Sequence alignment in bioinformatics

Ewan Birney
Sanger Centre
Wellcome Trust Genome Campus
Hinxton, Cambridge CB10 1SA,
England.
Email: birney@sanger.ac.uk

June 17, 2003

Contents

1 Introduction

2

1.1 Information flow in biology
1.2 Probabilistic Finite State Machines
1.3 PFSMs in bioinformatics oL
1.3.1 Complex FSMs o
1.4 Previous use of PFSM in bioinformatics
1.4.1 DNA composition models
1.4.2 profile hidden Markov models
1.4.3 PFSM interpretations of pairwise sequence alignment .
1.4.4 Probabilistic models of RNA
145 Genome Mapping.o oL
1.4.6 Gene Prediction Methods
1.4.7 Other techniques
Dynamite
2.1 Imtroduction.
2.1.1 The use of dynamic programming in bioinformatics
2.2 PFSMs and dynamic programming
2.2.1 Finding the maximum likelihood path
2.2.2 Finding the total probability of observations
2.3 Dynamite L
2.3.1 The Dynamite language
2.3.2 formal definition of a dynamic programming recursion
2.4 TImplementations provided by Dynamite
2.4.1 Viterbi quadratic memory alignment
2.4.2 Viterbi score only, linear memory
2.4.3 Forwards score only, linear memory
2.4.4 Recursive linear memory alignment
2.4.5 Serial databasesearch

Ne)

14
18
18
18
20
22
25
27
27
29

2.4.6 pthreads Database search 44

2.4.7 OneModel BioXL/G port 44
2.4.8 Software engineering details of Dynamite 46
2.5 Innovations in Dynamite 0L 47
2.5.1 Specialstates 47
25.2 Labels 48
2.5.3 Compile time error detection by the Dynamite compiler . . . 49
2.5.4 An optimiser for dynamic programming 50
2.6 Example Dynamite programs 51
2.6.1 Dna Block Aligner, DBA 51
2.6.2 Deriving an alignment from a 3D superposition of protein
structures L o 52
2.7 Comparing two transmembrane proteins 55
2.8 Other Dynamic Programming toolkits 58
2.8.1 UNIX pattern matchers 58
282 DongandSearls 58
283 Lefebvre oo 59
2.9 Discussion L L e e e 59
GeneWise 61
3.1 Imtroduction. 61
3.1.1 The biochemistry of pre-mRNA splicing 62
3.1.2 Current computer approaches to predicting splicing patterns 66
3.1.3 PFSMs in Gene Prediction 67
3.1.4 Performance of ab initio Gene Prediction programs 69
3.2 Combining Homology with Gene Prediction 70
3.3 Combining Probabilistic Models 70
3.4 GeneWisemodel Lol 75
3.5 Parameterisationo L L0 Lo 81
3.5.1 Splice Site Models 81
3.5.2 Codon emission probabilities 83
3.5.3 Imsertion or Deletion errors 84
3.5.4 Intron parameterisation 85
3.6 Pathscoring. 85
3.6.1 Flanking Regions 86
3.6.2 Coding region scoring oL 87
3.7 Using the GeneWise algorithm 88
3.8 Example of using GeneWise 89
3.9 Evaluation of GeneWise 90
3.10 Other evaluations of GeneWise 92

3.10.1 Guigoand Agarwalo 92

3.10.2 The Drosophila annotation experiment 93
3.11 Discussion of GeneWise 94
Pfam: a protein family database 96
4.1 Introduction. e 96

4.1.1 protein profile HMMs of domains 97
4.2 The Pfam database oo 98

4.2.1 Requirements for Pfam as database. 98
4.3 The Pfam Database Management System 99

4.3.1 Triggersondataentry 101
4.4 Productivity tools L oo 101
4.5 Underlying Sequence database update 102
4.6 Middleware Layero e 104
4.7 Some Example familieso 105

4.7.1 The RNA Recognition Motif 105

4.7.2 Protein complexes oo 108
4.8 Discussion oL e e e 109
Genome 111
5.1 Imtroduction. e 111
5.2 Halfwise e 112
5.3 Worm Genome oL 113
5.4 Comparison to curated worm genes 115

5.4.1 Indication of annotation errors 117

5.4.2 GeneWise accuracy in the worm 117

5.4.3 Comparison to protein Pfam analysis. 118
5.5 Human Chromosome 22 119

5.5.1 Comparison to curated genes 121
5.6 Coding density of Human vs C.elegans 122
5.7 Discussion L 122
Conclusion 124
Published Papers 135
A1l Published Papers Lo 135
Dynamite Models 136
B.1 Dynamitemodels L 136
B.2 Dna Block Aligner 136

B.3 Structual Alignment oL
B4 GeneWise 21:93 e
B.5 GeneWise 6:23 e e
B.6 GeneWise 4:21

The Wise2 Package

C.l OVverview oot i e e e e e e e e e
C.1.1 Authorso
C.2 Introduction for the impatient
C.2.1 Common runningmodes
C.2.2 Common options to change
C.2.3 Common gripes, Cookbook and FAQ
C.3 Imstallation
C.3.1 Building the executables
C.3.2 Environmentset up oL
C.3.3 Building with thread support (for SMP machines)
C.3.4 Building Perl port
C.4 Concepts and conventions
C.4.1 Technical Approach
C.4.2 Introduction to Models in Wise2
C.43 Model
C44 Algorithmso
C.45 Scores o i e e e e e
C.5 Principle Programs L
C.5.1 genewise
C.5.2 genewisedb o L
C.b3 estwise.
C.b4 estwisedb L
C.5.5 Running with pthreads
C.6 Other Programs.
C.6.1 dba-Dna Block Aligner
C.6.2 psw - Protein Smith-Waterman and other comparisons
C.6.3 pswdb
C.7 API . . e
Pfam
D1 Pfam e

165
165
165
167
169
170
171
175
175
175
175
176
177
177
177
178
181
183
184
184
187
190
191
193
194
194
194
195
196

200

List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2
9.3
5.4
9.5
5.6
5.7

D.1

Performance of 6:23 91
Performance of 21:93 91
Performance of 6:23 Viterbi 91
Performance of 4:21 oo 91
Guigo and Agarwal assessment 93
Pfam Database Management System utilities 100
Pfam Productivity tools o o000 102
Blast Sensitivityo L e 113
Pfam across the worm, 114
Introns inthe worm 116
Potential annotation errors L. 117
Halfwise accuracy o 118
Pfam across chromosome 22 120
Chromosome 22 aCCUTACY . - - « « « « « v e v b v b v e e e e 121
Pfam activityo 201

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

Information flow in Biology 11
Simple finite state machine 13
Simple finite state machine, parameterised 14
Non deterministic finite state machine 15
DNA motif PFSM o 16
Alignment PFSM o 17
Simple vs Complex PFSMo o000 19
The two state gapmodel o o000 24
Basic Viterbi recursiono oo Lo 32
Dynamic Programming implementation 36
Divide and conquor recursionol ... 42
Dna Block Aligner DBA L. 53
Dna Block Aligner output L. 54
Transmembrane matching PFSM 56
Transmembrane comparison output 57
Diagram of splicing oo 63
Model combinationo Lo oo o 73
Gene model for GeneWise o oL 74
protein profile HMM Lo oo oo 7
The merging of gene prediction and homology models 78
GeneWise 21:93 L 80
GeneWise 6:23 82
An example output of GeneWise 89
Diagram of the Pfam middleware 106
The RRM seed alignment 107

Preface

Many people have helped my scientific career which has led up to this thesis. At Cold
Spring Harbor, Adrian Krainer and Akila Mayeda were great teachers for a young
student in molecular biology. I have also benefited from the timely interjections
of Jim Watson as I have bounced around institutions. At Oxford, Tain Campbell
allowed me to work unhindered for a year, which I am very grateful for.

The most rewarding aspects of my work have come in the last three years. At the
Sanger Centre I have been stimulated by, amused by and grown with the researchers
around me: in particular, Jan Holmes, Dan Lawson, Alex Bateman and Kevin Howe
have made my working life a pleasure. Michele Clamp and James Cuff were two
friends who’s scientific minds (not to mention their out of hours companionship) has
made life at Hinxton more enjoyable.

Finally, Richard Durbin has been a wonderful supervisor of a potentially im-
possible student. He has taken some pretty ill formed ideas and formed sensible
research from it: he has moderated my stubbornness and tolerated my distractions.
Finally he has provided good humour and stimulating discussions. Many thanks
Richard.

Chapter 1

Introduction

The cost of sequencing DNA is around 10 pence a base; one example of how inex-
pensive data has become in biology. Rather than investigating each aspect of the
biology of an organism piecemeal, huge quantities of data can be gathered at once.
For example, an entire genome can be sequenced for an achievable cost. The genome
of an organism encodes in principle nearly all the information of its biology. So for
an outlay which is relatively small compared to the worldwide annual expenditure
on biomedical research a collection of data is being generated that will underpin
nearly all aspects of human biology.

These simple economic facts have started a revolution in biology. Biological
science used to be a science of craftsmen producing individual, tailored facts that
painted a single picture: suddenly part of it is becoming a science of large scale data
production. At the junction of the new and the old techniques lies a new science,
bioinformatics, trying to organise the mass of data into large sets of coherent images
that can be viewed along side the traditional biologist’s work.

Bioinformatics is a science which simply did not exist in its current form ten
years ago. Computer scientists and biologists could confidently expect never to
cross paths in a professional capacity. Although there have been many interesting
applications of both mathematics and computers to biological problems before the
90s, these have been in specialised fields with narrow applications, such as statistical
genetics or modeling protein structure. For the larger questions in biology, biolog-
ical experiments were by far the best way to progress. However, with the advent

of such a large amount of biological data the biologists are having to use computa-

tional and mathematical techniques to try to manipulate the data into interpretable
information. Because of this there are quantitative scientists being recruited into
the field. These researchers are often more at home with sciences with well defined
rules and a mathematical foundation; they find that biology has few rules and many
exceptions, but tantalizing applications for theories that have been developed in
more quantative fields.

The pace of change and the clash of cultures makes bioinformatics a wonderful
science. Everyone is always learning: new aspects of biology or computer science
depending on their background, or new technologies which threaten to give us an-
other mass of data for some biological problem. The people who participate can
find radically new perspectives on old problems simply from the cross pollination
between the two fields.

This thesis is focused on one area of bioinformatics, using dynamic programming
to analyse sequences to extract useful information. Each chapter concentrates on
the generation of one programmatic tool or resource. Each tool is presented by
examining first the background and theory of its use, and then the programmatic
issues which ensure efficient and useful applications. For tools which produce bio-
logical results, I present an evaluation of its effectiveness. Finally each chapter ends
with a discussion of the success (or failures) of the tool and any future directions.

The rest of the introduction will describe the background theory that the other
chapters rely on: in particular probabilistic finite state machines (PFSMs) and their
applications to biology will be throughly examined. Chapter 2 describes a program-
ming toolkit, Dynamite that automates the programming of these PFSMs. Chapter
3 is a real applicatios of Dynamite, in gene prediction, where I provide a principled
way to combine ab initio and similarity based approaches. Chapter 4 describes the
work I did on Pfam, a database of protein families and Chapter 5 describes how I
applied Pfam on a genome wide scale.

I hope you enjoy reading the remainder of the work.

1.1 Information flow in biology

Figure 1.1 shows the basic flow of information between the genome (top of the
figure) and the phenotype (bottom of the figure). Researchers are interested in the

molecular function that leads to the phenotype. The genome provides the data

9

which can be determined in an automatic fashion. This sequence information is an
invaluable resource in its own right, providing information for molecular biologists to
design and produce new experiments. Another use of the sequence data is to be able
to predict the function of the sequence without any additional experiments. One
role of bioinformatics is to somehow help bridge the gap between the sequence data
and the functional data. This transformation of genome sequence to the functional
information is understood in broad terms in the sense that we know the biological
players, but nowhere near well enough to allow a mechanical deduction.

The five basic steps from the genomic sequence to function, being transcription,
pre-mRNA splicing, translation, protein folding and the final function of the protein
product mean that there is considerable manipulation of the information in genomic
sequence before it is actually produces a biological effect. This transformation of
information is understood extremely well for one step, translation. For transcription
and pre-mRNA splicing there is a partial understanding of the biological process
which provides this manipulation, and for protein folding and the function of the
protein product our understanding is far from ideal.

The inability to deduce the function of a piece of genomic sequence simply by
understanding the biological machinery which processes it has forced a different
approach to the problem of deriving functional information from sequence. This is
to make arguments based on homology i.e. that two sequences shared a common
ancestor sequence at some point of evolution and since their divergence have kept
many features the same, from sequence to structure to function.

By comparing two sequences, either genomic DNA, mRNA or protein sequences,
some inference of whether they really share homology can be gained. This infer-
ence has to be some type of statistical test which provides a way of distinguishing
non homologous pairs from homologous pairs. Given that a researcher accepts the
inference, he or she can then assert that at least some of the protein structure is
shared between the two genes. In addition, in many cases the functional information
can be transfered. There are cases where the transfer of functional information by
homology is plain wrong: for example the gamma lens crystallin has a clear homolog
in alcohol dehydrogenase, but their functional roles, the former to refract light in
the lens and the latter to metabolise alcohol are unrelated. However, the structural
similarity is clear. Biology has simply co-opted this enzyme for a different role.

Thankfully such case are rare, and transfer of functional information is in general

10

i Genomic DNA

transcription
*@mRNA

=

premRNA splicing

_ MRNA

trandation l

I rotein
Protein folding l

—i-1

Protein Structure

function l

Glucose Glucose6phosphate

Figure 1.1: A figure showing the central dogma in biology. The top is genomic DNA:
going down the page are the main processes which transform the information in the
genomic DNA to the functional aspects of the organism. The exons are in blue,
and the introns and intergenic DNA as thin lines. The start and stop codons are
represented as thin vertical lines. The magenta rectangle represents a linear protein
sequence, and the red circles its three dimensional structure.

11

reliable.

Much of bioinformatics is therefore interested in one of the two following prob-
lems. The first problem is providing computer programs which model the transfor-
mation of information from one biological entity to another, in other words, mod-
eling in a computer one of the steps in figure 1.1. The second problem is providing
computer programs which model the process of evolution between two homologous
genes. Both these problems can be well described as Finite State Machines, which

leads us to the next section.

1.2 Probabilistic Finite State Machines

Finite state machines (FSMs) are well known computer science constructs which
have a wide range of uses from the abstract theory computation to a variety of
practical problems, including speech recognition and process engineering. They
are also a good fit to biological sequence analysis, as biological sequences are rep-
resented well by linear chains of letters. This section will briefly introduce finite
state machines, and the following section will review some of the previous work in
bioinformatics that uses them.

A finite state machine has a number of states connected by transitions. The
machine starts in one state, moves from state to state and stops when it reaches
a particular state. The action of moving between the states on the basis of the
transitions produces a sequence of observable events, such as sounds, readings from
a machine or biological sequence data !. An important point is that the choice of
the next transition is not dependent on the previous transition (or, in some cases,
only dependent on a limited number of proceeding states). One nice feature of finite
state machines is that an infinite set of observations can be generated, despite the
finite nature of the machine. The machine in Figure 1.2 could generate (ab) or (aab)
or (aaabbbbb) but not (aabbaa): indeed the machine will generate any a,,by, string.
This machine only distinguishes between strings which are valid (aybp,) or not valid.

The most common extension of Finite State Machines used in this field is to
associate probabilities with the transitions, and their associated emissions. The ef-

fect of this is to assign a probability of certain strings emerging from the machine.

'for readers with a background in finite state machines, I will be consistently using the Mealy
representation of FSMs, with emissions occurring on the transitions throughout

12

a b

() ()
Start ?QTQ% End

Figure 1.2: A finite state machine which generates a string of a’s followed by a
string of b’s. The round circles represents states, and the arrows between them
transitions. On each transition, potentially a letter can be emitted which becomes
the observed data. The starting and stopping criteria of this state machine are
shown by rectangles

For example, figure 1.3 shows the previous figure but now parameterised with prob-
abilities. This machine would generate the string (aaaaaaaab) with a far higher
probability than (aabbbbbbbbbb).

One final property of FSMs is that it is not always the case that one can deduce
the state of the machine by the sequence of observed letters. The machine I have
used as in examples so far is one in which the current state of the machine can
be deduced from the sequence of letters: such a machine is called a deterministic
finite state machine. However, it is very easy to construct machines in which this
is not the case. An example is shown in figure 1.4. Many paths can be consistent
with a particular observed string of letters in nondeterministic finite state machines,
meaning that it is not clear which state path made a particular observed string.

For PFSMs one natural state sequence to consider is the one with the highest
probability of generating observed symbols. This is known as the most likely state
path which is calculated by an algorithm called the Viterbi path. The probability
of the Viterbi path is called the Viterbi score. This probability is generally not the
same as the total probability considering every path, which is sometimes called the
sum of all paths or the Forward score. I will describe the algorithmical details for
calculating these scores and the Viterbi path in the next chapter.

Nondeterministic, probabilistic finite state machines are the main types of ma-

13

% 0.9 b o5
ﬂ OOS

Start % —— End

Figure 1.3: The finite state machine in figure 1.2 parameterised with probabilities.
Each transition has a probability associated with it, including the transition leaving
start, which has a probability of 1. The probabilities for all the transitions leaving
a particular state sum to one

chines used in bioinformatics. They are equivalent to hidden Markov models. A
hidden Markov model is a mathematical model which evolves in some dimension
(often time, but need not be) via Markov rules, and has certain variables which are
not observable. In the case of PFSMs, the hidden variables is the path information
through the state machine, i.e. in figure 1.4 which sequence of states was used to
generated the b letters. The two descriptions of the process as “probabilistic Finite
State Machine” and “hidden Markov model” are entirely equivalent. I prefer using
the PFSM formalism as for me the description of the process is both more intuitive

and closer to the programmatic implementation.

1.3 PFSMs in bioinformatics

There are two main types of probabilistic finite state machine which are used in
bioinformatics, corresponding to the two types of problems to solve. The first has
each transition emit a single letter of an observed sequence. This type of model is
the familiar hidden Markov model, which is used in speech recognition and other
fields. In bioinformatics this type of model includes profile hidden Markov models
for protein domains, simple models of protein sequence, and gene prediction hidden
Markov models. The states represent theorized explanations of the observations

(different phonemes that make up a word in speech recognition, and the different

14

a0.9

Start 10,

b 0.01

End

Figure 1.4: A non deterministic finite state machine, which produces the same type
of language as the previous finite state machines, namely a,b, but there are two
classes of strings generated, one with short b tails, coming from the left hand side of
the figure and one with long b tails, coming from the right hand side. The long b tail
class is rarer than the short b tail class. This can be deduced by the probabilities of
the machine. For a particular string of letters, one path through either the left or
the right side of the machine will have a larger probability of producing that string
of letters: however, which was used cannot be known for certain.

15

gatc gatc

(]
?@c@ﬁ@ﬁé QGat

start end

Figure 1.5: A figure showing a simple PFSM which models a small DNA motif,
in this case a sp-1 transcription factor binding site, with a consensus of GGCG.
The rectangular states show the start and end points. The two looping transitions
emit bases at equal probabilities, generating random sequence either side of the
motif. The other transitions emit bases with a strong G or C bias (indicated by
capitalisation). This model is a very simple model: more complicated transitions
can model more complex processes

biological features, e.géxons and introns in gene prediction models). An example is
show in figure 1.5 which models a motif in a DNA sequence.

The second type of model is one which emits letters from two different sequences
of observations. Outside of bioinformatics this type of model is reasonably rare: the
only mainstream application is for transducing grammars (grammars which convert
one language to another). However, in bioinformatics, this model is ubiquitous, as it
represents the alignment of one sequence to another. Figure 1.6 shows the common
Smith-Waterman type PFSM which represents the alignment of two DNA sequences
by a process allowing affine gaps scores.

In this alignment type PFSM, the states represented theorized explanations of
evolution, for example the process of inserting an amino acid. In the PFSM struc-
ture, finding the most likely path incorporates finding the best position of the gap
characters in the sequence, i.e. determining the alignment.

16

Seql: ATGCGEGIGGI————-— GGI'T
Seq2: ATG--TGCTGGTATTGIT
St at @ XXXYYXXXXZZZZZXXXX

Figure 1.6: Figure showing a PFSM of an alignment of two sequences. The PFSM
has transitions which emit a pair of letters, one from each sequence, potentially with
gap -’ residues which indicate the absence of a letter.

17

1.3.1 Complex FSMs

The PFSMs described so far have been relatively simple. More complex machines
can be written in the same formalism. For example, figure 1.7 shows a model of a
bacterial sequence containing a single coding gene. The top panel shows this drawn
out as individual states, each transition emitting a single base. The lower panel
shows this contracted to a smaller state diagram but with the transitions emitting
more than one base at a time.

The lower panel is both a far more compact way of representing a the PFSM
and is also closer to how the implementation in a programming language works.
Notice that on the state after the main codon state (in brown) the transitions which
enter the state have different lengths of emissions: in one case they are 3 base pair
codons, and in the other case one base pair DNA sequence. Having different length
emissions leading to the same state is a common occurrence in bioinformatics. This
is why I prefer the Mealy representation of PFSMs which has the emissions on the
transitions, as I have done throughout this work. The other representation of PFSMs
is the Moore representation, which has the emissions occurring on the states, and is
perhaps more commonplace. The two representations are inter-convertible: in my
hands, Mealy machines are clearer representation of PFSMs than Moore machines

for the problems I am interested in.

1.4 Previous use of PFSM in bioinformatics

There have been a large number of applications of probabilistic finite state machines
in bioinformatics over the last decade. This includes both “standard” PFSMs such
as hidden Markov models for modeling DNA sequence and protein sequence, and
alignment PFSMs. The following sections goes into more details on specific examples
of PFSMs in bioinformatics.

1.4.1 DNA composition models

One of the earliest explicit uses of hidden Markov models (and hence PFSMs) in
bioinformatics was to model DNA composition. Gary Churchill provided a number
of HMMs to deduce properties of DNA sequence, such as GC content and eukaryotic

isochores [22]. He calculates the marginal distribution of what state (with some

18

X XXX X

Start

Figure 1.7: Figure showing two representations of the same PFSM, which models a
piece of bacterial sequence that contains a single protein coding gene. The colours
are consistent between the two views. On the top panel, PFSM equivalent to a
zero order HMM is written out, with one or zero letters emitted on each transition.
x stands for any base, and the ... region indicates that the three state block is
repeated over all 61 codons. The lower panel is the same PFSM equivalent to a
second order HMM is shown. The XXX indicates any triplet, each one of which will
have a separate probability.

19

defined model) produced a particular sequence: the defined models he uses are
inspired by known biological phenomena, such as GC islands in the yeast genome
and isochore switching in eukaryotes.

1.4.2 profile hidden Markov models

A number of groups have employed a type of PFSM which models protein sequences,
called profile-hidden Markov models due to its similarity to profile analysis which had
been previously employed by a number of groups in bioinformatics. Anders Krogh
and colleagues were the first group to provide a clear definition and implementation
of this sort of model, [50]. They defined a restrictive architecture of hidden Markov
model which is based around repetitions of 3 states, called Match (M), Insert (I)
and Delete (D). This choice of architecture was deliberately modeled after previous
work on profile analysis [5, 38, 13, 57], which they acknowledge in the paper. The
rest of the work details how they applied standard HMM techniques to this problem,
including parameter training using expectation maximisation and using the Viterbi
algorithm to discover the best path through a number of sequences, providing a
multiple alignment. The paper also solves a number of practical problems in using
this type of HMM. Firstly they introduce additional states to model the fact that
a conserved region might be embedded inside a protein sequence which is otherwise
unrelated to the HMM. These additional states (called “dummy states”) are added
at the start and the end of the HMM. Secondly they provide a useful statistic
to estimate the significance of the match of a HMM to a sequence. They found
that the likelihood of the sequence given the model over all paths (called Negative
Log Likelihood, NLL score) is strongly correlated with the length of the sequence.
Therefore they provided a way of correcting for this correlation, reporting a Z-score
of the number of standard deviations away from a windowed length bin of sequences,
discarding outliers. The final Z score is used as a statistic, and they suggest using
a Z-score of b standard deviations as being a sensible cutoff, but suggested caution
in trusting automatic cutoffs. They asses their work by modeling three families:
the globins, the protein kinases and the EF hands. In each case they were able to
recover nearly all known examples of the domain and find potentially novel examples
of the domains in the protein database. Also they show that the multiple alignments

which were generated by the HMM are sensible.

20

Another strong group in the profile hidden Markov model field is Sean Eddy and
colleagues [31, 29]. The profile-HMM software package written by Sean Eddy, called
HMMER has become the most widely used profile-HMM package in bioinformatics.
A number of important enhancements to profile-HMMs are incorporated into the
package which makes it ideal for practical use. Firstly, the problem of estimating
the model size (in terms of the number of match, insert, delete nodes used) is
solved using an exact method which estimates the posterior probability of whether
a column in an alignment should be modeled at a match or insert state. Secondly
the additional states which allow a profile HMM to model a domain rather than a
entire sequence was extended to allow for multiple copies of a domain to be modeled
with additional random sequence between the copies. This changes the architecture
of the HMM, and at the same time, two transitions between insert to delete and
delete to insert were dropped in the new architecture (informally called “plan7”).
These changes made HMMER a far better package for modeling protein domains in
sequences. Thirdly the statistical reporting of whether a reported match represents
a particular domain was put into a better framework. Firstly the basic score was
reported as a log likelihood ratio (LLR) rather than NLL, considering the ratio to an
alternative, null, model. Secondly it was assumed that the distribution of random
scores from the Viterbi log likelihood score followed an Extreme Value Distribution
(EVD). This assumption is based on the work on the statistics of pairwise sequence
alignments in which the Extreme Value Distribution has been shown theoretically
for ungapped locally alignments and shown empirically to also fit well for gapped
alignments [59, 2]. The fitting to an EVD is done by a separate calibration step
specific for each profile HMM. The derived expectation values (e-values) for the
number of random sequences expected to get a particular score or higher work well in
practice, allowing a single cutoff to be applied across all profile HMMs automatically.

A number of other supporting papers to the basic profile hidden Markov mod-
eling technique have been published. These include: derivations of sensible priors
using Dirchlet mixtures [75] for the amino acid distributions in the match and in-
sert states, justification of the previous profile techniques in terms of large prior
information [4], incorporation of more motif like training techniques which drops
the number of parameters to be trained in the EM process [40] and novel sequence
weighting mechanisms to derive the best model for a particular family [32]. In ad-

dition, the success of profile HMMs have provided a more detailed study into their

21

efficacy in entirely automated model training [66] and a number of innovations in
the implementation of the algorithms [39]. Finally a number of databases of profile
HMDMs have been developed, such as Pfam [7], SMART [74] and Prosite Profiles [43]
and TIGRFAM. Chapter 5 details my contribution to the Pfam project.

Protein profile HMMs can probably be seen as the biggest success in the deploy-

ment of PFSMs in bioinformatics.

1.4.3 PFSM interpretations of pairwise sequence alignment

Pairwise sequence alignment was one of the first applications in sequence analy-
sis, developed some 30 years ago. A number of researchers have used probabilistic
models to interpret pairwise sequence alignment with considerable success. Martin
Bishop and Elizabeth Thompson provided one of the earliest probabilistic interpre-
tations [11]. Their motivation was to place the alignment method characterised by
Needleman and Wunsch into a formal model. Although the paper does not mention
Finite State Machines as such in it, their method for evaluating the likelihood of
divergence between two sequences is easily recognisable as the sum over all paths
for a PFSM. They show that for tRNA sequences this method gives sensible and
interpretable results.

A very similar approach was presented almost a decade later by Philip Bucher
and Kay Hoffmann [16] in a paper which was more focused on providing a sensitive
search method using pairwise alignment. Again they recast a standard algorithm,
this time the local alignment method of Smith Waterman, into a probabilistic for-
malism. One of the main differences however is that they did not provide an explicit
probabilistic parameterisation of the method. Instead they reinterpreted the Smith-
Waterman scoring scheme in terms of a probabilistic framework: their recursions
have a heavy use of terms like 2%, where z is the base of the log which is implicit
in the scoring matrix and S;; is the score at position ¢ in one sequence and j in
another sequence. In other respects the recursions are very similar to a sum over all
paths type calculation. The power terms are equivalent to probabilities in a more
standard framework, but the advantage of this work is that they can use arbitrary
gap penalty settings and incorporate local alignment behavior and still provide a
sum over all paths. The success of their method was shown with a number of exam-

ples. A better judgment of their success came from an independent assessment of

22

a number of methods from a separate group, [1] in which their method was a clear
leader.

Jun Zhu and colleagues provided one of the most complete interpretations of
pairwise alignment in a Bayesian framework, called the “Bayes Aligner” [88, 89].
Their intention was to remove the nuisance variables of specifying the parameters
for the substitution matrix and the gap penalties. Both of these cases are hard to
remove as one cannot find easy integrals which would provide analytical answers
for summing over an entire distribution of parameters. For the substitution matrix
they simply summed over a series of different matrices: they suggested taking ma-
trices from a well defined series, such as the PAM matrices. For gaps they took a
non standard approach. Rather than specifying gap parameters they considered all
possible alignments with up to k gaps, (k 20 typically). With careful manipulations
of the equations of the definitions of the joint probability of seeing two sequences
over all possible parameters they provided methods to sum over all given matrices
and over all given number of gaps up to some maximum. These methods are very
similar to the standard sum over all paths recursions. The authors provide a num-
ber of different posterior distributions, in particular the posterior distribution of the
matched residues, over all gap numbers and all gap matrices make for interesting
and visually appealing pictures. One consequence of looking at the posterior distri-
bution of probabilities for matched residues is that they show there are a number of
alternative paths between well conserved blocks. For example, the authors show an
alignment for the two GTPases in which two clear well-aligned blocks are apparent,
but there are a number of alternative routes between them. The posterior distribu-
tion over the PAM matrix choice is also interesting, with a bimodal distribution for
this example of either 80 or 140 PAM distances, suggesting that evolution is not a
homogeneous process across a sequence.

The difference in notation and change towards finding alignments of a fixed num-
ber of blocks rather than alignments with specific gap parameters make understand-
ing the Bayes Aligner as a standard PFSM challenging. By examining the recursions
carefully, it is clear that the Bayes Aligner has a PFSM similar to that shown in
figure 1.8. This type of machine has been previously published as the “generalised
gap penalty” model, though not with probabilistic parameterisation [3]. A benefit
of this architecture is that gaps can contain unaligned but otherwise “matched”

residues, representing regions where residues occurs in both sequences but they are

23

ab

Figure 1.8: The two state gap model common to both the “generalised gap penalty”
method and the Bayes aligner. The two states are called Match (M) or Gap (G).
Transitions leading to the match state emit two aligned residues, indicated by the
A:B pairs. Transitions leading to the Gap state emit one of three different alignment
pairs; gapped A sequence, a:-, gapped B sequence, -:b and dual emission of both A
and B, but not aligned, a:b.

24

not alignable. Both the “Bayes aligner” and the “generalised gap penalty” papers
emphasise that this is possibly a better model of protein evolution. The use of a
fixed number of gaps rather than a gap penalty is harder to interpret in a standard
PFSM framework. However, they use priors over the gap numbers which are not
equiprobable for each number of gaps but rather take into account the complexity
of the number of different possible alignments for each gap number (this is best
described in the 1997 paper [88]). This prior can be thought of as a prior over gap
parameters in a more standard PFSM, and the recursions provided to sum over all
possible gaps become almost identical to approximating the integral over gap pa-
rameters by sampling at a number of points in the gap parameters distribution. It
is reassuring to find a mapping from the techniques used in the “Bayes Aligner” to
more standard PFSM techniques.

Tan Holmes and Richard Durbin published a paper that investigated alignment
accuracy [44]. They built up a framework to investigate alignment accuracy around
a probabilistic model of sequence evolution. Given this framework, they showed
that the natural choice of parameters for PFSM to align the sequences, being the
probabilities from the model which generated the sequences, were good parameter
choices. They also derived an analytical approximation for the expected accuracy
of alignment for a set of parameters, emphasising that no alignment process can
be expected to be perfectly accurate. Finally they developed a novel algorithm to
maximise the accuracy of an alignment, (as opposed to maximising the likelihood
of an alignment). This maximal accuracy alignment is a type of posterior decoding
using the posterior distribution of state labels of the two sequences. The algorithm

has since been applied to profile-HMMs to good effect.

1.4.4 Probabilistic models of RNA

RNA sequence is commonly used as a biological entity in its own right, as well as
being used as an intermediate in the processing of a gene. RNA sequences which
are biologically active form specific three dimensional structures which provide the
function of the RNA sequence. The process of the one dimensional sequence of RNA
folding into the three dimensional structure is dominated by base pairing interactions
between the RNA bases, and the majority of those are found in stem-loop structures

in which a series of consecutive bases pair up with another consecutive region of base

25

pairs, producing a free single stranded region between the two base paired regions.

Two groups published papers on applying probabilistic models to RN A sequences
at around the same time. Sean Eddy and Richard Durbin developed a probabilistic
model for these RNA stem loop structures [30]. This model was based around the
idea of parsing the RNA stem loop structures into tree which represented the stem
loop pairings. These trees could model stem loops with bulges and single stranded
RNA, but could only model nested stem loop structures. RNA pseudoknots, in
which one stem loop is interposed between another in a non nesting manner could
not be modeled. This tree structure was then used as a framework in which a number
of states are placed, in particular states which emitted two base paired letters, states
which emitted single stranded RNA letters, states which emitted additional letters
relative to the consensus (either base paired or not) and states which did not emit
letters to model absence of a conserved position. Having built up this model they
then detailed algorithms which given a model and a sequence could find the most
likely path through the model, being the equivalent to the Viterbi algorithm and
the equivalent the Baum-Welch expectation maximisation technique for estimating
model paramters.

In the paper their describe both the methods and the application to a number of
problems: tRNA detection and the alignment of the structural RNA U100 sequences.
They show that there are considerable benefits in providing a probabilistic model of
RNA sequences, both in the detection of “atypical” examples of RNA molecules in
which the stem loop pairing was well conserved although the primary sequence was
not and the deduction of the stem loop patterns from the RNA sequences directly.
In the paper they also discuss the fact that this covariance model represents a type of
stochastic context free grammar (PFSMs can be be considered a type of stochastic
regular grammar) which places this work in the context of language theoretical
models.

The other group, Sakakibara and colleagues published a very similar paper in
which the correspondance to Stochastic Context Free Grammars was made more
clear [72]. Again they used tRNA sequences to illustrate the power of their method,
showing that with remarkably few sequences to train the model they are able to
easily distinguish tRNA sequences from background.

Interestingly Eleanor Rivas and Sean Eddy extended this work recently to en-

compass certain types of pseudoknots [70]. In their paper they use a modified type

26

of Feynman diagram to enumerate the different possible combinations during the
dynamic programming recursions. Although the algorithm is parameterised on the
basis of experimental energies to find the minimum energy fold, they indicate that
a probabilistic parameterisation is possible. One intriguing feature of this work is
that is was commonly thought that RNA pseudoknot prediction required a higher
grammar than a context free grammar and hence NP complete (non deterministic
polynomial; e.g. only solvable by heuristic or brute force approaches). The solution
provided in this paper indicates that one can solve certain types of higher grammars

in polynomial time.

1.4.5 Genome Mapping

An interesting use of a hidden Markov model in bioinformatics was in Genome
Mapping. Donna Slonim and colleagues developed a hidden Markov model which
represented the position of markers on a genome sequence [76]. The attraction of
using a hidden Markov model in this case was that there was a natural representation
of the uncertainty of the observations, modeling the possibility for errors to occur in
the laboratory work. Using the HMM they could derive a likelihood for a particular
ordering of markers along the genome consistent with known radiation hybrid data.
They provided an efficient search routine to try to find the maximum likelihood
set of markers which involves a generation of a sparse map of only a few, reliable,

markers followed by greedy incorporation of additional markers.

1.4.6 Gene Prediction Methods

Representing gene prediction methods as PFSMs started in bacterial genomes, with
a number of papers describing hidden Markov models to find open reading frames
in bacteria [52, 12]. Anders Krogh and colleagues designed a PFSM similar, though
far more complex to the one shown in figure 1.7 which finds protein open reading
frames in bacterial DNA.

PFSMs for eukaryotic gene finding were a clear application. David Kulp and
colleagues developed a “generalised” hidden Markov model, called Genie [53] . The
generalised aspect of the HMM is that they allow transitions between states to be
any variable length: this additional freedom allows Genie to accurately model exon

length, which has a distribution of lengths that is not well fitted by a geometric

27

decay. In addition they can use any type of “sensor” component which will generate
a probability of seeing some observed sequence. The attraction is that they can
then use sensors such as neural networks for splice sites. One of the problems they
encountered was in how to assess the alternative model for this sensor to provide
a likelihood ratio. They note that finding the alternative model for discriminative
sensors such as neural networks is difficult, and suggest a way of estimating it by
deducing the implicit alternative model from the training criteria of the network.
Interestingly, Anders Krogh has developed a framework in which the training of
neural networks embedded inside HMMs can be achieved, using so called hidden
neural networks (HNNs) [69]. In this case the training of the HNNs provides the
way to integrate the score coming from the neural network with the generative HMM
type model.

Chris Burge developed a fully featured, integrated HMM for gene finding called
Genscan [17]. Genscan provides a complete model of genomic DNA, including for-
ward and backward strands and multiple genes. The HMM also contains the ability
to model explicit length distributions, which he describes as a semi-Markov model,
but does not include the more general “sensor” formalism used in Genie. Genscan
performed significantly better than the next best program when released (sensitivity
of 0.93 and specificity of 0.93 vs the next best being 0.77 and 0.88 on his test set),
and remains one of the best gene prediction programs currently.

Anders Krogh developed a HMM gene prediction model which has a number
of novel features [51]. This introduced a concept of optmising the labeling of a
sequence rather than the total likelihood in using a PFSM, which he calls a Class
HMM (CHMM). The gene model has a number of states to model exon regions:
when summed over all paths the expected distribution of the total time spend in
the states nicely humped, as expected. In contrast a Viterbi path provides only
an exponential decay. To deduce a gene prediction from the gene model, he did
not use a Viterbi decoding but a method which attempts to find the most probable
labels which are still consistent with the model, called 1-best decoding. As the
parameters to provide this labeling are not the same as the maximum likelihood, he
provides a different training scheme for the parameters, called conditional maximum
likelihood. He shows that by using conditional maximum likelihood training and
the 1-best decoding method he can improve in particular the accuracy of the gene

prediction model without changing the sensitivity (accuracy at the base level goes

28

from 78% to 94% with coverage remaining around 80% on his test set).

1.4.7 Other techniques

There are a large number of other techniques which use PFSMs in bioinformatics.
Building and interpreting phylogenetic trees have used probabilistic methods for a
long time, as there are not many other ways of attacking the problem. Jeff Thorne,
Nick Goldman, David Jones and colleagues have published a number of papers on
combining PFSMs with phylogenetic trees [84, 36, 55]. These papers show that
there is an increase in the likelihood of the tree when a PFSM of the sequence is
included in the model. Many of the processes in large scale sequencing can benefit
from HMM techniques, such as the decoding of trace data as discrete bases [23].
The following chapters describe my research into PFSMs in bioinformatics.

29

Chapter 2

Dynamite

2.1 Introduction

Dynamic programming is a ubiquitous algorithm in computer science which has
been applied to many different fields. In its broadest sense, dynamic programming
is the recursive decomposition of an optimisation problem into smaller sub problems
until known initial conditions are reached. To compute the solution of a problem, the
known conditions are used to initialise the first sub problem, and then the recursions
which provide the solution of the next larger sub problem from the solution of the
previous, smaller sub problem allow the propagation of this information until the
complete solution is known.

Dynamic programming as a technique allows the solution of such problems as
finding the shortest path between two nodes in a weighted graph [25], and other
variations of this algorithm. This in turn provides a basis for the solution of a
number of well known problems, such as finding the minimal string edit cost, the
parsing of regular grammars, or, alternatively stated, finding the path through a
Finite State Machines consistent with a given emitted sequence. These Finite State
Machines include probabilistic Finite State Machines (PFSMs) also known as hidden
Markov models, where the two main algorithms that occur when using HMMs, the
Viterbi algorithm and the forward-backward algorithm, are both types dynamic
programming.

Dynamic programming methods are used in a wide variety of applied fields, from
passive sonar detection, through oil exploration techniques, speech recognition and

biological sequence analysis [48].

30

2.1.1 The use of dynamic programming in bioinformatics

The application of dynamic programming to biological sequence was an early de-
velopment in the field [64] and continues to be a key technique in the arsenal of
sequence analysis, including common algorithms such as finding the optimial local
alignment of two sequences [77, 37]. Even as more complex problems were tackled,
such as representing family information and recognising structural folds, new meth-
ods were commonly simple variations of the basic dynamic programming algorithm
developed previously for pairwise comparisons of sequences.

The introduction of probabilistic finite state machines in bioinformatics was
inspired by the common use of dynamic programming algorithms to solve sequence
analysis problems. A number of different methods which use PFSMs have been
already developed, as described in the previous chapter. The next section will

outline how PFSMs use dynamic programming.

2.2 PFSMs and dynamic programming

Dynamic programming techniques are used to solve two of the crucial problems
found in PFSMs: firstly finding the optimal parse through the PFSM given the
data, called the Viterbi algorithm, and secondly finding the likelihood that observed
data was generated by the PFSM, summing over all possible paths (often called the
Forwards score). Both these methods essentially rely on the same feature, which is
the Markov rules of the PFSM: the probability of moving to the next state is only
dependent on the current state of the machine, and no other properties of how the

machine got to this state.

2.2.1 Finding the maximum likelihood path

The Viterbi algorithm finds the most likely path through a probabilistic finite state
machine given observed data. Assume that Py; is the total probability of the best
path which passes through state k& and ends at data point i (see figure 2.1 for a
pictorial representation). Consider the S possible states which could have been
immediate predecessors of the k state, which we will call sources of this state.
Each source s has to have an offset, o, in the data dimension (0s; can be zero but

not negative). Each ks pair describes a single transition in the PFSM, which will

31

P(2,i)

States

Figure 2.1: A diagram illustrating the basic Viterbi recursion. The process is calcu-
lating the best path that goes through state 2, data position i. Three possible states
(shaded) could be the sources of the best path passing through this position: the
best one is chosen by comparing the total probability of the best path to each source
times the probability of the transition to state 2. The actual best path to each of
these sources, indicated by the dashed lines is not need to calculate the best path
through state 2. Note that transitions from state 1 has an offset of two, emitting
two symbols, whereas the transitions from the other two states have an offset of 1,
emitting a single observation.

have a probability dependent both on the nature of the transition and on the data

observations by the transition. From the Markov rules, the following recursion holds:

(Ps(i_os)Tsk(di_os, ey dy)) (2.1)

If o, is zero we adopt the convention that (d;—,,,...,d;) is the null string. The

Pi; = max

Sources s
Markov rules are being used here to discard all the possible path information in how
the best path reached state s at the data position 2 — 0s, and only be interested in
its total probability Py(;_o,).-

Given this recursion rule, and the starting and ending conditions, the problem

32

of finding the best path can be solved using dynamic programming. It starts at the
first state with the first data point and proceeds to apply equation 2.1 iteratively to
for all states at each data position: the process is terminated when it has exhausted
the data and has reached the ending state. At this point the probability of the most
likely path can be simply read off.

The actual state labels which generated the best path can be found in a number
of ways once the probability of the best path is known. One can keep a note
for each ki position about which source was used. This is conceptually simple
but requires considerable additional bookkeeping of the “backpointers” for each ki
position. A more efficient method is to work backwards up the path using the
recursion rules to reconstruct the preceeding ki position from the correct position
of the best path, starting from the end point and working. This only requires
storing the best probability for each ki position. However this storage requirement
is prohibitive for large problems: in such cases a divide-and-conquors method which
has a longer running time but considerably less memory requirements can be used.
These methods are described in more detail in a later section (2.4).

The discussion so far has been for a single sequence being compared to a PFSM.
When an alignment style PFSM is used, two sequences are being aligned on the basis
of the PFSM. The Viterbi algorithm is identical to that described previously except
that there are two data dimensions, ¢ and j which form a matrix of data points.
The states form an additional third dimension, which is generally far smaller than

the sequences of observations.

2.2.2 Finding the total probability of observations

Often one wants to know the total probability of seeing some observations regardless
of which state path was taken for a particular PFSM. The calculation to find the
total probability over all paths, often called the “forward” score, is closely related
to the Viterbi algorithm. All it requires in effect is to replace the Maximum in
equation 2.1 with a sum. Consider APy;, the total probability over all paths to a
particular state k and data observation 7. Again a recursion rule can be set up that

provides AP;; in terms of its predecessors

APy= Y (APy_o)Te(d(i — 05),...,d:)) (2.2)

sources s

33

Again this rule can be applied from the starting conditions to the ending condi-
tions using dynamic programming. The final result however is the total probability
over all paths of observing the data given the model, rather than the probability of
the most likely way of producing it.

2.3 Dynamite

I realised early on in my research that I was likely to be developing a number of
dynamic programming methods in this field. The implementation of some of these
methods are time consuming to program and debug. I wanted some type of toolkit
to help develop these methods, allowing me to concentrate on the actual biological
problems and not the implementation.

Usually programming toolkits are based around libraries of resuable code. How-
ever, in this case I knew that that a library based solution would not provide efficient
execution of the method, as the part of the method that I wanted to be flexible, the
definition of the dynamic programming recursion, was the part in which the vast
majority of the CPU time is spent. If the compiler is unable to optimise this part
of the method the execution time can suffer by an order of magnitude or more.

For these reasons I choose to build a compiler which would work off a high level
description of the dynamic programming problem. The compiler would produce
C code for the specific dynamic programming problem. This C code would need
to be linked to a library of supporting routines and a piece of driving code where
the programmer actually called the generated dynamic programming routine. This
separation of compiler, libraries and driving code is common in other computer
science applications, such as the yacc compiler system for programming languages.
The entire ensemble of language, compiler and libraries I called Dynamite [9].

By using a compiled language the generated code can take advantage of spe-
cific features of the hardware it is using: for example, for symmetric multiprocessor
machines which use a threading model, multi-threaded code can be generated, or
for distributed memory multiprocessor machines, message passing code can be gen-
erated. The separation of the specification of the program from the generation of
efficient code allows people who are only interested in the design of dynamic pro-
gramming algorithms to take advantage of large compute hardware without changing

any code. From the other perspective of the computer hardware designer, people

34

who are only interested in the efficient execution of the algorithm on specialised
hardware can work on a more general form of the problem, being confident that
their work can be applied to many different methods with a minimum of effort.

2.3.1 The Dynamite language

In looking at how Dynamite is actually structured, it is probably worth reminding
the reader of the basics of dynamic programming as it is actually implemented in a
programming language for this class of problems (Figure 2.2). One has two objects
(often sequences), called the query and the target in Dynamite, which provide the
two axes of a matrix of numbers. This matrix is usually divided up into cells, each
cell containing a collection of numbers that represent the best score (or the summed
score) of the problem to the ith position in an object compared to the jth position
of the other object, ending in that state.
To calculate a cell one needs to use the

e cells from previous ijth positions (only some cells might be required).
e data elements in the query and target

e additional resources (such as a protein comparison scoring matrix)

In cases where we have to calculate the path, the most efficient approach is to do
a traceback through the matrix of numbers, deducing how the best score was made.
When memory limitations prevent allocating and using the entire matrix in memory,

a linear space divide and conquor version of the algorithm must be employed.

2.3.2 formal definition of a dynamic programming recursion

Dynamite is a language like yacc or lex (the UNIX tools to automate compiler
generation and regular expression parsing), which generates C code from a definition
of the problem. The Dynamite language must provide the following features

e A definition of the dynamic programming recursions suitable for the state

machine one is considering.

e The ability to supply the data structures to provide information to calculate

the recursion.

35

Figure 2.2: A diagram explaining dynamic programming as it is usually implemented
for sequence alignment. A matrix of cells is laid out, one axis for one sequence,
the other axis for another sequence. The cell represents the best score in each of
the states for a particular prefix of sequence A compared to a particular prefix of
sequence B (for cases where there is more than one state, each cell stores more than
one number). Cells are calculated via recursion rules which indicate how the score
for the extension of the alignment to the next cell is modified, usually on the basis
of properties of the sequence at that point.

36

e The interface between the definition of the state machine and the data struc-

tures to indicate where in the state machine which calculations occur.

An example dynamite definition, in fact for the Smith-Waterman algorithm, is
written out below

Wi
#include "dyna.h"

h}

matrix ProteinSW
query type="PROTEIN" name='"query"
target type="PROTEIN" name='"target"
resource type="COMPMAT" name="comp"
resource type="int" name="gap"
resource type="int" name="ext"
state MATCH offi="1" offj="1"
calc="AAMATCH(comp, AMINOACID(query,i) ,AMINOACID(target,j))"
source MATCH
calc="0"
endsource
source INSERT
calc="0"
endsource
source DELETE
calc="0"
endsource
source START
calc="0"
endsource
query_label SEQUENCE
target_label SEQUENCE
endstate
state INSERT offi="0" offj="1"
source MATCH
calc="gap"
endsource
source INSERT
calc="ext"
endsource

37

query_label INSERT
target_label SEQUENCE
endstate
state DELETE offi="1" offj="0"
source MATCH
calc="gap"
endsource
source DELETE
calc="ext"
endsource
query_label SEQUENCE
target_label INSERT
endstate
state START !special !start
query_label START
target_label START
endstate
state END !special !'end
source MATCH
calc="0"
endsource
query_label END
target_label END
endstate
endmatrix

The matrix to endmatrix lines provides the Dynamite definition. The first 5
lines indicate the data structures which are used in calculating the recursion. The
first two, query and target are the two objects which define the two axes of the
matrix. The other, resource, lines indicate additional data structures needed to do
the calculation - in this case, a protein comparison matrix and the gap penalties.

The rest of the text is used to define the finite state machine and its interface
to the data structures. Each state is defined by the state to endstate lines, and
contains within it the definition of the transitions which end at this state in each
source to endsource block. Each source block describes a single transition from a

particular state to the state it is within.

38

The interface to the data structures is provided by the calc lines, which can be
found in one of two places - in a source block which provides the definition of the
calculation for this transition and optionally in the state block, which indicates a
calculation that is the same for all transitions which end on this state and is added
to all transitions regardless of where they originated.

The calc lines are built from a subset of C which allows the usual C arithmetic
(+,-,/,%*), memory dereferencing (array [] deferencing, * as a pointer reference),
structure deferencing (the . and — > operators) and function calls. This is imple-

mented using a small yacc grammar which is fully parsed by the dynamite compiler.

2.4 Implementations provided by Dynamite

Dynamite produces a number of implementations which provide different calcula-
tions based on the same Finite State Machine definition. The first ones are those
which provide the Viterbi decoding of the alignment process in either quadratic
(section 2.4.1) or linear (section 2.4.4) memory. There is also a convenience func-
tion which decides whether to call the large or small memory model for a particular
query and target object, returning back an alignment, which shields the user from
having to switch between the two implementations.

Dynamite also produces some functions to provide the score of two objects either
by the Viterbi path (section 2.4.2) or the Forwards algorithm, which calculates the
sum over all paths (section 2.4.3). These implementations work faster and in linear
memory, as they do not need to calculate the alignment.

A common use for these types of comparisons is a database search. When dy-
namite is made aware of how to loop over a database of objects (see section 2.4.8)
a number of different database searching modes can be used. The serial search
(section 2.4.5) provides a standard database search. As the database search can be
done in any order, the problem is very amenable to coarse grain parallelization, in
which each pair of comparisons required for the database search is packaged off to
a separate execution stream. Dynamite can generate a multi-threaded implementa-
tion, suitable for symmetric multi processor machines (section 2.4.6) for database
searching.

Finally as Dynamite is a true compiler, not merely a large macro system, in the

sense that it completely parses the definition of the state machine into a internal

39

representation that fully describes the machine, very complicated target machine
architectures can be considered. One example of this is the generation of a sys-
tem which is compatible with specialised hardware that runs on Digital Signalling

Processing chips (section 2.4.7).

2.4.1 Viterbi quadratic memory alignment

The easiest implementation of dynamic programming is to calculate an explicit
matrix of numbers recursively, as in figure 2.2. The final score can be read off from
the appropriate END state. The alignment which generated the high score can then
be deduced by recursively inferring which previous state the high scoring path must

have originated from (this is commonly called the trace back routine).

2.4.2 Viterbi score only, linear memory

When the alignment is not required the score of the Viterbi path can be easily
calculated in linear space (this is a natural consequence of the fact that only a small
portion of the matrix is required to calculate the next portion of the matrix). The
only issue with this implementation is that as this will be used in the database
searching method, care should be taken to minimise its execution time. For the

Dynamite compiler, this means taking care of two issues

e The C generated by Dynamite must be suitable for optimisation by the C
compiler. Generally this means providing a large inner loop of execution state-

ments some of which can be done concurrently.

e The memory layout should be such that concurrent retrievals of information
are close in memory. Dynamite ensures that the matrix memory is laid out

optimally.

2.4.3 Forwards score only, linear memory

The forwards algorithm, which sums the probability over all paths, can also be run
as an implementation which provides a score. Its implementation is almost identical

to the Viterbi method, but instead of a max at each position a sum in probability

40

space is provided. The only minor twist to this is that the matrix numbers are in
a log space representation: the sum function therefore has to move the numbers to
probability space before adding them. This can be done efficiently by precomputing

a table of mappings in log space for addition of different probability values.

2.4.4 Recursive linear memory alignment

Storing the explicit matrix of numbers rapidly becomes a resource problem since
the memory requirment grows as the product of the length of the sequences being
compared. As DNA sequences can easily be over 100,000 positions long, the explicit
form can quite easily be impossible to calculate on standard workstations.

A solution for this problem has been known for some time, which involves a
recursive algorithm that calculates the place where highest scoring path crosses the
half way point in the length of one of the sequences (Figure 2.3) [62]. This can be
calculated in linear memory (proportional to one of the sequences). Once the half
point is known the problem can be split into two problems on each side of the half
point. These sub problems themselves are also alignment problems, which can be
solved by the application of the same method, i.e. finding the half point so as to
partition each problem into two smaller sub problems. The recursion is terminated
when the remaining matrix is small enough to fit into memory explicitly.

This implementation is notoriously hard to program. The first problem is that
the recursive alignment routine can only be called once the start and end points of
the alignment are known. Secondly, when the alignment is local or, even worse, the
alignment has complex boundary conditions, such as a loop, very annoying book-
keeping has to employed to ensure that the correct alignment start/end points are
used. Many Dynamite users were attracted to the toolkit due to the implemen-
tation of the linear space alignment which they did not feel confident to program
themselves for non trivial dynamic programming situations.

Dynamite solves the linear space alignment in a reasonably standard way. The
first stage is to break a more complex alignment problem which potentially involves
loops into a series of simple alignment problems which has no loop (see the section
on special states, 2.5.1, to see how these come about). Then these alignments are
solved using a recursive function. Both the splitting of the complex alignment to

simple, non looping alignments and the recursive routine use a concept called the

41

N

Figure 2.3: The first 3 rounds of the divide and conquer method, illustrated picto-
rially. The green line represents the best alignment, and the black boxes the matrix
calculated at each iteration. The red line is the midpoint at which the position of
the best path is stored for each state in each cell, and then propagated on to the
end of the calculation. Each iteration produces two sub problems which can then
be solved using the same method, until the sub problems are small enough to solve
using conventional quadratic memory

42

shadow matriz. A shadow matrix is information which is attached to the score of a
particular matrix number, and is propagated on with the score. By using a shadow
matrix the start point of the match can be propagated to the end of the alignment in
the first stage of the alignment process. In the full recursive alignment, the shadow
matrix is used to store the position of each path at the half-way point. At the end
of the alignment process, the position of the half way point can be read off from the
end point’s shadow matrix.

This use of a shadow matrix is more expensive than the better method of running
the dynamic programming recursions in two directions, one forward to the halfway
line and one backwards from the end point to the halfway line. The shadow matrix
method has to make the same number of calculations as this forward/backward
sweeps, but incurs the additional expense of propagating information in the shadow
matrix. The benefit is that is a far easier implementation to code as it does not

involve inverting the dynamic programming recursions.

2.4.5 Serial database search

The ability to generate a database search of one database of objects vs another
database of objects is a common use of the dynamic programming algorithms. In
these cases generally only the score of the match is required, and so one can use the
Viterbi (2.4.2) or Forwards (2.4.3) score methods. Although the programming of
serially looping through a database of objects, applying one of the scoring functions

seems simple enough, robust routines require a little more thought:

e The database searching routines must not leak memory as they will be called

multiple times during the search.

e Efficient database searching requires that a minimum of objects remain in
memory during the database search, and that objects can be retrieved later

on for processing of the alignments.

e The database searching routines should be able to either provide a Viterbi or

a forwards score.

e Error reporting of problems during the database search should provide an
indication of where in the database search they occured, and where possible

still provide partial results.

43

Coupled with considerations of minimising the execution time of the database
search, writing a good serial database searching routine is not that trivial. Dynamite
provides an immediate, robust and fully featured database searching routine for this

reason.

2.4.6 pthreads Database search

Database searches are often the time limiting factor for research, taking sometimes
around a week to run for some complex models. The advent of multi-processing
boxes provides a way to reduce the actual amount of time taken for a database
search to complete by using multiple processors on one particular search. One com-
mon model for programming multiple processor boxes has been pthreads a POSIX
standard in which each execution stream is represented as a different thread, but
each thread has access to the same memory.

The database search is an embarassingly parallel problem, meaning that the
problem can both be easily broken into sub problems and that these sub problems
require minimal communication between them. This makes the conceptual writing
of a pthreads implementation simple: each thread does a comparison of one object to
another object separately and then places the score in a common results structure.

Even though the conceptual programming is quite simple, there are many bar-
riers to writing pthreaded code. Firstly the pthread syntax, which involves calling
specialised library functions to create threads and other structures which allow co-
ordination between threads has to be understood. Secondly, each thread must not
share memory with other threads which would cause program failure or worse in-
correct results. Finally the threads must be coordinated to allow sequential access
to common resources, such as the database streams.

Dynamite provides an efficient, well designed pthreads implementation.

2.4.7 OneModel BioXL/G port

Database searching by dynamic programming is so compute intensive that a number
of companies have designed specialised hardware to accelerate it. This hardware is
generally hard coded with a small number of algorithms: the lack of flexibility in the
algorithm means that every development of a new algorithm must be implemented

by a small team of people who understand the hardware.

44

The creation of Dynamite as a programming language that represents dynamic
programming in theory allows the possibility of Dynamite generating code suitable
for the specialised hardware. One specialised hardware company (Compugen) has
developed hardware flexible enough to run many different versions of the Viterbi
score database search method. Along with this hardware they provide an API to
“program” the machine for a new algorithm, called OneModel. This system is in
some ways similar to Dynamite, but importantly, reads information from simple
arrays of integers, and not directly from C structures as the data must be moved to
the specialised hardware and no general C compiler is available for the hardware.

The fact that Dynamite represents the entire definition, including the interface
to the user defined calculation methods (the calc lines in the Dynamite definition)
allows Dynamite to generate code which can use the OneModel API. To do this,
Dynamite has to generate C code which queries the user defined C code to extract
the information required for the OneModel API. For example, the calc line written

below might be found in a protein profile HMM matching a protein sequence.

source MATCH
calc="position_specific_gap(query,i) +
insert_emission(query,i,AMINOACID(target,j))"

endsource
would generate the following code (written as pseudo code)

foreach i position in the query {
offset = 0;
model[i] [offset] = position_specific_gap(query,i)
offset++
foreach A over amino acids (26) {
model[i] [offset+A] = insert_emission(query,i,A)
}
offset = offset + 26
// the next calc line stored

Notice that the calc line has been split logically into two separate expressions.

The compiler knows that the position_specific_gap expression is invariant with

45

respect to changes in the target information. However the insert_emission(
query, i, AMINOACID(target,j)) expression uses information from the target in-
formation. The compiler then has to loop over every possible input of that informa-
tion. In this case the compiler parses AMINOACID (target,j) as having 0-26 as its
possible values and generates a loop to iterate over those values storing the infor-
mation in the model line. The generation of this code requires that the Dynamite
compiler can manipulate these calc lines in a detailed manner.

The compiler then has to generate the necessary definition for the specialised
hardware to indicate that for this particular transition in the state machine it needs

to use the numbers in model [query-position] [1+aminoacid in target].

2.4.8 Software engineering details of Dynamite

Dynamite is a toolkit which provides considerable help to the algorithm designer for
implementing new algorithms. The aim is not only that this toolkit is a prototyping
environment but also that it provides functions for the final implementation. For
this to be achievable the code generated and used by Dynamite must be sensible.

The Dynamite generated code passes strict ANSI requirements, making it portable
to any architecture with an ANSI C compiler. It has been tested on a wide variety
of UNIX machines and Windows N'T. To allow the Dynamite generated code to be
used with other libraries, a unique prefix can be appended to each external name,
preventing namespace clashes when it is linked with other libraries. Care has been
taken to allow new implementations of database searching functions to be seamlessly
integrated into existing programs which use dynamite with only the bare minimum
of changes.

The Dynamite run-time environment is also built with the same considerations
of code correctness and external namespace protection. Parts of the Dynamite run-
time environment are hard-coded into the Dynamite compiler, but other parts are
made more flexible to allow different libraries to provide, for example, database
streaming functionality. This allows other user-defined types to take advantage of
the database search functions generated by the Dynamite compiler without having

to understand the innards of the compiler.

46

2.5 Innovations in Dynamite

Dynamite has a number of innovations which extend the paradigm of sequence

alignment algorithms represented as finite state machines.

2.5.1 Special states

Special states are best considered in the framework of repetitive hidden Markov
models. A quick introduction to using Dynamite for repetitive HMMs is given first,
and then an explanation of special states in this model.

When Dynamite is used for a hidden Markov model, it is best suited to those hid-
den Markov models in which there is a repetitive series of states which are connected
in a standard pattern. Such hidden Markov models include the profile HMM archi-
tecture suggested by Anders Krogh and colleagues [50]. In speech recognition, these
sorts of hidden Markov models are called time-dependent hidden Markov models,
and in general, when people consider using large hidden Markov models it is very
common to constrain the architecture into a left-to-right, repetitive architecture.

Although the main state definition of Dynamite can easily satisfy these repetitive
HMMs, the boundary conditions can be quite intricate. The boundary conditions are
sometimes particular parameterisations of the start conditions and end conditions
with respect to the position in the repetitive nature of the hidden Markov model.
As boundary conditions become more complex, generally people want additional
“boundary” states to model aspects of the problem near the boundary conditions.
These additional states become yet more involved when looping architectures are
employed. In such architectures the repetitive block of states can be reentered
multiple times. The boundary conditions now apply to both the entering and leaving
the repetitive block at the start and end of the observations, and between each
occurrence of the block.

Dynamite handles all boundary conditions, from simple to complex using special
states. Special states are states that are only present once in the HMM: they are
not repeated. This means that there is a break in symmetry between the query
and target dimensions: in Dynamite the special states are only applicable to the
query dimension. Many special states can occur, and they can be connected to both
standard states and other special states (see section 2.5.3 to see how null cycles are

avoided). By using special states, many different complex boundary conditions can

47

be created. Examples are given in the dynamite definitions of a variety of dynamic

programming algorithms in Appendix B.

2.5.2 Labels

When designing dynamic programming code for biological applications one might
be changing the dynamic programming recursions whilst still attempting to solve
the same biological problem. One annoyance of this is that the data structure
which represents the result of the dynamic programming parse will be different
for different precise recursion definitions: to generate sensible biological results one
needs to endlessly change the code to that looks are the data structures emerging
from the dynamic programming code.

Dynamite provides a way of embedding the biological interpretation of the dy-
namic programming result into the dynamite definition file. This is done by defining
two text labels for each transition (source block in the dynamite file), one label for
the query dimension, one label for the target dimension. For convenience you can
also define a state default for the labels. Dynamite then generates the code to con-
vert the initial description of an alignment path as a state path through the machine
to a set of aligned regions for each dimension, with the appropriate labels.

As the programmer is free to reuse the same label in many positions, radically
different finite state machines can generate the same set of labels. By having the
downstream code only read the label based alignment, one can change actual dy-
namic programming code at will and use just one set of postprocessing code for
the downstream analysis of the alignment. This feature is heavily used in the Ge-
neWise algorithm, where 7 different architectures were tried whilst designing the
algorithm and 5 different architectures are actually distributed in the Wise2 pack-
age (see Chapter 3). The fact that very different dynamic programming recursions
are calculating the alignment is completely hidden from the bulk of the GeneWise
code.

Interestingly the concept of labels being attached to the dynamic programming
recursion is more than a programming tool. A recent set of algorithms to cope
with the mismatch between the biological interpretation of a model and the model
architecture have been developed by Anders Krogh [51]. These algorithms use a
concept also called labelling to indicate the biological interpretation of a state, and

48

using this concept provide a number of algorithms to replace the standard training
and path finding techniques with ones that are optimised for making the correct label
assignment, not the correct state assignment. It is interesting to investigate whether
the labels as defined in Dynamite will have a broader use than just programmatic

convience but also be involved in the algorithmical aspects of Dynamite in the future.

2.5.3 Compile time error detection by the Dynamite compiler

As the Dynamite language is parsed and loaded into an internal data structure inside
the Dynamite compiler a number of errors can be found at this abstract level. These
include, of course, syntactic errors when the Dynamite definition is incorrect, but
can also include semantic checks after the Dynamite source code has been parsed.
These semantic checks ensure the integrity of the language and so catch some errors
at compile time, errors which are impossible to catch with a lower level language.

The semantic checks include

dangling transitions Ensures that each transition starts and ends on a valid state.

start/End Ensures that there is a single start state and a single end state, and

that there is at least one path from start to end.

null cycles Ensures that there are no null cycles by making sure that each transi-

tion advances in at least one data dimension

inappropriate indices The programmer is free to use the i variable as the index
in the query dimension and the j variable as the index in the target dimension.
The dynamite compiler detects when i is being used to index into the target
data structure or the j into the query data structure. This nearly always
indicates an error, but it could conceivably have some use, so only a warning

is issued.

type checking of function/macro calls Each function call in the Dynamite com-
piler is type checked (see below)

The type checking in the dynamite compiler is particularly flexible, and can
apply to both function calls and macros as used by the C programming language.

This makes the type checking useful, as for performance reasons, many of the ways

49

of accessing the data will be via macros which return integers, and so mistyping
errors cannot be detected by the C compiler.

An example of this type checking is given below. Imagine we have declared
CODON_HMM _MATCH (hmm,i,codon) as taking a HMM as the first argument and a
codon as the third argument, CODON_SEQ(seq, j) as returning the codon at position
j, and BASE _SEQ(seq, j) as returning the base at position j. The following calc line
would be a valid calculation, and be parsed without error

CODON_HMM_MATCH (hmm, i ,CODON_SEQ(seq,1))

However the next line would cause a mistype error
CODON_HMM_MATCH (hmm,i ,BASE_SEQ(seq,1))

This line generates the following error from the Dynamite compiler

In parsing calc line for state [MATCH] source [MATCH]
Mis-type in argument 3 of CODON_HMM_MATCH:
wanted [CODON] got [BASE]

Warning Error

This is a case where in the C code, the macros which accessed the base or codon
information would return identical results: therefore this error can only be picked
up by the Dynamite compiler.

Even for a user such as myself, who has a clear knowledge of Dynamite and how
to use it, these compile time checks catch many problems early on in the development
of an algorithm. A particular benefit are cases where the definition would produce
an incorrect answer, not merely a run-time error. These sorts of problems are hard
to track down in the logic of the C code.

2.5.4 An optimiser for dynamic programming

As Dynamite is a complete compiler, holding a representation of the dynamic pro-
gramming code in an internal data structure, there is the possibility of rearranging
the data structure to generate code which executes faster. One should be wary of

such optimisers: Dynamite is not generating assembly code for a specific class of

50

machines, but rather C code for a generic class of machines. By and large it is bet-
ter to let the C compilers do the optimisation, as they are both written by experts
in optimisation and also have more knowledge about the target machine they are
writing for. However Dynamite has more knowledge than the C compiler in how
the code is actually used. In particular it knows that certain data structures are
read-only from the point of view of the dynamic programming.

I have only implemented one optimisation which exploits the read only nature
of parts of the dynamic programming code. I developed a standard common sub-
expression analyser which could find identical calc lines which are executed more
than once in the inner loop. These sub expressions were then analysed as to which
loop they remain invariant under, and the actual expression moved outside the
loops they remain invariant under (this is called a “loop hoist” in the compiler
optimisation field, and is a very basic optimisation). In some cases, the expressions
which I promoted included complex data structure dereferencing: the standard C
compiler could not validly perform the same optimisation as it does not know that
that the data structure is read only for the duration of this function.

This optimisation showed dramatic results when the C compiler optimisation was
not used, sometimes showing a two fold speed up. However when the C compiler
optimisation was used, the effect dropped to 5% or less speed up. Considering the
sophistication of the C compilers, I feel that 5% speed up is still significant.

Currently there are more experienced researchers in compiler optimisation look-

ing at the possibilities of providing better optimisations in the Dynamite compiler.

2.6 Example Dynamite programs

The next three chapters discuss in detail a number of Dynamite generated algo-
rithms. T have used Dynamite for many more algorithms than those detailed in
this thesis. Here are three other algorithms which were written in Dynamite that

illustrate its flexibility.

2.6.1 Dna Block Aligner, DBA

When aligning a eukaryotic promoter region with the corresponding region from
a related species it is clear that standard Smith-Waterman alignments of the two

sequences do not reflect the known biology of promoters. Promoters are known

51

to contain a number of small motifs which bind DNA binding proteins, some as
basal transcription machinery, some as transcription factors. These motifs can be
found at vastly different distances and still function identically. When aligning two
homologous promoter or regulatory DNA sequences, for example from mouse and
human, we should expect large intervening sequences to occur between regions that
are conserved.

There were no available programs which would easily provide this sort of align-
ment information. Rather than post processing existing algorithms (such as BLAST
or SIM1) we investigated designing our own alignment systems to represent evolu-
tion in regulatory regions. The architecture we settled on is shown in figure 2.4. We
presumed that the two sequences would share motifs that could be interrupted by
small gaps, but that between these motifs very large gaps, indistinguishable from
background, were likely to be present. Because we were interested in measuring the
level of conservation between different sites, we split the blocks into four different
types of blocks which matched differing levels of conservation. Thus the alignment
process would align the two sequences and also classify the conserved blocks simul-
taneously.

The parameterisation of the FSM was done by setting parameters by hand for
the conservation levels and the two gap probabilities (in blocks and between blocks).
The parameters chosen gave good results on the test cases we used. The model was
parameterised against a null model which was as if there were no conserved blocks in
the two sequences. This null model could be applied directly to the scoring scheme,
as there are no hidden variables to calculate, meaning that we could provide a single
program that would provide the log-odds ratio of the alignment.

An example output is shown in figure 2.5

2.6.2 Deriving an alignment from a 3D superposition of protein
structures

When the 3D structures of two protein sequences are determined by X-ray or NMR
techniques it is usually easy to decide visually whether they are related or not
(unlike only knowing their linear amino acid sequence, where it is extremely hard,
even with computational help). To help understand how two structures are related,
a common technique is 3D superposition, such as rigid body rotation and translation

to minimise the root mean squared distance of the alpha carbon atoms between the

52

Figure 2.4: A figure illustrating the Dna Block Aligner PFSM. The conserved blocks
are on the left hand side of the page: each block is parameterised with a different
level of expected DNA conservation, shown as solid transitions. Small gaps are
allowed, showed as dashed transitions, one for each sequence. Separating the blocks
are two states which represented unaligned DNA sequence. Each state emits only
for one sequence. It is possible to pass through the entire PFSM without entering
a conserved block.

53

score = 72.52

EM MVENDCBA 110 ACTCOCTCCACTCTTTCCACCAT TCACCACATCOCCOCACACACACTCT
A ACTCC T CICITTCC CATTC A CCCC AC C ACTC
EM HSKER101 57 ACTCCTTTGCCTCTTTCOG-CAT TCCATAACCACCCCAACCCCTACTCC
EM MVENDCBA 158 ATGECECACGGAGT TAGGAATAC-CTGGACTCTCACCC
A A G3GA GG GIT GGATACCIGGA T CA CC
EM HSKER101 106 AC-GEGAGEEEGET TGEECATACCCTGGATTTCCATCC
EM MVENDCBA 359 TTAGAGGGT TAAGCGGAT GTGECTAAGEGTGAGTCATCTAGGAGTAAAC
C TT GAGGGTTAAGCGGATGIGECTAAGG TGAGTCATCTAGGAGTAAAC
EM HSKER101 322 TTGGAGGGT TAAGCGGAT GTGECTAAGECTGAGTCATCTAGGAGTAAAC
EM MVENDCBA 408 AGGAGCCTTACCTGTAGGAGEEECCA
C AGAGCT CCT T GGAGG GCCA
EM HSKER101 371 AAGAG-CCTTCCTTTGGGAGGAGCCA
EM MVENDCBA 468 GEEEEEEEEEEEEEEEEEET TAGCAGGT GCACCTGGAAGAAGATGOCAG
A GGG GGG G GI' A CAGGTGCAC GG A AA ATGCCAG
EM HSKER101 402 GGGT GTAGEEEECCCAGAGT GACCAGGTGCACTAGG-AAAAAATGCCAG
EM MVENDCBA 516 GAGAGGATCAGAAGGAAATCT TGT TGGAAGCTCCTC GTAAGCA
A GAGAGG CAGAGA CITGIT GAC CIC TT T GCA
EM HSKER101 451 GAGAGGEECCAG-A-GAGGACT TGT TAGTAGCGACTCACTTCTGGEECA
EM MVENDCBA 594 GGAATCCAGGAAGEGAG-CA
D GGAATCCAGGAA GGAG GGA
EM HSKER101 561 GGAATCCAGGAAAGGAGEEEA
EM MVENDCBA 647 GOCTCTGACTGI TCCTGEGACT GBGATGGATTCACTGGAAAACACAAGA
B GOCTCTG CT TTCCTGEGAC GGA G TTCACT G A ACA AA A
EM HSKER101 623 GOCTCTGGCTATTCCTGEGACCAGGAAG CACT-GGA-ACATAACA
EM MVENDCBA 694 CGT- CTCATTOCCOCCAC
B CT TIT C CA TC CCOCAC
EM HSKER101 672 CTTTTTTACACA-TC-CCCCAC

Figure 2.5: An example output of the DBA algorithm, aligning an intron from
the keratin gene from mouse and human respectively. This intron is known to be
conserved between the two species. Each alignment shows a particular pass through
one of the conserved blocks (the intervening, unaligned sequence is not shown).

54

two structures.

Mapping the 3D superposition back to the one dimensional sequence alignment is
not as trivial as it might seem. The superposition often does not assign every alpha
carbon of one sequence unambiguously to one from the other sequence, in particular
in loop regions, where gaps are common. Although visually one can usually derive
a sensible looking alignment from the 3D superposition, on a large scale one needs
a program.

The problem can be solved by a rather simple Dynamite comparison which com-
pares two sequences in a manner similar to Smith-Waterman but the comparison
method is related to distance between the carbon alpha atoms in the superposition.
In this case it was crucial that Dynamite could handle some arbitrary C type calcu-
lation in the comparison method, as this would be read from a precalculated matrix
that was read in.

Although this method was very ad hoc, the key feature was that I was able
to develop the algorithm within minutes of having the problem described to me:
and once we had settled on the algorithm, the code required no debugging. This
drastically dropped the development time from weeks to under a day. This program
was used in the evaluation of the 1998 CASP results [46].

2.7 Comparing two transmembrane proteins

Transmembrane proteins are known to have different residue conservations across the
protein, corresponding to the different environments of intracellular, transmembrane
and extracellular [47]. In particular the transmembrane domain almost reverses the
usual amino acid conservation rules, with hydrophobics often substituting many
times for other hydrophobics, but small polar amino acids being highly conserved.
Matching two transmembrane proteins on the basis of standard globular matrices is
clearly not optimal.

It is easy to construct a PFSM to represent the matching process between two
different transmembrane segements as long as one accepts that the length distribu-
tion of the different regions will be of an exponential form. This PFSM is shown
pictorially in figure 2.6. Finding parameters for this PFSM is harder, as one needs
to provide probabilities for 3 different 20 by 20 matrices.

To generate these probabilities I took a pragmatic approach to take trusted trans-

55

U | ntracellular

Figure 2.6: A transmembrane matching PFSM. The four states represent intracel-
lular, transmembrane, extracellular and transmembrane environments. The trans-
membrane state is duplicated to enforce the topology rules of transmembrane pro-
teins. Each state has three looping transitions, the black representing matching of
two residues, the green a gap on sequence and the red a gap on another sequence.
The transition leading into the state is a matching residue. Many aspects of this
PFSM is unrealistic, including the exponential length distribution of the transmem-
brane regions and the linear (as opposed to the more realistic affine) gaps in the
sequence

56

B o T o
CB21_MAI ZE 1 MAASTMAI SSTAVAGTPI KVGSF-GEGRI T-—MRKTV--GK
CB23_LYCES 1 MA-S-MAA-—TASSTTVVKATPFL GQTKNANPL RDVWAMGS

B S o T o o o T S A A S S ST AT S S

B o B o T S
CB21_MNAl ZE 37 PKVAASGSPWGPDRVKYL GPFSCEPPSYL TGEFPGDYGAD
CB23_LYCES 38 ARFTMSNDLWYGPDRVKYL GPFSAQTPSYLNGEFPGDYGAD

B e N S E e

B T L R -
CB21_MAl ZE 78 TAGLSADPETFAKNREL EVI HSRWAMLGAL GCVFPELLS-R

CB23_LYCES 79 TAGL SADPEAFAKNRAL EVI HGRWAMLGAL GCl FPEVLEKW
++++++++++++++ bt ===============

CB21_MAI ZE 118 NGVKFGEAVWFKAGSQ FSEGG.DYLGNPSLI HAQSI LAl W
CB23_LYCES 120 VKVDFKEPVWFKAGSQ FSDGGLDYLGNPNLVHAQSI LAVL

B = e = I e
CB21_MAl ZE 159 ACQVVLMGAVEGYRI AGGP-LGEVVDPLYPGGS-FDPLGLA
CB23_LYCES 161 GFQVWLMGELVEGFRI NGLPGVGEGND-LYPGGQYFDPLGLA

B == e R o o S ey

++++++++++++++to==============so=————————
CB21_MAl ZE 198 DDPEAFAEL KVKEL KNGRLAMFSMFGFFVQAI VTGKGPLEN

CB23_LYCES 201 DDPTTFAELKVKEI KNGRLAMFSMFGFFVQAI VTGKGPLEN
++++++++ b tooSsooo==oooooooo

CB21_MAl ZE 239 LADHI ADPVNNNAWAYATNFVPGN
CB23_LYCES 242 L L DHL DNPVANNAW/YATKFVPGA

Figure 2.7: An example output of the transmembrane aligner. The two sequences
are chloroplast sequences from maize and tomato. The aligment is shown with +
indicating the intracellular environment, = the transmembrane regions and - extra-
cellular environment

membrane alignments and make counts of residue matches in the 40-60% identity
range for each region. These counts were then converted into probabilities using a
simple pseudocount addition followed by dividing by the total counts. The resulting
matrices were good enough to make sensible looking alignments for transmembrane
proteins, as shown in figure 2.7.

This method was a prototype to illustrate that using Dynamite more biological
knowledge could be integrated with the standard protein comparison methods. This
small prototype did not answer many of the harder questions which the work poses,
such as what is the best architecture of the PFSM: exponential length distribu-
tions are particularly inappropiate for the transmembrane segments which require a

minimum number of amino acids to span the membrane. Other researchers are cur-

o7

rently looking at integrating protein structure rules with protein alignments using

Dynamite, and their work looks promising.

2.8 Other Dynamic Programming toolkits

Dynamite is certainly not the first finite state machine toolkit, and is unlikely to
be the last. Here is a brief review of some of the other toolkits available and a

comparison of their features with those of Dynamite.

2.8.1 UNIX pattern matchers

There are a number of UNIX pattern matchers which provide implementations of
finite state machines designed for text manipulation. These include the UNIX tool
grep, Perl regular expressions and the compiler tool 1ex. All these methods have
flexible pattern matching engines optimised for text processing, in which generally
a number of fixed letters are required at certain points in the match. There is little
or no ability for being able to score the matches.

The only large application of text pattern matching to bioinformatics is the
collection of Prosite patterns [43], convertible to grep expressions (with minor post-
processing required for end effects). This pattern library is useful for a number
of biological applications, in particular where there are strict rules due to ligand
binding to specific residues. However, for most cases, probabilistic grammars (such

as hidden Markov models) are more useful.

2.8.2 Dong and Searls

Dong and Searls described a system that allowed specification of quite general dy-
namic programming finite state machines in 1994 [27]. Their application had a
graphical front end in which the user could draw out a finite state machine like in
figure 1.2. The application generated PROLOG code which then solved the dyna-
mite programming using the in-built Prolog parsing method, which is a depth first
search through the possible paths.

The application was conceived as a prototyping tool and an illustration of how

cleanly FSMs represented the alignment process. In the paper they mentioned work

58

to make the front end also generate efficient, compilable programs, however this was
not to my knowledge implemented.

The educational and prototyping nature of the application is also clear in the
logical design. There was no easy way to connect the finite state machine to the
machinery to actually calculate the score at any point: a very restrictive set of
functions were provided. For example, this restriction completely prevented their
system to describe the repeated HMMs so prevelant in bioinformatics. In contrast,
Dynamite allows a large subset of C as the interface between the FSM machine
definition and the calculation. In addition, improvements in Dynamite such as

special states and labelling greatly extend Dynamite’s usefulness.

2.8.3 Lefebvre

A context free grammar generation suite was developed by Lefebvre primarily for
RNA folding problems [54]. This grammar suite used yacc like rules to indicate
how to build the parser. As it uses a context free grammar, it embraces a larger
set of grammars than Dynamite. Like Dynamite it generates C code. However, the
integration of more arbitrary C style functions is hard, and it only generates the
alignment parsing code, and not other implementations. To its credit, it recognises
when it has a grammar which is a regular grammar, and generates the faster, regular

grammar code.

2.9 Discussion

I believe the value of Dynamite can be justified by the uses to which it has been
put. The algorithms that are presented in the next chapter include some extremely
large finite state machines: without Dynamite I am sure I would still be debugging
the algorithmical code. The fact that designing a new algorithm takes under an
hour, and, with the labelling system, an improved algorithm can usually be easily
plugged into an existing system, has meant I have experimented with many different
variant algorithms to solve particular biological problems. Suddenly from spending
3 or 4 months designing and coding a particular algorithm one can play around
with a number of alternatives, making 3 or 4 different versions in a single day. This

freedom allows one to take a different approach in the research of new methods.

59

I have not only used Dynamite internally, but also distributed and encouraged
other people to use it. There is a considerable difference between the author using
his toolkit and someone else picking it up and using it effectively (I would like to
thank those early users who have helped me so much in this process). I believe that
Dynamite has a lot to offer researchers other than myself. Intriguingly Dynamite
has even been used in other fields than bioinformatics, such as econometrics.

The ability for Dynamite to automatically bridge the gap between the algorithm
designer and specialised solutions such as pthreads code or specialised hardware is
a great boon to both camps. It removes the need for the specialist implementor
to meet the algorithm designer and understand his new algorithm. To allow this
technology to be widely used, Dynamite is distributed with very few restrictions
to anyone who wants it. In particular commercial firms can take the Dynamite
compiler and integrate it with their own proprietary system without any restriction.

A good example of this ability to separate the implementation from the definition
is the OneModel port of dynamite. Recently researchers have provided a message
passing interface (MPI) code port of dynamite; this supports parallelisation where
there is not shared memory. In addition, I am thinking of improving the performance
of some of the alignment methods using different reduced space implementations
[39]. By implementing this algorithm in Dynamite it will apply to all 12 different
algorithms in my standard package automatically.

A number of biologically focused researchers have downloaded Dynamite and
started to use it to investigate new algorithms. As Dynamite shields them from the
actual implementation, and encourages experimentation of the algorithm they can
focus far more on the biological model to use. For some 30 years we have been using
the same basic biological model of protein evolution in sequence alignment - with
the restraint of implementation removed, how much better can we do? T am looking

forward to seeing the results of these endeavors.

60

Chapter 3

GeneWise

3.1 Introduction

Most eukaryotic organisms exhibit pre-mRNA splicing. In this process, the tran-
scribed RNA from the DNA sequence is processed by a complex protein and RNA
mediated system which excises parts of the mRNA sequence (these sequences are
called introns), and joins the remaining mRNA sequences in order (these sequences
are called ezons). The resulting, mature, mRNA sequence is exported from the
nucleus where it usually provides the template for the translation of a single protein
sequence.

The reasons why eukaryotic organisms indulge in such a complex mechanism
between the genomic DNA sequence and the translatable mature mRNA sequence
are unclear: people have hypothesised everything from the fact that this exon/intron
structure is beneficial to the evolution of genes through to the idea that introns are
simply selfish elements that became fixed in eukaryotic genomes. An important
issue is that the processing of the mRNA provides another level of control of gene
expression, one of the most common being that a single mRNA can generate more
than one mature product due to alternative splicing. Regulation via alternative
splicing is, for example, responsible for a key decision in sex determination pathway
in Drosophila melanogaster [20].

One point in all this is very clear: pre-mRNA splicing greatly increases the
computational complexity of understanding an organism from its genomic DNA se-
quence alone. This chapter presents some new approaches to predicting the splicing

structure of genes. Firstly I will review some of the biochemistry of splicing and the

61

current approaches to solving the gene structure prediction problem.

3.1.1 The biochemistry of pre-mRNA splicing

The process by which freshly transcribed mRNA gets processed to mature mRNA
is one which has been extensively researched since the 1970s when splicing was dis-
covered. A number of experimental systems, in particular in vitro human extracts
and yeast genetics have provided a detailed view of the splicing process [58]. The
anatomy of the spliced RNA is shown at the top of figure 3.1. Each exon/intron
boundary is called a splice site and are named relative to the intron, the 5’ splice
site (also called the donor site) being at the start of the intron and the 3’ splice site
(also called the acceptor site) at the end of the intron. All pre-mRNA splicing goes
through two steps. The first step has the 5’ end of the intron attack a Adenosine
residue inside the intron, forming an unusual 5’ to 2’ phosphodiester bond. The
branched mRNA structure which this forms is called the lariat and is easily distin-
guished biochemically from other mRNA species. The second step has the free 3’
end of the exon attack the 5’ end of the downstream exon. This excises the intron
and splices the two exons together.

The splicing process can be divided into two distinct phases: the recognition
of a particular intron and flanking exons defining the correct splice points and the
actual biochemical splicing. Sadly the latter phase (the biochemical splicing) is far
better understood than the recognition. Some of the major players in the splicing
process are small nuclear ribonuclear particles, or snRNPs. Each snRNP is a large
particle made from one particular RNA molecule and a number of protein molecules.
Each snRNP is characterised by the RNA molecule it contains, which are called
U1, U2 etc, leading to Ul snRNP, U2 snRNP etc. The intron is recognised by a
poorly understood set of factors, which include SR proteins and other proteins not
associated with snRNPs [45]. These proteins and the Ul and U2 snRNPs somehow
both recognise the splice junctions as being valid, and also correctly pair up the 5’
and 3’ of the intron. There is a suggestive partial base paring between part of the
U1 snRNA with the 5 splice site, however the role of this base pairing in intron
recognition is unclear. This recognition process leaves the Ul snRNP at the 5’
splice site of the intron and the U2 snRNP at the branch site. Next the tri-snRNP,
U4/5/6 snRNP, which is made from the U4, U5 and U6 snRNP joins the Ul and

62

3SS
e N
Branch Site

Commitment
Complex

5 Attack at
Branch Site

l

Spliced Product

Lariat

Figure 3.1: A diagram showing some of the major processes in splicing. The top
panel shows the exon/intron structure. The exons are in blue and the line joining
them represents the intron. The 5’ and 3’ splice site are shown, and the green spot
represents the branch site. The next three panels shows the splicing process. The
red circles represent protein complexes. The first shows the commitment complex
which is a loose association of proteins forming on the two ends of the intron and
elsewhere. The second shows the first catalytic step which is the creation of a 52’
linkage to the branch site. Finally, the second catalytic step is the joining of the
two exons and the release of the intron in the closed “lariat” form.

63

U2 snRNPs, making a complex which can be fractionated called the spliceosome.
There are a number of rearrangements of the complex (crucially the association
between the U4 and U6 snRNPs change) as the spliceosome catalyses the two steps
of the reaction. Intriguingly, the U6 RNA itself has been implicated in the actual
catalytic process, which leads to interesting hypotheses of the relationship between
pre-mRNA splicing and the self splicing introns (in particular group II self splicing
introns).

Although the biochemical catalysis of the splicing process is well worth further
investigation, the computationally interesting part is the recognition of the introns
and exons. One can think of at least two problems the recognition machinery must
be able to handle: firstly it needs to distinguish real splice sites and hence real exons
and introns from other regions in the mRNA which “by chance” resemble splice
sites. Secondly it needs to be able to pair the correct splice sites together, as one
could easily recognise correct splice sites, but in fact skip over an exon, erroneously
splicing the mRNA. These problems are exasperated when one considers alternative
splicing where a single primary transcript has multiple valid splicing patterns in

either different tissues, or in many cases, the same tissue at the same time.

Splice Site Recognition

By looking at many introns and exons, a number of sequence features in the mRNA
could be deduced. Firstly the splice sites both on the 5’ splice site and the 3’ splice
site have some conserved residues. The strongest feature of these conservation is
that the 5’ splice site has a conserved GT dinucleotide and the 3’ splice site has a
conserved AG dinucleotide, giving rise to the so called “GT-AG” rule. However it
is obvious that more information than these dinucleotides are required to specify an
intron: indeed when naive or complex approaches for modeling the 5’ and 3’ splice
sites are used they are not sufficient to distinguish real splice sites from random noise
in the sequences. Another biochemical feature is the branch site adenosine which
is attached to the 5’ end of the excised intron. KEarly examination of vetebrate
branch site sequences suggested a weak consensus around the A (an adenosine is
always used), however, further analysis of a number of introns did not confirm this
feature. In contrast, in S. cerevisiae and S. pombe, strong branch point consensi were

defined. In human introns, additional information must be used by the recognition

64

machinery. At the 3’ splice site, there is a clear run of cytosine and uracil nucleotides
in the RNA before the splice site and after the branch site. (these are encoded as
cytosine and thyamine nucleotides in the DNA sequence). This poly pyrimidine
tract seems like a clear signal to localise the 3’ end of the intron, and factors which
are biochemically implicated in the splicing process, such as U2AF, have a in vitro
affinity for poly-pyrimidine RNA (as do, it must be admitted, other factors which
are not involved in RNA splicing) [49].

U12 splicing

In recent years a number of introns have been found which do not contain the GT-AG
dinucleotides but instead have AT-AC dinucleotides at either end of the intron. Are
these introns were spliced with the same machinery? Elegant experiments showed
that for a number of AT-AC introns, a parallel splicing system was used, with a
new series of snRNP factors, each corresponding to one of the “traditional” set
of factors, i.e., Ull for Ul, Ul2 for U2 etc. The two systems were named after
U2 or Ul2 snRNPs, as it is these snRNPs which have been implicated as the key
components which distinguish the two pathways.

On further investigation, it became clear that whether an intron is spliced by U2
or U12 dependent systems is not associated with its dinucleotide splice site endings,
but instead on the presence or absence of a branch site consensus, (U12 dependent
splicing has a strong branch point signal like the yeast sequences). This emphasised
that the recognition of the splice sites does not occu by straightforward base pairing
of snRNA species to the splice site consensi [18]. The discovery of Ul2 splicing
has provided biochemists with a more amenable splicing system as the Ul2 system

seems to be simpler in terms of the number of additional factors it uses.

Splicing enhancers

Because it was clear that the splice site consensi were not sufficient to explain
splice site recognition, a number of groups attempted to find additional cis-acting
motifs (in the RNA sequence) and trans-acting factors (which would bind the RNA)
which are involved in this recognition. A group of non snRNP splicing factors were
discovered, called SR proteins which have a number of similar sequence features [10]

and biochemical features. These proteins as a group have been shown to be necessary

65

factors for splicing and their concentration can influence alternative splicing patterns
both in vitro and in vivo [81].

Many different attempts to classify how these proteins work has led to an un-
derstanding that they bind small, weakly conserved RNA sequences, often found
in exons. The binding of these factors in many cases stimulates the splicing of the
upstream intron (for example, see [56]). An analogy has been made with the tran-
scriptional enhancers involved in promoter recognition. In both cases the sequence
motifs are not enough to uniquely indicate the splice site or promoter. The motifs
are often additive in their action, and can occur in a number of orientations relative

to the splice sites.

3.1.2 Current computer approaches to predicting splicing patterns

Prediction of genes solely from sequence data has been a topic of research since
the 1970s [79]. The first computer programs to model splicing were based on a
mixture of rules and intuition about how to represent and combine the signals from
a number of different features (for example, the knowledge of the splice sites and the
fact that protein coding genes have no stop codons). From these rule based methods
came three different approaches which attempted to provide a more formal basis of

designing a gene finding program.

Neural Networks

A number of artificial neural networks were used to characterise genomic features
involved in splicing. Soren Brunak and colleagues made a feed forward network
which took a window of 19 base pairs around a potential ’G’ nucleotide to classify
splice sites [14]. Using this network they discovered a number of errors in the
nucleotide databases.

Ed Uberacher and colleagues also used a neural network to predicted exon fea-
tures [85]. Rather than providing the network with a direct representation of the
DNA sequence they presented the network with a number of features calculated on
a 10 base pair window, the most important of which were different types of 6 base-
pair codon frame measures. The network then integrated these signals to provide
an overall exon prediction.

Although these methods were certainly effective at the tasks they designed for,

66

it is less clear how complete gene predictions can be made by using neural networks,
as presenting all base pairs in a piece of genomic DNA to a network is clearly
impractical. The importance of neural networks in gene prediction has diminished

over this decade mainly for this reason.

Linear Discriminant Functions

Other machine learning techniques have been used apart from neural networks.
Solovyev, Salamov and Lawrence exploited Linear Discriminant Analysis to solve the
gene prediction problem [87, 86]. Linear Discriminant Analysis finds the best hyper-
plane in a series of feature dimensions which separates two classes of data. In these
cases the authors built up Linear Discriminant functions for many different genomic
features, such as 5’ and 3’ splice sites, the starting ATG and poly-A addition site.
These features in each case were trained by compiling training sets of real features
and “pseudo-features” which were pieces of random genomic DNA which met some
criteria of being a possible, but not real, splice site or poly-A. For example, for the
5’ splice site, they found sequences containing GT which were not splice sites.
These individual features could be used on their own as feature prediction in
their own right, but this would not help people get a complete prediction of the
gene. To counter this, the authors provide a final dynamic programming based
parsing of a sequence on the basis of these pre-computed features. This dynamic
programming is of features, not of individual bases, and so is unlike the dynamic
programming outlined in chapter two of this thesis. The score of the entire gene
prediction is the combination of the Linear Discriminant values for the individual
elements in it, and the best parse has be consistent with a number of rules, the most

important one being that it does not contain stop codons in the translation.

3.1.3 PFSMs in Gene Prediction

The use of PFSMs in gene prediction has already been discussed in the introduction
chapter (section 1.4.6). PFSMs are a good fit to the gene prediction problem.
The following sections will briefly discuss the different PFSM based gene prediction

methods with an emphasis on their biological gene model.

67

Genie

Genie [53] provides a generalised framework which represents the gene model in
which the actual components can be swapped in and out. The components were
envisaged to be a mixture of simple ones, such as 5th order Markov chains (hex-
amer frequencies) for exon regions, and complex ones, such as neural networks for
splice sites. The integration of neural networks, which do not come with an easy
probabilistic interpretation into a probabilistic correct model was a challenge. To
allow these complex features to be correctly expressed, the framework had to cope
with features of variable length being “produced” by the model. To allow this, the
Markov rules were relaxed to allow the duration of a particular set of observations
to be taken into account in the definition of the probability of its emission. This
extension can be integrated into all the common place manipulations of the hidden

Markov models at the expense of additional running time and memory requirements.

Genscan

Genscan provides a very similar framework model as Genie does but rather than
making a clear distinction between the framework model and its components, con-
centrates on providing a single, integrated model for the entire process [17]. Like
Genie, the Markov rules need to be relaxed, though in Genscan’s case this is primar-
ily to allow the exon length distribution to be more accurately modeled. Genscan
provids a complex representation of 5’ splice sites, using a mixture between a deci-
sion tree and position specific weight matrices. Another important feature was that
the hidden Markov model was parameterised for four different GC content levels.
In human sequence it has long been known that the gene structures are different
in different isochores: in euchromatin introns tend to be shorter whereas in het-
rochromatin introns tend to be longer. Euchromatin and hetreochromatin also have
different GC content. The reparameterisation on the basis of different GC content
provides an effective way of modeling the observation of different intron lengths in
the different isochores without requiring the user to define the isochore beforehand:
whether the GC content is directly linked to intron length is less obvious.
Genscan’s effectiveness is that it is entirely focused on providing a single, inte-
grated hidden Markov model for ab initio gene prediction. Because of its simplicity

in approach it has become the gene prediction method to beat, even though other

68

methods have a roughly similar measurable performance.

HMDMgene

HMMgene is the third major hidden Markov model approach to gene prediction [51].
In this case a number of interesting additions to the HMM approach were applied to
tackle the problem of modeling exon length distribution. The exons are modeled as
being the production of a series of identical states which leads to a broad normal like
length distribution for the exon. As each state is providing the same “biological”
model, the straight forward Viterbi path is inappropriate: the distribution of exon
lengths arising from Viterbi parsing would be an exponential decay.

HMMgene solves these problems by providing a best parse over biological “la-
bels”, where each label is the biological interpretation of the state. The exon states
share the same label, making this parse of this model not the same as Viterbi.
HMMgene provides a non exact method (N-best paths) to capture the best label
parse given particular data. One pleasing consequence of this is that as desired the

expected length distribution of exons is nicely humped.

3.1.4 Performance of ab initio Gene Prediction programs

The performance of ab initio gene prediction programs is hard to assess. The main
problem is that in long pieces of genomic DNA of the type one one would like to
using for testing, it is hard to know for sure that one has experimentally verified all
genes. A gene prediction which does not overlap with experimental proof can easily
be a mistake in the experimental verification, not a false positive. Despite these
problems a number of assessments of gene prediction accuracy have been developed.
Guigo and Burset provided one of the earliest assessments [19], which has since
been followed by a number of assessments more relevant to genomic DNA [15]. The
conclusion of the large scale studies is that gene prediction programs have a coverage
of around 90% of exons but at an accuracy of around 50%: in other words, one can

expect around half the exon predictions to be incorrect in large genomic datasets.

69

3.2 Combining Homology with Gene Prediction

The central idea behind this work is very simple: by combining the fact that one
knows that a gene produces a protein which is homologous to another known protein
with the gene structure rules one should be able to make far better gene prediction
methods. Looking at this problem from another perspective, it also frees people who
are interested in finding proteins which are homologous to their protein of interest
from being dependent on a good gene predictor to analyse genomic DNA.

Both the process of evolution between two homologous protein sequences and
the gene structure rules are well described by PFSMs. This suggested that a single
PFSM which performs both processes simultaneously should be possible. To provide
this PFSM I need a description of the two models and a theory to provide the
combination of the models. Intuitively one expects that the resulting model would
be a PFSM with similar properties to the two combined models, though considerably
larger in size. By relying on the other probabilistic models as a starting point, the
parameterisation could be solved by taking the previous models and making sure
that we had a principled way of combining the models.

The implementation of the combined probabilistic model looked daunting, as
its sheer complexity, along with the size of the sequences which I would be using
suggested a programming nightmare. Thankfully, by using Dynamite as a way of im-
plementing the algorithm a robust, timely implementation of the Viterbi algorithm

could be provided.

3.3 Combining Probabilistic Models

By solving the general problem of how to combine two PFSMs I could then use that
for this specific case. The type of PFSMs which I wish to combine are two alignment
type PFSMs, each providing a mapping from one of set of letters to another set of
letters. Consider two machines S and 7', where S maps a sequence of letters from
the alphabet A to sequence of letters from the alphabet B and T' maps letters from
B to C. The following notation is used to describe the machines. (This process is
shown diagrammatically on the top panel of figure 3.2).

S has states 1...ng. The transition from state ¢ to state j, emitting a finite

string of letters a in one sequence and b in another sequence has probability S;;qp.

70

a is a finite string of letters drawn from the alphabet A with 0 representing a non-
emitting spacer. b is a single letter drawn from the alphabet B with the additional
string 0 representing a non-emitting spacer. There is a requirement for b to be a
single letter to allow the merging process to work. Similarly the T" machine is defined
with states 1...n;, and a transition from k to [emitting a single b and any finite
length of c letters is T

We wish to construct the state machine U which will map a sequence of A letters
to a sequence of C letters, considering all possible sequences of B intermediates. We
propose that U has ngn; states, each of which can be characterised by a pair of
states in each of the original machines. 7 and j will be used for states from the S
machine and k and [as indexes from the 7" machine. Thus the transition U x)(j,1)ac
is the transition from the state (i,k) in U derived from 4 in S and k in T to the
state (j,1) derived from j and [states respectively, emitting a in one sequence and
¢ in another sequence. We need to construct the definitions of the probability for
each of these transitions in U in terms of the transitions defined in S and 7. The
following equations provide that definition.

For neither a nor ¢ being 0

Ut k) (G.)ac = ;(Sijakalbc) (3.1)
b0

For a being 0 but not ¢

Ui,k ayoe = 8 Thtoe + Y (SijosThive) (3.2)
b0

For ¢ being 0 but not a

Ui k) (5.0)a0 = OkiSijao + O (SijavTkiso) (3.3)
b0

The first equation (3.1) sums over all possible b intermediates for this transition,
using the underlying transitions from the S and T machines. The two other cases
are when no letter is generated for one of each sequence. In each case the blank could
have been generated from either S or the T" machines. For the case of generating
a blank in the a stream of letters, if it was generated by the S machine then that
means that there is an intermediate b sequence which has to account for the c string.

However, if the blank was generated by the 7" machine then there is no possible b

71

letter, and furthermore this case can only occur when the transition remains silent
in the S machine index (hence the d;;). The symmetrical argument applies for ¢
emitting 0 but a. We need not worry ourselves about the case when S emits a a,0
pair and 7" emits a 0, ¢ pair as this contains no b sequence, and so is not permitted.

The combined machine is shown pictorially on the bottom panel of 3.2.

The requirement that the two machines emit at most a single b letter per tran-
sition is so that we can do the summations in equations 3.1, 3.2 and 3.3 over all
b. If b was longer than a single letter it would be possible to have S machine pro-
duce a b string which was out of phase with the b string that the T' machine would
produce. I can see no clean way to provide the derivative U machine transitions in
this case. One could claim that longer b strings could be allowed as long as the two
machines were emitting “in phase” strings, but this simply means that there is a
new alphabet, B’ where each “in phase” string is mapped to a single b’ letter.

Notice that the U machine represents a sort of model “product” of S and T.
This means that for even modestly sized machines, the product will be quite large.
However the combined machine allows us to ignore the identity of intermediate
sequences in standard calculations of, for example, what is the likelihood of two
sequences, A and C being generated by the combined machine, and what is the
most likely path through both S and T. The additional bulk of the combined
machine is easily justified when one considers the alternative is listing all possible
B sequences, which, depending on the architecture of the machine, might in fact be
infinite.

This theory has been built up for a first order PFSM in the model. To extend
this theory to higher order PFSMs is easy as one can utilize the fact that any PFSM
can be represented as a first order PFSM at the cost of more states in the machine.
This provides us with a principled way of combining any two machines. However,
notice that the expansion of a non first order machine to a first order machine
is also a “product” type operation. If one does want to merge two non first order
machines, the number of states required to model all the independent paths through

each machine will rapidly become impractical.

72

Figure 3.2: A diagram showing the combination of two models. The top panel shows
the two PFSMs acting sequentially, first transducing the A letters to B letters and
then transducing the B letters to C letters. The lower panel shows the merged
machine.

73

Codon

Base Deletions Base insertions
Phase0 Phasel Phase?
5SS 3SS
// \ r’// : \\\) 77\\\
(}—» —»)
P
_/ N ~—

Central Poly-Py Spac

Figure 3.3: The gene model used in GeneWise. The central black state represents
the codons (there is no explicit start or ending of the codons). Sequencing error
are modeled as codons of one or two bases long (deletions) or four or five bases
long (insertions) shown in red. There is a separate model for each phase of introns,
each of which have three states, shown in green. The transition to the first state
emits a fixed length 10 base pair region representing the 5’SS. The transition from
the last state emits a 6 base pair fixed length region representing the 3’SS. The

poly-pyrimidine tract is modeled as a separate state

74

3.4 GeneWise model

The GeneWise model was created to be the integration of two separate models, a
gene prediction model and a protein homology model, using the ideas outlined in
(3.3). The genomic sequence is equivalent to the A sequence, the predicted protein
sequence of the gene is the B and the homologous protein sequence to which it is
being compared to is C. The aim is to compare genomic sequence directly to the
homologous protein sequence considering all possible intermediates of the predicted
protein.

To be able to use the model combination theory effectively, high order Markov
dependencies have to be removed from the two models. The protein model, which
is a probabilistic Smith-Waterman model is first order. Gene prediction models
however are generally of a higher order and it this model which has simplifications
to make the merging process achievable. There are two approximations made to
make the model usable. Firstly amino acids which are split by introns are ignored.
This is similar to what happens in most gene prediction programs, which make
the same approximation to avoid having a high order Markov dependency in the
PFSM. Secondly high order Markov dependencies in the coding sequence model are
shortened. Most gene prediction programs use 5th order Markov chains to model
coding regions, whereas I use a simpler model that emits triplets (equivalent in some
sense to a 2nd order Markov chains). This has the nice feature that there is a simple
mapping to the letters of the intermediate sequence, the predicted protein.

The gene prediction model is shown in figure 3.3. It has a single state repre-
senting exons which emits a series of independent codons. The intron states are
differentiated by which phase the intron occurs in (phase being the place in the
codon which the intron interrupts). For phase 1 and phase 2 introns, the fact this
interrupts a codon is ignored, and is not scored. Each intron is considered to be
made from 5 sections: the 5’ splice site, a central intron section, a poly-pyrimidine
tract, a spacer following the poly-pyrimidine tract and the 3’ splice site. As the 5’
and 3’ splice sites are considered to be ungapped motifs, they can be represented by
single transitions which “emit” 10 or 6 base pairs respectively.

Sequencing error is represented in a naive manner in which the insertion or
deletion of bases is considered to produce codons of one or two (in the case of

deletion) or four and five (in the case of insertion) base pairs. In these cases, the

75

type of codon is ignored.

The homology model is deliberately modeled to be the inclusive model of the
Smith-Waterman protein alignments and Krogh-Eddy protein profile HMM. The
homology model has a number of repetitive nodes, each node being 3 states, called
Match, Insert or Delete, see figure 3.4. The Match State for protein sequences
represents matching a protein residue in the observed data, whereas the Insert state
represents inserting an additional protein residue in the observed sequence relative
to the given homology information. The Delete state represents a node which is
skipped out (silent), i.eflomology information which does not have an equivalent in
the observed sequence.

This homology model can also be represented in a more compact form as in the
bottom panel of figure 3.4. In this form the node structure of Match, Insert, Delete
is represented, and it is assumed to repeat for the length of the model (length being
in nodes). This representation emphasises the similarity to the traditional Smith-
Waterman method, and as a transducer type PFSM.

Given these two models, the combination using the rules outlined above is simple.
The combined model should have 10 x 3 states, expanding each homology model
state into 10 separate gene finding states. This process is shown pictorially in figure
3.5. However not all these states are actually required in the comparison as we
know that some transitions are forced to zero. This is because it is impossible to get
an intermediate protein sequence letter with no genomic DNA sequence: in other
words the combination 0 in the previous notation does not occur. Applying this to
equation 3.2 means that we can remove a number of states.

Because transitions which emit Oc are all directed to the “Delete” state of the
homology model, this means that all the transitions which are directed to the intron
states of the delete state in the combined model have probability zero, as ¢ # j for
these states. The result is that we can remove them. This is intuitively correct, as
the Delete state models positions in the homologous protein sequence which have
no sequence in its protein counterpart. With no protein sequence in the predicted
protein there is no possibility of an intron at this position. Notice that the Delete
state still has transitions to the Match and Insert introns as these transitions do
emit a protein sequence.

The inter-intron transitions can also be removed. The intron states all have

transitions which emit a0 producing genomic sequence with no corresponding protein

76

o

N times

Expanded Model

N\, "

Contracted Modd

Figure 3.4: Two representations of profile Hidden Markov Models. The top panel
shows a standard “expanded” hidden Markov model, in which each state in the
model is shown. The central portion of the model can be repeated N times. The
bottom panel shows a contracted representation of the model, where each state rep-
resents one of the canonical states in the HMM. The transitions between the states
are coloured to show how they progress in terms of the model and the sequence.
Black transitions advance in both the model and the sequence, blue transitions in
only the model and green transitions only in the sequence.

7

predicted
protein

—

homologous

genomic protein

Merged model

\
= é -
e

TN

Figure 3.5: A figure showing the merging process between the gene prediction model
and the homology model. The models used have the same outline as those in Figure
3.3 and 3.4. They are written out in the top panel. The lower panel shows the
merged model. The large black arrows indicate that between each set of four states,
all possible transitions exist. This model will be later pruned to a small set of states:

see the text for more details

78

sequence. For these transitions the sum in equation 3.3 is zero as all the transitions
ab,b # 0 are zero. The other, dj; term is also zero as movement between different
introns implies k£ # [. Again this marries well with the observation that one cannot
change from being in a “Match” intron to an “Insert” intron in the middle of an
intron.

The pruned model, called GeneWise 21:93 is shown in figure 3.6. The name
reflects the number of states (21) and number of transitions (93) used in the model.
Like the HMM figure, this figure represents the repetitive structure of a single node,
which is repeated for the length of the homology model.

This model is written down as a Dynamite model, which is provided in Appendix
B. The Dynamite compiler then generated the Viterbi and database searching ver-
sions of this algorithm automatically.

It was clear from the start of this work that GeneWise21:93 was an overly am-
bitious model, and probably not useful for practical work. Using Dynamite I ex-
perimented with a number of different machines, and a good compromise between
speed, sensitivity and compromise on the correct model was the GeneWise 6:23
model, shown in figure 3.7. Compared to the GeneWise21:93 model, what I have

removed is the following

e The poly-pyrimidine states are removed, providing a saving of 12 states and

36 transitions

e The Match/Insert information is lost in the introns. This means that for
the cases where a Match to Insert or Insert to Match transition occurs in
the protein in the same position as an intron, it will not be scored correctly.
As both introns and Match/Insert switches are rare, this should not be a

significant problem

e The sequencing error transitions are removed from the Match/Insert and
Delete to Match and Delete to Insert transitions. This means that sequencing
error which falls at a switch in the protein state will not be modeled, and will

probably occur a base pair before or after the real position

Heavy use of the GeneWise6:23 model has shown excellent results (section 3.9

presents results on this), and has become the workhorse for GeneWise methods. I

79

0
1
2
Delete
Py J 4 /" \ /J
Intron Py Spacer

Figure 3.6: GeneWise21:93 Algorithm. The dark circles represent states, and the
arrows between them transitions. Black transitions are standard protein transi-
tions, red transitions are frameshifting transitions and green transitions are intronic
transitions. Introns are each built of three states, listed at the bottom of the figure

80

made even further reductions in GeneWise4:21, in which the different phases of the

introns were merged into a single state, resulting in only 4 states and 21 transitions.

3.5 Parameterisation

Simplicity was the byword for the parameterisation problem. I expected most of
the power of this method to come from the application of accurate protein profile-
HMMs to the gene prediction model (i.ethe protein homology model would force
the gene model to take certain parses as the gene prediction was a better fit to
the protein homology). The gene model would only be used to provide good edge
detection of exons, principly splice sites. Therefore the approach was to take the
established profile hidden Markov models from Sean Eddy’s HMMER package for
the protein homology model. When we used a single sequence, not a profile HMM,
we parameterised it as if it was a protein profile HMM, providing parameters deduced
from the standard Smith-Waterman parameters routinely used. For the gene model,
we wanted to make it simple. The approach was to make maximum likelihood
estimates of the fixed length motifs of the splice sites from known splice sites, and
parameterise almost all the rest of the gene model as if it was background. However

the devil is in the details of parameterisation, as the next sections will illustrate.

3.5.1 Splice Site Models

Splice sites have a long history of being modeled in some complex ways. These range
from neural networks, through position weight matrices and more complex, decision
tree type models such as the one used in Genscan. As the first attempt at a splice
model we designed a system which was a) a generative probabilistic model (so that
we could fit it in well with our scoring scheme) and b) could capture a lot of the
supposed complexity in splice sites (in particular the 5’ splice site) using a decision
tree structure very similar to Genscan’s but with more branches.

However, this method did not perform well, perhaps due to our training system
or perhaps because we did not require a complex splice site model (see the path
interpretation detailed below). We were also impressed by work from David Haussler
and colleagues that showed both that decision tree methods could be considered a
mixture of position weight matrices, which in many ways simplified their possible

training and that these mixtures could not detect that much more information in

81

0

Ddete

Al

dh

)

- "Intron >
5 3

Figure 3.7: GeneWise6:23

82

the splice sites than simple position weight matrices. Despite all the mystique
surrounding splice site models, it seemed that simpler was better! We therefore
settled for a very simple, ungapped model of splice sites which could be estimated
from observed splice sites by simply lining up splice sites on the splice junction and
observing residue counts at each position. To deduce the probabilities of the model,
we added a simple pseudo count method which represents a single, unbiased Dirchlet
prior distribution on the multinomial of residue emission probabilities. This simple
model outperformed the old model considerably, and we have found no reason to

revisit the splice site models since.

3.5.2 Codon emission probabilities

The emissions of codons in the Match and Insert transition in the model are due to
three different effects:

e The amino acid distribution of the protein homology model
e The codon bias of the organism
e The substitution of the base pairs due to possible sequencing error

We considered this process to be the transformation of the vector of 20 amino
acid probabilities in the homology model to the 64 possible codons. The codon
probability given a particular amino acid is decomposed as coming from two possi-
bilities.

e There was no substitution error, in which case the probability is 0 for codons
which are not translated to this amino acid, or P(codon|aminoacid) for the

codon bias in this organism.

e There was a substitution error, meaning that the observed codon is actually
a different codon in the real DNA sequence. In this case, we considered every

possible single base pair substitution, but not double hits inside one codon.

Due to every possible base being substituted, in most cases this means that
codons combine information from a number of different amino acid positions. The
effect of the substitution error therefore was to smudge out the amino acid distribu-

tion over a number of different codons, mainly the ones which encoded the amino

83

acid, but also “nearby” codons, which are related by a single sequencing error. An
upshot of this is that stop codons do have some small probability associated with
them, but this probability is greater when the homology positions are more likely
to emit amino acids which are a single base substitution away. For example, strong
trytophan emitting positions (codon TGG) have a relatively large chance of match-
ing TAG and TGA stop codons, compared to other positions. Default parameters
for substitution error was one error in ten thousand base pairs, the quoted accuracy

for genome sequencing projects.

3.5.3 Insertion or Deletion errors

GeneWise’s approach to handling insertion or deletion errors in the sequencing pro-
cess is deliberately naive. This is because handling the insertion/deletion errors
correctly is difficult. When one considers the theory outlined in 3.3, it would be
attractive to consider sequecing error to be the action of another machine, which
substitutes, inserts or deletes bases of the DNA sequence before it is used in the
gene prediction process. This sadly breaks the rule that the intermediate B se-
quence is only emitted as single bases. The sequencing error machine would emit
bases (the intermediate sequence) as single bases, but the gene prediction machine
takes triplets or larger strings to form the amino acid sequence. This means that I
cannot use the theory in providing the combined machine. However, I can use it to
guide the design of some of the ad hoc solutions to it. The model merging theory
suggests that the sequencing error transition should occur at every place where DNA
sequence could be emitted.

GeneWise considers sequencing error to be a 1,2,4 or 5 base codon. The base
composition of the deletion or insertion is ignored completely, which is a gross ap-
proximation. For example, if one observes a TTTT in a putative sequencing error, a
strong to phenalanine emitting position (codon, TTT) is a far more likely position to
emit this than Glycine (codons GGN). Ignoring the base composition was really to
prevent excessive calculation. Deriving the potential probability for base deletions is
relatively easy to do, as one is considering only one or two bases, and one can build
up a look up table for each position of all combinations. However one cannot take
this approach for 4 or 5 base pairs as the tables become too large. An alternative is

to call a function which would on-the-fly calculate the probability of 4 or 5 base pair

84

insertion of particular bases to a probability distribution of amino acids. However
such a function would be called at every cell in the dynamic programming matrix,

making it an extremely expensive solution.

3.5.4 Intron parameterisation

The gene prediction model is non standard - we have no nice parameterisation such
as the HMMER HMMs which we have for the protein homology. Therefore we had
to parameterise the entire model ourselves. Again, simplicity was our watch word,
and we took the entirely simple way of collecting a data set of known genes, checking

their accuracy and tabulating counts of particular features. These counts were

splice site regions (to calculate position weight matrices, as above)

e codons in coding regions (to calculate coding bias)

e bases in introns (to calculate intron bias)

length of introns (to calculate transition parameters in introns)

The only issue here was deciding on the parameterisation of poly-pyrimidine
tract regions. These tracts cannot be defined biochemically. Rather than going for
a full blown training technique, we simple chose regions which by eye looked like
the poly-pyrimidine tract. As it happens, the model with the poly-pyrimidine tract
is not the most common model used, so this parameterisation was not important in

the final analysis.

3.6 Path scoring

Having chosen and parameterised the probabilistic model, one might have thought
that all the difficulties were over. Indeed, I expected that the Viterbi path through
this combined model would provide highly accurate gene prediction using the protein
homology to drive the process. Sadly there were a number of problems to confront
first.

85

3.6.1 Flanking Regions

One issue I did not account for at first were the flanking regions of genomic DNA
outside of a homology region that we were interested in predicting. These regions
could of course contain genes, either as part of the gene we wished to predict which
was outside the region of homology, or entirely different genes. These genes might
not have any similarity to the protein homology model we were using, but they do
have gene features which would score well against the gene prediction portion of
the GeneWise model. These additional fragments often caused mispredictions at
the end of the homology region. In particular if the homology region ended near
an intron, as introns have a very broad length distribution, GeneWise could ignore
the correct end of the intron and simply choose the best start or end splice site
respectively for the start or end of the region within the rest of the sequence. For
large clones, this gave rise to “comedy” gene predictions which spanned almost the
entire length of the clone. They would start with a first very large intron leaving at
the best 5’ splice site in the clone, joining to the homology region and continuing to
near the end of the homology region when another large intron that would jump to
the best 3’ splice site in the remainder of the DNA sequence. Unsurprisingly, the
biologists who saw these early results were not impressed.

The solution is to somehow make the flanking regions less attractive to the
homology model. The most principled way of doing this is to provide flanking models
which represent the content of genomic DNA in the absence of the homology model.
These regions would then score at least as highly as homology + gene prediction
model in the absence of homology, and in general much better, causing the homology
model to be kept in its correct place. The most natural way to build the flanking
models is to duplicate the gene prediction model in the absence of the homology
model. (A practical issue of this is that these regions are “special” states in the
dynamite model). This is what was done in the GeneWise21:93 model.

A major drawback to this approach is that now every genomic DNA will score
well against this model, even if the genomic DNA does not contain a gene with
homology to a particular HMM or protein sequence. Thus using this model for the
detection of the presence of homology requires the path information of where the
most likely path went through the model, in particular if it crossed into the homology

part of the larger, complete model of both flanking regions and homology model.

86

Ideally one also wants the likelihood score of just the homology portion. Although
there are ways to computationally achieve this without requiring the calculation
of the entire path, it is an additional computational step in an already expensive
operation.

For GeneWise6:23 we provided the reverse solution, by toning down the gene
prediction parts of the model so that any potential benefit of producing a erroneous
intron would be more than outweighed by the additional penalties for mis-aligning a
homology region. As GeneWise6:23 does not have a polypyrimidine tract model, a
considerable gene prediction signal is removed. In addition no intronic bias (where
the base composition of the intron is different to the intergenic DNA sequence) was
provided. The only remaining gene signals were the actual splice sites, and in tests,

these were not sufficient to cause this error in practical use.

3.6.2 Coding region scoring

Further analysis of the gene prediction errors from GeneWise showed a common
error in mispredicting splice sites internally even with reasonable homology across
this region of the gene. Further analysis of this phenomenon showed that in these
regions, the homology information was reasonably consistent with a number of splice
sites but the gene prediction information weighed heavily towards a particular site.
In nearly every case, if one had taken the best homology predicted splice site one
would have made the correct decision. (One issue to note here is that it is perfectly
possible that we are being misled by alternative splicing - i.ethat there are a number
of correct splice sites in this region, and that the “disagreement” between the two
models indicates alternative splicing. It is hard to assess this as clean datasets
indicating every possible alternative splice transcript of a set of genes have not been
developed yet.)

Again the problem here seems to be that the gene prediction information is mis-
leading the protein homology information. One of the largest effects that provides
this misleading information is the gene model of the coding regions: rare codons
are heavily penalised and hence the most likely path in ambiguous regions of the
homology matching are dominated by the fact that certain amino acids are better
represented in random DNA sequence.

A very empirical solution to this problem is to score the coding regions as if they

87

were scored as protein, in particular to compare the probability of the codon with
the probability of the codon occurring in a random protein. The logic behind this
is that one wants to find the best homology path considering a random model of a
protein coding gene: we call this a synchronous null model, as one imagines a gene
prediction model for the null model which is used in sync with the combined model,
entering and leaving coding regions at the same places as the combined model.
The effect of using this synchronous model is to change the best scoring path.

Empirical evidence shows that this scoring technique does produce better results.

3.7 Using the GeneWise algorithm

How one uses the GeneWise algorithm is not trivial - GeneWise is not going to
provide a complete “answer” for the genomic analysis of a region. Indeed if the
homology region does not extend across the entire region, which is the most common
case, GeneWise will not even provide a complete gene prediction. In defense of
GeneWise, when the prediction is provided, it is highly accurate (3.9).

Using GeneWise in a practical manner is going to require the integration of
GeneWise with other tools. Providing an easy route for this integration is the
role of the software which surrounds the GeneWise algorithm. GeneWise is the
figure piece of the Wise2 package, a software package which contains most of the
algorithms which I have developped. The Wise2 package provides access to the
GeneWise algorithm in two principle ways

e as command line programs, to be used in the UNIX paradigm of reading and

creating files, potentially these files being pipes into or from other programs.

e as a callable API (Application Programming Interface) accessible in either C

or Perl.

Both systems provide the results of GeneWise in standard formats, such as
EMBL feature table format, AceDB interchange files and GFF (Gene Feature Find-
ing) format. The appendix C has a copy of the Wise2 package user documentation,
which lists fully all the options available in the package, and has good discussions

about how to integrate GeneWise into a genomic analysis package.

88

Alignment 1 Score 32.55 (Bits)

RRM 1 LFVGNLPPDVTEEDLKDLFS KFGPI V
L V+N+P+ + DL+++F+ +FGH|
LHVSNI PFRFRDPDLRQVFG QFGKI L
HS41P2 11790 ccgtaact ctcgcgcccat gGTAAGTC Intron 1 CACGct gaac
tat cat ct gt gacat gat t g<0—————| [11850: 15370] -0O>at gat t
gtcttttcccgetccgggtg gt caca
RRM 27 Sl Kl VRDI | EKPKETGKSK GFAFVEF
+++ + + SK GF+FV+F
DVEl | FN-—————- ERGSK GFGFVTF
HS41P2 15389 gggaat a gcgt aGTAAGCT Intron 2 CAGgt gt gat
atattta aggca<0————-| [15425: 25099] -0>gt gt t ct
taaactt atctg acgcatc
RRM 53 ESEEDAEKAL EAL NGKEL GGRKLRV

E++ DA++A E+L+GH+++GRK++V
ENSADADRAREKL HGTWEGRKI EV
HS41P2 25121 gaaggggagagat cgaggggcaagg
aagcacagcgaat agct t aggat at
gttttacgcggaacccgagcet acgg

Figure 3.8: An example of a alignment from GeneWise. This output format is
designed for human readability, there are other formats designed to be parsed. The
alignment of the RRM profile HMM against the human sequence HS41P2 is shown
running left to right in a block. At each position the most probable amino acid in
the HMM match emission is shown matching to the predicted amino acid from the
DNA sequence. The codon which provides that amino acid is shown below, running
from top to bottom. Introns are shown as breaks in the alignment. The splice site
bases are shown in full, but the central portion of the intron is omitted for clarity.

3.8 Example of using GeneWise

A good example of using GeneWise in a real life situation is with the clone dJ41P2,
a clone on chromosone 22. Preliminary halfwise analysis (see Chapter 6) which
uses genewise showed the presence of a gene on the reverse strand with a RNA
Recognition Motif domain internal to it, shown in figure 3.8. Further analysis showed
that it was a member of the SR protein family[10]. A small multiple mutliple
alignment of this family was made, and from this a profile-HMM of the larger gene
family, which includes more of the surrounding sequence of the domain specific
for this family. Rerunning GeneWise with the extended HMM enlarges the gene

prediction.

89

3.9 Evaluation of GeneWise

An ongoing evaluation of GeneWise was necessary to assess how well it works,
and how different parts of the algorithm contribute to the final result. Assessing
gene prediction algorithms is notoriously tricky, principly because gathering good
datasets together is painful. In addition, GeneWise needs a source of homology
information as well as the DNA sequence: the assessment should also quantify the
success of the algorithm at differing levels of similarity.

A dataset to fulfill these criteria was generated in the following manner. I took
each Pfam family and found a human protein which both had a genomic sequence
and was spliced. The human protein had to be referenced in SWISSPROT, which
indicates a certain amount of manual curation. Using this protein sequence, I then
selected five more protein sequences, one from each of the following similarity bands:
98-90%, 90-75%, 75%-50%, 50%-40%, 40%-30% identity, based on the Pfam align-
ment. In addition we could also use the Pfam HMM as a source of homology
information.

One common source of error in GeneWise is misplacing the relative positions of
protein insertions relative to introns. A protein insertion in the homology model
which is close to an intron will be hard for GeneWise to find.

There are a number of criteria we would like to assess GeneWise on:

e the accuracy of GeneWise - when GeneWise claims that a base pair is part of

a gene, how often is this so;

e the coverage of the gene, both in absolute terms and, in addition, in terms of

how far we expect the homology to cover;

What is reported for each similarity band are the following figures:
e the total number of base pairs predicted as coding regions,
e the accuracy of these coding region predictions,

e the number of bases which should have been predicted as coding, and this

represented as a proportion of the total base pairs predicted,

e the coverage of the correct coding region vs the entire gene.

90

Total ‘ Acc ‘ Missing ‘ Prop. Missing ‘ Coverage ‘

90
75
50
40
30
HMM

20059
18258
14101
12972
6334
6775

99.93
99.58
99.91
99.86
97.46
99.72

40

209
437
388
601
505

0.001 98
0.01 90
0.03 70
0.03 64
0.09 30
0.07 34

Table 3.1: Table showing performance of the standard 6:23 algorithm

‘ ‘ Total ‘ Acc ‘ Missing ‘ Prop. Missing ‘ Coverage ‘

90 200589 | 99.91 | 31 0.001 98

75 18258 | 99.72 | 193 0.01 92

50 14101 | 99.31 | 435 0.02 72

40 12972 | 99.01 | 375 0.03 64

30 6334 | 97.02 | 530 0.09 34

HMM | 6775 | 99.91 | 503 0.07 36

Table 3.2: Table showing performance of the standard 21:93 algorithm

‘ ‘ Total ‘ Acc ‘ Missing ‘ Prop. Missing ‘ Coverage ‘

90 18056 | 99.92 | 26 0.001 98

75 16837 | 99.48 | 237 0.01 92

50 13241 | 99.87 | 271 0.02 73

40 12585 | 98.78 | 281 0.02 69

30 6827 | 96.41 | 355 0.05 36

HMM | 7069 | 97.89 | 590 0.08 38

Table 3.3: Table showing performance of the 6:23 algorithm with Viterbi scoring

Total ‘ Acc ‘ Missing ‘ Prop. Missing ‘ Coverage ‘

90
75
50
40
30
HMM

20083
18320
14891
12966
6157
6814

99.81
99.46
99.27
99.68
97.32
99.15

40

170
455
418
625
505

0.00
0.01
0.03
0.03
0.10
0.07

98
91
74
64
20
34

Table 3.4: Table showing performance of the 4:21 algorithm with standard param-

eters

91

There are a number of points to draw from these results. Firstly GeneWise is
extremely accurate. This should be expected: after all GeneWise is using similarity
information to drive the gene prediction process, and there is a huge amount of
information in the similarity data. In addition this accuracy is maintained down to
really very low similarity measures: even at 30% identity, one is still getting 98%
accurate coding sequence prediction.

As similarity decreases two things are lost: firstly the coverage of the gene drops
to about one half of what is achievable from 90% similar sequences. Secondly the
amount of missing coding sequence, i.eregions predicted as introns but actually
coding sequence grows dramatically, increasing by a factor of ten between from 75%
identical sequences to 30% identical sequences. This means that at 30% identity,
the exons are shorter by about 15%.

The differences between the different algorithms are marginal. There is slight
difference in the balance between CDS prediction by 21:93 (Table 3.9) compared to
the 6:23 method (Table 3.9). Indeed, even the 4:21 method which has a very limited
gene model has almost identical accuracy levels to the 6:23 model. These results
emphasise that it is the quality of the protein homology model which is driving the

accuracy of the gene prediction, not the gene prediction machinery.

3.10 Other evaluations of GeneWise

There have been two other critical evaluations of GeneWise by independent re-
searchers. These evaluations by other parties have provided very useful feedback,in

particular in default configurations and in more real life situations.

3.10.1 Guigo and Agarwal

Roderic Guigo and Pankaj Agarwal evaluated GeneWise [41] alongside two other
programs: Procrustes [35] and Genscan [17]. GeneWise came out with a positive
write up, with the one drawback of the computational expense of the program. The
essential figure gave GeneWise an accuracy of 99% when used with proteins selected
from a BLAST output of less than 1e-20, very much in line with the results presented
in this chapter. They considered programs both in the small DNA sequence case
and in artificial, large genomic DNA sequence where they embedded known genes

into random DNA sequences. The figures for the protein comparison programs,

92

‘ Similarity: ‘ strong moderate

Program Sn Sp CC |Sn Sp CC
GenScan 0.91 0.66 0.77 | 0.91 0.61 0.74
GeneWise | 0.99 0.99 0.99 | 0.68 0.98 0.81
Procrustes | 0.92 0.96 0.94 | 0.66 0.79 0.75

Table 3.5: Table summarising results from Guigo and Agarwal on GeneWise’s com-
parisons to other algorithms. Strong similarity is a protein BLAST hit of under
10730 p-value. Moderate similarity is a protein BLAST hit of under 10~ p-value

GeneWise and Procrustes, remained the same. A summary of one of the tables in
the paper is reproduced here (with the authors’ permission).

The principle figure they use to assess gene predictions is the correlation co-
efficient, which is a combination of the sensitivity (coverage) and the selectivity
(accuracy) of the method. Because GeneWise does not build gene predictions out-
side of the homology portion of the match, the sensitivity drops considerably, as it
does in my analysis. As the primary statistic they quote is the correlation coefficient,
performance does not look ideal. However, examination of the tables (summarised
in 3.5) shows that the accuracy measurement tallies well with the results presented
in this chapter. If one considers that GeneWise’s role is to produce highly accurate,
but partial, gene predictions which should then be used by further analysis, then it
is doing its job admirably.

3.10.2 The Drosophila annotation experiment

Martin Reese and colleagues used the 2.9 megabase region around the ADH region
of Drosophila for an assessment of gene prediction tools, called GASP1. A number
of ab initio prediction methods and some combined homology/prediction methods
were assessed. I used here the Halfwise method with will be described later (in
Chapter 5), but for the purposes of the comparison, it was basically GeneWise
using HMMs from Pfam. GeneWise scored surprisingly poorly, with an accuracy
of 82% and a sensitivity of 12%. The low sensitivity can be explained on the basis
that Pfam HMMs were used as the source of homology information, and not protein
sequences. The poor accuracy is more worrying.

Closer examination of the data revealed a number of reasons why GeneWise

scored with such a low accuracy. Firstly I did not remove retroviral proteins from

93

the Pfam database, nor did I use masked DNA sequence. This was deliberate as I
wanted to see the behaviour of the search when potential retroviral proteins could
be matched. Although I provided sets both with and without retroviral hits to the
assessors, only the set with retroviral hits were considered. As retroviral genes were
not considered to be real genes, unsurprisingly, this caused a large loss in sensitivity.
With the hits removed, GeneWise’s sensitivity on a base pair level was raised to 91%.

There were still a number of GeneWise predictions which did match up to any
of the “standard” datasets, either the experimentally verified genes (stdl) or the
broader, well annotated set (std3). These gene predictions generally had high bits
score, which indicates that there was a strong hit to homologous proteins. These
look like real genes to me, and I have not been able to ascertain whether they were

real genes but missannotated, or known pseudogenes.

3.11 Discussion of GeneWise

GeneWise’s performance should be critically measured on two key criteria. Firstly,
how accurate is it in objective tests? The results presented in this chapter, along
with the two independent assessments show that GeneWise is very accurate. This is
not surprising given the added homology information it brings to the problem, but
it is good to see it independently verified. This level of accuracy, being around 99%
means that GeneWise predictions can be used in an automatic fashion by annotation
systems. The second criteria is how useful is it in the practice? Here the response
to GeneWise has been less forthcoming. GeneWise’s main strength is producing
accurate gene predictions when there is a close homolog: these were in many cases
the sort of genes which human annotators found easy and rewarding to annotate.
However, with the ever increasing data flow, people have grown accustomed to using
GeneWise’s prediction as a starting point to eventually annotating genes: in some
people’s experience this has reduced the time to annotate from 2 hours per gene to
under 15 minutes.

GeneWise is now used in many locations world wide. The principle users are the
Sanger Centre and Celera, a private company in the US, and it has some devoted
followers at other places. A common complaint is that GeneWise is very CPU
expensive. In many ways I am unapologetic about the cost: GeneWise is focused on

getting the correct answer, not on speed. In my view spending an additional hour’s

94

worth of CPU time is a considerably better use of resources than an additional hour
of a human annotator. However the CPU expense of GeneWise does limit its use in
large scale projects. Chapter 5 details how I coped with this problem at the Sanger
Centre.

I believe that the key to GeneWise was the analysis of the problem from theoret-
ical principles. I did not use complicated machine learning techniques, nor invented
any radically new algorithms - instead I simply looked at the problem as being the
application of two probabilistic Finite State Machines. That view of the problem
suggested a solution based on the principled merging of the two Finite State Ma-
chines. As we have a coherent theory for how the algorithm works we can easily

add or remove parts of the model.

95

Chapter 4

Pfam: a protein family database

4.1 Introduction

Protein sequences are the most conserved pieces of genetic information in genomes.
For example, the protein sequence of actin has remained conserved at around 70%
identity over the last half billion years of eukaryotic evolution. Some more striking
examples are the clear similarities of eukaryotic and prokaryotic ribosomal proteins,
indicating a single evolutionary ancestor which one assumes was present before the
split of prokaryote and eukaryote lineages.

Protein sequences are synthesised as linear polypeptide chains, which then fold
up to provide the protein with a three dimensional shape (see section 1.1 in the
Introduction). However, the folding and sometimes the function of the protein
sequence can often be split into continuous regions: each region able to fold by and
large independently. These regions are commonly called domains. During evolution
different domains have been combined to produce proteins of unique functions from
a large set of components. This reuse of domains as building blocks for proteins
is clearly favoured by evolution compared to reinvention: the majority of proteins
have been found to be multidomain [82]. Over a large timescale, one often finds
that the only similarities between distantly related proteins are within one or two
domains rather than along entire protein sequences.

Of course, this being biology, not everything conforms to this scheme. Firstly
there are quite a few proteins which are conserved as complete units during evolu-
tion. For example, Ribosomal protein L11 is conserved in eubacteria (RL11_ECOLI),
Archea (RL11_METJA) and Eukaryotes (RL12.HUMAN) over its entire length.

96

These can be considered to be single domain proteins where the domain is never
reused in a different context, so conceptually such cases fit without problem into a
domain orientated approach to proteins. Another class to consider includes cases
where the region conserved during evolution is not contiguous or colinear. An ex-
ample of these are Swaposins, in which the homologous portions of the sequence
seemed to have been circularly permutated during evolution [67]. More commonly
one finds one complete domain inserted into the middle of the sequence of another
domain. Although there are a number of cases in which discontinuous domains are
present, the majority of domains are continuous in sequence.

A consequence of domain evolution is that if one focuses on defining and char-
acterising domains, one can provide a very informative decoding of the protein
sequence, even if one has never seen a protein with that particular collection of
domains before. Some of the most impressive predictions using sequence analysis
have come from careful domain analysis of proteins. For example, Bhattacharya
and colleagues found the DNA cytosine methylase in humans by starting from the
identification of a methyl binding domain [8]. Domain analysis has also been critical
for effective structure prediction. In the structure prediction exercise, CASP2, tar-
get T2 was predicted correctly by only one group [61]; one of the main differences
of their analysis compared to other groups was that they considered the domain
structure of the protein (there were two copies of one domain) before attempting to

predict its structure.

4.1.1 protein profile HMMs of domains

One question in domain analysis is how to represent a protein domain in a com-
putationally tractable manner. After some 15 years of work in the field a rough
consensus of how to do this sensibly is using profile analysis [38, 6, 83] which, when
describing these profiles as probabilistic models gave rise to profile hidden Markov
models (profile HMMs) [50, 28]. Profile HMMs attempt to model protein domains
using the standard HMM paradigm: the sequence of amino acids are the observa-
tions and the HMM produces these observations. To greatly simplify the learning
of the form of the HMM to produce the amino acids, the architecture of the HMM
is constrained to be a repeated set of 3 states, joined in a left to right manner, as

shown in figure 3.4 in the previous chapter. This architecture of HMMs was inspired

97

by the established technique of profile analysis which provided a number of successes
in analysing protein sequences, albeit using an ad hoc derivation of the parameters.
The big improvement which profile HMMs provided was a mathematical framework
of how to parameterise and use these profiles.

The adopting of profile HMMs as a sensible way of modeling protein domains

has become widespread in bioinformatics.

4.2 The Pfam database

The acceptance of a standard way of building models of domains has allowed re-
searchers to make databases of these models. These databases can be used as a
resource for analysing proteins in a tractable manner, domain by domain. The
number of proteins domains is considered to be perhaps 4,000 in total, which is
not a large number compared to the around 100,000 protein genes in a single mam-
malian genome. This size is small enough that a curated database can cover most
domains found in biology. Three researchers, Erik Sonnhammer, Sean Eddy and
Richard Durbin set about to produce such a database using the profile HMM soft-
ware written by Sean Eddy, HMMER. The database is called Pfam (standing for
Protein FAMily) [78] and started as system based around flat files kept in a Unix
directory structure, with a number of shell scripts to maintain consistency and use
the database.

The basic structure of Pfam has four files for each family. The seed file is
a protein multiple alignment of a representative set of protein members. These
members are chosen for their ability to produce a good profile HMM. The HMM
file is the profile-HMM, built using HMMER, from the seed alignment. The full file
is a complete alignment of all members of the domain that can be found with the
profile-HMM in the complete protein database, aligned with the aid of the HMM.

Finally the desc file contains the documentation for the family.

4.2.1 Requirements for Pfam as database

My primary role in Pfam ended up being to provide a stable environment to expand
the collection and work with Pfam. As a database there were a number of challenges

to solve

98

Physical data integrity. Pfam had traditionally relied on the users of the
database to know precisely how to manipulate the different parts. This had
already caused a number of problems in people inadvertently deleting, renam-
ing or losing data. One particular problem was that the implicit building rules
of Pfam, that the HMM is built from the seed, and the full alignment from
the HMM, could be ignored. This allowed a number of families to be stored
incorrectly.

Sequence data integrity. Pfam is a database of multiple alignments, built
on top of a sequence database. Pfam needed to be kept synchronised with
the underlying sequence database. The particular challenge to this was when
the underlying sequence database changed all the sequences in Pfam could

potentially change, having knock-on effects on the seed alignment.

Internal data integrity. One early rule adopted in Pfam is that no two domains
could overlap on any sequence. This rule had to be implemented by a program
that checked that new data conformed to this rule, and there had to be a way

of ensuring this check occurred every time.

Interactions with external programs. Unlike more standard databases, the
main ways of querying and using Pfam is not via ad-hoc structured queries.
Instead the HMMs are used to search protein databases, and multiple align-
ments are viewed and edited in specialised programs. This means that the
database has to interact well with these external programs, whose input is file
based.

Productivity of the database curators. As Pfam expands, a greater load is
placed on the database curators to maintain the database. By providing sys-
tems to automate some tasks considerable work can be removed from the

curators, allowing curators to be more productive.

4.3 The Pfam Database Management System

The first task with Pfam was to provide stronger physical integrity of the data.

The database was very file based, strongly suggesting a file orientated solution. I

took the pragmatic decision to store the data as a series of RCS (Revision Source

99

Utility Description

pfco Check out a family to local area

pfci Check in a family back to the database
pfupdate | Check out a family without a lock
pfabort Abort a checked out family

pfinfo Provide information on a family

pfnew Check in a new family to the database

pfmove Rename a pfam family

pfadduser | Give another user access to the Pfam database
pfhelp Help on pfam database management system

Table 4.1: Pfam Database Management System utilities

Control) files, indexed by using a Unix directory system and a lightweight Berkeley
style database. The users would not access this system directly - instead a collection
of utilities provided access to the database (Table 4.1).

The pfco utility allows users to “checkout” a family from the database: this
places a lock (using the inbuilt locking facilities of RCS) on this family, preventing
anyone else from editing the family. The user is then be free to make changes to
the family locally. Once he or she is happy with the family, the changes can be
committed back into the database using the pfci utility. Alternatively, if the user
wants to discard the edits, the pfabort utility removes the lock on the family without
committing any changes.

To make a new family, the pfnew utility creates a new database index, assigns a
new accession number and checks in the family.

A number of other supporting utilities are provided. pfupdate provides the abil-
ity to get a local copy of a family without placing a lock on it. pfinfo provides
information about a family directly to the terminal, and, in a different mode, will
provide overview information on the entire database, indicating which families had
been locked by which users. pfmove gives the ability to rename a family (I had
foolishly decided to make the primary index on the human readable name, and not
the pure identifier of the family, its accession number. This was a design error and
why pfmove had to be written to cope with renaming a family). pfadduser gives a

way to add a new user with read/write permissions to the Pfam database.

100

4.3.1 Triggers on data entry

One clear role for the database management system was to force data integrity. This
is achieved by running a number of programs which ensures the integrity of the data
before it can be checked back into the database (as the database management system
is file based, there are not many inherent integrity checks in the way the database
is structured). There are three main integrity checks before allowing data in the
database.

e The file modification times have to satisfy the rule that the seed file must be
older than the HMM file which in turn must be older than the full file. This

rule ensures that the family has been built correctly.

e As the database system is file based, rules about data integrity can not be
directly represented in the database. To ensure that the internal structure is
correct, a utility called pgc-format was written which checked the integrity of
the desc, seed and full files.

e The overlap rule has to be satisfied. A utility called pgc-overlap was written
which compares the current family to all families in the database, flagging
overlaps. This utility writes a file containing all the overlaps in the family
directory. This way the pfci or pfnew scripts can check that both the overlap

check has been run and that it has reported no overlaps.

4.4 Productivity tools

When Pfam started, most of the aspects of building families required the user to
remember a string of connected commands. This both took a significant amount of
the curator’s time and also created a large hindrance for new people coming joining
the Pfam group. To reduce these problems, I developed a number of productivity
tools for the Pfam database.

The main tool is automake2 (table 4.2), which removes the mechanical process
of scanning the HMMER output file to find the sequence regions that have been
matched, building a fasta file of these regions and building then an alignment using

the Fasta file and the HMM. In addition, automake2 writes some statistics about

101

tools Description

automake2 Takes HMMER output, optional manual cutoffs and builds
new FULL file, placing certain information in the DESC file
HMMResults modules | Objects representing the output of a HMMER search, used
in automake2 and the Pfam Web site

Table 4.2: Pfam Productivity tools

the distribution of scores near the cutoff into the Desc file. These were previously
maintained by hand and prone to error.

A key piece of functionality for automake2 is the ability to scan HMMER out-
put files. The HMMER search reports a bit score and expectation value for each
sequence, and a bit score and expectation value for each domain: by careful manipu-
lation of the cutoff at both the sequence and the domain level better performance in
finding some domains, in particular repeats, could be managed. The HMMResults
set of modules encapsulates the parsing of HMMER files and filtering with this two

level threshold on the results for furthering processing.

4.5 Underlying Sequence database update

All sequences in alignments must be valid sequences in the underlying sequence
database of Pfam. About every 6 months we change the underlying sequence
database to a newer version of a non redundant database set from the SWISSPROT +
SPTREMBL databases. When this occurs, all the seed alignments need to be checked
to ensure that the sequences that they contain are consistent with the new database.
When sequences change these changes have to be reflected in the alignment and man-
ually verified. Once the seed alignments are consistent with the database, HMMs
need to be rebuilt and searched against the new database, from which the new full
files can be made.

The main problem in all this is that the underlying sequences can change. A

sequence can change in a number of different ways

e The sequence can be radically different from previously given, often because
the annotators have recognised a frameshift in the DNA sequence or a gene

misprediction.

102

e The sequence may have had a large addition or deletion of a region outside the
region of interest for the domain. Although the domain sequence in the seed
alignnment therefore is still in the sequence, the coordinates have changed.

e The sequence can have some small changes due to the recognition of sequencing
error in the DNA sequence or merging of a number of polymorphic forms of the
sequence (only one “reference” sequence is provided for polymorphic sequences
in SWISSPROT).

e The sequence could have been merged with another logically equivalent se-
quence, often given rise to small changes, but more importantly, making it
harder to track in the database as one has to use secondary accession numbers

to track merges.

e The sequence can be deleted all together.

These changes in sequence cause major problems in the remapping of the seed
alignments. As some seed alignments have changed and so the HMMs are potentially
different, one would like to know how many full matches have been lost during the
migration: however, due to changes in sequence, and, in particular sequence merging,
tracking sequences across two versions of the database is far from trivial.

Just before I took over managing the Pfam database a single researcher spent
around an entire month doing the move of Pfam to a new version of the sequence
database. Since the number of families in Pfam has increased by a factor of four;
it was clear that such labour intensive work could not be maintained. To alleviate
this, I provided an automated system to take the brunt of the work in the database
move.

After some less successful attempts, I developed a robust system in which the
automatic moving process is good enough to run unattended. Researchers can then
briefly examine by eye the families which have underlying sequence changes, and in
most cases accept the final result: only a few cases require manual intervention.

The key part of the system was the ReSeed module which takes a multiple
alignment on one underlying database and attempts to map it to a new database.

For each sequence it uses the following rules:

e find the new sequence, potentially using secondary accession numbers;

103

e if the old and new sequences are identical, accept;

e if it is possible to find the subsequence used in the alignment in the new
sequence, even if at a different sequence position, simply change the start/end

points in the new sequence;

e otherwise, align the old and new sequences using the Smith-Waterman al-
gorithm. Using the coordinates of the old sequence, find the corresponding

coordinates in the new sequence;

e Finally align all the changed fragments back to the unchanged portion of the
alignment using the old HMM as a guide.

This procedure is robust to changes in the new sequence, including insertion
and deletions of residues. The tolerance towards indels is due to using the Smith-
Waterman algorithm to map old domain coordinates to new coordinates rather than
fixed length matching, and following that by using the HMM to guide the alignment

of the new fragment onto the new alignment.

4.6 Middleware Layer

As the sophistication of Pfam grew a number of scripts were written which accessed
the Pfam database for a variety of reasons, for example, calculating statistics or
automating the insertion of new structure links into the database. This growing
body of scripts became a large burden to write and maintain: many of the scripts
had similar code segments, for example to loop over the entire database. More
worryingly, when we made changes to the layout of the database it was not clear
which scripts would be affected, and how. This cloud of interactions with the Pfam
database was effectively stifling any potential improvements of the actual database
as changes would invariably have knock on effects on a number of scripts.

To counter this I built a middleware layer that shielded the actual database
access from the script writer. Instead, access to the database was provided as a single
object which hid all the implementation details of the database. The methods of the
object allowed the retrieval of database entries as objects: these entries had further

methods to retrieve parts of the entry, for example the seed and full alignment.

104

Figure 4.1 shows the main objects and how they interrelate. The key feature of
the middleware design was sensible separation of the Pfam specific information from
more general annotation information and the actual multiple alignments. Access to
the HMM itself was not provided by the middleware layer.

The middleware layer is written in Perl and based on Bioperl. Bioperl ! is a
open software project to produce stable objects in Perl for bioinformatics. For the
Pfam middleware layer I reused a number of objects from Bioperl, in particular the
Sequence object (Bio::Seq) and the alignment object (Bio::SimpleAlign).

The middleware layer has been used to support scripts which interacted with
the database and also the web site. A fully functional web site is an important part
of a public bioinformatics resource: the web site at the Sanger centre was written
with an eye for extendibility by maintainers over the years, with the middleware

layer providing insulation of the html rendering code from the database access.

4.7 Some Example families

As well as being the database administrator for Pfam, in charge of maintaining the
integrity of the database as a system, I maintained a number of actual families in the
database. These ranged from simple families which I have had a long term interest
in through to difficult families which required many manipulations to maintain their

biological correctness. I list my contributions to the data curation in Appendix D.

4.7.1 The RNA Recognition Motif

I have had a long association with RNA binding proteins, as they were the original
reason I became interested in computational biology. One of the principle RNA
binding domains is the RNA Recognition Motif [10]. This domain of around 80
amino acids is one of the most abundant in biology, and certainly the most abundant
domain involved in RNA processing. A number of crystal structures are known for
this domain ([63, 65, 42, 26]) and there is a large series of biochemical experiments
into the action of certain family members (for example [73, 21]).

The seed alignment of the RRM family is shown in figure 4.2. It is quite large for

a Pfam seed alignment, indicating the large number of protein sequences required to

'Bioperl is coordinated from http://bio.perl.org. In Janurary 2000 I became the official coordi-
nator for bioperl.

105

DB

——get_al_acc() returnsall accession

Asngle numbersin DB

Pfam DB

get Entry by acc()

Entry Bio::SmpleAlign
Asingle 0 A multiple alignment
Pfam Entyy fulll() with methods to output
with specific different formats
Pfam methods

ann()
, Comment
Annotation
Generic ~ | DBLink
biological
annotation | Reference

Figure 4.1: A diagram showing the essential objects in the Pfam middleware. Each
rectangle indicates an object. The lines between rectangles indicates a method
which produces the object. Bio::SimpleAlign comes from the bioperl project. Most
methods are not shown for simplicity.

106

[FTe] [ETT] [Sorour] [Sort] Pi cked

(90x103) -

ARP2_PLAFA o L INS..... NISW..
CABA_MOUSHSVIDTSKKD o

2358001

gl

:

z
%

staf

<M m=C

#

VORARADZOAROOTMHAD VVAMPO
g

i

. SHAKIVHD. .
. SEI FSNLD. .
ERASITVD.

:

_KEVKI LN
.. TTFSSUN.
KHAVWVKD.

e
SREal

sc
ROOZOONDADRODMOYZDOZOLATOPDIMAD
<

85388 9382

§

e

=c<

it

a3

=rerooor
Pt
-
SITOR g

£

300n=

8

532280300

,_
m
<EE e

ERoRaRE
—rr-roo<

PANATNAOAMDISNLA
2

TR

e
. LQ
. L. LAl ETV/ LG
. TVKVRBQAFVI FKEL l\'LKL
. ... RHDI AFVEFE!
b o1 2B e

Nec
M

Figure 4.2: Figure showing the RRM seed alignment. The protein sequences are on
the left hand side of the figure. In the alignment columns, conserved columns are
shaded.

107

make an effective profile HMM. Included in the alignment are a number of “atypical”
RRMs which help to educate the HMM about some of the more distant members
of the domain. This is a particular problem for this family, as some of the most
conserved features of the domain from typical families are the surface facing aromatic
residues involved in RNA binding [65]. Despite their strong conservation in typical
families, there are a number of RRMs which do not have these aromatic residues but
have all the structural core residues and bind RNA, for example hnRNPL. Without
the inclusion of these atypical RRMs many structually correct domains would be
missed by the HMM.

4.7.2 Protein complexes

I have taken an interest in a number of protein complexes. One problem of these
common complexes is that often researchers dismiss them as uninteresting and do
not spend as much time checking their annotation in genome projects. A common
mistake is to misname proteins due to naming differences between bacterial and
eukaryotic proteins. When the top hit is a bacterial sequence, they might give
the bacterial name to a eukaryotic protein, although the naming convention for
the complex in eukaryotes is different. For example, in the FpF; ATP synthase
complex, the D subunit in bacteria corresponds to the Oligomycin sensitive subunit
in Eukaryotes (also called the O subunit), and there are Delta and Epsilon subunits
in Eukaryotes which corresponds to the Epsilon subunit in bacteria. Just to add
more confusion, in Eukaryotes there is a D subunit for Vacuolar ATPases which are
related to the Fp F, ATPases in some aspects but not others. This means that there
are three possible types of “ATP synthase D” subunits, all different - the Bacterial D
subunit, the Eukaryotic Delta subunit and the Vacuolar D subunit. The confusion
here is inherent in the naming of the protein complexes, and there is very little
that can be done now to solve this problem in the general literature. Pfam on the
other hand can provide an accurate single annotation automatically: there are three
separate Pfam families for these “D” subunit types and the description makes it
clear what the different naming conventions mean in different organisms.

I have worked on the ATP synthase, the Signal Recognition Particle and a num-
ber of the electron transport components. The seed alignment construction and

HMM building in these families is trivial: in every case the separation of signal

108

from noise is considerable. However, tracking down the precise annotation for these
families is a harder task, as it requires finding, retrieving and reading the relevant
papers. The reward is knowing that the problems in naming and classification can

be eliminated as resources like Pfam become more widely used.

4.8 Discussion

Pfam has grown over 300% while I was managing the database. During that time
we have had an additional four people work with the database at different times, all
of whom both had to familarise themselves with the tools and had the chance of po-
tentially breaking the database by issuing inappropriate commands. The database
management system I wrote both scaled well to the increase of data and also pro-
tected users from corrupting the data. We have not lost track of a single family
in Pfam, and when there was some major corruption or mistake in the database
(thankfully rare) we were able to recover the data easily by direct manipulation of
the RCS files. Scalability and robustness are two key features of a database, and 1
achieved them in this tailored database management system.

The database system relies on RCS files rather than a relational DBMS or a
object based DBMS, which would have been a more standard choice. One reason
why these solutions is not as appropriate is that some of the main query mechanisms
and views of the database are through specialised software to compare HMMs to
proteins or view multiple alignments. If we had implemented the database around a
more traditional system there would have been additional software to write to view
our data. In addition RCS provides for free a full history for each family, giving the
security of a reasonably easy way of backtracking changes.

The middleware layer insulates the access of the database by other programs
from knowing too much about how the database is actually stored on disk. This
allows the database management system to change without breaking scripts that
interact with it, and makes writing scripts that interact with the database simpler.
Evaluating how useful the middleware layer has been is difficult, as we do not have
an alternative. In some cases the middleware layer has saved time and other cases
it has prevented quick development as new features have to be implemented in the

middleware before they can be actually used.

109

Pfam has become a member database of the Interpro consortium 2. Interpro is
a pooling of the documentation resources of Pfam, Prints and Prosite along with
the maintenance of a consistent set of matches of these databases along with other
motif/domain databases on SWISSPROT + SPTREMBL. This pooling of the docu-
mentation effort is important as documentation is one of the most time consuming
parts of these databases, mainly because it is almost impossible to automate. The
Interpro project also encourages the different databases to play to their strengths
rather than competing to provide all aspects of motif databases.

Pfam provides a way to maintain a large number of multiple alignments robustly:
an important part of that strategy is the profile HMM. These profile HMMs are also
useful in their own right to be used by other analysis tools. The GeneWise algorithms
described in this thesis (Chapter 3) can work with profileeHMM libraries such as
those generated by Pfam, as well as alignments to protein sequences. The next
chapter details how, using GeneWise, Pfam can be applied to eukaryotic genomes
at a large scale.

The curation of a database such as Pfam is a satisfying task. I have been
able to keep an interest in a number of protein families such as the RRM and EGF
domains over the last 3 years, and I have maintained these families with considerable
attention. I believe that the underlying technology and basis of Pfam can be applied
across all protein sequences, which would place Pfam in a central role to provide

consistent, accurate and automatic identification for all protein families.

*The interpro web pages are at http://www.ebi.ac.uk/interpro/

110

Chapter 5

Genome

5.1 Introduction

Pfam represents a large portion of protein families, covering between 35-50% of pro-
teins in a genome [7]. However, applying Pfam to eukaryotic genomes is dependent
on accurate gene prediction to form good protein sequences. GeneWise (Chapter
3) eliminates the need for good gene predictions as it can compare a protein pro-
file HMM directly to the genomic sequence. By combining GeneWise and Pfam
it should be possible to find and classify around half the genes in a genome in an
entirely automated manner.

Such a comparison has two benefits. Firstly it has the potential of finding genes
which other programs have missed, or, when the gene has already been predicted,
improving their gene prediction. The accuracy of GeneWise (section 3.9) should
provide high quality predictions. Secondly it allows the investigation of the domain
content of genomes without worrying about accurate gene prediction (nor for that
matter accurate sequencing as GeneWise is tolerant to sequencing errors).

The main complication to applying GeneWise on a genome wide scale is the
CPU expense of the method. It takes about a second to compare one protein hidden
Markov model against 1,000 bases of genomic sequence. A genome of 100 MBase
(the size of C.elegans) against 2,000 protein profile HMMs in Pfam will take a total
of around 2,500 days of CPU time. Even with large compute farms this is a number
of months, and not practical with current resources.

In this chapter I show how I overcame the problem of CPU limitations by using
a heuristic speed up. Then gene predictions by Pfam and GeneWise of the C.elegans

111

genome (100 Mbases) are compared to the curated annotations on that genome. This
provides an estimate of the number of new genes which were missed by the C.elegans
annotation project and an estimate of the number of domains missed by GeneWise
due to more sensitive protein comparisons. Finally I performed comparisons to a
portion of the human genome, the finished Chromosome 22 sequence (33.4 Mbases),

to assess how useful this analysis is against the human genome.

5.2 Halfwise

The prohibitive computational cost of comparing all 2000 profile HMMs to genomic
DNA was a problem I overcame by employing a pre-filter on which profile-HMMs are
used in the GeneWise comparison. This pre-filter selects only a small number of the
HMMs to do a full GeneWise search with. The combined action of the pre-filter and
GeneWise is encapsulated in a single Perl script, called halfwise. By selecting only
a small fraction of the potential profile HMMs to be searched against each genomic
sequence fragment, I could cut the number of profile HMMs down to between 10 to
20 HMMs from 2000, meaning the total running time of GeneWise would be about
1% of the exhaustive search, and, as long as the pre-filter was quick enough, the
total time reduced by up to two orders of magnitude.

The pre-filter I used was to search the DNA sequence with BLASTX against a
protein database which had been designed to capture nearly all the signal present
in the Pfam profile HMMs. This database was constructed by taking the Pfam full
alignments and making them non redundant at the 75% identity level, removing
close homologs. To ensure that this database did capture the vast majority of the
Pfam information, I constructed this database with varying levels of identity and
then searched a random selection of 2 proteins from each Pfam family against the
database (4,000 proteins in all), scoring whether these families hit or missed any of

the Pfam families present. The results are shown in table 5.1.

75% identity seemed to be the lowest cutoff which still provides effective coverage

over Pfam with almost no loss (0.1% on the test sample).

112

% id | Size of DB | Number of missing assignments
90 129987 0

75 96837 4

50 54858 122

Table 5.1: A table showing how the effectiveness of lowering the cutoff for non
redundancy effects the number of family hits retrievable by the BLAST method

5.3 Worm Genome

The first genome sequence to be examined was the worm genome.

To compare

the entire worm genome against Pfam, each sequencing unit, generally a cosmid

or a YAC fragment, was run through halfwise. This does mean that there will be

problems with genes which span more than one sequencing unit, but as domains

are generally small compared to genes, this is not such a great problem. All 100

megabases of the C.elegans genome took around 2 and half weeks of off-peak com-

puter time at the Sanger Centre.

Halfwise produced 12,426 predictions of protein domains across 907 different

families, on average around thirteen predictions per domain, though this distribution

is very skewed. The predictions had 30,190 exons, on average two and a half exons

per domain. 4,991 predictions were of only one exon, with the remaining 7,434

having introns.

Domain Number | Comment

Collagen repeats 707 20 copies of the GXY motif in the HMM

GLTT repeats 406 12 copies of GLTT repeats. Specific to C.elegans

Protein kinase 401 The common serine/theronine/tyrosine kinase

EGF like domains 330 Extracellular domain. See also Laminin EGF

Zinc finger C4 300 DNA binding domain

F-box associated domain 264 Expanded domain in worm

F-box domain 219 Ubiquitination receptor domain

MATH domain 196 Signal processing domain

Worm chemoreceptor (7tm5) | 194 Worm specific 7tm subfamily

WD40 repeats 190 Beta propeller repeat. Around 7 copies per domain

Transposase 152 Found in mobile genetic elements

LDL receptor A domain 150 Extracellular domain

Zinc finger C2H2 domain 149 DNA binding domain, often multiple domains to a
protein

Ankyrin repeats 144 Repeats found in structual proteins

Worm chemoreceptor (7tm4) | 131 Worm specific 7tm subfamily

113

Ig super family domains
Protamine

Ton channel

Fibronectin type III domains
RNA recognition motif
Trypsin inhibitor

Reverse Transcriptase

Major Sperm Protein domain
Cytochrome p450

DUF40

7tm_1

laminin EGF

BTB domain

EB domain

ABC transporters
Homeobox

Lectin C-type
Trypanosome mucins
Spectrin

131
129
124
123
123
120
111
110
107

106

104
101
92
91
91
84
83
82
80

Ubiquitous metozoan domain

Sperm histone protein

Includes voltage gated channels

Extracellular domain

Involved in many aspects of RNA metabolism
Protease inhibitors common in signal transduction
Mobile genetic element domain

Found in structual proteins, including sperm tails
Involved in metabolism. Important medical impli-
cations

Domain of unknown function, found mainly in
C.elegans

Classical 7tm receptors

sub type of EGF domains

Protein interaction domain

Unknown function, expanded in C. elegans.
Involved in metabolite transport

DNA binding domain

C-type lectin domain

Mucin like coat proteins

Spectrin repeats, found in structual proteins

Table 5.2: A table showing Pfam families with more than 80 do-
main hits in C.elegans via halfwise analysis. The table shows the
raw counts for each Pfam HMM. This can be confusing for some
families: for example, the Collagen HMM represents a single re-
peat which is found many times in a collagen “domain”. The num-
bers here are therefore an overestimate of the number of collagen
domains occurring in C.elegans. For other cases, such as the 7
transmembrane family, Pfam uses a number of HMMs to cover one
domain, meaning that those cases should be summed. See the main
text for more details.

Table 5.2 shows the domains with 80 or more hits in the C.elegans genome. Inter-

preting this table requires some knowledge about the different Pfam families. Some

Pfam families represent a repeated motif which occurs many times sequentially.

These families generally do not conform to the usual idea of a protein “domain”,

in the sense of a single, independently folding unit, but instead form non-globular

extended protein structures. Collagen is a clear example of this, and the GLTT

repeat is also likely to be another such non-globular repeat. The numbers therefore

in this table are overestimates: ideally one would like to quote number of contin-

uous stretches of these repeats, but as GeneWise cannot distinguish between gaps

114

between HMMs matches due to protein sequence and gaps due to intergenic regions,
this is hard to deduce accurately. Other families are unfairly represented in table
5.2 as they are split over a number of Pfam families. There are two examples of
this in the table. The 7 transmembrane family is split over 3 different Pfam families
(7tm_1, 7tm_4 and 7tm_5). The 7tm_4 and 7tm_5 families were created specifically
to model the divergent chemoreceptors found in C.elegans which are clearly 7 trans-
membrane receptors, but cannot be found with the conventional 7tm_1 HMM. The
total number considering all three HMMs is 429, making them the second largest
single family in C.elegans when one ignores the structural repeats of collagen and
GLTT repeats. The largest family is the EGF like domains which are split into the
EGF domain and the laminin EGF domain in Pfam, making a grand total of 431
domains.

It is annoying that the numbers in 5.2 cannot be used to give precise answers to
questions such as “what is the largest worm family” and “which families have had the
most expansion”. However it is hard to represent the complexity of the biological
domains to provide an automatic answer to such queries. As any conclusion one
draws is qualitative in any case, the lack of automatic reliable numbers for each
domain is not such an issue.

The figures in table 5.2 broadly agree with other genome wide studies of C.elegans
protein content [33, 7]. In particular the expansion of the Zinc Finger C4 domain
[24] and the 7 transmembrane domain [71] proteins have both been previously noted.
It is interesting to wonder whether selective family expansion is a general feature
to eukaryotic evolution, or whether the worm is unique in its indulgence of specific
family expansions. Only the increase in the number of complete or mostly complete
eukaryotic genomes will give us this answer; tools such as Pfam and GeneWise will

greatly help obtaining these answers when the data is available.

5.4 Comparison to curated worm genes

There is an active database group which maintains curated gene structures on the
worm genome. This database contains a set of gene structures which usually were
the result of an ab initio gene prediction program, genefinder, followed by manual ex-
amination and curation by a skilled annotator. In addition the program est2genome
[60] was used to match cDNA and EST sequences back to the genomic DNA. These

115

Introns | Confirmed introns
Curated Genes | 43200 | 12696 (26%)
Halfwise Genes | 8491 1560 (18%)
Intersection 7325 1547 (21%)

Table 5.3: A table showing the number of different introns (both confirmed and not
confirmed) in three different datasets: Curated genes in C.elegans, Halfwise predic-
tions and the intersection of the two datasets. The curated genes and confirmed
introns are only from the Cambridge portion of the database, as this information is
not available from the St Louis portion of the data

matches produced a number of “confirmed intron” features, which are introns which
have an EST or ¢cDNA crossing the splice boundaries.

Comparison of the worm gene dataset with the halfwise predictions provides a
useful feedback to both the worm annotators about a number of potential mispredic-
tions and myself for the accuracy of GeneWise. There are three possible explanations
for discrepancies between the halfwise predictions and the curated gene set. Firstly
halfwise could have mispredicted the gene. Secondly the annotators could have
mispredicted the gene. Thirdly there could be another genomic feature, such as a
pseudogene or transposon which explains the halfwise prediction but does not indi-
cate the presence of another real gene. As we expect nearly all the confirmed introns
to be correct, marking where confirmed introns disagree with halfwise predictions
will provides a good measure of halfwise’s accuracy.

As table 5.3 shows, the vast majority of halfwise predictions are consistent with
the curated genes, with 86% of halfwise introns being identically placed in the cu-
rated set and the halfwise predictions. The numbers of those which are confirmed by
EST is shown in the second column. It is interesting to note that a higher percent-
age of introns are confirmed in the curated genes (26%) than the intersection of the
curated genes and halfwise (21%). This indicates that the halfwise predictions are
occurring in areas of the genes which generally have less EST confirmation. As the
EST sequences are derived from 5’ and 3’ sequence reads on attempted full length
cDNA clones, this is not surprising, as halfwise predictions are more likely to be in
the central coding portion and ESTs at the ends.

116

Number | Percentage
Consistent 15916 89%
Modifications | 445 2.5%
Pseudogenes | 375 2%
Repeats 78 0.5%
Novel 1095 6%
Total 17909

Table 5.4: A table showing the distribution of exons predicted by halfwise between
annotated exons, different exons from annotations, but inside an annotated gene
(Modifications), exons inside pseudogenes, exons inside the repeats and finally exons
not overlapping with any of the other genomic features.

5.4.1 Indication of annotation errors

The halfwise analysis produced a number of gene predictions in regions where there
were no curated genes at all. In some cases these overlapped with known pseudo-
genes: as GeneWise is only matching a domain, and is also tolerant to sequencing
error, detecting domains in pseudogenes is a reasonably common occurrence.

Table 5.4 shows the distribution of halfwise exons between annotated genes,
annotated pseudogenes and other genomic regions. Exons inside annotated genes
are split into two classes - identical to annotated exons (89%) and those contained by
annotated exons but implying a different gene structure (2.5%). It is interesting to
note that looking at the halfwise statistics on the exon level gives a more favourable
view of GeneWise, rather than comparisons at an intron level, which is presented in
the next section. This is because there are a large number of GeneWise predictions
of single domains inside large exons (for example, a set of Zinc Finger repeats), which
improve the annotated exon count. The other 8.5% of exons lie outside of annotated
exons. The predominant number here (6% of the 8.5%) do not lie in pseudogenes

or repeats, indicating possible new genes, or extensions of existing genes.

5.4.2 GeneWise accuracy in the worm

The figures above do not allow us to assess how many of the halfwise predictions
which are not consistent with the curated gene predictions are due to annotation

error or halfwise misprediction. Table 5.5 gives an indication of this.

117

Total confirmed introns | Consistent (within 1%) | Inconsistent
Halfwise | 1883 1560 (83%) 323 (17%)

Table 5.5: A table showing the accuracy of GeneWise when used in genomic scans
against the worm. The total confirmed introns are confirmed introns which overlap
in some manner with the halfwise gene predictions. The consistent column provides
the number of those which are also predicted by halfwise. The final column indicates
the inconsistent introns.

The 323 confirmed introns which disagree with halfwise are mainly errors by
halfwise. There are a number of cases which are due to other effects, for example
a gene nested in the intron of another gene, so there are two overlapping correct
introns. Even allowing for a generous 10% of the 323 introns as being due to such
effects, the results are not close to the sort of accuracy figures quoted in section
3.9. When examined visually, many of the cases were due to short introns, both
in the halfwise predictions and the worm genes. The worm has a large number of
short introns of around 50 base pairs and unfortunately it is hard for GeneWise to
distinguish between short introns and protein insertions relative to the profile-HMM.
The parameterisation which provides effective prediction of short introns also allows
the erroneous prediction of an intron to avoid making a long protein insertion.

Assessment of the accuracy of intron placement by GeneWise is fair indication
of its effectiveness for finding annotation errors in a curated database. However, the
accuracy of GeneWise at a base pair or exon level is more relevant to its effectiveness
for gene identification purposes, where the aim is to find exons with a high confidence
to design primers. The results in the previous section indicate that GeneWise’s exon
accuracy is far better than its intron accuracy; however it is less easy to classify exons

as “confirmed” in a large scale automatic manner.

5.4.3 Comparison to protein Pfam analysis

The worm database holds the results of a search of the curated worm proteins
sequences against Pfam. Comparisons of the Pfam matches on the protein set
against the GeneWise matches provides an indication about the loss of sensitivity
to finding domains by using Halfwise on genomic DNA compared to the protein

analysis.

118

This analysis is complicated by several factors. Firstly, as presented above there
are a number of halfwise predictions which do not overlap with known genes. As we
know where these lie, it is easy enough to account for these. The second problem is
that the protein analysis produces domains in the peptide coordinates. It is difficult
to compare these matches with the halfwise matches on the genomic sequence in a
true domain by domain fashion.

The protein database has 14,710 Pfam domains, which is not that larger than
the 12,426 predictions from halfwise analysis. Of those predictions we know that
only 304 do not overlap in any way with predicted genes, and the number of exons
in disagreement with curated genes are small 5.4 enough for us to ignore. This gives
a loss of sensitivity of around 20%, which I consider to be quite good. One technical
reason for why there is this loss of sensitivity is that GeneWise can only predict genes
when the log-likelihood ratio against an genomic DNA sequence model is above zero.
As some Pfam families have cutoffs of negative log likelihood scores, which is possible

using HMMER software, these domains are impossible for GeneWise to predict.

5.5 Human Chromosome 22

Recently Chromosome 22 was finished, with only 10 small gaps interrupting the
otherwise continuous 33.4 megabases of human DNA. This contains the largest sin-
gle contig of DNA sequence known (23Mb) and the largest amount of contiguous
human DNA. To appreciate the scale of the human genome, these 33.4 MB represent
approximately 1% of the entire genome.

Halfwise analysis was performed against the individual clones sequences that
make up the contiguous sequence, as with C.elegans. In total 565 domains were
predicted from 196 different Pfam families with 2,468 exons. The exon numbers are
broadly in agreement with the worm figures, with somewhat more exons per domain
(around 4.5 compared to worm’s 2.5) and but the concentration average number of
domains per family is considerably lower (2.5 domains per family compared to 13
in the worm).

There are no real surprises in the domain composition of human: as expected,
there is a number of extracellular mosaic domains are found, such as the EGF-like
domains and the Ig superfamily. The large number of zinc finger C2H2 domains

is also expected. There are a number of gene clusters on chromosome 22, such as

119

Domain Number | Comment

Ig super family domains 53 Ubiquitous metozoan domain

Zinc finger C2H2 36 DNA binding domain

EGF like domains 23 Extracellular modular domain

Protein kinase domain 16 The common serine/theronine/tyrosine kinase

Kelch domain 11 Beta propeller repeat. Around 7 copies per do-
main

Mitochondrial Carrier protein | 10 Solute transport

Crystallin 10 Lens protein

SH3 domains 9 Signalling domain

Cytochrome p450 9 Involved in metabolism.

G-Protein effector (RhoGAP) | 9 Signalling protein

Cadherin 8 Cell adhesion domains

PI3_PI4 kinase 7 Signalling domain

Myosin head 6 Structual protein

Clathrin repeats 6 Vesicle transport

Sushi (SCR) 6 Extracellular domain

Filament 6 Structual domain

Trypsin 6 Peptidase domain

7 transmembrane 6 Classical 7tm proteins

PH domain) Signalling protein

Zinc Finger C3HC4 (Ring) 5 Protein protein interactions

SH2 5 Signalling modular domain

Bromodomain 5 Acetyl-lysine (chromatin) binding domain

Actin 5 Structual domain

Glutathione S-transferases 5

BTB 5 Protein interaction domain

protamine P1 5 Sperm histone

Table 5.6: A table showing Pfam families

domains via halfwise analysis.

120

on Chromosome 22 with more than 5

Total Exons | Consistent | Modifications | Pseudogene | Novel
Halfwise | 1213 371 (30%) | 122 (10%) 144 (12%) | 576 (47%)

Table 5.7: A table showing the distribution of exons predicted by halfwise between
annotated exons, exons overlapping an annotations, but inside an annotated gene
(Modifications), exons inside pseudogenes and novel exons. The reference dataset
were the “GD” tagged gene structures from 22ace.

the immunoglobulin A cluster, a glutathione S transferase cluster and a 8 crystallin

cluster, which explain the high number of these domains.

5.5.1 Comparison to curated genes

As with the worm, chromosome 22 has an active database curation group, and these
results can be compared to their predictions. This comparison is hampered by a
number of practical issues. Firstly it is harder for technical reasons to get consistent
coordinate systems of both the curated genes and the halfwise predictions, as the
clone assembly of chromosome 22 is still somewhat in flux. I was only able to
compare a little under half of the detected exons (1213 of 2468). Secondly I was
unable to get a set of confirmed intron features in the coordinate system I needed.
Finally the curators have been using halfwise predictions to guide their experiment
design somewhat, and so the comparison is not entirely unbiased.

The comparison of halfwise predictions to curated genes is shown in table 5.7.
The most striking figure in this list are the number of entirely novel exons (576,
making 47% of the exons used in this comparison). Examination of some of these
exons show them to be in or around genes which are being actively curated: however,
the correct data structures have not been entered to allow them to be automatically
compared to the halfwise predictions. This inability to perform sensible comparisons
is annoying but commonplace in this field. For exons which do overlap with anno-
tated genes, around a quarter are at disagreement with the annotations. As for the
novel domains, a large number of these disagreements are due to misrepresentations
of the genes in the database, so it is hard to really assess the effectiveness of the
method.

The chromosome 22 annotation also provided PFAM analysis on the protein
genes: a total of 240 predicted proteins have PFAM hits from 164 Pfam families.

121

These figures indicate that the halfwise analysis may have found more protein genes
in chromosome 22. Because of the difficultly in interpreting the gene locations,
the precise mismatch cannot be indicated. For example, in the A locus, all the Ig
domains comprising the V regions were not annotated as peptides, but the halfwise

analysis predicts them.

5.6 Coding density of Human vs C.elegans

Using the two comparisons of these large streches of genomic data with halfwise pro-
vides a way to compare coding density in the two genomes. There are a considerable
number of potential caveats to this analysis. Is Pfam biased towards domains in one
of the genomes? Do the genomes have different overall domain composition in terms
of the number of domains per gene? Are there more pseudogenes in one genome?
Assuming that none of these biases are significant, this analysis suggests that there
is one Pfam domain per 8 kilobases in worm compared to one Pfam domain every
59 kilobases in human, about seven times the coding density. This number is about
what is expected. Extrapolating to the whole human genome this would suggest

around 90,000 genes, which is consistent with other estimates.

5.7 Discussion

The two comparisons presented in this chapter show that by using Halfwise, Pfam
can be compared directly to genomic sequence using the GeneWise algorithm. As
GeneWise provides accurate gene prediction and is robust towards errors, this means
that Halfwise can provide automatic annotation of genomic sequence. One area for
improvement is the detection of small introns in inveterbate sequences such as the
worm. It is likely that to be able to detect these, new approaches in parameterisation
are required which try to provide the best gene predictions and not the highest
likelihood of the parse. The “Class HMM” and conditional maximum likelihood
methods of Anders Krogh provide a good framework to derive this parameterisation
[51].

The domain composition of the different organisms by the Halfwise analysis is
as expected from the domain composition found for their proteomes. In general,

there are a number of common domains in each organism, some which seem to be

122

specific to an organism (such as the F-Box in worm) and some which are ubiquitous
in eukaryotes, such as protein kinases. It is likely that as more metazoan genomes
are analysed, trends in how and why domains are expanded in specific lineages will
become clearer - currently, with only two metazoan genomes with large, unbiased
genome coverage (human and worm) available it is hard to draw conclusions about
domain evolution in metozoans.

The systematic halfwise analysis drew attention to a number of possible annota-
tion errors or oversights in the two genomes. Although the accuracy of the GeneWise
predictions in the worm is not enough to confidently expect the halfwise prediction
to be correct, possible missannotations can be quite easily spotted, as most of the
errors by halfwise are small intron predictions. This analysis provides the annota-
tors with a systematic way of finding curation oversights. As the human genome
does not suffer from this small intron prediction problem, the accuracy in human
is suspected to be far higher. The same approach of using Pfam and GeneWise is
being used to annotate the Drosophila genome and genomes such as Aspergillus.

The combination of quality Pfam profile-HMMs with the GeneWise algorithm
in this halfwise analysis provides a useful tool for genome analysis. As the number
of sequenced genomes increase, providing more automated tools to provide a better
first pass annotation of genomes is crucial. This work shows that such tools are

possible to develop, use and apply on a large scale.

123

Chapter 6

Conclusion

The stream of DNA sequence data emerging from the sequencing projects has caused
a revolution in some aspects of biology. One major challenge is interpreting the data
on a large scale to connect it with existing hypothesis driven biological research. This
thesis presents a number of tools to make that possible.

The focus of the thesis has been the GeneWise algorithm to compare protein
information directly to genomic DNA sequence, with the gene prediction occurring
at the same time as the protein comparison. To write this algorithm I took the
standpoint that both problems have already been well solved: the task was to com-
bine them together so that the intermedaite predicted gene sequence was implicit
rather than being required up front. This was done by working out how to merge in
general models and applying the solution to this specific case. This solution relies on
the established methods being well described as probabilistic finite state machines.
I view the ability to conceive of algorithms such as GeneWise as a vindication for
using formal probabilistic models to describe protein and DNA sequences: with-
out the previous work on these models it would have been difficult to design this
algorithm from scratch.

GeneWise is accurate and can be used on a large scale. There are still many
challenges in really using an algorithm such as GeneWise effectively: one clear point
is that the maximum likelihood path is unlikely to be the path one wants to report.
However, it is with algorithms such as GeneWise that accurate gene prediction can
be achieved.

GeneWise’s effectiveness is greatly increased when it is used with Pfam. Pfam

124

provides a set of profile hidden Markov models which cover around two thirds of
known proteins. I have helped the Pfam database considerably by writing a tailor
made database management system and supporting software for Pfam. As well as
designing the software I have been an active curator on the database and involved
in many aspects of its day to day running, such as the Web Site.

Bioinformatics is focused on providing useful computational techniques for bio-
logical data. One aspect of bioinformatics which often gets overlooked is that for
a software solution to really have a wide impact it must be able to work in a large
scale manner robustly, and must be maintainable often by people who did not write
the original program. Chapters 2 and 4 presented some of my work in this area
of software engineering in bioinformatics. The language Dynamite freed me from
worrying about the implementation of dynamic programming solutions to PFSMs.
The Pfam database provided the source of profile-HMMs for the GeneWise analysis.
I have been involved in other work in the area of software engineering in bioinfor-
matics here: it is hard to point to specific results from this work and harder still to
write about it from a research perspective. However I am a committed promoter of
stronger software engineering techniques in the field and I believe this aspect of tool
development is crucial to the success of bioinformatics as a whole.

Many of the aspects of this work are being drawn together in my new work
as part of the Ensembl project. Ensembl is a project to develop a stable software
system to provide automatic analysis of metozoan genomes, starting with the human
genome in 2000. I have learned a considerable amount from my implementation
of the Pfam database management system and applied the knowledge to this new
work. In addition, algorithms such as GeneWise will be invaluable for the automatic
accurate prediction of genes. We can also expect to have to write a number of new
algorithms, for example for effective genomic to genomic comparisons. In cases
which require dynamic programming, Dynamite will greatly shorten our time to
produce solutions.

The amount of data which we will expect to process over the next ten years is
vast. I believe that deriving information from this data is only achievable by taking
principled theoretical approaches and applying them to real life data in a robust

engineering environment.

125

Bibliography

[1]

2]

P. Agarwal and D. J. States. Comparative accuracy of methods for protein

sequence similarity search. Bioinformatics, 14:40-47, 1998.

S. F. Altschul and W. Gish. Local alignment statistics. Methods in Enzymology,
266:460-480, 1996.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research, 25:3389-3402, 1997.

T. L. Bailey and M. Gribskov. The megaprior heuristic for discovering protein

sequence patterns. In States et al. [80], pages 15-24.

G. J. Barton and M. J. Sternberg. Flexible protein sequence patterns. a sensitive
method to detect weak structural similarities. Journal of Molecular Biology,
212:389-402, 1990.

G. J. Barton and M. J. E. Sternberg. A strategy for the rapid multiple alignment
of protein sequences. Journal of Molecular Biology, 198:327-337, 1987.

A. Bateman, E. Birney, R. Durbin, S. R. Eddy, K. L. Howe, and E. L. L.
Sonnhammer. The pfam protein families database. Nucleic Acids Research,
28:263-266, 2000.

S. K. Bhattacharya, S. Ramchandani, N. Cervoni, and M. Szyf. A mammalian
protein with specific demethylase activity for mCpG DNA. Nature, 397:579—
583, 1999.

126

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

E. Birney and R. Durbin. Dynamite: a flexible code generating language for
dynamic programming methods used in sequence comparison. In Gaasterland
et al. [34], pages 56—64.

E Birney, S. Kumar, and A. R. Krainer. Analysis of the RNA-recognition
motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing
factors. Nucleic Acids Research, pages 5803-5816, 1993.

M. J. Bishop and E. A. Thompson. Maximum likelihood alignment of DNA
sequences. Journal of Molecular Biology, 190:159-165, 1986.

M. Borodovsky and J. McIninch. GENMARK: parallel gene recognition for
both DNA strands. Computers and Chemistry, 17(2):123-133, 1993.

J. U. Bowie, R. Luthy, and D. Eisenberg. A method to identify protein se-
quences that fold into a known three-dimensional structure. Science, 253:164—
170, 1991.

S. Brunak, J. Engelbrecht, and S. Knudsen. Prediction of human mRNA donor
and acceptor sites from the DNA sequence. Journal of Molecular Biology,
220(1):49-65, 1991.

R. Bruskiewich. Personal communication.

P. Bucher and K. Hofmann. A sequence similarity search algorithm based on
a probabilistic interpretation of an alignment scoring system. In States et al.
[80], pages 44-51.

C. Burge and S. Karlin. Prediction of complete gene structures in human
genomic DNA. Journal of Molecular Biology, 268:78-94, 1997.

C. B. Burge, R. A. Padgett, and P. A. Sharp. Evolutionary fates and origins
of ul2-type introns. Molecular Cell, 2:773-785, 1998.

M. Burset and R. Guigo. Evaluation of gene structure prediction programs.
Genomics, 34:353-367, 1996.

K. C. Burtis. The regulation of sex determination and sexually dimorphic
differentiation in drosophila. Current Opinion in Cell Biology, 5:1006-1014,
1993.

127

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

J. F. Caceres, T. Misteli, G. R. Screaton, D. L. Spector, and A. R. Krainer. Role
of the modular domains of sr proteins in subnuclear localization and alternative
splicing specificity. Journal of Computational Biology, pages 225-238, 1997.

G. A. Churchill. Stochastic models for heterogeneous DNA sequences. Bulletin
of Mathematical Biology, 51:79-94, 1989.

G. A. Churchill and B. Lazareva. Bayesian restoration of a hidden markov
chain with applications to dna sequencing. Journal of Computational Biology,
pages 261-277, 1999.

N. D. Clarke and J. M. Berg. Zinc fingers in caenorhabditis elegans: finding
families and probing pathways. Science, pages 2018-2022, 1998.

E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematics, 1:269-271, 1959.

J. Ding, M. K. Hayashi, Y. Zhang, L. Manche, A. R. Krainer, and R. M. Xu.
Crystal structure of the two-RRM domain of hnRNP Al (UP1) complexed
with single-stranded telomeric DNA. Genes and Development, pages 1102—
1115, 1999.

S. Dong and D. B. Searls. Gene structure prediction by linguistic methods.
Genomics, 23:540-551, 1994.

S. R. Eddy. Hidden Markov models. Current Opinion in Structural Biology,
6:361-365, 1996.

S. R. Eddy. profile-hidden Markov models. Bioinformatics, 14:755-763, 1998.

S. R. Eddy and R. Durbin. RNA sequence analysis using covariance models.
Nucleic Acids Research, 22:2079-2088, 1994.

S. R. Eddy, G. J. Mitchison, and R. Durbin. Maximum discrimination hidden
Markov models of sequence consensus. Journal of Computational Biology, pages
9-23, 1995.

S. R. Eddy, G. J. Mitchison, and R. Durbin. Maximum discrimination hid-
den Markov models of sequence consensus. Journal of Computational Biology,
2(1):9-23, 1995.

128

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

The C. elegans sequencing consortium. Genome sequence of the nematode C.

elegans: A platform for investigating biology. Science, pages 2012-2018, 1998.

T. Gaasterland, P. Karp, K. Karplus, C. Ouzounis, C. Sander, and A. Valen-
cia, editors. Proceedings of the Fifth International Conference on Intelligent
Systems for Molecular Biology, Menlo Park, CA, 1997. AAAT Press.

M. S. Gelfand, A. A. Mironov, and P. A. Pevzner. Gene recognition via spliced
sequence alignment. Proceedings of the National Academy of Sciences of the
USA, 93:9061-9066, 1996.

N. Goldman, J. L. Thorne, and D. T. Jones. Using evolutionary trees in pro-
tein secondary structure prediction and other comparative sequence analyses.
Journal of Molecular Biology, 263:196-208, 1996.

O. Gotoh. An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162:705-708, 1982.

M. Gribskov, A. D. McLachlan, and D. Eisenberg. Profile analysis: detection
of distantly related proteins. Proceedings of the National Academy of Sciences
of the USA, 84:4355-4358, 1987.

J. A. Grice, R. Hughey, and D. Speck. Reduced space sequence alignment.
Computer Applications in the Biosciences, 13:45-53, 1997.

W. N. Grundy, T. L. Bailey, C. P. Elkan, and M. E. Baker. Meta-meme: motif-
based hidden markov models of protein families. Computer Applications in the
Biosciences, pages 397-406, 1997.

R. Guigo and P. Agarwal. manuscript in preparation.

N. Handa, O. Nureki, K. Kurimoto, I. Kim, H. Sakamoto, Y. Shimura, Y. Muto
Y, and S. Yokoyama. Structural basis for recognition of the tra mRNA precursor
by the sex-lethal protein. Nature, 398:579-585, 1999.

K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch. The prosite database, its
status in 1999. Nucleic Acids Research, 27:215-219, 1999.

129

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

I. Holmes and R. Durbin. Dynamic programming alignment accuracy. Journal
of Computational Biology, 5(3):493-504, 1998.

D. S. Horowitz and A. R. Krainer. Mechanisms for selecting 5’ splice sites in

mammalian pre-mrna splicing. Trends in Genetics, 10:100-106, 1994.

T. J. P. Hubbard. RMS/coverage graphs: A qualitative method for comparing
three-dimensional protein structure predictions. Proteins, 3:15-21, 1999.

D. T. Jones, W. R. Taylor, and J. M. Thornton. A mutation data matrix for
transmembrane proteins. FEBBs Letters, 339:269-275, 1994.

D. H. Kil and F. B. Shin. Pattern recognition and prediction with applications
to signal characterization. AIP Press, 1996.

A. M. Krecic and M. S. Swanson. hnrnp complexes: composition, structure,
and function. Current Opinion in Cell Biology, 11:363-371, 1998.

A. Krogh. Hidden Markov models for labeled sequences. In Proceedings of the
12th IAPR International Conference on Pattern Recognition, pages 140-144,
Los Alamitos, CA, 1994. IEEE Computer Society Press.

A. Krogh. Two methods for improving performance of a HMM and their ap-
plication for gene finding. In Gaasterland et al. [34], pages 179-186.

A. Krogh, I. S. Mian IS, and D. Haussler. A hidden markov model that finds
genes in e. coli dna. Nucleic Acids Research, pages 47684778, 1994.

D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman. A generalized hidden
Markov model for the recognition of human genes in DNA. In States et al. [80],
pages 134-142.

F. Lefebvre. An optimized parsing algorithm well suited to RNA folding. In
Rawlings et al. [68], pages 222-230.

P. Lio, J. L. Thorne, N. Goldman, and D. T. Jones. Passml: combining evolu-
tionary inference and protein secondary structure prediction. Bioinformatics,
14:726-733, 1999.

130

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

H. X. Liu, M. Zhang, and A. R. Krainer. Identification of functional exonic
splicing enhancer motifs recognized by individual sr proteins. Genes and De-
velopment, 12:1998-2012, 1998.

R. Luthy, A. D. McLachlan, and D. Eisenberg. Secondary structure-based
profiles: use of structure-conserving scoring tables in searching protein sequence
databases for structural similarities. Proteins, 10(3):229-239, 1991.

A. Mayeda and A. R. Krainer. Mammalian in vitro splicing assays. Methods
in Molecular Biology, 118:315-321, 1999.

R. Mott. Maximum likelihood estimation of the statistical distribution of
Smith-Waterman local sequence similarity scores. Bulletin of Mathematical
Biology, 54:59-75, 1992.

R. Mott. EST_GENOME: a program to align spliced dna sequences to unspliced
genomic dna. Computer Applications in the Biosciences, pages 477-478, 1997.

A. G. Murzin and A. Bateman. Distant homology recognition using structual
classification of proteins. Proteins, 1:105-112, 1997.

E. W. Myers and W. Miller. Optimal alignments in linear space. Computer
Applications in the Biosciences, 4(1):11-17, 1988.

K. Nagai, C. Oubridge, T. H. Jessen, J. Li, and P. R. Evans. Crystal structure of
the RNA-binding domain of the Ul small nuclear ribonucleoprotein A. Nature,
348:515-520, 1990.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48:443-453, 1970.

C. Oubridge, N. Ito, P. R. Evans PR, C. H. Teo, and K. Nagai. Crystal structure
at 1.92 a resolution of the RNA-binding domain of the U1A spliceosomal protein
complexed with an RNA hairpin. Nature, 372:432-438, 1994.

J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard, and

C. Chothia. Sequence comparisons using multiple sequences detect three times

131

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

as many remote homologues as pairwise methods. Journal of Molecular Biology,
284:1201-1210, 1996.

C. P. Ponting and R. B. Russell. Swaposins: circular permutations within genes

encoding saposin homologues. Trends in Biochemistry, 20:179-180, 1995.

C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, and S. Wodak, ed-
itors. Proceedings of the Third International Conference on Intelligent Systems
for Molecular Biology, Menlo Park, CA, 1995. AAAT Press.

S. K. Riis and A. Krogh. Hidden neural networks: a framework for HMM /NN
hybrids. In Proceedings of ICASSP ’97, pages 3233-3236, New York, 1997.
IEEE.

Eleanor Rivas and Sean Eddy. A dynamic programming algorithm for rna struc-
ture prediction including pseudoknots. Journal of Molecular Biology, 285:2053—
2068, 1999.

H. Robertson. Two large families of chemoreceptor genes in the nematodes
caenorhabditis elegans and caenorhabditis briggsae reveal extensive gene du-
plication, diversification, movement, and intron loss. Genome Research, pages
449-463, 1998.

Y. Sakakibara, M. Brown, R. Hughey, 1. Saira Mian, Kimmen Sjélander, R. C.
Underwood, and D. Haussler. Stochastic context-free grammars for tRNA mod-
eling. Nucleic Acids Research, 22:5112-5120, 1994.

D. Scherly, W. Boelens, N. A. Dathan, W. J. van Venrooij, and I. W. Mattaj.
Major determinants of the specificity of interaction between small nuclear ri-
bonucleoproteins ula and u2b” and their cognate rnas. Nature, 345:502-506,
1990.

J. Schultz, R. R. Copley, T. Doerks, C. P. Ponting, and P. Bork. Smart: a web-
based tool for the study of genetically mobile domains. Nucleic Acids Research,
pages 231-234, 2000.

K. Sjolander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I. S. Mian, and

D. Haussler. Dirichlet mixtures: a method for improved detection of weak

132

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

but significant protein sequence homology. Computer Applications in the Bio-
sciences, 12(4):327-345, 1996.

D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome maps
with radiation hybrids. Journal of Computational Biology, 4:487-504, 1997.

T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195-197, 1981.

E. L. L. Sonnhammer, S. R. Eddy, and R. Durbin. Pfam: a comprehensive
database of protein domain families based on seed alignments. Proteins, 28:405—
420, 1997.

R. Staden. Measurements of the effects that coding for a protein has on a DNA
sequence and their use for finding genes. Nucleic Acids Research, 12:551-567,
1984.

D. J. States, P. Agarwal, T. Gaasterland, L. Hunter, and R. F. Smith, editors.
Proceedings of the Fourth International Conference on Intelligent Systems for
Molecular Biology, Menlo Park, CA, 1996. AAAT Press.

R. Tacke and J. L. Manley. Determinants of sr protein specificity. Current
Opinion in Cell Biology, 11:358-362, 1998.

S. A. Teichmann, J. Park, and C. Chothia. Structural assignments to the
mycoplasma genitalium proteins show extensive gene duplications and domain
rearrangements. Proceedings of the National Academy of Sciences of the USA,
95:14658-14663, 1997.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. Improved sensitivity of
profile searches through the use of sequence weights and gap excision. Computer
Applications in the Biosciences, 10:19-29, 1994.

J. L. Thorne, N. Goldman, and D. T. Jones. Combining protein evolution and
secondary structure. Molecular Biology and Evolution, 13:666—673, 1996.

E. C. Uberbacher and R. J. Mural. Locating protein-coding regions in human
dna sequences by a multiple sensor-neural network approach. Proceedings of
the National Academy of Sciences of the USA, 88:11261-11265, 1991.

133

[86] A. A. Salamov V. V. Solovyev. The Gene-Finder computer tools for analysis
of human and model organisms genome sequences. In Gaasterland et al. [34],
pages 294-302.

[87] A. A. Salamov V. V. Solovyev and C. B. Lawrence. Identification of human
gene structure using linear discriminant functions and dynamic programming.

In Rawlings et al. [68], pages 367-375.

[88] J. Zhu, J. Liu, and C. Lawrence. Bayesian adaptive alignment and inference.
In Gaasterland et al. [34], pages 358-368.

[89] J. Zhu, J. S. Liu, and C. E. Lawrence. Bayesian adaptive sequence alignment
algorithms. Bioinformatics, 14:25-39, 1998.

134

Appendix A

Published Papers

A.1 Published Papers

I published the following papers during my graduate studies.

Dynamite: a flexible code generating language for dynamic programming
methods used in sequence comparison. (1997) Birney E, Durbin R, ISMB
9, 56-64.

Pfam: multiple sequence alignments and HMM-profiles of protein domains
(1998). Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R, NAR
26 320-322.

Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority
of proteins. (1999) Bateman A, Birney E, Durbin R, Eddy SR, Finn RD,
Sonnhammer EL NAR 27 260-262.

SPEM: a parser for EMBL style flat file database entries. (1999) Pocock MR,
Hubbard T, Birney E Bioinformatics 14 823-824.

Comparative analysis of noncoding regions of 77 orthologous mouse and human
gene pairs (1999). Jareborg N, Birney E, Durbin R. Genome Research 9 815-
824.

The Pfam Protein Families Database. (2000) Bateman A, Birney E, Durbin
R, Eddy SR, Howe KL, Sonnhammer EL NAR 28 263-266.

ProtEST: Protein Multiple Sequence Alignments from EST’s (1999) Cuff J.
A., Birney E., Clamp M. E. Barton G. J. Bioinformatics (in press)

135

Appendix B

Dynamite Models

B.1 Dynamite models

This appendix lists the Dynamite models of the PFSMs used in this thesis.

B.2 Dna Block Aligner

3t
#include "dyna.h"

h}

matrix DnaMatchBlock

query type="DNA" name="query"

target type="DNA" name="target"

resource type="DnaMatrix*" name="comp65"
resource type="DnaMatrix*" name="comp75"
resource type="DnaMatrix*" name="comp85"
resource type="DnaMatrix*" name="comp95"
resource type="Score" name="g"

resource type="Score" name="u"

resource type="Score" name="v"
resource type="Score" name="s"
resource type="Score" name="b"
state MATCH65
source MATCH65 offi="1" offj="1"
calc="comp65->score [DNA_BASE(query,i)] [DNA_BASE(target,j)] + s"
endsource

source MATCH65 offi="0" offj="1"

136

Ca1C="g"
target_label MI65
endsource
source MATCH65 offi="1" offj="0O"
Ca1C="g"
query_label MI65
endsource
source UNMATCHED_TARGET offi="1" offj="1"
calc="comp65->score[DNA_BASE(query,i)] [DNA_BASE(target,j)] + v"
endsource
query_label MM65
target_label MM65
endstate
state MATCH75
source MATCH75 offi="1" offj="1"
calc="comp75->score[DNA_BASE(query,i)] [DNA_BASE(target,j)] + s"
endsource
source MATCH75 offi="0" offj="1"
Calc="g"
target_label MI75
endsource
source MATCH75 offi="1" offj="0"
Ca1C="g"
query_label MI75
endsource
source UNMATCHED_TARGET offi="1" offj="1"
calc="comp75->score[DNA_BASE(query,i)] [DNA_BASE(target,j)] + v"
endsource
query_label MM75
target_label MM75
endstate
state MATCH85
source MATCH85 offi="1" offj="1"
calc="comp85->score[DNA_BASE(query,i)] [DNA_BASE(target,j)] + s"
endsource
source MATCH85 offi="0" offj="1"
Calc="g"
target_label MIS85
endsource
source MATCH85 offi="1" offj="O0O"
Calc="g"
query_label MIS85
endsource
source UNMATCHED_TARGET offi="1" offj="1"
calc="comp85->score[DNA_BASE(query,i)] [DNA_BASE(target,j)] + v"

137

endsource
query_label MM85
target_label MM85
endstate
state MATCH95
source MATCH95 offi="1" offj="1"
calc="comp95->score[DNA_BASE(query,i)] [DNA_BASE(target,j)] + s"
endsource
source MATCH95 offi="0" offj="1"
Calc="g"
target_label MI95
endsource
source MATCHO95 offi="1" offj="0O"
Calc="g"
query_label MI95
endsource
source UNMATCHED_TARGET offi="1" offj="1"
calc="comp95->score[DNA_BASE(query,i)] [DNA_BASE(target,j)] + v"
endsource
query_label MM95
target_label MM95
endstate
state UNMATCHED_QUERY offi="1" offj="0"
source MATCH65
calc="b"
endsource
source MATCH75
calc="b"
endsource
source MATCH85
calc="b"
endsource
source MATCH95
calc="b"
endsource
source UNMATCHED_QUERY
calc="u"
endsource
source START !top !left
calc="0"
endsource
query_label UM
target_label UI
endstate
state UNMATCHED_TARGET offi="0" offj="1"

138

source UNMATCHED_QUERY
calc="v"
endsource
source UNMATCHED_TARGET
calc="u"
endsource
target_label UM
query_label UI
endstate
state START !special !start
query_label START
target_label START
endstate
state END !special !end
source UNMATCHED_TARGET !'right !bottom
calc="0"
endsource
query_label END
target_label END
endstate
endmatrix

B.3 Structual Alignment

3t
#include "dyna.h"

#define MAXPROTEIN 1024

h}

matrix StructSuper

query name="query" type="Sequence *"

target name="target" type="Sequence *"
resource name="positionmap" type="PositionMap *"

resource name='"gap" type="int"

resource name="ext" type="int"

state MATCH offi="1" offj="1"
calc="rms_distance_score(positionmap,i,j)"
source MATCH

calc="0"

endsource

source INSERT

calc="0"

endsource

139

source DELETE
calc="0"

endsource

source START

calc="0"

endsource

query_label SEQUENCE
target_label SEQUENCE
endstate

state INSERT offi="0" offj="1"

source MATCH
calc="gap"

endsource

source INSERT
calc="ext"

endsource

query_label INSERT
target_label SEQUENCE
endstate

state DELETE offi="1" offj="0"

source MATCH
calc="gap"

endsource

source DELETE
calc="ext"

endsource

query_label SEQUENCE
target_label INSERT
endstate

state START !special !start
query_label START
target_label START
endstate

state END !special 'end
source MATCH

calc="0"

endsource

query_label END
target_label END
endstate

endmatrix

3t

#include "structsup.h"

140

int rms_distance_score(PositionMap * map,int i,int j)
{
return map->position[i][j];

}

B.4 GeneWise 21:93

3t

#include "dyna.h"

#include "genewisemodel.h"
#include "genewisemodeldb.h"

h}

matrix GeneWise21

query type="GENEWISEMODEL" name="query" field:len="len"
target type="GENOMIC" name="target"

resource type="GeneParser21Score *" mname="gp21"

resource type="RandomCodonScore *" name="rndcodon"

resource type="RandomModelDNAScore *" name="rndbase"

extern type="int" name="GW_x"
extern type="int" name="GP21_x"
state MATCH offi="1" offj="3"
calc="GENOMIC_CDS_POT(target,j)"
source MATCH
calc="query->seg[i]->transition[GW_MATCH2MATCH] +
query->seg[i]->match [GENOMIC_CODON(target,j)]"
endsource
source INSERT
calc="query->segl[i]->transition[GW_INSERT2MATCH] +
query->seg[i]->match [GENOMIC_CODON(target,j)]"
endsource
source DELETE
calc="query->segl[i]->transition[GW_DELETE2MATCH] +
query->seg[i]->match [GENOMIC_CODON(target,j)]"
endsource
source BEFORE_CODON offj="3"
calc="query->segl[i]->transition[GW_START2MATCH] +
query->seg[i]->match [GENOMIC_CODON(target,j)]"
endsource
source SPACER_OM offi="1" offj="6"
target_label 3SS_PHASE_O
calc="gp21->transition[GP21_SPACER2CDS] +query->seg[i]->match[GENOMIC_CODON(target,j)] +

141

GENOMIC_3SS(target,j-3) + query->segl[i]->transition[GW_MATCH_BALANCE_3SS]"

endsource

source PY_OM offi="1" offj="6"
target_label 3SS_PHASE_O
calc="gp21->transition[GP21_PY2CDS] +query->seg[i]->match[GENOMIC_CODON(target,j)]

+GENOMIC_3SS(target,j-3) + query->segli]->transition[GW_MATCH_BALANCE_3SS]"

endsource

source SPACER_1M offi="1" offj="5"
target_label 3SS_PHASE_1
calc="gp21l->transition[GP21_SPACER2CDS] +GENOMIC_3SS(target,j-2)"
endsource

source PY_1IM offi="1" offj="5"
target_label 3SS_PHASE_1
calc="gp21->transition[GP21_PY2CDS] +GENOMIC_3SS(target,j-2)"
endsource

source SPACER_2M offi="1" offj="4"
target_label 3SS_PHASE_2
calc="gp21->transition[GP21_SPACER2CDS] +GENOMIC_3SS(target,j-1)"
endsource

source PY_2M offi="1" offj="4"
target_label 3SS_PHASE_2
calc="gp21->transition[GP21_PY2CDS] +GENOMIC_3SS(target,j-1)"
endsource

source MATCH offi="1" offj="2"
target_label SEQUENCE_DELETION
calc="gp21->transition[GP21_DELETE_1_BASE]"
endsource

source MATCH offi="1" offj="1"
target_label SEQUENCE_DELETION
calc="gp21->transition[GP21_DELETE_2_BASE]"
endsource

source MATCH offi="1" offj="4"
target_label SEQUENCE_INSERTION
calc="gp21->transition[GP21_INSERT_1_BASE]"
endsource

source MATCH offi="1" offj="5"
target_label SEQUENCE_INSERTION
calc="gp21->transition[GP21_INSERT_2_BASE]"
endsource

query_label MATCH_STATE

target_label CODON

endstate
state INSERT offi="0" offj="3"

calc="GENOMIC_CDS_POT(target,j)"
source MATCH

142

calc="query->segl[i]->transition[GW_MATCH2INSERT] +
query->seg[i]->insert [GENOMIC_CODON(target,j) 1"
endsource
source INSERT
calc="query->seg[i]->transition[GW_INSERT2INSERT] +
query->seg[i]->insert [GENOMIC_CODON(target,j)]1"
endsource
source DELETE
calc="query->seg[i]->transition[GW_DELETE2INSERT] +
query->seg[i]->insert [GENOMIC_CODON(target,j)]1"
endsource
source BEFORE_CODON
calc="query->seg[i]->transition[GW_START2INSERT] +
query->seg[i]->insert [GENOMIC_CODON(target,j)]1"
endsource
source SPACER_OI offi="1" offj="6"
target_label 3SS_PHASE_O
calc="gp21->transition[GP21_SPACER2CDS] +query->segli]->insert [GENOMIC_CODON(target,j)] -
GENOMIC_3SS(target,j-3) + query->segl[i]->transition[GW_MATCH_BALANCE_3SS]1"
endsource
source SPACER_1TI offi="1" offj="5"
target_label 3SS_PHASE_1
calc="gp21->transition[GP21_SPACER2CDS] +GENOMIC_3SS(target,j-2)"
endsource
source SPACER_2I offi="1" offj="4"
target_label 3SS_PHASE_2
calc="gp21->transition[GP21_SPACER2CDS] +GENOMIC_3SS(target,j-1)"
endsource
source PY_OI offi="1" offj="6"
target_label 3SS_PHASE_O
calc="gp21->transition[GP21_PY2CDS] +query->segl[i]->insert [GENOMIC_CODON(target,j)] +
GENOMIC_3SS(target,j-3) + query->segl[i]->transition[GW_MATCH_BALANCE_3SS]"
endsource
source PY_1T offi="1" offj="5"
target_label 3SS_PHASE_1
calc="gp21->transition[GP21_PY2CDS] +GENOMIC_3SS(target,j-2)"
endsource
source PY_2T offi="1" offj="4"
target_label 3SS_PHASE_2
calc="gp21->transition[GP21_PY2CDS] +GENOMIC_3SS(target,j-1)"
endsource
source INSERT offi="1" offj="2"
target_label SEQUENCE_DELETION
calc="gp21->transition[GP21_DELETE_1_BASE]"
endsource

143

source INSERT offi="1" offj="1"
target_label SEQUENCE_DELETION
calc="gp21->transition[GP21_DELETE_2_BASE]"
endsource
source INSERT offi="1" offj="4"
target_label SEQUENCE_INSERTION
calc="gp21->transition[GP21_INSERT_1_BASE]"
endsource
source INSERT offi="1" offj="5"
target_label SEQUENCE_INSERTION
calc="gp21->transition[GP21_INSERT_2_BASE]"
endsource
query_label INSERT_STATE
target_label CODON
endstate
state DELETE offi="1" offj="0O"
source MATCH
calc="query->segl[i]->transition[GW_MATCH2DELETE]"
endsource
source INSERT
calc="query->seg[i]->transition[GW_INSERT2DELETE]"
endsource
source DELETE
calc="query->seg[i]->transition[GW_DELETE2DELETE]"
endsource
source BEFORE_CODON
calc="query->seg[i]->transition[GW_START2DELETE]"
endsource
query_label DELETE_STATE
target_label INSERT
endstate
#
#
#
state CENTRAL_OM
source MATCH offj="8" offi="0"
target_label 5SS_PHASE_O
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->segl[i]->transition[GW_MATCH2MATCH] + query->segli]->transition[GW_MATCH_BA
endsource
source INSERT offj="8" offi="0"
target_label 5SS_PHASE_O
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->seg[i]->transition[GW_INSERT2MATCH] + query->segl[i]->transition[GW_INSERT_B
endsource

144

source DELETE offj="8" offi="0"
target_label 5SS_PHASE_O
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->segl[i]->transition[GW_DELETE2MATCH]"
endsource
source CENTRAL_OM offj="1" offi="0"
calc="gp21->central[GENOMIC_BASE(target,j)] +gp2l->transition[GP21_CENTRAL2CENTRAL]"
endsource
query_label INTRON_MATCH_O
target_label CENTRAL_INTRON
endstate
state PY_OM offj="1" offi="0"
calc="gp21->py [GENOMIC_BASE (target,j)1"
source CENTRAL_OM
calc="gp21->transition[GP21_CENTRAL2PY]"
endsource
source PY_OM
calc="gp21->transition[GP21_PY2PY]"
endsource
query_label INTRON_MATCH_O
target_label PYRIMIDINE_TRACT
endstate
state SPACER_OM offj="1" offi="0"
calc="gp21->spacer [GENOMIC_BASE(target,j)]"
source PY_OM
calc="gp21->transition[GP21_PY2SPACER]"
endsource
source SPACER_OM
calc="gp21->transition[GP21_SPACER2SPACER]"
endsource
query_label INTRON_MATCH_O
target_label SPACER
endstate
state CENTRAL_1M
source MATCH offj="9" offi="0"
target_label 5SS_PHASE_1
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->seg[i]->transition[GW_MATCH2MATCH] + query->seg[i]->transition[GW_MATCH_BAL
endsource
source INSERT offj="9" offi="0"
target_label 5SS_PHASE_1
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->seg[i]->transition[GW_INSERT2MATCH] + query->segl[i]->transition[GW_MATCH_BA
endsource
source DELETE offj="9" offi="0"

145

target_label 5SS_PHASE_1
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->segl[i]->transition[GW_DELETE2MATCH]"
endsource
source CENTRAL_1M offj="1" offi="0"
calc="gp21->central[GENOMIC_BASE(target,j)] +gp2l->transition[GP21_CENTRAL2CENTRAL]"
endsource
query_label INTRON_MATCH_1
target_label CENTRAL_INTRON
endstate
state PY_1M offj="1" offi="0"
calc="gp21->py [GENOMIC_BASE(target,j)1"
source CENTRAL_1M
calc="gp21->transition[GP21_CENTRAL2PY]"
endsource
source PY_1M
calc="gp21->transition[GP21_PY2PY]"
endsource
query_label INTRON_MATCH_1
target_label PYRIMIDINE_TRACT
endstate
state SPACER_1M offj="1" offi="0"
calc="gp21->spacer [GENOMIC_BASE(target,j)]"
source PY_1M
calc="gp21->transition[GP21_PY2SPACER]"
endsource
source SPACER_1M
calc="gp21->transition[GP21_SPACER2SPACER]"
endsource
query_label INTRON_MATCH_1
target_label SPACER
endstate
state CENTRAL_2M
source MATCH offj="10" offi="0"
target_label 5SS_PHASE_2
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->seg[i]->transition[GW_MATCH2MATCH] + query->segli]->transition[GW_MATCH_BAL
endsource
source INSERT offj="10" offi="Q"
target_label 5SS_PHASE_2
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->seg[i]->transition[GW_INSERT2MATCH] + query->segl[i]->transition[GW_MATCH_BA
endsource
source DELETE offj="10" offi="0Q"
target_label 5SS_PHASE_2

146

calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->segl[i]->transition[GW_DELETE2MATCH]"
endsource
source CENTRAL_2M offj="1" offi="0"
calc="gp21->central[GENOMIC_BASE(target,j)] +gp2l->transition[GP21_CENTRAL2CENTRAL]"
endsource
query_label INTRON_MATCH_2
target_label CENTRAL_INTRON
endstate
state PY_2M offj="1" offi="0"
calc="gp21->py [GENOMIC_BASE(target,j)1"
source CENTRAL_2M
calc="gp21->transition[GP21_CENTRAL2PY]"
endsource
source PY_2M
calc="gp21->transition[GP21_PY2PY]"
endsource
query_label INTRON_MATCH_2
target_label PYRIMIDINE_TRACT
endstate
state SPACER_2M offj="1" offi="0"
calc="gp21->spacer [GENOMIC_BASE(target,j)]"
source PY_2M
calc="gp21->transition[GP21_PY2SPACER]"
endsource
source SPACER_2M
calc="gp21->transition[GP21_SPACER2SPACER]"
endsource
query_label INTRON_MATCH_2
target_label SPACER
endstate
#
Insert intron states now
#
#
#
state CENTRAL_OI
source MATCH offj="8" offi="0"
target_label 5SS_PHASE_O
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->segl[i]->transition[GW_MATCH2INSERT] + query->segl[i]->transition[GW_MATCH_BA
endsource
source INSERT offj="8" offi="0"
target_label 5SS_PHASE_O
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +

147

query->seg[i]->transition[GW_INSERT2INSERT] + query->segl[i]->transition[GW_INSERT_
endsource
source DELETE offj="8" offi="0"
target_label 5SS_PHASE_O
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->seg[i]->transition[GW_DELETE2INSERT]"
endsource
source CENTRAL_OI offj="1" offi="0"
calc="gp21->central [GENOMIC_BASE(target,j)] +gp2l->transition[GP21_CENTRAL2CENTRAL]"
endsource
query_label INTRON_INSERT_O
target_label CENTRAL_INTRON
endstate
state PY_OI offj="1" offi="0"
calc="gp21->py [GENOMIC_BASE (target,j)1"
source CENTRAL_OI
calc="gp21->transition[GP21_CENTRAL2PY]"
endsource
source PY_OI
calc="gp21->transition[GP21_PY2PY]"
endsource
query_label INTRON_INSERT_O
target_label PYRIMIDINE_TRACT
endstate
state SPACER_OI offj="1" offi="0O"
calc="gp21->spacer [GENOMIC_BASE(target,j)]"
source PY_OI
calc="gp21->transition[GP21_PY2SPACER]"
endsource
source SPACER_OI
calc="gp21->transition[GP21_SPACER2SPACER]"
endsource
query_label INTRON_INSERT_O
target_label SPACER
endstate
state CENTRAL_1I
source MATCH offj="9" offi="0"
target_label 5SS_PHASE_1
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->segl[i]->transition[GW_MATCH2INSERT] "
endsource
source INSERT offj="9" offi="0"
target_label 5SS_PHASE_1
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->segli]->transition[GW_INSERT2INSERT] "

148

endsource
source DELETE offj="9" offi="0"
target_label 5SS_PHASE_1
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->seg[i]->transition[GW_DELETE2INSERT] "
endsource
source CENTRAL_1T offj="1" offi="0"
calc="gp21->central [GENOMIC_BASE(target,j)] +gp2l->transition[GP21_CENTRAL2CENTRAL]"
endsource
query_label INTRON_INSERT_1
target_label CENTRAL_INTRON
endstate
state PY_1I offj="1" offi="0"
calc="gp21->py [GENOMIC_BASE (target,j)1"
source CENTRAL_1I
calc="gp21->transition[GP21_CENTRAL2PY]"
endsource
source PY_1I
calc="gp21->transition[GP21_PY2PY]"
endsource
query_label INTRON_INSERT_1
target_label PYRIMIDINE_TRACT
endstate
state SPACER_1I offj="1" offi="0"
calc="gp21->spacer [GENOMIC_BASE(target,j)]1"
source PY_1T
calc="gp21->transition[GP21_PY2SPACER]"
endsource
source SPACER_1I
calc="gp21->transition[GP21_SPACER2SPACER]"
endsource
query_label INTRON_INSERT_1
target_label SPACER
endstate
state CENTRAL_2I
source MATCH offj="10" offi="0O"
target_label 5SS_PHASE_2
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->segl[i]->transition[GW_MATCH2INSERT] "
endsource
source INSERT offj="10" offi="OQO"
target_label 5SS_PHASE_2
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->seg[i]->transition[GW_INSERT2INSERT] "
endsource

149

source INSERT offj="10" offi="OQ"
target_label 5SS_PHASE_2
calc="gp21->central[GENOMIC_BASE(target,j)] +GENOMIC_5SS(target,j-7) +
query->seg[i]->transition[GW_DELETE2INSERT] "
endsource
source CENTRAL_2T offj="1" offi="0"
calc="gp21->central[GENOMIC_BASE(target,j)] +gp2l->transition[GP21_CENTRAL2CENTRAL]"
endsource
query_label INTRON_INSERT_2
target_label CENTRAL_INTRON
endstate
state PY_2I offj="1" offi="0"
calc="gp21->py [GENOMIC_BASE (target,j)1"
source CENTRAL_2I
calc="gp21->transition[GP21_CENTRAL2PY]"
endsource
source PY_2T
calc="gp21->transition[GP21_PY2PY]"
endsource
query_label INTRON_INSERT_2
target_label PYRIMIDINE_TRACT
endstate
state SPACER_2I offj="1" offi="0"
calc="gp21->spacer [GENOMIC_BASE(target,j)]"
source PY_2T
calc="gp21->transition[GP21_PY2SPACER]"
endsource
source SPACER_2I
calc="gp21->transition[GP21_SPACER2SPACER]"
endsource
query_label INTRON_INSERT_2
target_label SPACER
endstate
state START !special !start
endstate
state END !'special !end
source AFTER_RND offj="1" !right
calc="0"
endsource
target_label END
query_label END
endstate
state BEFORE_RND !special
source START offj="1"
calc="rndbase->base [GENOMIC_BASE(target,j)]"

150

endsource
source BEFORE_RND offj="1"
calc="rndbase->base[GENOMIC_BASE(target,j)] + gp21->transition[GP21_RND2RND]"
endsource
source BEFORE_CODON offj="1"
calc="rndbase->base [GENOMIC_BASE(target,j)] + gp2l->transition[GP21_CDS2RND]"
endsource
query_label BEFORE_RND_STATE
target_label RANDOM_SEQUENCE
endstate
state BEFORE_CODON !special offj="3"
source BEFORE_RND
calc="rndcodon->codon[GENOMIC_CODON(target,j)] + gp21l->transition[GP21_RND2CDS]"
endsource
source BEFORE_CODON
calc="rndcodon->codon[GENOMIC_CODON(target,j)] + gp21l->transition[GP21_CDS2CDS]"
endsource
source BEFORE_SPACER offj="5"
calc="gp21->transition[GP21_SPACER2CDS] +
rndcodon->codon [GENOMIC_CODON (target,j)] + GENOMIC_3SS(target,j-3)"
target_label 3SS_PHASE_O
endsource
source BEFORE_SPACER offj="4"
calc="gp21->transition[GP21_SPACER2CDS] + GENOMIC_3SS(target,j-2)"
target_label 3SS_PHASE_1
endsource
source BEFORE_SPACER offj="3"
calc="gp21->transition[GP21_SPACER2CDS] + GENOMIC_3SS(target,j-1)"
target_label 3SS_PHASE_2
endsource
query_label BEFORE_RND_STATE
target_label CODON
endstate
state BEFORE_CENTRAL !special
source BEFORE_CENTRAL offj="1"
calc="gp21->central [GENOMIC_BASE(target,j)] + gp21->transition[GP21_CENTRAL2CENTRAL]"
endsource
source BEFORE_CODON offj="8"
calc="gp21->central [GENOMIC_BASE(target,j)] + GENOMIC_5SS(target,j-7) "
target_label 5SS_PHASE_O
endsource
source BEFORE_CODON offj="9"
calc="gp21->central [GENOMIC_BASE(target,j)] + GENOMIC_5SS(target,j-7)"
target_label 5SS_PHASE_1
endsource

151

source BEFORE_CODON offj="10"
calc="gp21->central [GENOMIC_BASE(target,j)] + GENOMIC_5SS(target,j-7)"
target_label 5SS_PHASE_2
endsource
query_label BEFORE_RND_STATE
target_label CENTRAL_INTRON
endstate
state BEFORE_PY_TRACT !special offj="1"
calc="gp21->py [GENOMIC_BASE(target,j)]"
source BEFORE_CENTRAL
calc="gp21->transition[GP21_CENTRAL2PY]"
endsource
source BEFORE_PY_TRACT
calc="gp21->transition[GP21_PY2PY]"
endsource
query_label BEFORE_RND_STATE
target_label PYRIMIDINE_TRACT
endstate
state BEFORE_SPACER !special offj="1"
calc="gp21->spacer [GENOMIC_BASE(target,j)]1"
source BEFORE_PY_TRACT offj="1"
calc="gp21->transition[GP21_PY2SPACER]"
endsource
source BEFORE_SPACER offj="1"
calc="gp21->transition[GP21_SPACER2SPACER]"
endsource
query_label BEFORE_RND_STATE
target_label SPACER
endstate
state AFTER_RND !special
source AFTER_RND offj="1"
calc="rndbase->base [GENOMIC_BASE(target,j)] + gp2l->transition[GP21_RND2RND]"
endsource
source AFTER_CODON offj="1"
calc="rndbase->base[GENOMIC_BASE(target,j)] + gp21->transition[GP21_CDS2RND]"
endsource
query_label AFTER_RND_STATE
target_label RANDOM_SEQUENCE
endstate
state AFTER_CODON !special
source AFTER_RND offj="3"
calc="rndcodon->codon[GENOMIC_CODON(target,j)] + gp21l->transition[GP21_RND2CDS]"
endsource
source MATCH
calc="query->segl[i]->transition[GW_MATCH2END]"

152

endsource
source INSERT

calc="query->segl[i]->transition[GW_INSERT2END]"

endsource
source DELETE

calc="query->segl[i]->transition[GW_DELETE2END]"

endsource
source AFTER_CODON offj="3"

calc="rndcodon->codon [GENOMIC_CODON(target,j)] + gp2l->transition[GP21_CDS2CDS]"

endsource
source AFTER_SPACER offj="5"

calc="gp21->transition[GP21_SPACER2CDS] +

rndcodon->codon [GENOMIC_CODON (target,j)] + GENOMIC_3SS(target,j-3)"

target_label 3SS_PHASE_O
endsource
source AFTER_SPACER offj="4"

calc="gp21->transition[GP21_SPACER2CDS] + GENOMIC_3SS(target,j-2)"

target_label 3SS_PHASE_1
endsource
source AFTER_SPACER offj="3"

calc="gp21->transition[GP21_SPACER2CDS] + GENOMIC_3SS(target,j-1)"

target_label 3SS_PHASE_2
endsource
query_label AFTER_RND_STATE
target_label CODON
endstate
state AFTER_CENTRAL !special
source AFTER_CENTRAL offj="1"

calc="gp21->central [GENOMIC_BASE(target,j)]

endsource
source AFTER_CODON offj="8"

calc="gp21->central [GENOMIC_BASE(target,j)]

target_label 5SS_PHASE_O
endsource
source AFTER_CODON offj="9"

calc="gp21->central [GENOMIC_BASE(target,j)]

target_label 5SS_PHASE_1
endsource
source AFTER_CODON offj="10"

calc="gp21->central [GENOMIC_BASE(target,j)]

target_label 5SS_PHASE_2
endsource
query_label AFTER_RND_STATE
target_label CENTRAL_INTRON
endstate

153

+ gp21->transition[GP21_CENTRAL2CENTRAL]"

+ GENOMIC_5SS(target,j-7)"

+ GENOMIC_5SS(target,j-7)"

+ GENOMIC_5SS(target,j-7)"

state AFTER_PY_TRACT !special offj="1"
calc="gp21->py [GENOMIC_BASE(target,j)]1"
source AFTER_CENTRAL
calc="gp21->transition[GP21_CENTRAL2PY]"
endsource
source AFTER_PY_TRACT
calc="gp21->transition[GP21_PY2PY]"
endsource
query_label AFTER_RND_STATE
target_label PYRIMIDINE_TRACT
endstate
state AFTER_SPACER !special offj="1"
calc="gp21->spacer [GENOMIC_BASE(target,j)]"
source AFTER_PY_TRACT
calc="gp21->transition[GP21_PY2SPACER]"
endsource
source AFTER_SPACER
calc="gp21->transition[GP21_SPACER2SPACER]"
endsource
query_label AFTER_RND_STATE
target_label SPACER
endstate
#
#
#
collapse BEFORE_RND_STATE RANDOM_SEQUENCE
collapse AFTER_RND_STATE RANDOM_SEQUENCE
collapse BEFORE_RND_STATE CENTRAL_INTRON
collapse AFTER_RND_STATE CENTRAL_INTRON
#
Collapse central states
#
collapse INTRON_MATCH_O CENTRAL_INTRON
collapse INTRON_MATCH_1 CENTRAL_INTRON
collapse INTRON_MATCH_2 CENTRAL_INTRON
collapse INTRON_INSERT_O CENTRAL_INTRON
collapse INTRON_INSERT_1 CENTRAL_INTRON
collapse INTRON_INSERT_2 CENTRAL_INTRON
endmatrix

B.5 GeneWise 6:23

hi
#include "dyna.h"

154

#include "geneparser4.h"
#include "genewisemodel.h"
#include "genewisemodeldb.h"

h}

matrix GeneWise6
query type="GENEWISEMODEL" name="query" field:len="len"
target type="GENOMIC" name="target"
resource type="GeneParser4Score *" name='"gp"
extern name="GW_x" type="int"
extern name="GP4_x" type="int"
state MATCH offi="1" offj="3"
calc="GENOMIC_CDS_POT(target,j)"
source MATCH
calc="query->seg[i]->transition[GW_MATCH2MATCH]
+ query->seg[i]->match[GENOMIC_CODON(target,j)]"
endsource
source INSERT
calc="query->seg[i]->transition[GW_INSERT2MATCH]
+ query->segl[i]->match[GENOMIC_CODON(target,j)]1"
endsource
source DELETE
calc="query->seg[i]->transition[GW_DELETE2MATCH]
+ query->seg[i]->match[GENOMIC_CODON(target,j)]"
endsource
source START
calc="query->segl[i]->transition[GW_START2MATCH]
+ query->seg[i]->match[GENOMIC_CODON(target,j)]"
endsource

H+

phase 0,1,2 introns can calculate whole amino acid for O.

source INTRON_O offi="1" offj="6"
calc="query->segl[i]->transition[GW_MATCH2MATCH]
+ gp—>transition[GP4_INTRON2CDS] +
query->seg[i] ->match [GENOMIC_CODON(target,j)]1+
GENOMIC_3SS(target,j-3)+query->segl[i]->transition[GW_MATCH_BALANCE_3SS]"
target_label 3SS_PHASE_O
endsource
source INTRON_1 offi="1" offj="5"
calc="query->seg[i]->transition[GW_MATCH2MATCH] +
gp->transition[GP4_INTRON2CDS] + GENOMIC_3SS(target,j-2)"
target_label 3SS_PHASE_1
endsource
source INTRON_2 offi="1" offj="4"

155

+*

#
#
#

calc="query->seg[i]->transition[GW_MATCH2MATCH] +

gp->transition[GP4_INTRON2CDS] + GENOMIC_3SS(target,j-1)"

target_label 3SS_PHASE_2
endsource

Sequencing error transitions, at offsets 1,2,4,5 for delete

source MATCH offi="1" offj="2"
calc="gp->transition[GP4_DELETE_1_BASE]"
target_label SEQUENCE_DELETION
endsource

source MATCH offi="1" offj="1"
calc="gp->transition[GP4_DELETE_2_BASE]"
target_label SEQUENCE_DELETION
endsource

source MATCH offi="1" offj="4"
calc="gp->transition[GP4_INSERT_1_BASE]"
target_label SEQUENCE_INSERTION
endsource

source MATCH offi="1" offj="5"
calc="gp->transition[GP4_INSERT_2_BASE]"
target_label SEQUENCE_INSERTION
endsource

query_label MATCH_STATE

target_label CODON

endstate

1,2 or insert 1,2

Insert state: does not move along model, produces DNA sequence...

state INSERT offi="0" offj="3"

calc="GENOMIC_CDS_POT (target,j)"
source MATCH

calc="query->seg[i]->transition[GW_MATCH2INSERT]
+ query->segli]->insert [GENOMIC_CODON (target,j)]"

endsource
source INSERT

calc="query->segl[i]->transition[GW_INSERT2INSERT]
+ query->seg[i]->insert[GENOMIC_CODON(target,j)]"

endsource
source DELETE

calc="query->segl[i]->transition[GW_DELETE2INSERT]
+ query->seg[i]->insert[GENOMIC_CODON(target,j)]"

endsource
source START

calc="query->segl[i]->transition[GW_START2INSERT]

156

+ query->segli]->insert [GENOMIC_CODON (target,j)]"
endsource

H#

phase 0,1,2 introns can calculate whole amino acid for O.

source INTRON_O offi="0" offj="6"
calc="query->seg[i]->transition[GW_INSERT2INSERT]
+ gp—->transition[GP4_INTRON2CDS] +
query->seg[i]->match [GENOMIC_CODON(target,j)]1+
GENOMIC_3SS(target,j-3)+query->seg[i]->transition[GW_INSERT_BALANCE_3SS]"
target_label 3SS_PHASE_O
endsource
source INTRON_1 offi="0" offj="b"
calc="query->seg[i]->transition[GW_INSERT2INSERT] +
gp->transition[GP4_INTRON2CDS] + GENOMIC_3SS(target,j-2)"
target_label 3SS_PHASE_1
endsource
source INTRON_2 offi="0" offj="4"
calc="query->segl[i]->transition[GW_INSERT2INSERT] +
gp->transition[GP4_INTRON2CDS] + GENOMIC_3SS(target,j-1)"
target_label 3SS_PHASE_2
endsource

Sequencing error transitions: because insertions are "for free" usually, we will
only model sequence deletion here. Could produce odd results though!

H B H

source INSERT offi="0" offj="2"
calc="gp->transition[GP4_DELETE_1_BASE]"
target_label SEQUENCE_DELETION
endsource

source INSERT offi="0" offj="1"
calc="gp->transition[GP4_DELETE_2_BASE]"
target_label SEQUENCE_DELETION
endsource

query_label INSERT_STATE

target_label CODON

endstate

state DELETE offi="1" offj="0Q"

source MATCH
calc="query->seg[i]->transition[GW_MATCH2DELETE]"
endsource

source INSERT
calc="query->seg[i]->transition[GW_INSERT2DELETE]"
endsource

source DELETE

157

calc="query->seg[i]->transition[GW_DELETE2DELETE]"
endsource
source START
calc="query->seg[i]->transition[GW_START2DELETE]"
endsource
query_label DELETE_STATE
target_label INSERT
endstate
#
Intron state: 3 separate phases, and merge INSERT/MATCH information
#
state INTRON_O offi="0" offj="1"
source MATCH offj="8"
calc="gp->intron[GENOMIC_BASE(target,j)]+GENOMIC_5SS(target,j-7)
+ query->segli]->transition[GW_MATCH_BALANCE_5SS]"
target_label 5SS_PHASE_O
endsource
source INSERT offj="8"
calc="gp->intron[GENOMIC_BASE(target, j)]+GENOMIC_5SS(target,j-7)
+ query->segl[i]->transition[GW_INSERT_BALANCE_5SS]"
target_label 5SS_PHASE_O
endsource
source INTRON_O offj="1"
calc="gp->intron[GENOMIC_BASE(target,j)] + gp->transition[GP4_INTRON2INTRON]"
target_label CENTRAL_INTRON
endsource
query_label INTRON_STATE
endstate
state INTRON_1 offi="0" offj="1"
source MATCH offj="9" offi="0O"
calc="gp->intron[GENOMIC_BASE(target, j)]+GENOMIC_5SS (target,j-7)"
target_label 5SS_PHASE_1
endsource
source INSERT offj="9" offi="0O"
calc="gp->intron[GENOMIC_BASE(target, j)]+GENOMIC_5SS(target,j-7)"
target_label 5SS_PHASE_1
endsource
source INTRON_1 offj="1"
calc="gp->intron[GENOMIC_BASE(target,j)] + gp->transition[GP4_INTRON2INTRON]"
target_label CENTRAL_INTRON
endsource
query_label INTRON_STATE
endstate
state INTRON_2 offi="0" offj="1"
source MATCH offj="10" offi="0O"

158

calc="gp->intron [GENOMIC_BASE(target, j)]+GENOMIC_5SS (target, j-7)"
target_label 5SS_PHASE_2
endsource

source INSERT offj="10" offi="O0O"
calc="gp->intron[GENOMIC_BASE(target, j)]+GENOMIC_5SS (target, j-7)"
target_label 5SS_PHASE_2
endsource

source INTRON_2 offj="1"
calc="gp->intron[GENOMIC_BASE(target,j)] + gp->transition[GP4_INTRON2INTRON]"
target_label CENTRAL_INTRON

endsource
query_label INTRON_STATE
endstate
state START !start !special
endstate

state END !end !special
source MATCH
calc="query->segl[i]->transition[GW_MATCH2END]"
endsource
source INSERT
calc="query->seg[i]->transition[GW_INSERT2END]"
endsource
source DELETE
calc="query->segl[i]->transition[GW_DELETE2END]"
endsource
target_label END
query_label END
endstate
#
collapse Intron labels!
#
collapse INTRON_STATE CENTRAL_INTRON
endmatrix

B.6 GeneWise 4:21

3t

#include "dyna.h"

#include "geneparser4.h"
#include "genewisemodel.h"
#include "genewisemodeldb.h"

h}

159

matrix GeneWise4
query type="GENEWISEMODEL" name="query" field:len="len"
target type="GENOMIC" name="target"
resource type="GeneParser4Score *'" name='"gp"
extern name="GW_*" type="int"
extern name="GP4_x" type="int"
state MATCH offi="1" offj="3"
calc="GENOMIC_CDS_POT(target,j)"
source MATCH
calc="query->seg[i]->transition[GW_MATCH2MATCH] +
query->seg[i]->match [GENOMIC_CODON(target,j)]"
endsource
source INSERT
calc="query->segl[i]->transition[GW_INSERT2MATCH] +
query->seg[i]->match [GENOMIC_CODON(target,j)]"
endsource
source DELETE
calc="query->segl[i]->transition[GW_DELETE2MATCH] +
query->seg[i]->match [GENOMIC_CODON(target,j)]"
endsource
source START
calc="query->segl[i]->transition[GW_START2MATCH] +
query->seg[i]->match[GENOMIC_CODON(target,j)]"
endsource

H

phase 0,1,2 introns can calculate whole amino acid for O.

source INTRON offi="1" offj="6"
calc="query->segl[i]->transition[GW_MATCH2MATCH] + gp->transition[GP4_INTRON2CDS]
+ query->seg[i]->match[GENOMIC_CODON(target,j)]+GENOMIC_3SS(target,j-3)+
query->seg[i]->transition[GW_MATCH_BALANCE_3SS]"
target_label 3SS_PHASE_O
endsource
source INTRON offi="1" offj="5"
calc="query->segl[i]->transition[GW_MATCH2MATCH] +
gp->transition[GP4_INTRON2CDS] + GENOMIC_3SS(target,j-2)"
target_label 3SS_PHASE_1
endsource
source INTRON offi="1" offj="4"
calc="query->segl[i]->transition[GW_MATCH2MATCH] +
gp->transition[GP4_INTRON2CDS] + GENOMIC_3SS(target,j-1)"
target_label 3SS_PHASE_2
endsource

160

+*

Sequencing error transitions, at offsets 2 and 4 (covers both frames)

source MATCH offi="1" offj="2"
calc="gp->transition[GP4_DELETE_1_BASE]"
target_label SEQUENCE_DELETION
endsource
source MATCH offi="1" offj="4"
calc="gp->transition[GP4_INSERT_1_BASE]"
target_label SEQUENCE_INSERTION
endsource
query_label MATCH_STATE
target_label CODON
endstate
#
Insert state: does not move along model, produces DNA sequence...
#
state INSERT offi="0" offj="3"
calc="GENOMIC_CDS_POT(target,j)"
source MATCH
calc="query->seg[i]->transition[GW_MATCH2INSERT]
+ query->segli]->insert[GENOMIC_CODON (target,j)]"
endsource
source INSERT
calc="query->seg[i]->transition[GW_INSERT2INSERT]
+ query->seg[i]->insert [GENOMIC_CODON (target,j)]"
endsource
source DELETE
calc="query->segl[i]->transition[GW_DELETE2INSERT]
+ query->segli]->insert[GENOMIC_CODON (target,j)]"
endsource
source START
calc="query->seg[i]->transition[GW_START2INSERT]
+ query->seg[i]->insert[GENOMIC_CODON (target,j)]"
endsource

HH+

phase 0,1,2 introns can calculate whole amino acid for O.

source INTRON offi="0" offj="6"
calc="query->segl[i]->transition[GW_INSERT2INSERT]
+ gp->transition[GP4_INTRON2CDS] +
query->seg[i] ->match [GENOMIC_CODON(target,j)]+
GENOMIC_3SS(target,j-3)+query->seg[i]->transition[GW_INSERT_BALANCE_3SS]"
target_label 3SS_PHASE_O
endsource
source INTRON offi="0" offj="5"

161

calc="query->segl[i]->transition[GW_INSERT2INSERT] +
gp->transition[GP4_INTRON2CDS] + GENOMIC_3SS(target,j-2)"

target_label 3SS_PHASE_1

endsource

source INTRON offi="0" offj="4"

calc="query->seg[i]->transition[GW_INSERT2INSERT] +
gp—>transition[GP4_INTRON2CDS] + GENOMIC_3SS(target,j-1)"

target_label 3SS_PHASE_2

endsource

Sequencing error transitions: because insertions are "for free" usually, we will
only model sequence deletion here. Could produce odd results though!

H H H #

source INSERT offi="0" offj="2"
calc="gp->transition[GP4_DELETE_1_BASE]"
target_label SEQUENCE_DELETION
endsource
source INSERT offi="0" offj="1"
calc="gp->transition[GP4_DELETE_2_BASE]"
target_label SEQUENCE_DELETION
endsource
query_label INSERT_STATE
target_label CODON
endstate
state DELETE offi="1" offj="0"
source MATCH
calc="query->seg[i]->transition[GW_MATCH2DELETE]"
endsource
source INSERT
calc="query->segl[i]->transition[GW_INSERT2DELETE]"
endsource
source DELETE
calc="query->seg[i]->transition[GW_DELETE2DELETE]"
endsource
source START
calc="query->seg[i]->transition[GW_START2DELETE]"
endsource
query_label DELETE_STATE
target_label INSERT
endstate
#
Intron state: Merge phase and match/insert stuff.
#
state INTRON offi="0" offj="1"
source MATCH offj="8"

162

calc="gp->intron [GENOMIC_BASE(target,j)]+
GENOMIC_5SS (target,j-7)+ query->segl[i]->transition[GW_MATCH_BALANCE_5SS]"

target_label 5SS_PHASE_O
endsource

source INSERT offj="8"
calc="gp->intron[GENOMIC_BASE(target,j)]1+

GENOMIC_5SS (target,j-7)+ query->segl[i]->transition[GW_INSERT_BALANCE_5SS]"

target_label 5SS_PHASE_O
endsource

source MATCH offj="9" offi="0"
calc="gp->intron[GENOMIC_BASE(target, j)]+GENOMIC_5SS (target, j-7)"
target_label 5SS_PHASE_1
endsource

source INSERT offj="9" offi="0"
calc="gp->intron[GENOMIC_BASE(target,j)]+GENOMIC_5SS(target,j-7)"
target_label 5SS_PHASE_1
endsource

source MATCH offj="10" offi="0O"
calc="gp->intron[GENOMIC_BASE(target, j)]+GENOMIC_5SS(target,j-7)"
target_label 5SS_PHASE_2
endsource

source INSERT offj="10" offi="OQ"
calc="gp->intron[GENOMIC_BASE(target, j)]+GENOMIC_5SS (target, j-7)"
target_label 5SS_PHASE_2
endsource

source INTRON offj="1"
calc="gp->intron[GENOMIC_BASE(target,j)] + gp->transition[GP4_INTRON2INTRON]"
target_label CENTRAL_INTRON

endsource
query_label INTRON_STATE
endstate
state START !start !special defscore="0"
endstate

state END !'end !special
source MATCH
calc="query->segl[i]->transition[GW_MATCH2END]"
endsource
target_label END
query_label END
endstate
#
collapse Intron labels!
#
collapse INTRON_STATE CENTRAL_INTRON
endmatrix

163

164

Appendix C

The Wise2 Package

C.1 Overview

Wise2 is a package focused on comparisons of biopolymers, commonly DNA sequence and
protein sequence. There are many other packages which do this, probably the best known
being BLAST package (from NCBI) and the Fasta package (from Bill Pearson). There are
other packages, such as the HMMER, package (Sean Eddy) or SAM package (UC Santa
Cruz) focused on hidden Markov models (HMMs) of biopolymers.

Wise2’s particular forte is the comparison of DNA sequence at the level of its protein
translation. This comparison allows the simultaneous prediction of say gene structure with
homology based alignment. There is currently no other package that I know of that contains
this type of algorithm with a full blown gene prediction model and a hidden Markov model
of a protein domain.

Wise2 also contains other algorithms, such as the venerable Smith-Waterman algorithm,
or more modern ones such as Stephen Altschul’s generalised gap penalties, or even experi-
mental ones developed in house, such as dba (see section C.6.1). The development of these
algorithms is due to the ease of developing such algorithms in the enviroment used by Wise2.

Wise2 has also been written with an eye for reuse and maintainability. Although it is a
pure C package you can access its functionality directly in Perl. Parts of the package (or the
entire package) can be used by other C or C++ programs without namespace clashes as all
externally linked variables have the unqiue identifier Wise2 prepended. Java and CORBA
ports are being considered - see C.7 the API section

Finally Wise2, although implemented in C makes heavy use of the Dynamite code gener-
ating language. Dynamite was written for this project, by Ewan Birney. There is a separate
documentation for Dynamite found at http://www.sanger.ac.uk/Software/Dynamite.

C.1.1 Authors

The Wise2 package was principly written by Ewan Birney, who wrote the main genewise
and estwise programs. The protein comparison database search program was written by

165

Richard Copley using the underlying Wise2 libraries. Wise2 also uses code from Sean Eddy
for reading HMMs and for Extreme value distribution fitting,.

However the authorship of Wise2 should be more fairly distributed between the main
authors and the wonderful alpha testers on wise-alpha. Special mention goes to Gos Micklem
and Niclas Jareborg and for their work at testing and their patience in my coding over the last
couple of years. Other notables are (in no apparent order) - Erik Sonnhammer, Doug Rusch,
Steve Jones, Ian Korf, Iftach Nachman, George Hartzell and Lars Arvestead. I believe that
program writing is a 50-50 partnership between the coders and the testers or developers,
and these people have actively helped me make a much better package. The URL for
Wise2 development is http://www.sanger.ac.uk/Software/Wise2 /Programming and there
is a mailing list to keep people up to date.

Please join us!

166

C.2 Introduction for the impatient

It may well be that you want to understand Wise2’s functionality now, without bothering
with the concepts or the installation instructions. This section is designed for you.

Wise2 has four main executable programs using sequence inputs which are designed to
provide access to the main algorithms sensibly. The algorithms you are interested in is
genewise - compare protein information to genomic DNA and estwise - compare protein
information to EST/cDNA DNA.

These are the programs which you might use for this.

genewise a single protein vs a single genomic dna sequence
genewisedb a database of proteins vs a database of genomic dna sequences
estwise a single protein vs a single EST/cDNA sequence

estwisedb a database of proteins vs a database of EST/cDNA sequences
If you see error messages like

Warning Error

Could not open human.gf as a genefrequency file
Warning Error

Could not read a GeneFrequency file in human.gf

This means that the enviroment variable WISECONFIGDIR has not been set up correctly.
You need to find where the distribution was downloaded to (a directory called something
like wise2.1.16b) and inside that directory should be the configuration directory wisecfg.
You need to setenv WISECONFIGDIR to that directory.

In each of the programs the protein can either be a protein sequence or a protein profile
HMM, as made by the HMMER, package (both version 1 and version 2 HMMs can be read).
Any of the databases can have one entry (in which case more efficient routines are used),
and databases of profile HMMs, such as those provided by Pfam, can be used.

The simple running of a protein sequence (drosophila) vs a human genomic sequence,
using genewise is given below. The output comes on stdout, which in normal unix notation
can be redirected to a file.

adnah: [/birney/search]<98>: genewise road.pep hngen.fa

genewise (unreleased release)

This program is freely distributed under a GPL. See source directory
Copyright (c) GRL limited: portions of the code are from separate copyright

Query protein: roal_drome
Comp Matrix: blosum62.bla
Gap open: 12

Gap extension: 2

Start/End local

167

Target Sequence HSHNRNPA

Strand: forward
Gene Paras: human.gf
Codon Table: codon.table
Subs error: 1le-05

Indel error: 1le-05

Model splice? model

Model codon bias? flat

Model intron bias? tied

Null model syn

Algorithm 623

Find start end points: [25,1387][346,3962] Score 87719
Recovering alignment: Alignment recoveredExplicit read offone 94Y%
genewise output

Score 253.10 bits over entire alignment

Scores as bits over a synchronous coding model

Warning: The bits scores is not probablistically correct for single seqgs
See WWW help for more info

roal_drome 88 AQKSRPHKIDGRVVEPKRAVPR(Q DID
A +RPHK+DGRVVEPKRAV R+ D
AMNARPHKVDGRVVEPKRAVSRE DSQ

HSHNRNPA 1867 gaagaccagggagggcaaggtagGTGAGTG Intron 2 TAGgtc
ctacgcaataggttacagctcga<0--—-—- [1936 : 2083]-0>aca
tgtagacggtaatgaagatccaa tta

roal_drome 114 SPNAGATVKKLFVGALKDDHDEQSIRDYFQHFGNIVDINIVIDKETGKK

P A TVKK+FVG +K+D +E +RDYF+ +G I I I+ D+ +GKK
RPGAHLTVKKIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMTDRGSGKK

HSHNRNPA 2093 acggctagaaatgggaaggaggcccagttgctgaaggagaaagegagaa
gcgecatctaatttggtaaacaaaatgaataaagatattattcaggggaa
aatccatgagatttctaactaatcaatttagtaatagtacgtcactcga

roal_drome 163 RGFAFVEFDDYDPVDKVV QKQHQ
RGFAFV FDD+D VDK+V QK H
RGFAFVTFDDHDSVDKIV L:I[att] QKYHT

HSHNRNPA 2240 agtgtgatggcgtggaagAGTAAGTA Intron 3 TAGTTcatca
ggtcttctaaaactaatt <1----- [2295 : 2387]-1> aaaac
gctctactcctecgtgtce gactt

168

roal_drome 187 LNGKMVDVKKALPKQNDQQGGGGGR

+NG +V+KAL KQ R

VNGHNCEVRKALSKQEMASASSSQR G:Glggt]
HSHNRNPA 2405 gagcatggaagctacgagagttacaGGTATGCT Intron 4

tagaagatgactcaaatcgcccgag <1----- [2481 : 2793]

gtccctataacgagaggtttaccaa

. .truncated

The output is as follows
e Parameters of the comparison used (it used default parameters)
e The alignment of a combined homology + gene prediction alignment

The pretty alignment shows the protein sequence on the first line, followed by a line
indicating the similarity level of the match followed by 4 lines representing the DNA se-
quence. The DNA sequence in the exons descending in triplets, each triplet being a codon.
The translation of each codon is shown above it. Between the two protein sequences a line
indicating the similarity of the match is printed. In introns the DNA sequence is not shown
but for the first 7 bases (making the 5’ splice site) and the last 3 bases of the 3’ splice site.
The intervening sequence is indicated in the square brackets. Above each intron, for phase
1 and 2 introns (ones that split a codon) the implied protein to conceptual gene match is
displayed, with the codon in square brackets.

Generally the defaults of the options are reasonably sensible, and for the main part you
should trust them until you become familar with the package.

The following commands show how to run the other programs in a variety of different
modes

C.2.1 Common running modes

Running modes for genewise (genomic to protein comparisons).

NB, the order of the -options are not important, but the protein file must be before the
dna file
genewise protein.pep cosmid.dna

e compares a protein sequence to a DNA sequence (same as the example above)
genewise -hmmer pkinase.hmm cosmid.dna

e compares a protein profile HMM to a DNA sequence
genewisedb protein.pep human.fa

e compares a single protein sequence to a database of DNA sequences
genewisedb -hmmer pkinase.hmm human.fa

e compares a single protein profile HMM to a database of DNA sequences

169

genewisedb -prodb protein.pep -dnas cosmid.dna

e compares a database of protein sequences to a single dna sequence
genewisedb -pfam Pfam -dnas cosmid.dna

e compares a database of protein profile HMMs to a single dna sequence
genewisedb -prodb protein.pep human.fa

e compares a database of protein sequences to a database dna sequences - beware, this
will take a while!

genewisedb -pfam Pfam human.fa

e compares a database of protein profile HMMs to a database of single sequences -
beware, this will take a while

The estwise (protein to est/cDNA comparisons) have precisely the same running modes.
Listed for completeness below
estwise protein.pep singleest.fa

e compares a protein sequence to a DNA sequence (same as the example above)
estwise -hmmer pkinase.hmm singleest.fa

e compares a protein profile HMM to a DNA sequence
estwisedb protein.pep est.fa

e compares a single protein sequence to a database of DNA sequences
estwisedb -hmmer pkinase.hmm est.fa

e compares a single protein profile HMM to a database of DNA sequences
estwisedb -prodb protein.pep -dnas singleest.fa

e compares a database of protein sequences to a single dna sequence
estwisedb -pfam Pfam -dnas singleest.fa

e compares a database of protein profile HMMs to a single dna sequence
estwisedb -prodb protein.pep est.fa

e compares a database of protein sequences to a database dna sequences - beware, this
will take a while!

estwisedb -pfam Pfam est.fa

e compares a database of protein profile HMMs to a database of single sequences -
beware, this will take a while

C.2.2 Common options to change

There are a number of common options that can be used. Options can be issued anywhere
on the command line.

-help help on options

-version show version and build date (useful for bug reporting)

170

-quiet remove update line on stderr and informational messages
-silent suppress all messages to stderr

-report number for database searching, issue a report on stderr every number of compar-
isons (useful to ensure it is actually running)

-trev genewise and estwise - use the reverse strand of the DNA
-both genewise and estwise - use both strands of the DNA

-u position The start point in the DNA sequence for the comparison
-v position The end point in the DNA sequence for the comparison

-init [default/global/local/wing] (see section C.4.3) For protein sequences the default is to
be local (like smith waterman). For protein profile HMMs, the default is read from the
HMM - the HMM carries this information internally. The global mode is equivalent
to to the Is building option (the default in the HMMer2 package). The local mode is
equivalent to to the fs building option (-f) in the HMMer2 package. The wing model
is local on the edges and global in the middle.

-gene file change gene model parameters. Currently we have either human (human.gf) or
worm (worm.gf)

-genes Qutput option for genewise algorithms - show an easy to read gene structure report

-trans Output option for genewise algorithms - provide an automatic translation of the
predicted gene as a fasta format

-cdna Output option for genewise algorithms - provide an automatic construction of the
spliced dna sequence as a fasta format

-ace Output option for genewise algorithms - provide an ACeDB subsequence model output

C.2.3 Common gripes, Cookbook and FAQ

It hasn’t given me a complete gene prediction

The genewise algorithm does not attempt to predict an entire gene, from Met to STOP. It
tries to predict regions which are justified with the protein homology and no more.
This does mean you can be confident of the predictions that genewise makes

How can I get rid of the annoying messages on stderr?

Some people like them. use -quiet

171

It goes far too slow

Well... T have always had the philosophy that if it took you over a month to sequence a gene,
then 4 hours in a computer is not an issue. However, in particular for times when people
are using genewise simply to confirm that the a gene prediction is correct with respect to a
protein sequence (sometimes the notional translation!) it is taking too long. In many cases
you will know the rough region to compare the sequence to - if so use the -u and -v options
to truncate your DNA at the correct points (the output will remain in the coordinates of
the full length sequence).

For database searching there is the option of using SMP boxes efficiently with the
pthreads port.

There are also a number of heurisitcs that use the BLAST program to provide the speed.
These heuristics are found in the perl/scripts directory, called halfwise and blastwise. The
scripts have extensive installation instructions, and I completely expect people to edit them
for their system.

There is functionality for providing a heurisitic bound to the space the algorithm explores
in the alignment. This is done via the potential gene option in genewise. It is not well tested
out.

I have a new cosmid. What do I do?

One thing to do is to use the halfwise script available in the perl/scripts package. Another
is to use the blastwise script.

segmentation fault = bottle of champagne

You’ve found a bug? I am really keen to hear from you. I want to hear about the problems
you’ve got. Each year I award my best tester with a prize. This year (1998/99) it will be a
bottle of champagne. Send a mail to birney@sanger.ac.uk for your prize!

Can I modify or use the Wise2 source code?

Of course you can - it is Open Source code, licensed under the Gnu Public Licensed (GPL’d),
like emacs or gce. For more information on this License read the GNULICENSE file in the
distribution.

As well as using the source code, you can if you like contribute directly back into the
Wise2 source code. Get in contact with me if you would like to do this.

Making a single gene prediction on the basis of a close homolog

This is perhaps the easiest use of genewise. The basic formulation is

%genewise protein.fasta dna.fasta

To get out computer parsable formats of the gene prediction try -genes or -gff or -ace. To

get out the protein translation in one go use -trans

172

Using non human/worm/fly genomic DNA

At the moment, genewise only has gene frequency files for human and worm sequences. The
production of these files are based around somewhat annoying and non portable script. In
any case, making a dataset requires alot of effort as it needs to be clean

The consequence of all this is that the species that you are comparing against (eg,
hamster) may not have a gene frequency (.gf) file. In which case you basically have two
options

e Use a close species - ie, for hamster, use human or rat

e Use -splice flat -intron tied which switches the splice model to “start at GT, finish at
AG” with no other information

Working with non spliced (bacterial) genomic DNA

Use genewise with the -alg 333 or -alg 333L options. This has all the outputs of genewise
but does not consider introns. The -gene option and -intron, -splice options are all pointless.
The only options to worry about is the -subs and -indel for substitution and insertion and
deletion errors respectively.

Working with ESTs

Use the estwise/estwisedb programs

Getting out the protein translation

You have three approaches for getting out protein translations

e -pep available on all programs, provides the translations moving over frameshifts and
introns

e -trans available on genewise/genewisedb provides the translations across introns but
breaks on frameshift errors. This means that the translations can be correctly placed
on the genomic DNA provided

e -mul available only on estwisedb when a HMM is used, provides a protein multiple
alignment of all the DNA hits derived against the HMM match
Using Pfam

Pfam can be used with the genewisedb or the estwisedb program with the -pfam flag. Usually
you want to also use the -dnas (single DNA sequence flag) as well. An example run would
be

genewisedb -pfam Pfam -dnas myseq.fa

If you have set up the HMMER package to work with Pfam using the enviroment variable
HMMERDB, Wise2 will also pick that up as well.

173

Optimising alignment speed

Wise2 assummes you have a rather small amount of memory (20 MBytes). When it is
making an alignment, if it cannot make the explicit matrix in that size (being length of
query X length of target x state number) it has to move to linear memory (length of query
x state number). The linear memory is much slower (it is the one that starts with “Find
start end points”).

If you have more memory than 20 Mbytes, then it is really sensible to up the number,
using the -kbyte option. For a machine with say 64Mbytes physical memory I would suggest
putting an upper limit of 50Mbytes with -kbyte. This does assumme you are not using it
for anything else.

You can change the compile time default in basematrix.h if you can’t be bothered to
remember to change it every time

Optimising search speed

Make sure you have compiled with optimisation. If you are using the make all from the top
level you have.

If you have a large SMP box, you can compile with pthread support. The searches work
on SGI/Compaq alpha/Suns. There are some issues about some architecture ports, which
I need to expand somewhere in the docs, but first off, just try compiling with pthreads (see
section later) and using pthreads in the search.

For real, order-of-magnitude speed ups, you are going to have to use a heuristic stage
before the actual database search - in other words, using BLAST. I dislike this, but it is
fact of life, and there are two scripts in perl/scripts, halfwise and blastwise, which help you
do this. Both scripts use Steve Chervitz excellent perl Blast parser, which is available in
bioperl.

e halfwise is for the Pfam search. You need to pick up the halfwise database (done for
a specific release of Pfam) from the ftp site.

e blastwise is for post processing blast results. It uses the Wise2 perl port to do this,
so you have to go make perl at the top level

halfwise is a pretty sensible, self contained script. blastwise I expect people to modify
heavily to get to work as wished on their systems. Please read it, and add in your own
heuristics (eg, figuring out start/end points). I am very interested in better heuristics in
this area.

174

C.3 Installation

Installation is quite easy as long as you are au fait with standard UNIX utilities. You should
ftp to ftp.sanger.ac.uk, log in as anonymous and move to pub/birney/wise2. You can then
pick up the release - T would pick up the latest numbered in that directory. (NB, if you want
to be working in the development release, go to the pub/birney/wise2/alpha directory, but
be sure to read the html help at http://www.sanger.ac.uk/Software/Wise2/Programming).

C.3.1 Building the executables

The release is distributed as a gzipped, tar file. To unzip and untar in a single command
you can type

%zcat wise2.1.12b.tar.gz | tar -xvf -

This will untar into a directory called ’wise2.1.12b’ (of course, your version of Wise2
might be different).

Once you have made the tar file, it should build completely cleanly as long as you have
an ANSI C compiler. If in doubt, just assumme that it is, but in particular sun users might
want to use gec (gnu cc) as the sun cc compiler installed by default is often non-ANSI. To
change the cc compiler you only need to edit the line in the top level makefile called CC =
cc to CC = gcec.

To build the package type

%cd wise2.1.12b
Y%make all
%make bin

The executable files will now be in wise2.1.12b/bin
I am interested in all compiler errors, and consider most of them to be bugs (which
means if you report them you could be on the champagne list!)

C.3.2 Environment set up

The Wise2 package needs to know where a number of files are (eg, the gene predicition
statistics). These files are in the directory called wisecfg/. You will need to setenv WISEC-
ONFIGDIR to this directory (you can of course move the directory elsewhere, and set
WISECONFIGDIR to it).

C.3.3 Building with thread support (for SMP machines)

To build with pthread support you must switch on some extra compile time options before
you type make all. These are found at the top of the makefile in the top directory, and it is
pretty clear from the makefile what to do. See the section C.5.5 for information on how to
run pthreaded code.

175

C.3.4 Building Perl port
To build with Perl support you need to go

make perl

at the top level. This should build everything correctly. The only problem is if you have
a Solaris or *BSD box. If so you need to compile with -fpic or -fPIC depending on your
compiler. This needs to go into the top level CFLAGS line. In addition, in the out-of-the
box perl distribution for solaris they built it with a different compiler to the one it comes
with (idiots!), so the perl generated makefile has the wrong -fpic option. You need to edit
that by hand.

176

C.4 Concepts and conventions

The algorithms used in Wise2 have a strong theoretical justification, which is useful, though
not necessary to understand. For example to understand what most of the options do in
the gene model part of genewise you need to understand the algorithm.

C.4.1 Technical Approach

You can miss this section which describes some of the theoretical background of the work.
The algorithms are based around a ’Bayesian’ formalism that has been established in Bioin-
formatics by such people as David Haussler, Gary Churchill, Anders Krogh, Richard Durbin,
Sean Eddy and Graeme Mitchinson, as well as many others. In this formalism there is as-
sumed to be a generative model of the process that you are observing, which has probabilities
to generate a number of different observations. Deciding whether this model fits a previ-
ously unseen piece of data or not is the first decision to make. Given that the data fits, a
second question is what actual processes were the most likely to produce the observed data.
Both these questions fit naturally into a Bayesian framework where the result is a posterior
probability having seen the data.

For people coming from a bioinformatics/biology background where the last paragraph
may seem very confusing, it is only because this a different (and well established) field
with their own terminology to describe the algorithms. In fact the methods a very close
to standard techniques presented in bioinformatics. The generative models that we use are
the models that are implied by the standard bioinformatics tools. For example, the Smith-
Waterman algorithm implies a process of evolution with certain probabilities for seeing say
an Leucine to Valine substitution and certain probabilities for creating and extending a
insertion (gap). As you can see you can almost replace the word ’probability’ with ’score’
to return to the standard method, and mathematically it is almost that easy: the score is
related to the log of the probability.

Perhaps a better known example is the relationship between the old profile technology,
as developped by Gribskov and Gibson along with others, and its probabilistic partner,
profile Hidden Markov Models (profile HMMs). In terms of the actual algorithm these two
methods are very similar: it is simply that the profile HMM has a strong probabilistic model
underlying it, allowing well established techniques to be used in its generation.

C.4.2 Introduction to Models in Wise2

Wise2 contains a number of algorithms, each of which are based around one of two biological
models.

genewise comparison of a related protein to genomic DNA

estwise comparison of a related protein to cDNA (or ESTs)

This models themselves are built up from two component models, one for how protein
residues are matched, and one for the gene prediction process. For the model of protein
residues I have taken the established models of profile HMMs. The model of splicing and

177

translation we developed with an eye to biology. It has many of the features of the GenScan
model [chris Burge]. The model of translation (for estwise) is simple.

C.4.3 Model

The main model to understand is the genewise model (called genewise 21:93 for reasons
discussed below). It is this model which the other models are based on - for the estwise
models, by removing the intron generating part of the models, and for the other genewise
algorithms by making approximations to genewise21:93.

A diagramatic representation of genewise21:93 is shown in the file genewise21.ps

The central part of the model is the Match-Insert-Delete trio common to both profile
HMMs (such as HMMER models) and the smith waterman model. This trio of states is
one model ’position’ in the profile HMMs, where each model position contains a Match,
Insert and Delete states. This means to interpret the figure of the model in the way the
profile HMM models are usually displayed, you have to imagine a series of these states
concatonated together. I imagine the model growing as stack of pages out from the figure,
each new page being a new position in the profile HMM.

The first addition to the model are the frameshifting transitions, shown in with x4 boxes
above them. These occur whenever there is a transition which produces a codon: in effect
all transitions that terminate at either match or insert states. There are four frameshifting
transitions in each Notice that there are frameshifting transitions from Delete to Match,
which is equivalent to saying that a frameshift occurs on the codon just after a run of
deletions in the model. It is these sorts of frameshifts that are not well modelled by other
algorithms.

The second addition involves the intron emitting states found in the green boxes. Each
intron is modelled by having 5 regions, two of which are fixed length. The five regions are

e 5SS The splice site consensus region at the 5’ end of the intron. Fixed length
e The central part of the intron that constitutes the major part of the intron

e The polypyrimidine tract (a region of C/T bias upstream of the 3’SS)

e an optional joining region between the poly-py tract and the 3’SS

e 3’SS The splice site consensus region at the 3’ end of the intron. Fixed length

Notice that there is no branch site, because we could not produce a good enough sta-
tistical model for it.

This model can be modelled using 3 states, with the fixed length regions being accom-
modated using transitions which emitted the appropiate length of sequence.

Each of the intron models must be duplicated 3 times to account for the 3 different phases
of introns (each phase being a different placement of the intron relative to the codon), so
we need to duplicated these 3 states at least 3 times. In addition, if this intron lies in an
insert state, ie, the surrounding protein sequence in the exons are being produced by an
insert state in the underlying protein profile HMM, so we have to maintain that information
across the intron. This means that we need to duplicate the intron states 6 times in total:
3 times for the different phases and twice on top of that for the different protein states this
intron could lie in.

178

Parameterisation of the model

The model presented above seems biological sensible, but how on earth are we going to
parameterise it? Are we honestly going to let a user try to juggle the forty odd parameters
inherent to this model? Clearly not. The approach we have taken to this is to provide
set statistics derived from a maximum likelhood approach from known genes - this requires
virtually no training - and then give switches to the user to turn on and off a variety of
different parts of the algorithm.

The model is parameterised as probabilities, but actually calculated in log space. If
you look in the code you would find that there is alot of switching between the two spaces:
these are provided by the functions Probability2Score and Score2Probability (notice that
the ’Score’ here is very specific to the Wise2 package - you can’t put any old score into
Score2Probability to get a probability out as it depends on how that Score was converted
into Log space).

The protein model

For the emissions of the actually underlying amino acids when we have a profile HMM, we
are lucky - we can take the probabilies defined in the HMMer2 models. This is completely
natural and means I don’t have to worry about deriving probabilities for the profile HMMs

In the case where we have a protein sequence, I somehow have to get to a profile HMM
type representation. Thankfully the smith waterman algorithm in terms of architecture is
very close to a profile HMM, and so the only problem is mapping the usual scores used in the
smith waterman algorithm to probabilites. This is quite hard to do correctly, but I've hacked
it by knowing that the blosum62 matrix is given in half bits, in other words using a 2*log2
mapping from probability space to the give scores in the matrix. By reversing this process
one can get pretty good emission probability for the amino acids. I now assumme that the
gap penalities are as if they were written in half bits. A certain amount of normalisation
is required to make sure things add to one, and eh voila - one profile HMM from a single
sequence.

Start End points

One interesting issue about the protein model is how the start end points work. For proteins
it is obvious that for distant homology, it needs to be local - ie can start or finish anywhere
in the sequence. For protein HMMs it is less clear. If a HMM really represents a single
domain then global start end points are correct. However, many times local start end points
are useful.

The HMMer2 models internally carry whether this HMM is has global or local (or indeed
any type) of start end policy.

However, the genewise algorithm is quite dependent on the models being global to
effectively predict introns in domains, when the looping algorithm (multiple copies of the
domain) is present. This is because nearly always in a local HMM, an intron can be better
modelled as the end of the domain half way through and the start of a new domain half
way through, further down the sequence, thus not predicting the intron. To get clean intron
prediction, one needs to go to global mode. However, using global mode forces the start

179

and end point of the model to be really correct, and in some cases (in particular some
Pfam models) this makes very incorrect results on the edges of the domain. To combat this
another type of start end policy is introduced - wing. This has a local start mode for the
first 15 model positions and end mode for the last 15 model positions, but global in the
central part of the model.

In the programs one can set four types of start end policy

e default local for protein, and the HMM default for HMMs
e local local

e global global

e wing local on the edges, global in the middle

The gene model

For the emissions of the gene model we had to do more work. What we did was to make
a database of known genes, with annotated gene structure. These genes then provided a
raw set of counts for particular parts of the gene structure. It is these raw counts which are
stored in the .gf files. (we store the raw counts because one might want to do something
clever for deriving the probabilities of certain things using these counts. Counts are the
basis for the probability derivations, not frequencies).

The only issue here is what to do with the splice sites. We were well aware that the
information in the splice sites is considerably more than just the simple position matrix. We
chose to use a single branching (biased) decision tree, in which each branch either carried
along the main trunk of the tree or ended in a leaf, each leaf representing a consensus
build from A, T,G,C or N for any character. This decision tree could be easily constructed
by chosing the most common consensus (where N is allowed where a position is better
represented by N than any specific residue), and then removing that consensus from the
list of observed consensi, and then repeating the process. This also gave us the same basis
(counts) for each consensus used in the splice sites.

One additional twist came about in the splice site development. The splice sites overlap
between their consensi and the coding sequence region. These overlaps need to be treated
correctly: the problem is that probabilistically we have two processes wanting to account
for the same DNA bases. This was solved by assumming conditional independence between
the two processes. A more formal mathematicall approach can be found in the documented
called ’probappendix’.

The NULL model

The probability of the model has to compared to an alternative model (in fact to all alterna-
tive models which are possible) to allow proper Bayesian inference. This causes considerable
difficulty in these algorithms because from a algorithmical point of view we would probably
like to use an alternative model which is a single state, like the random model in profile-
HMMs, where we can simply ’log-odd’ the scored model, whereas from a biological point of
view we probably want to use a full gene predicting alternative model.

180

In addition we need to account for the fact that the protein HMM or protein homolog
probably does not extend over all the gene sequence, nor in fact does the gene have to be
the only gene in the DNA sequence. This means that there are very good splice sites/poly-
pyrimidine tracts outside of the 'matched’ alignment can severely de-rail the alignment.

Basically we are in trouble with the random model parts of this problem.

The solutions is different in the genewise21:93 compared to the genewise 6:23 algorithms

e In 6:23 we force the external match portions of the homology model to be identical to
the alternative model, thus cancelling each other out. This is a pretty gross approxi-
mation and is sort of equivalent to the intron tie’ing. It makes things algorithmically
easier... However this means a) 6:23 is nowhere near a probabilistic model and b) you
really have to used a tied intron model in 6:23 otherwise very bad edge effects (final
introns being ridiculously long) occur.

e In 21:93 we have a full probabilistic model on each side of the homology segment. This
is not reported in the -pretty output but you can see it in the -alb output if you like.
Do not trust the gene model outside of the homology segment however. By having
these external gene model parts we can use all the gene model features safe in the
knowledge that if the homology segments do not justify the match then the external
part of the model will soak up the additional intron/py-tract/splice site biases.

However this still does not solve the problem about what to compare it to.
There are two approaches to the comparison

flat The homology model is scored against a single state 0.25 emission model. This is
effectively "how likely is this DNA segement has any genes some with this homologous
protein/HMM in it’ for 21:93. It is, unsurprisingly, a massive ’yes’ for nearly all
biological DNA, and though a valid number in terms in bayesian inference pretty
biologically uninteresing. There is also no decent interpretation of partial scores (ie,
scores per domain).

syn For synchronous model pretends that there is an alternative model of a complete gene
which is dragged into the coding part of the gene when the homology model is in
the coding part. This is not probabilistically valid, but gives better results and inter-
pretable scores for partial regions, ie domain by domain. (in fact, very similar scores
to protein sequences). However I'm worried about what I am doing It would be much
better to get some mathematically justification for this.

C.4.4 Algorithms

The algorithms are then based around this central model, but have a variety of features
removed from it progressively, either due to biological constraints (bacterial sequences have
no introns, so there is no need to model them) or to speed up the the algorithm.

Algorithms are named in two parts, descriptive-word state-number:transition-number.
The descriptive word indicates the biological model. At the moment there are 2 such bio-
logical models in the package

genewise comparisons of protein information to genomic DNA

181

estwise comparisons of protein information to cDNA /bacterial DNA (no introns)
There are many other models being worked on in development

sywise comparisons of genomic DNA to genomic DNA

parawise comparions of cDNA to cDNA

The state-number:transition-number is the number of states in the model followed by
the number of transitions. GeneWise 21:93 is the most complicated model, with 21 states
and 93 transitions. The number of states is directly proportional to the memory usage of
the program. The number of transitions is roughly proportional to the CPU time of the
algorithm. For comparison the standard smithwaterman algorithm is a 3:7 algorithm (3
states, 7 transitions). These numbers are per compared residue - so as genomic DNA is
some 1,000 fold longer than protein sequences on average, there is an additional massive
CPU load.

Finally the algorithms can be looping or not. A Looping algorithm is one in which the
protein information can be repeated in the DNA target sequence. This could either be due
to mutliple copies of the gene in the DNA sequence or multiple copies of a domain in a single
gene. Looping algorithms are given a 'L’ tag. By default, when you use profile-HMMs you
use a looping model

For the genewise family the following algorithms are available.

genewise 21:93 The largest genewise algorithm which also contains a complex flanking
model to prevent inappropiate gene predictions

genewise 21:93L The same algorithm with a looping mode. This allows a protein HMM
(nearly always a HMM) to match multiple times a DNA sequence. This could be due
to multiple domains in a single gene or multiple genes in a DNA sequence with the
domain. The algorithm doesn’t distinguish between these possibilities.

genewise 6:23 This is a smaller, (and so faster) algorithm. The approximations made
compared to genewise 21:93 are that there is no poly-pyrimidine tract in the intron,
and that introns from match states are not distinct from introns in insert states.

A side effect of these approximations is that 6:23 is much more robust with respect
to unmasked repeats and strange composition effects found in the DNA sequences.

genewise 6:23L The same algorithm as 6:23 but in looping mode

genewise 4:21 The smallest algorithm in the genewise family, with an additional approx-
imation of not distinguishing between introns of different phases. This has been
compiled for short protein sequences only - effectively only profile-HMMs.

For the estwise family the following algorithms are available

estwise 3:33 The largest estwise algorithm, modelling potential insertion or deletions through-
out the alignment of the protein information to the DNA sequence.

estwise 3:33L The same algorithm but in looping mode.

estwise 3:12 A slimmer algorithm designed for faster db searching. The algorithm models
enough insertions or deletions of DNA bases to 'ride through’ a indel region without
too much penalty, even if it doesn’t model the most correct one.

182

C.4.5 Scores

The scoring system for the algorithms, as eluded to earlier is a Bayesian score. This score is
related to the probability that model provided in the algorithm exists in the sequence (often
called the posterior). Rather than expressing this probability directly I report a log-odds
ratio of the likelhoods of the model compared to a random model of DNA sequence. This
ratio (often called bits score because the log is base 2) should be such that a score of 0
means that the two alternatives it has this homology and it is a random DNA sequence are
equally likely. However there are two features of the scoring scheme that are not worked
into the score that means that some extra calculations are required

e The score is reported as a likelhood of the models, and to convert this to a posterior
probability you need to factor in the ratio of the prior probabilities for a match.
Because you expect a far greater number of sequences to be random than not, this
probability of your prior knowledge needs to be worked in. Ofthand sensible priors
would in the order of probability that there is a match being roughly proportional to
the database size.

e The posterior probability should not merely be in favour of the homology model
over the random model but also be confident in it. In other words you would want
probabilities in the 0.95 or 0.99 range before being confident that this match was
correct.

These two features mean that the reported bits score needs to be above some threshold
which combines the effect of the prior probabilities and the need to have confidence in the
posterior probability. In this field people do not tend to work the threshold out rigorously
using the above technique, as in fact, deficiencies in the model mean that you end up choosing
some arbitary number for a cutoff. In my experience, the following things hold true: bit
scores above 35 nearly always mean that there is something there, bit scores between 25-
35 generally are true, and bit scores between 18-25 in some families are true but in other
families definitely noise. I don’t trust anything with a bit score less than 15 bits for these
DNA based searches. For protein-HMM to protein there are a number of cases where very
negative bit scores are still 'real’ (this is best shown by a classical statistical method, usually
given as evalues, which is available from the HMMer2 package), but this doesn’t seem to
occur in the DNA searches.

I have been thinking about using a classical statistic method on top of the bit score,
assumming the distribution is an extreme value distribution (EVD), but for DNA it becomes
difficult to know what to do with the problem of different lengths of DNA. As these can
be wildly different, it is hard to know precisely how to handle it. Currently a single HMM
compared to a DNA database can produce evalues using Sean Eddy’s EVD fitting code but,
I am not completely confident that I am doing the correct thing. Please use it, but keep in
mind that it is an experimental feature.

183

C.5 Principle Programs

The main programs are genewise, genewisedb, estwise, estwisedb. These all have basically
the same running mode

%genewise protein-file dna-file

A number of options are common to these programs from the point of view of how they
run

-help verbose help of all options

-version show version and compile info

-silent No messages on stderr, whether reports or warnings

-quiet No reports or information messages on stderr

-erroroffstd No warning messages to stderr, but reports are still issued

-errorlog [file] Log warning messages to file (useful for sending to me)

You will probably want to read the C.2.1 common modes of usage section as well

C.5.1 genewise

Genewise compares a protein sequence or a protein profile HMM to a dna sequence

genewise - options: dna/protein

-u start position in dna

-v end position in dna

-trev Compare on the reverse strand

-tfor (default) Compare on the forward strand

-both Both strands

-tabs Report positions as absolute to truncated /reverse sequence
-s start position in protein - has no meaning for HMMs

-t end position in protein - has no meaning for HMMs

-gap [no] default [12] gap penalty to use for protein comparisons. This is used to estimate
a probability per gap

-ext [no] default [2] extension penalty to use for protein comparisons. This is used to
estimate a probability for an extension of a gap

-matrix default [blosum62.bla] Comparison matrix. Must be in half-bit units (blosum62
is in half bits). This is used to estimate a probability of amino acid comparisons

184

-hmmer Protein file is HMMer 2 HMM
-hname Use this as the name of the HMM.

-init [default/global/local/wing] (see section C.4.3) For protein sequences the default is to
be local (like smith waterman). For protein profile HMMs, the default is read from the
HMM - the HMM carries this information internally. The global mode is equivalent
to to the ls building option (the default in the HMMer2 package). The local mode is
equivalent to to the fs building option (-f) in the HMMer2 package. The wing model
is local on the edges and global in the middle.

genewise - options: gene model

-codon [codon.table] Codon file. The default is for the universal code, but you can supply
your own

-gene [human.gf] Gene parameter file. Provide statistics for different gene models. Current
human.gf and worm.gf are provided. The statistics are basically too complicated to
explain here.

-subs [le-05] Substitution error rate, ie the assummed probability of base substitutions in
the sequencing reaction/assembly that provided the DNA sequence. The substituion
error is what dominates the penalty for stop codons - a higher error rate implies a
smaller penalty for stop codons

-indel [le-05] Insertion/deletion error rate, ie the assummed probability of indel events in
the sequencing reaction/assembly that provided the DNA sequence. The indel rate is
what provides the penalty for frameshift errors. A higher error rate implies a smaller
penalty for indels.

-cfreq [model/flat] Using codon bias or not? [default flat] - a reasonably pointless option
now, as it only applies when using -syn flat. If codon bias is modelled, then common
codons score more than uncommons one for the same amino acid.

-splice [model/flat] Using splice model or GT/AG? [default model] - use the full blown
model for splice sites, or a simplistic GT/AG. Generally if you are using a DNA
sequence which is from human or worm, then leave this on. If you are using a very
different (eg plant) species, switch it off.

-intron [model/tied] Use tied model for introns [default tied] - whether intron base distri-
bution effects the parse. Because varying GC content and/or repeats can seriously
drag the algorithm away from correct parses when intron base distribution is used,
this is usually switched off.

-null [syn/flat] Random Model as synchronous or flat [default syn] - whether to use a null
model which is a simple base distribution (called flat), or imagine that the viterbi
path is being compared to a gene based null model that is making all the same
gene exon/intron boundaries (synchronous). The latter is basically a hack which
demphaises the gene prediction machinery and tries to trust the homology machinery.
(not ideal!)

185

-pg [file] Potential Gene file (heurestic for speeding alignments). The potential gene file
should look like

pgene # stands for potential gene

ptrans # stands for potential transcript

pexon <start-in-dna> <end-in-dna> <start-in-protein> <end-in-protein>
pexon <start-in-dna> <end-in-dna> <start-in-protein> <end-in-protein>
endptrans

<another ptrans if you like>

endpgene

When this file is read in, it provides a series of start/end in dna and protein sequences
around which is drawn an envelope of possibly alignment area. The alignment is then
calculated only in this area

This feature has not been well tested yet. any potential bugs reported in are very
useful.

-alg [623/623L/2193/2193L] Algorithm used [default 623/623L] You should read the section
on algorithms (C.4.4). Basically 623 and 623L are cheaper computationally and more
robust with respect to repeats etc. 2193 and 2193L are much more expensive, more
sensitive to changes in parameters but potentially more accurate.

-kbyte [2000] Max number of kilobytes used in main calculation. Indicates how much
memory can be used for the dynamic programming calculation.

genewise - options: output

All output options can be used at the same time. They are separated by the value to -divide
option

-pretty show pretty ascii output, as see in Section 2

-pseudo For genes with frameshifts, mark them as pseudo genes

-genes show gene structure - as

Gene 1
Gene 1386 3963

Exon 1386 1493
Exon 1789 1935
Exon 2084 2294
Exon 2388 2480
Exon 2794 2868
Exon 3073 3228
Exon 3806 3963

//

-para show parameters

186

-sum show summary output. Shows output as

Bits Query start end Target start end idels introns
230.57 roal_drome 26 347 HSHNRNPA 1386 3963 0 6

This is useful for parsing, but probably if you want to do something like that you
want to get hold of the APT directly.

-cdna show cDNA Show a fasta format of the predicted cDNA sequence

-trans show protein translation Show a fasta format of the predicted protein sequence.
Breaks on frameshifts

-pep show predicted peptide. Shows predicted peptide, including frameshifts, which are
X’s in the proteins

-ace ace file gene structure - ACeDB subsequence model

Sequence HSHNRNPA
subsequence HSHNRNPA.1 1386 3963

Sequence HSHNRNPA.1

CDS

CDS_predicted_by genewise 0.00
source_Exons 1 108
source_Exons 404 550
source_Exons 699 909
source_Exons 1003 1095
source_Exons 1409 1483
source_Exons 1688 1843
source_Exons 2421 257

-gff Gene Feature Format file - useful for programs which also support GFF

HSHNRNPA GeneWise cds_exon 1386 1494 0.00 + O
HSHNRNPA GeneWise cds_exon 1789 1936 0.00 + O
HSHNRNPA GeneWise cds_exon 2084 2295 0.00 + O

-gener raw gene structure - a debugging output

-alb show logical AlnBlock alignment - a debugging output
-pal show raw matrix alignment - a debugging output
-block [50] Length of main block in pretty output

-divide [//] divide string for multiple outputs

C.5.2 genewisedb

genewisedb is the database searching version of genewise. It takes a database of proteins
and compares it to a database of dna sequences

187

genewisedb - search modes

-protein [default] single protein. Protein is a single protein sequence in fasta format
-prodb protein fasta format db. Protein is a database of protein sequences in fasta format
-pfam pfam hmm library. Protein is a database of HMMer2 models as a single file

-pfam2 pfam old style model directory (2.1). Protein is a directory of HMMs with a file
called HMMs in it indicating which HMMs there. This is how Pfam databases 2.1
and lower were distributed

-hmmer single hmmer HMM (version 2 compatible). Protein is a single HMM

-dnadb [default] dna fasta database. The DNA sequence is a fasta format file with multiple
sequences

-dnas a single dna fasta sequence. The DNA sequence is a single sequence in fasta format

genewisedb - protein comparison options

-gap [12] gap penalty - see genewise option

-ext [2] extension penalty - see genewise option

-matrix [blosum62.bla] Comparison matrix - see genewise option

-hname For single hmms, use this as the name, not filename

genewisedb - gene model options
Many of these options are identical to the genewise options listed above

-init [default/global/local/wing] (see section C.4.3) For protein sequences the default is to
be local (like smith waterman). For protein profile HMMs, the default is read from the
HMM - the HMM carries this information internally. The global mode is equivalent
to to the ls building option (the default in the HMMer2 package). The local mode is
equivalent to to the fs building option (-f) in the HMMer2 package. The wing model
is local on the edges and global in the middle.

-codon [codon.table] Codon file -see genewise option

-gene [human.gf] Gene parameter file - see genewise option

-subs [le-05] Substitution error rate - see genewise option

-indel [le-05] Insertion/deletion error rate - see genewise option

-cfreq [model/flat] Using codon bias or not? [default flat] - see genewise option

-splice [model/flat] Using splice model or GT/AG? [default model] - see genewise option
-intron [model/tied] Use tied model for introns [default tied] - see genewise option

-null [syn/flat] Random Model as synchronous or flat [default syn] - see genewise option

188

-alg [421/623/2193/] Algorithm used for searching [default 623] The is the algorithm to
use for the database search part of the process. 421 is the cheapest algorithm but
can only be used with HMMs or small proteins as it has been compiled for a limited
size of query. Looping algorithms (623L and 2193L) are not permitted as it is hard
to interpret the results

-aalg [623/623L/2193/2193L] Algorithm used for alignment [default 623/623L] This is the
algorithm used for the alignment of the matches. The default for proteins is 623,
whereas for HMMs it is the looping model 623L.

-kbyte [2000] Max number of kilobytes used in alignments calculation. Maximum amount
of memory allowed in the alignment process.

-cut [20.00] Bits cutoff for reporting in search algorithm. Comparisons scoring greater than
this cutoff are aligned.

-ecut [n/a] Evalue cutoff only for searches which can calculate evalues

-aln [50] Max number of alignments (even if above cut). A cutoff for the number of align-
ments, whatever their bits score.

-nohis Don’t show histogram on single protein/hmm vs DNA search. On a single protein
(or hmm) vs DNA database search an on-the-fly evalue score is calculated. This
disables the production of a histogram

-report [0] Issue a report every x comparisons (default 0 comparisons). Mainly for debug-
ging

genewisedb output - for each comparison

For each alignment made by genewisedb you can output it as a number of different options
-pretty show pretty ascii output, as in genewise

-pseudo For genes with frameshifts, mark them as pseudo genes
-genes show gene structure, as in genewise

-para show parameters, as in genewise

-sum show summary output, as in genewise

-cdna show ¢cDNA, as in genewise

-trans show protein translation, as in genewise

-ace ace file gene structure, as in genewise

-gff Gene Feature Format file, as in genewise

-gener raw gene structure, as in genewise

-alb show logical AlnBlock alignment, as in genewise

-pal show raw matrix alignment, as in genewise

-block [50] Length of main block in pretty output, as in genewise

-divide [//] divide string for multiple outputs, as in genewise

189

genewisedb output - complete analysis

Each alignment produces a notional gene prediction. At the end of the output, these gene
predictions can be displayed together. This only works for -pfam or -prodb and -dnas
options, ie a database of protein information vs a single dna sequence

In the future it is hoped that additional options (such as merging consistent gene pre-
dictions) will operate before these outptus are made

-ctrans provide all translations
-ccdna provide all cdna
-cgene provide all gene structures

-cace provide all gene structures in ace format

C.5.3 estwise

Estwise runs very much like genewise with basically a subset of options. For completeness
they are all listed below

estwise - options: dna/protein

-u start position in dna

-v end position in dna

-trev reverse complement dna

-tfor use forward strands only

-both [default] do both strands

-tabs Positions reported as absolute to DNA
-s start position in protein

-t end position in protein

-gap [12] gap penalty

-ext [2] extension penalty

-matrix [blosum62.bla] Comparison matrix
-hmmer Protein file is HMMer 1.x file

-hname Name of HMM rather than using the filename

190

estwise - options: model

-init [default/global/local/wing] (see section C.4.3) For protein sequences the default is to
be local (like smith waterman). For protein profile HMMs, the default is read from the
HMM - the HMM carries this information internally. The global mode is equivalent
to to the Is building option (the default in the HMMer2 package). The local mode is
equivalent to to the fs building option (-f) in the HMMer2 package. The wing model
is local on the edges and global in the middle.

-codon [codon.table] Codon file. The default is for the universal code, but you can supply
your own

-subs [0.01] Substitution error rate, ie the assummed probability of base substitutions in
the sequencing reaction/assembly that provided the DNA sequence. The substituion
error is what dominates the penalty for stop codons - a higher error rate implies a
smaller penalty for stop codons

-indel [0.01] Insertion/deletion error rate, ie the assummed probability of indel events in
the sequencing reaction/assembly that provided the DNA sequence. The indel rate is
what provides the penalty for frameshift errors. A higher error rate implies a smaller
penalty for indels.

-null [syn/flat] Random Model as synchronous or flat [default syn] whether to use a null
model which is a simple base distribution (called flat), or imagine that the viterbi
path is being compared to a gene based null model that is making all the same
gene exon/intron boundaries (synchronous). The latter is basically a hack which
demphaises the placement of frameshifts and tries to trust the homology machinery.
(not ideal!)

-alg [333,333L,333F] Algorithm used. 333 is the normal algorithm. 333L is the looping
algorithm

-kbyte [2000] Max number of kilobytes used in main calculation
-pretty show pretty ascii output as in genewise

-para show parameters

-sum show summary information as in genewise

-alb show logical AlnBlock alignment, debugging output

-pal show raw matrix alignment, debugging output

-block [50] Length of main block in pretty output - the length of the main text in the
pretty output

-divide [//] divide string for multiple outputs, the string used to separate multiple outputs

C.5.4 estwisedb

estwisedb is the database searching version of the estwise program. Like estwise, it has the
same sort of running modes as genewisedb, but with more limited options.

191

estwisedb - options: running modes
-protein [default] single protein

-prodb protein fasta format db

-pfam pfam hmm library

-pfam2 pfam style model directory (2.1)
-hmmer single hmmer 1.x HMM

-dnadb [default] dna fasta database

-dnas a single dna fasta sequence

estwisedb - options: model

-gap [12] gap penalty

-ext [2] extension penalty

-matrix [blosum62.bla] Comparison matrix

-hname For single hmms, use this as the name, not filename

-codon [codon.table] Codon file

-subs [0.01] Substitution error rate

-indel [0.01] Insertion/deletion error rate

-null [syn/flat] Random Model as synchronous or flat [default syn]
-alg [333/] Algorithm used for searching [default 333]

-aalg [333/333L] Algorithm used for alignment [default 623]

-kbyte [2000] Max number of kilobytes used in alignments calculation
-cut [20.00] Bits cutoff for reporting in search algorithm

-ecut [n/a] Evalue cutoff only for searches which can calculate evalues
-aln [50] Max number of alignments (even if above cut)

-nohis Don’t show histogram on single protein/hmm vs DNA search

-report [0] Issue a report every x comparisons (default 0 comparisons)

192

estwisedb - options: output
-pretty show pretty ascii output
-para show parameters

-sum show summary output

-alb show logical AlnBlock alignment
-pal show raw matrix alignment

-mul produce complete protein multiple alignment from a HMM to DNA db search as a
mul format M/A.

-pep show predicted peptide. Shows predicted peptide, including frameshifts, which are
X’s in the proteins

-block [50] Length of main block in pretty output
-divide [//] divide string for multiple outputs
-help help

-version show version and compile info

-silent No messages on stderr

-quiet No report on stderr

-erroroffstd No warning messages to stderr

-errorlog [file] Log warning messages to file

C.5.5 Running with pthreads

The two database searching programs, genewisedb and estwisedb can be run with pthread
support on SMP boxes. To do so you need to compile the source code with pthread support
(it is very easy, see section C.3.3). Then the programs need to be run with the additional
option -pthread. On most machines the executable will pick up the number of available
processors automatically and run that number of threads. If you want to override this use
the -pthr no option.

193

C.6 Other Programs

There are other programs in the wise2 package which are not as well developped as the
*wise set of programs. These programs are more an indication of how fast it is to develop
algorithms sensibly in the Wise2 environment than anything else.

C.6.1 dba - Dna Block Aligner

dba - standing for Dna Block Aligner, was developped by Niclas Jareborg, Richard Durbin
and Ewan Birney for characterising shared regulatory regions of genomic DNA, either in
upstream regions or introns of genes
The idea was that in these regions there would a series of shared motifs, perhaps with
one or two insertions or deletions but between motifs there would be any length of sequence.
The subsquent model was a 3 state model which was log-odd’d ratio to a null model of
their being no examples of a motif in the two sequences.

dba - options

-match [0.8] match probability

-gap [0.05] gap probability

-blockopen [0.01] block open probability
-umatch [0.99] unmatched gap probability
-nomatchn do not match N to any base
-align show alignment

-params print parameters

-help print this message

C.6.2 psw - Protein Smith-Waterman and other comparisons

psw is a short and sweet program for calculating smith waterman alginments quickly. It
was mainly written as C driver to test the underlying code which is more useful in things
like the Perl port.

More recently I added in the generalised gap penalty model of Stephen Altschul, that
is known as the abc model in Wise2. The abc model is detailed in Proteins 1998 Jul 1, 32
pages 88-96.

psw - options
-g gap penalty (default 12) - gap penalty used for smith waterman
-e ext penatly (default 2) - ext penalty used for smith waterman

-m comp matrix (default blosum62.bla) - comparison matrix used for both smith waterman
and the abc model

194

-abc use the abc model: use Stephen Altschul’s ’generalised gap penalty’ model (called the
abc model in Wise2)

-a a penalty for above (default 120) gap opening penalty in the abc model

-b b penalty for above (default 10) gap extension penalty in the abc model

-c ¢ penalty for above (default 3) unmatched ’gap’ region penalty in the abc model
-r show raw output - raw matrix output

-1 show label output - label based output

-f show fancy output - pretty output

C.6.3 pswdb

pswdb - protein smith waterman database searching was written by Richard Copley using
the underlying Wise2 libraries

psw - options
-g gap penalty (default 12) - gap penalty used for smith waterman
-e ext penatly (default 2) - ext penalty used for smith waterman

-m comp matrix (default blosum62.bla) - comparison matrix used for both smith waterman
and the abc model

-abc use the abc model: use Stephen Altschul’s ’generalised gap penalty’ model (called the
abc model in Wise2)

-a a penalty for above (default 120) gap opening penalty in the abc model

-b b penalty for above (default 10) gap extension penalty in the abc model

-c ¢ penalty for above (default 3) unmatched ’gap’ region penalty in the abc model
-max_desc Maximum number of description lines

-max_aln Maximum number of alignments

-ids in alignments, show sequence names, not probe/target

-r show raw output - raw matrix output

-1 show label output - label based output

-f show fancy output - pretty output

195

C.7 API

This section is really only an introduction to the API. There is another, separate documen-
tation on the API with a complete reference of all the functions etc.

If you end up parsing the programs in the Wise2 package alot, or repeatedly calling
them to do something slightly at odds to the way they work, then you should probably
be using the API. The API is quite easy to use once you have got used to the number of
functions that you can call: all the hard parts of writing a C program, such as the underlying
algorithms and memory management are conviently hidden from you.

The API (application programming interface) is a defined layer for you to write programs
that use Wise2 functionality. The API has only a subset of the functions available internally
to Wise2 (but still it is quite a daunting number). Currently there are two main ways to
access the APT - firstly using C function calls, and secondly using Perl function calls. In
the latter case, the Wise2 code is ’compiled into’ perl (in fact dynamically loaded - the
unix equivalent of a dll file), meaning that although you call what looks like normal perl
functions, it is actually executed by compiled C functions.

The API interface is written in C, but with a very strong object model. This means
that the C API can be easily mapped to an object based enviroment. In particular this
is taken advantage of in the Perl case, where Perl objects are exported in the Perl space,
allowing very idomatic scripts to be written.

The documentation for the API currently lies in the C header files and the Perl .pod
files. This is something which I am actively working on at the moment.

#!/usr/local/bin/perl

protestwise.pl <protein-seq-fasta> <dna-seq-fasta>\n
produces on STDOUT a new protein sequence which is the

H B H

DNA sequence ’fixed’ by the comparison to the protein sequence.

in particular frameshift errors get mapped to X

+*

written by James cuff (james@ebi.ac.uk)
Hacked by Ewan (birney@sanger.ac.uk). Talk to ewan
first about the script.

+*

use Wise2;

my $pro_file = shift; # first argument from QARGV
my $dna_file shift; # second argument QARGV

if(!'defined $dna_file) {
die "ProtESTwise.pl <protein-seq-fasta> <dna-seg>\nProduces output of the DNA sequence\n

196

read in inputs. Read in first as generic ’Sequence’ objects
and then converted to specific ’Protein’ or ’cdna’ type
objects

open(PRO, $pro_file) || die "Could not open $pro_file!";
$seq = &Wise2::Sequence::read_fasta_Sequence (*PR0O) ;
$pro = &Wise2::Protein::Protein_from_Sequence($seq) ;

if($pro == 0) {
can’t interpolate function calls <sigh>
die sprintf("Could not make protein from sequence Js!",$seq->name());

}

open(DNA,$dna_file) || die "Could not open $pro_file!";
$seq = &Wise2::Sequence::read_fasta_Sequence (*DNA) ;
$cdna = &Wise2::cDNA: :cDNA_from_Sequence($seq) ;

if($cdna == 0) {

can’t interpolate function calls <sigh>
die sprintf("Could not genomic from sequence Js!",$seq->name());

Read in data structures needed for
estwise type algorthim
These will be automatically read from WISECONFIGDIR if necessary.

this is the indel rate
$cp = &Wise2::flat_cDNAParser (0.001);

codon table
$ct = &Wise2::CodonTable::read_CodonTable_file("codon.table");

#this means we are not using any codon bias
$cm = &Wise2::flat_CodonMapper($ct);

this is the substitution error
$cm->sprinkle_errors_over_CodonMapper (0.001) ;

random model needed if we are not using syn
$rmd = &Wise2::RandomModelDNA_std();

means estwise3 algorithm. Not obvious!

197

$alg = 0;

sets memory amount for main memory
&Wise2: :change_max_BaseMatrix_kbytes(100000); # 10 Megabytes.

these are for the protein part of the comparison

$comp = &Wise2::CompMat::read Blast_file_CompMat("blosum62.bla");
$rm = &Wise2::default_RandomModel() ;
do it!

$alb = &Wise2::AlnBlock_from_Protein_estwise_wrap($pro,$cdna,$cp,$cm,$ct,$comp,-12,-2,0,$rmd
$proseq = "";

This is where we get clever!

The for loops across the alignments. The protein sequence is in $alc->alu(0). The
DNA sequence is in $alc->alu(l). We are interested in codons in the DNA sequence
and turns those into amino acids. Sequence insertions or deletions become X’s

H oH H O H R

for($alc=$alb->start () ;$alc—>at_end() != 1;$alc = $alc—>next()) {

if($alc->alu(1l)->text_label() =~ /"INSERT$/) {
next; # skip protein inserts relative to the DNA sequence
NB different from SEQUENCE_INSERTION.

}

if($alc->alu(1l)->text_label() =~ /CODON/) {
get out sequence from $start to $end
$start and $end are in bio coordinates
$start = $alc—>alu(l)->start+1;
$end = $alc—>alu(l)->end+1;
$dnatemp = "";

for($x=$start;$x < $end;$x++){

$tmp = &Wise2::cDNA::cDNA_seqchar($cdna,$x);
$dnatemp=$dnatemp. $tmp;

$temp = $ct->aminoacid_from_seq($dnatemp) ;

198

if codon has an N, then set the residue to unk X,
we could be clever about this and work out what
it is likely to be, but hell...

$temp =" s/x/X/;

$proseq .= $temp;

} else {
deletion or insertion of a base
$proseq .= ’X’;

}

make the new protein sequence and
dump it to stdout

$namecdna = $cdna->baseseq()->name();

$new = &Wise2::new_Sequence_from_strings($namecdna,$proseq);
$new->write_fasta(STDOUT) ;

199

Appendix D

Pfam

D.1 Pfam

This appendix lists the Pfam families which I have manipulated. Only shown here are the
non standard manipulations (for example, database moves are not shown in this table, as
all the families would listed here otherwise).

14-3-3
7tm_1
ank

arf
Armadillo_seg

ATP-synt B
ATP-synt DE

COesterase
cofilin_ ADF
DnalJ

EGF
ion_trans
notch

PH
photoRC
rrm

rrm

rrm

SBP _bac_3
SecE

Added more documentation. Checked out hmmb line. Added SMART link
changed URL to more recent page. good page though!

Corrected duplication of NTC4_ MOUSE/1695-1727 in the SEED. Did not
rebuild HMM

added SMART reference line and some references

Basically switched over the family to the SMART family. (increased cover-
age 100%)!).

Added annotation on the family

Added documentation. Attempted to resolve the ecoli D/human OSCP
split

Updated annotation

Merged with SMART family. Added references

Fixed the ZUO1 bug and extended the familyto include T-antigen se-
quences.

Added more sequences. Still have to deal with TGFA_HUMAN

Added more documentation

Added some more references

added reference

edited medline ref

extended the family again and tidied up the SEED

Extended the family to include the LA’s and other

changed the alignment. Still not ideal, but better.

Extended the family (considerably)

family [SecE] deposited on Thu Dec 18 13:14:57 1997

200

Peripla_BP like
DAGKa

DEP

FCH

IQ

PI3Ka

PLDc

RGS
RasGAP
RasGEF
RasGEFN
aakinase
aakinase
Xylose_isom
Flavi_NS1
Bac_Ubq_Cox

changed documentation a bit to add more on Lacl repressor
family [DAGKa] deposited on Mon Jan 12 11:39:01 1998
family [DEP] deposited on Mon Jan 12 11:53:40 1998
family [FCH] deposited on Mon Jan 12 13:12:21 1998
family [IQ] deposited on Mon Jan 12 13:28:00 1998

family [PI3Ka] deposited on Mon Jan 12 14:53:38 1998
family [PLDc] deposited on Wed Jan 14 11:45:15 1998
family [RGS] deposited on Wed Jan 14 13:11:26 1998
family [RasGAP] deposited on Wed Jan 14 13:26:48 1998
family [RasGEF] deposited on Wed Jan 14 13:38:22 1998
family [RasGEFN] deposited on Wed Jan 14 13:49:26 1998
Updated annotation

family [aakinase] deposited on Thu Feb 5 11:30:06 1998
Moved family from xylose_isomerase to Xylose_isom

family [Flavi_NS1] deposited on Wed Jul 15 14:29:25 1998
family [Bac_-Ubq-Cox] deposited on Tue Jul 27 14:01:21 1999

Table D.1: Table showing activitity on the Pfam database

201

