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Computational Genomics
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Biology in One Slide
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High Throughput Biology

1. DNA Sequencing

…ACGTGACTGAGGACCGTG
CGACTGAGACTGACTGGGT
CTAGCTAGACTACGTTTTA
TATATATATACGTCGTCGT
ACTGATGACTAGATTACAG
ACTGATTTAGATACCTGAC
TGATTTTAAAAAAATATT…
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High Throughput Biology

2. Sequencing of expressed genes
(EST sequencing)

mRNA sequence
protein sequence
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High Throughput Biology

3. Gene Expression: Microarrays
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High Throughput Biology

4. Gene Regulation: 
CH.IP.
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The goals of genomics

• Study organisms at the DNA level

– Identify “parts” (genes, etc)
– Figure out “connections” between “parts”

• Study evolution at the DNA level

– Compare organisms
– Uncover evolutionary history
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The role of CS in Biology

Essential
– DNA sequencing and assembly
– Microarray analysis
– Protein 3D reconstruction

Complementary
– Gene finding, genome annotation
– Protein fold prediction
– Phylogeny, comparative genomics
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Syllabus

• Tools

– Alignment algorithms
– Hidden Markov models
– Statistical algorithms

• Applications

– DNA sequencing and assembly
– Sequence analysis (comparison, annotation)
– Microarray analysis
– Evolutionary analysis
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Course responsibilities

• Homeworks [80%]
– 4 challenging problem sets, 4 -5 problems/pset
– Collaboration allowed
– 5 late days total
– Televised students required to do 75%

• Final [20%]
– Takehome, 1 day
– Collaboration not allowed
– Easy!

• Scribing
– “Mandatory”
– Grade replaces lowest 2 problems
– Due one week after the lecture
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Reading material

• Books
– “Biological sequence analysis” by Durbin, 

Eddy, Krogh , Mitchinson

• Chapters 1-4, 6, (7-8), (9-10)
– “Algorithms on strings, trees, and 

sequences” by Gusfield

• Chapters (5-7), 11-12, (13), 14, (17)

• Papers
• Lecture notes

Topic 1. Sequence Alignment
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Complete genomes
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Evolution
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Evolution at the DNA level

…ACGGTGCAGTCACCA…

…ACGTTGCAGTCCACCA…

C

SEQUENCE EDITS REARRANGEMENTS
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Evolutionary Rates

OK

OK

OK

X
X

Still OK?

next generation
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Sequence conservation implies function

Interleukin region in human and mouse
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Sequence Alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition
Given two strings x = x1x2...xM, y = y1y2…yN,

an alignment is an assignment of gaps to positions
0,…, N in x, and 0,…, N in y, so as to line up each 
letter in one sequence with either a letter, or a gap
in the other sequence

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC
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What is a good alignment?

Alignment:
The “best” way to match the letters of one sequence with those 
of the other

How do we define “best”?

Alignment:
A hypothesis that the two sequences come from a common 
ancestor through sequence edits

Parsimonious explanation:
Find the minimum number of edits that transform one sequence 
into the other
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Scoring Function

• Sequence edits:
AGGCCTC

– Mutations
AGGACTC

– Insertions
AGGGCCTC

– Deletions
AGG.CTC

Scoring Function:
Match: +m
Mismatch: -s
Gap: -d

Score  F = (# matches) × m - (# mismatches) × s  – (#gaps) × d
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How do we compute the best alignment?

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

AGTGACCTGGGAAGACCCTGACCCTGGGTCACAAAACTC

Too many possible 
alignments:

O( 2M+N)
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Alignment is additive

Observation:
The score of aligning x1……xM

y1……yN
is additive

Say that x1…xi xi+1…xM
aligns to y1…yj yj+1…yN

The two scores add up:

F(x[1:M], y[1:N]) =  F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])
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Dynamic Programming

• We will now describe a dynamic 
programming algorithm

Suppose we wish to align
x1……xM
y1……yN

Let 
F(i,j)   =   optimal score of aligning

x1……xi
y1……yj
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Dynamic Programming (cont’d)

Notice three possible cases:

1. xi aligns to yj

x1……xi-1 xi
y1……yj-1 yj

2. xi aligns to a gap
x1……xi-1 xi

y1……yj -

3. yj aligns to a gap
x1……xi -
y1……yj-1 yj

m, if xi = yj

F(i,j) = F(i-1, j-1) + 
-s, if not

F(i,j) = F(i-1, j) - d

F(i,j) = F(i, j-1) - d
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Dynamic Programming (cont’d)

• How do we know which case is correct?

Inductive assumption:
F(i, j-1), F(i-1, j), F(i-1, j-1) are optimal

Then,
F(i-1, j-1) + s(xi , yj)

F(i, j) = max F(i-1,   j) – d
F(  i, j-1) – d

Where s(xi, yj) = m, if xi = y j; -s, if not
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Example

x = AGTA m =  1
y = ATA s  = -1

d  = - 1

20-1-1-3A

0100-2T

-2-101-1A

-4-3-2-10

ATGA
F(i,j) i = 0     1       2      3      4

j = 0

1

2

3

Optimal Alignment:

F(4,3) = 2

AGTA
A - TA
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The Needleman-Wunsch Matrix

x1 ………………………………  x M

y 1
…

…
…

…
…

…
…

…
…

…
…

…
  y

N

Every nondecreasing
path 

from (0,0) to (M, N) 

corresponds to 
an alignment 
of the two sequences

Can think of it as a
divide-and-conquer algorithm
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The Needleman-Wunsch Algorithm

1. Initialization.
a. F(0, 0)  =  0
b. F(0, j) = - j × d
c. F(i, 0) = - i × d

2. Main Iteration. Filling-in partial alignments
a. For each i = 1……M

For each j = 1……N
F(i-1,j) – d [case 1]

F(i, j)  =   max F(i, j-1) – d [case 2]
F(i-1, j-1) + s(x i, y j)    [case 3]

UP,   if  [case 1]
Ptr(i,j) = LEFT if  [case 2]

DIAG if [case 3]

3. Termination. F(M, N) is the optimal score, and
from Ptr(M , N) can trace back optimal alignment
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Performance

• Time:
O(NM)

• Space:
O(NM)

• Later we will cover more efficient 
methods
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A variant of the basic algorithm:

• Maybe it is OK to have an unlimited # 
of gaps in the beginning and end:

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG--------------

• Then, we don’t want to penalize gaps 
in the ends
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Different types of overlaps
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The Overlap Detection variant

Changes:

1. Initialization
For all i, j,

F(i, 0) = 0
F(0, j) = 0

2. Termination
maxi F(i, N)

FOPT = max 
maxj F(M, j)

x1 ………………………………  x M

y 1
…

…
…

…
…

…
…

…
…

…
…

…
  y

N
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Next Lecture

• Local alignment

• More elaborate scoring function

• Memory-efficient algorithms

Reading:
Durbin, Chapter 2
Gusfield, Chapter 11


