Hidden Markov Models
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Review of Last Lecture
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1.  When the true underlying states are known

Given x = X... Xy
for which the true p=p, ... g, is known,

Define:
Ay = # times k®| transition occurs in p
E,(b) = # times state k in pemits b in x

We can show that the maximum likelihood parameters q are:
Axi E(b)

A= —— &) = ————
Si Ay Se E0)
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2. When not — The Baum-Welch Algorithm

Initialization:

Pick the best-guess for model parameters
(or arbitrary)

Iteration:

Forward

Backward

Calculate A, E,(b)

Calculate new model parameters a, e, (b)

Calculate new log-likelihood P(x | q)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x| g) does not change much
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Alternative: Viterbi Training

Initialization:  Same

lteration:|
Perform Viterbi, to find p’
Calculate A, E,(b) according to p’ + pseudocounts
Calculate the new parameters a, e, (b)

Until convergence

« Convergence is guaranteed — Why?
« Does not maximize P(x| q)
« Ingeneral, worse performance than Baum-Welch

* Convenient — when interested in Viterbi parsing, no need to implement
additional procedures (Forward, Backward)!!
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Variants of HMMs
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Higher-order HMMs

The Genetic Code

C » G
ucy way o fusu
. . . uce | ouac BT uoe ¥
3 nucleotides make 1 amino acid uch UAA S2op | UGA Stop
ucG UAG Stap | UGG Stap
Statistical dependencies in triplets cuu ey CA g | EOU
c cuc Teu Coe pro CAC CGC arg
CUA cCA CAd g | COA
cuG CCG CAG CGG
Al AL Aal a0 AGL ser
PN - CO R ¥ ABL
Al ACH L) T AGA arg
. AUG met| ACG ahG 195 | ace
Question:
Gl GCU BAy | Eou
) . . 5 GUC wal GCC ala GAC GGC aly
Recognize protein-coding BUA GCA BAA gy | EBA
N GUG GCG GAG GGG
segments with a HMM
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One way to model protein-coding regions

P (XX41 %2 | %.1%Xi11)

>
5

Every state of the HMM emits 3
nucleotides

Transition probabilities:

>

Probability of one triplet, given
previous triplet  P(p, | p.1)

Emission probabilities:

P(¥x1%, 1R )=1/0
P(%1%X2%3 | Pi) = 1/0

A more elegant way
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Every state of the HMM emits 1
nucleotide

Transition probabilities:
Probability of one triplet, given
previous 3 triplets
PR, | s Ras Pra)
Emission probabilities:
P(x1 )
Algorithms extend with small

modifications
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Modeling the Duration of States

14
Length distribution of region X: P

Ell] = 1/(Zp)

< \4
v

« Exponential distribution, with mean 1/(1p) 4
This is a significant disadvantage of HMMs

Several solutions exist for modeling different length distributions

Lecture 7, Tuesday April 22, 2003

Solution 1:; Chain several states

Disadvantage: Still very inflexible
Iy = C + exponential with mean 1/(1p)
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Solution 2: Negative binomial distribution

p P p
-p
(51
P(lx=n) = n-1 pra(1-p)
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Solution 3:  Duration modeling

Upon entering a state:

1. Choose duration d, according to probability distribution
2. Generate d letters according to emission probs
3. Take a transition to next state according to transition probs

Disadvantage: Increase in complexity:
Time: O(D?)
Space: O(D)
Where D = maximum duration of state
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Connection Between Alignment
and HMMs
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A state model for alignment

Alignments correspond
1-to- 1 with sequences
of states M, I, J

- AGGCTATCACCTGACCTCCAGGCCGA- - TGECCG- - -
TAG- CTATCAC- - GACCGC- GGTCGATTTGCCCGACC
I MM MVMVVIVMI ] MVVVIVM MVVIVVIVM | MVWIWM | |
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Let’s score the transitions

g

Alignments correspond
1-to- 1 with sequences
of states M, I, J

S(x, ¥)

- AGGCTATCACCTGACCTCCAGGCCGA- - TGCCG- - -
TAG CTATCAC- - GACCGC- GGTCGATTTGCCCGACC
I MM MVMIVVIVME ] MVVVIVM MVVIVIVIVM | MV | |
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How do we find optimal alignment according to
this_ model?

Dynamic Programming:
M(i, j): Optimal alignment of X ...x to y...y ending in M
I(,)):  Optimal alignment of X ...x to y...y ending in |

J(i,j):  Optimal alignment of X ...x to ...y ending in J

The score is additive, therefore we can apply DP recurrence
formulas
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Needleman Wunsch with affine gaps
- state version

M(0,0) = b; M(i,0) = M(0,) = ¥, fori, j >0

1,0) =d+ie; J(O)) =d+j’e
(-1, j-1)
M(, j) = s(x; y) + max 1G-1, j-1)
i-1,j-1)
14- 1G-1,))
IG,j) = max +J0, j-1)
d+M(-1, j-1)
+1(i-1,j)
JG,j) = max +J0, j-1)
d+M(i-1, j-1)

Optimal alignment given by max { M(m, n), km, n), J(m, n)}
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Probabilistic interpretation of an alignment

An alignment is a hypothesis that the two sequences are related by
evolution

Goal:

Produce the most likely alignment

Assert the likelihood that the sequences are indeed related
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A Pair HMM for alignments
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A Pair HMM for alignments
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A Pair HMM for not aligned sequences

Model R 1-h 1-h

P(x y | R) =h(1 —n)™P(x)...P() h(L —h)" P(y)...P(y)
= (1 ~h)mP () P P(y)

To compare ALIGNMENT vs. RANDOM hypothesis

Every pair of letters contributes:

(1-2d-1t) P(x, y) when matched

e P(x) P(y) when gapped

(1-h)2P(x) P(y) in random model

Focus on comparison of

P(xy) vs. P(x)P(y) " h
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To compare ALIGNMENT vs. RANDOM hypothesis

ldea:
We will divide alignment score by the random score,
and take logarithms

Let
s(x, ¥) = log e
P() P(y;)
d =-log 4————
(1-h) (12 2d-t)P(x)
very letter b in random

model contributes

e =-lo (1-h)P(b)

=Pk
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The meaning of alignment scores

Because d, e, are small, and h, t are very small,

P, ) @-2d-t) P(% ¥)
s(x, ;) = log + log @log
P(x;) P(Y;) @-hy P(x) P(y)
d1-e-t)
d =-log — @-1logd
(1-h) (1-2d-1t)
e
e =-log ———— @-loge
(1-h)
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The meaning of alignment scores

The Viterbi algorithm for Pair HMMs corresponds exactly to the
Needleman-Wunsch algorithm with affine gaps

However, now we need to score alignment with parameters that
add up to probability distributions

d 1/mean arrival time of next gap
e 1/mean length of next gap

affine gaps decouple arrival time with length

t: 1/mean length of conserved segments (set to ~0)
h: 1/mean length of sequences of interest  (set to ~0)

The meaning of alignment scores
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Match/mismatch scores:
PO Y)

P(x) P(y)

s(a, b) @log

Example:
Say DNA regions between human and mouse have average conservation of 50%

Then P(A,A) = P(C,C) = P(G,G) =P(T,T) = 1/8 (so they sum to %2)
P(AC)=P(AG) =.....=P(T,G) =1/24 (24 mismatches, sum to ¥2)

Say P(A) = P(C) = P(G) = P(T) = %

log [ (1/8) / (/4 * 1/4) ] = log 2 = 1, for match
Then, s(a, b) = log [ (1/24) / (1/4 * 1/4) ] = log 16/24 = -0.585

Note: 0.585 / 1.585 = 37.5

According to this model, a 37.5%-conserved sequence with no gaps would score on average
0.375*1 -0.725*0.585 =0

Why?
37.5% is between the 50% conservation model, and the random 25% conservation model !
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Substitution matrices

A more meaningful way to assign match/mismatch scores

For protein sequences, different substitutions have dramatically
different frequencies!

BLOSUM matrices:

Start from BLOCKS database (curated, gap-free alignments)
Cluster sequences according to % identity

For a given L% identity, calculate A,,: # of aligned pos a-b
Estimate

P@) = (Sp Auw)/(Sca Au); P@, b) = Ayl (Scd A)

A wN P
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BLOSUM matrices

(The two are scaled differently)

Lecture 7, Tuesday April 22, 2003

Lecture 7, Tuesday April 22, 2003




