenlaate on a subset o f the selected grants (i f any) or
begin a different query to the database. O f course, several
queries can be repeatedly submitted by the same user and
the application must be able to handle, at the same time,
multiple queries submitted by multiple users.

To supply the required functionalities, the following
subsystems have been provided:

- a database, containing laws and directives entailing
financial support, as well as information about
international, national, and regional bodies or
authorities;

- a web interface, compatible with any web browser,
able to create user profiles (one for each user
connected to the web site), as well as to display, by
automaticalJy generating web pages, useful
information resulting f rom queries performed on the
database;

an engine, able to perform suitable queries on the
database, according to any given user profile;

- an interface for database maintenance.

A ~xst attempt at capturing requirements made it clear that
domain experts were having difficulties while trying to
Uansfer their knowledge about the domain to be modeled.
Starting f i l m this lack o f clarity and considexing that only
a few people were involved in the project, we decided not
to let the usual roles o f software architect, analyst and
programmers be played within such a sofLware project.
Instead, we defined a mere flexible team structure,
composed o f 4 people, adopting a non hierarchical team
organization and founding oux work on refactoring as the
basic mechanism for process iterations.

Requirements elicitation was done collecting fi'om the
users about 20 "stories" telling the forecasted use of the
system. A '~gh - l eve l " analysis was made with CRC
cards, using real cards first, and then storing them as class
diagrams in Rose. Fig. 1 shows one such diagram.
Responsibilities are not shown here, although they have
b e e n incorpora ted within ClaSS documentation. During this
activity 22 domain classes were found. Implementation o f
some classes has been done at this earIy stage, to verify
the feasibility and consistency o f critical aspects.
Furthermore, subsystems (i.e. packages), as well as
dependencies among classes, inheritance relationships,
and responsibilities have been identified.

Then, domain classes have been refined, typically turning
collaborations into associations and responsibilities into

attributes and operations, reslmctively. Fig. 2 illustrates a
refined diagram (only few attributes are shown for the
sake o f s/mplicity). It is worth noting that collaborations
have become associations and that 15 more classes
(application-dependent classes) have been added to the
former diagram. The whole system ended up with 65
classes. Every week an internal release was developed.
One person was codnuitted to develop test classes only.
He did not work with the rest o f the team and was
accustomed to send his artifacts through Internet. This
activity did not have any negative effect on the expected
t iming. ~ leSS than two months the part o f the system
consenting intensive data entry was released and
immediately used by administrative personnel. The whole
system was successfully deployed in t ime after five
months f~om the beginning o f the project. The estimated
man power was about 10 man-months, since developers
did not work fulltime on the project.

4. C O N C L U S I O N S A N D F U T U R E W O R K
In this paper we describe a software process strongly
biased towards refactoring. It basically follows the
guidelines suggested by XP; in fact, inception, elaboration
and Wansition result in a very "lightweight" activity,
whereas the main focus is on refactoring, impleroented
through round-trip-engineering techniques during
construction. I t is worth recalling that, within such a
process, refactoring activities are not only used at the
implementation level: they are extended to design and
analysis, too. Of course, the developing team has to be

Agency [

"-...
/ \

A legislative action is [~ / \ " '-.
enacted by an Agency : ,\

t \

"''"~: " I
/ \,

/ ",,,
/ \

t %

a r

f ~L

i e

A n i n c e n t i v e is i n s t i t u t e d

and/or ruled by a
leg~lati~ a ~ n

I Person I

\'~ 1 : ' : 2 " " ' ~ 1 An user looks fo
Incentive I ~ incentives

Fig. 1. A CRC diagram drawn during a preliminary analysLv of the syxtem

9

composed o f few people, as conanunication between them
is greater than that observed in classical teams. This
happens for two different reasons: (i) the team is biased
towards a "democratic" organization, and (ii)minimiT.il3g
overall comnmnication is no longer a process requirement.

U M L has been selected as the underlying notation for
representing the model, and Smalltalk has been selected as
target language. To be able to perform round-trip-
engineering, (in particular, to be able to move back and
forth between analysis, design, and implementation
levels), a suitable tool developed at our department
(UMLTALK) has to be used throughout the whole process
to keep the U M L representation o f the system
synchronized with the corresponding SmalItalk code. In
fact, U M L T A L K can produce a UML-compliant model
starting f rom a Smalltalk p r o p = - , and vice-versa, and can
export its internal representation into a "Petal" file format
end vice-versa.

The proposed approach has demonstrated to be very
effective in a small-s/zed project, enhancing productivity
considerably, although its scalability up to middle-sized
projects has still to be proven.

It is worth pointing out that the life-cycle we adopted
~ k e s into account the main criticisms moved by exlzeme
progr-mming to a classical "design-oriented" life-cycle.

We believe that, f rom a historical point o f view, A&D has
increased its in'~2ortance within the software life-cycle
depending on the assumption that it is costly to undo
mistakes when playing most ly at the implementation level.
Nevertheless, somehow smprisingly, a classical waterfall
approach suffered f rom a similar drawback, as it pushes
risks forward in time so that it is costly to undo mistakes
ffiom earlier phases. That is why, a modern "design-
oriented" life-cycle has to be iterafive and, possibly,
incremental.

On the other hand, wldle "design-oriented" life-cycles
came to their maturity, dramatic changes have been
introduced as far as progran~ml-g tools and computer
hardwa~ are concerned. Such changes made it possible to
develop applications focusing on zefactoring rather than
on A&D. The underlying hypothesis is that by adopting
suitable tools and tsxget languages, refactoring would
possibly cost as much as (or less than) the overhead
introduced by modern A&D techn/ques. Moving in the
same direction illustrated by extreme programming, we
followed a process m which preliminary analysis and
design are made "'lighter" and most o f the time is spent on
refactozing. The main difference between our approach
and the "extreme way" is that we performed refaetoring
within a round-trip-engineering cycle, so that the model

Agency
id
name
address 1 ..1
descdplion

/ [IncenfiveManagement I " ' - . , ,~cers
I c°nstraint .

• 1.. "~
/0.." responsibles~" officerslnCharge

Legislative.Action

nC(~dme e "~ 1..1

date norm I Incenuve
issue ~ _ _ _ _ . _ _ _ . . _ _ J c o d e
descdplion 1..* 1..* I name, .
text ---Idescnption

Person
sumal'nal
name
phone

Officer
code
title
office
email
admissionHours

User
emaJl
lastConnection
id
password
~mferences

Fig. 2 A simplified "architectural" class diagram derived f rom the CRC diagram shown in Fig. 1.

I0

and the corresponding Smalltalk implementation are
continuously kept synchronized.

As far as future work is concerned, we are trying to give a
suitable GUI to UMLTALK, in order to be able to directly
perform round-trip-engineering, during conslruction,
within a framework based on I.YML and Smalltalk as
modeling and target language, respectively.

S. A C K N O W L E D G M E N T S
Our thanks to all people involved in the project. A special
thanks goes to Dr.A. An__gius, President of "BIC
Sardem~A", the enterprise the software project has been
developed for.

6. R E F E R E N C E S
[1] B. W. Boehn~ "Anchoring the Software Process,"

IEEE Software, pp. 73-82, July 1996.

[2] G. Booch, "Object-Oriented Analysis and Design
with Applications," Cummings, 1991.

[3] G. Booch, J. Rnmbaugh, and I. Jacobson, 'The
Unified Modeling Language User Guide," Addison-
Wesley, 1998.

[4] P. Coad and E. Yourdon, "Object-Oriented Analysis,"
Prentice-Hall, 1989.

[5] A. Cockburn, "Surviving Object-Oriented Projects: A
Manager's Guide," Addison-Wesley, 1997.

[6] The best reference on Extreme Programming is in the
Web site:
http://c2.com/cgi/wila'?ExtremeProgramming.

[7] I. Jacobson, M. Christerson, M. Jousson P. van
Overgaard, "OO Software Engineering, A Use Case
Driven Approach," Addison-Wesley, 1992.

[8] I. Jacobson, J. Rumbaugh, and G. Booch, '~l'he
Unified Software Development Process," Addison-
Wesley, 1999.

[9] P. Krutcben, "The Rational Unified process,"
Addison Wesley, 1998.

[10] J. Martin, "Rapid Application Development,"
Macmillan, 1991.

[1 l]J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Loreusen, '~bject-Oriented Modelling and
Design," Prentice-Hall 1991.

[12]K. Schwaber, "I'he Scrum Development Process,"
OOPSLA 95, Workshop on Business Object Design
and Implementation, 1995.

[13]S. Sldaer and S. Mellor, "Object-Oriented Systems
Analysis: Mocleling the World in Data," Prentice-
Hall, 1988.

[14]R. Wirfs-Brock, B. Wiikerson, and L. Wiener,
"Designing Object-Oriented Software," Prentice-HalL
1990.

11

