
index

January 21, 2018

1 Unix module

1.1 Introducing Unix

Unix is the standard operating system on most large computer systems in scientific research, in
the same way that Microsoft Windows is the dominant operating system on desktop PCs.

Unix and MS Windows both perform the important job of managing the computer’s hardware
(screen, keyboard, mouse, hard disks, network connections, etc. . .) on your behalf. They also
provide you with tools to manage your files and to run application software. They both offer a
graphical user interface (desktop). These desktop interfaces look different between the operating
systems, use different names for things (e.g. directory versus folder) and have different images
but they mostly offer the same functionality.

Unix is a powerful, secure, robust and stable operating system which allows dozens of people
to run programs on the same computer at the same time. This is why it is the preferred operating
system for large-scale scientific computing. It runs on all kinds of machines, from mobile phones
(Android), desktop PCs. . . to supercomputers.

1.2 Why Unix?

Increasingly, the output of biological research exists as in silico data, usually in the form of large
text files. Unix is particularly suitable for working with such files and has several powerful and
flexible commands that can be used to process and analyse this data. One advantage of learning
Unix is that many of the commands can be combined in an almost unlimited fashion. So if you
can learn just six Unix commands, you will be able to do a lot more than just six things.

Unix contains hundreds of commands, but to conduct your analysis you will probably only
need 10 or so to achieve most of what you want to do. In this course we will introduce you to
some basic Unix commands followed by some more advanced commands and provide examples
of how they can be used in bioinformatics analyses.

1.3 Sections of the Unix course

1. Basic unix
2. Files
3. grep
4. awk
5. Bash scripts

1

basic/basic.ipynb
files.ipynb
grep/grep.ipynb
awk/awk.ipynb
bash_scripts/bash_scripts.ipynb

1.4 Setting the variables

As described in the morning, you have to connect to the HPC via mobaxterminal, or ssh if
working with linux/mac. (Mac users: You have to install x11 and open the terminal. Let us
know if you have any problems). The document 01a.ConnectHPC.pdf should give you fur-
ther information, and we should have done the steps together, but here again. 1. ssh -X user-
name@headnote03.cent.gla.ac.uk 2. ~to16r/bioinfo/start.sh 3. source ~to16r/bioinfo/setpath.sh

You should be now in the correct directory. You should have copied the exercise files into your
new home directory: cp -r /export/projects/bioinfo3/to16r/BioinfoWorkshop/Data/* .

But how can you check that you are in the correct directory?

In [2]: $PWD

bash: /Users/tdo/Google_Drive/Teaching/Linux_Course_Pathogens/linux_III/Notebooks/Unix: is a directory

This will look different, and it should be something like /ex-
port/projects/bioinfo3/to16r/bioinfo/userid

Let’s change to the correct directory:

In [3]: cd Module_Linux

bash: cd: Module_Linux: No such file or directory

Your output should look different. . . Now follow the instruction in the Basic unix section.

1.5 Acknowledgements

This module was taken from the Wellcome Trust Advanced course “Introduction to NGS bioinfor-
matics”, I teach. The module was generate by Martin Hunt and Jacqui Keane from the Wellcome
Trust Sanger Institute.

1.6 Cheat sheet

We’ve also included a cheat sheet. It probably won’t make a lot of sense now, but it might be a
useful reminder of this module later in the course.

2

basic/basic.ipynb
cheat_sheet/unix_cheat_sheet.ipynb

basic

January 21, 2018

1 Basic Unix

1.1 The Commandline

The commandline or ‘terminal’ is an interface you can use to run programs and analyse your data.
If this is your first time using one it will seem pretty daunting at first but, with just a few com-
mands, you’ll start to see how it helps you to get things done much quicker. You’re probably more
familiar with software which uses a graphical user interface, also known as a GUI; unfortunately
most of the best bioinformatics software has not been programed with this capability.

1.2 Getting started

Before we get started, let’s check that you’re in the right place. Please click on the cell below and
press the crtl and Enter keys. If you’re not sure what this command does, don’t worry for now;
we’ll explain it in more detail later.

In [1]: echo "cd $PWD"

cd /Users/tdo/Google_Drive/Teaching/Linux_Course_Pathogens/linux_III/Notebooks/Unix/basic

It should say something like cd /export/projects/bioinfo3/to16r/bioinfo/username/Module_Linux.
Type whatever it said into your terminal and press Enter.

Then continue through the course, entering any commands that you encounter into your ter-
minal window.

However, before getting started there are some general points to remember that will make
your life easier:

• Unix is case sensitive - typing ls is not the same as typing LS.
• Often when you have problems with Unix, it is due to a spelling mistake. Check that you

have not missed or added a space. Pay careful attention when typing commands across a
couple of lines.

1.3 Files and directories

Directories are the Unix equivalent of folders on a PC or Mac. They are organised in a hierarchy,
so directories can have sub-directories and so on. Directories are very useful for organising your
work and keeping your account tidy - for example, if you have more than one project, you can

1

Hierarchy

organise the files for each project into different directories to keep them separate. You can think of
directories as rooms in a house. You can only be in one room (directory) at a time. When you are
in a room you can see everything in that room easily. To see things in other rooms, you have to
go to the appropriate door and crane your head around. Unix works in a similar manner, moving
from directory to directory to access files. The location or directory that you are in is referred to as
the current working directory.

If there is a file called genome.seq in the dna directory its location or full pathname can be
expressed as /nfs/dna/genome.seq.

1.4 pwd - find where you are

The command pwd stands for print working directory. A command (also known as a program) is
something which tells the computer to do something. Commands are therefore often the first
thing that you type into the terminal (although we’ll show you some advanced exceptions to this
rule later).

As described above, directories are arranged in a hierarchical structure. To determine where
you are in the hierarchy you can use the pwd command to display the name of the current working
directory. The current working directory may be thought of as the directory you are in, i.e. your
current position in the file-system tree.

To find out where you are, type this into your terminal.

In [2]: pwd

/Users/tdo/Google_Drive/Teaching/Linux_Course_Pathogens/linux_III/Notebooks/Unix/basic

Remember that Unix is case sensitive, PWD is not the same as pwd.
pwd will list each of the folders you would need to navigate through to get from the root of

the file system to your current directory. This is sometimes refered to as your ‘absolute path’ to

2

distinguish that it gives a complete route rather than a ‘relative path’ which tells you how to get
from one folder to another. More on that shortly.

1.5 ls - list the contents of a directory

The command ls stands for list. The ls command can be used to list the contents of a directory.
To list the contents of your current working directory type:

In [3]: ls

Pfalciparum basic.ipynb
Styphi directory_structure.png

You should see that there are 4 items in this directory.
To list the contents of a directory with extra information about the items type:

In [4]: ls -l

total 96
drwxr-xr-x 8 tdo staff 272 2 Jan 08:02 Pfalciparum
drwxr-xr-x 5 tdo staff 170 2 Jan 08:02 Styphi
-rw-r--r-- 1 tdo staff 18969 21 Jan 08:12 basic.ipynb
-rw-r--r-- 1 tdo staff 28513 2 Jan 08:02 directory_structure.png

Instead of printing out a simple list, this should have printed out additional information about
each file. Note that there is a space between the command ls and the -l. There is no space
between the dash and the letter l.

-l is our first example of an option. Many commands have options which change their be-
haviour but are not always required.

What do each of the columns represent?
To list all contents of a directory including hidden files and directories type:

In [5]: ls -a -l

total 96
drwxr-xr-x 9 tdo staff 306 21 Jan 08:12 .
drwxr-xr-x 10 tdo staff 340 21 Jan 08:10 ..
-rw-r--r-- 1 tdo staff 0 2 Jan 08:02 .hidden1
-rw-r--r-- 1 tdo staff 0 2 Jan 08:02 .hidden2
drwxr-xr-x 3 tdo staff 102 21 Jan 08:12 .ipynb_checkpoints
drwxr-xr-x 8 tdo staff 272 2 Jan 08:02 Pfalciparum
drwxr-xr-x 5 tdo staff 170 2 Jan 08:02 Styphi
-rw-r--r-- 1 tdo staff 18969 21 Jan 08:12 basic.ipynb
-rw-r--r-- 1 tdo staff 28513 2 Jan 08:02 directory_structure.png

3

This is an example of a command which can take multiple options at the same time. Different
commands take different options and sometimes (unhelpfully) use the same letter to do different
things.

How many hidden files and directories are there?
Try the same command but with the -h option:

In [6]: ls -alh

total 96
drwxr-xr-x 9 tdo staff 306B 21 Jan 08:12 .
drwxr-xr-x 10 tdo staff 340B 21 Jan 08:10 ..
-rw-r--r-- 1 tdo staff 0B 2 Jan 08:02 .hidden1
-rw-r--r-- 1 tdo staff 0B 2 Jan 08:02 .hidden2
drwxr-xr-x 3 tdo staff 102B 21 Jan 08:12 .ipynb_checkpoints
drwxr-xr-x 8 tdo staff 272B 2 Jan 08:02 Pfalciparum
drwxr-xr-x 5 tdo staff 170B 2 Jan 08:02 Styphi
-rw-r--r-- 1 tdo staff 19K 21 Jan 08:12 basic.ipynb
-rw-r--r-- 1 tdo staff 28K 2 Jan 08:02 directory_structure.png

You’ll also notice that we’ve combined -a -l -h into what appears to be a single -alh option.
It’s almost always ok to do this for options which are made up of a single dash followed by a
single letter.

What does the -h option do?
To list the contents of the directory called Pfalciparum with extra information type:

In [7]: ls -l Pfalciparum/

total 48928
-rw-r--r-- 1 tdo staff 654069 2 Jan 08:02 MAL1.fa
-rw-r--r-- 1 tdo staff 962943 2 Jan 08:02 MAL2.fa
-rwxr-xr-x 1 tdo staff 23241585 2 Jan 08:02 Malaria.fa
-rwxr-xr-x 1 tdo staff 183279 2 Jan 08:02 Pfalciparum.bed
drwxr-xr-x 3 tdo staff 102 2 Jan 08:02 annotation
drwxr-xr-x 3 tdo staff 102 2 Jan 08:02 fasta

In this case we gave ls an argument describing the relative path to the directory Pfalciparum
from our current working directory. Arguments are very similar to options (and I often use the
terms interchangably) but they often refer to things which are not prefixed with dashes.

How many files are there in this directory?

1.6 Tab completion

Typing out file names is really boring and you’re likely to make typos which will at best make
your command fail with a strange error and at worst overwrite some of your carefully crafted
analysis. Tab completion is a trick which normally reduces this risk significantly.

Instead of typing out ls Pfalciparum/, try typing ls P and then press the tab character (in-
stead of Enter). The rest of the folder name should just appear. If you have two folders with simiar

4

names (e.g. my_awesome_scripts/ and my_awesome_results/) then you might need to give your
terminal a bit of a hand to work out which one you want. In this case you would type ls -l m,
when you press tab the terminal would read ls -l my_awesome_, you could then type s followed
by another tab and it would work out that you meant my_awesome_scripts/

1.7 File permissions

Every file and directory have a set of permissions which restrict what can be done with a file or
directory.

• Read (r): permission to read from a file/directory
• Write (w): permission to modify a file/directory
• Execute (x): Tells the operating system that the file contains code for the computer to run, as

opposed to a file of text which you open in a text editor.

The first set of permissions (characters 2,3,4) refer to what the owner of the file can do, the
second set of permissions (5,6,7) refers to what members of the Unix group can do and the third
set of permissions (8,9,10) refers to what everyone else can do.

1.8 cd - change current working directory

The command cd stands for change directory.
The cd command will change the current working directory to another, in other words allow

you to move up or down in the directory hierarchy.
To move into the Styphi directory type the following. Note, you’ll remember this more easily

if you type this into the terminal rather than copying and pasting. Also remember that you can
use tab completion to save typing all of it.

In [8]: cd Styphi/

Now use the pwd command to check your location in the directory hierarchy and the ls com-
mand to list the contents of this directory.

In [9]: pwd
ls

/Users/tdo/Google_Drive/Teaching/Linux_Course_Pathogens/linux_III/Notebooks/Unix/basic/Styphi
Styphi.fa Styphi.gff Styphi.noseq.gff

You should see that there are 3 files called: Styphi.fa, Stypi.gff, Styphi.noseq.gff

1.9 Tips

There are some short cuts for referring to directories:

• . Current directory (one full stop)
• .. Directory above (two full stops)
• ~ Home directory (tilda)
• / Root of the file system (like C: in Windows)

5

Try the following commands, what do they do?

In [10]: ls .

Styphi.fa Styphi.gff Styphi.noseq.gff

In [11]: ls ..

Pfalciparum basic.ipynb
Styphi directory_structure.png

In [12]: ls ~

04.02.15.pptx
Applications
Apps
Aubrey
Backup
COPY
Calls
Creative Cloud Files
CytoscapeConfiguration
Desktop
Documents
Domains.binary.txt
Downloads
Dropbox
Endnote_tdo.enlp
Gephi.Var.Internal.txt.gephi
Gephi.Var.Internal.txt.gephi_temp1478708185400
Glasgow
Google_Drive
HypX.gephi
ICORN_both_Nov2016
Kaust
Khan Sanger 2014.pptx
LargeFiles.txt
Lav.Domain.graph.txt.gephi
Lav.Domain.graph.txt.gephi_temp1470174536473
Lav.VAR.domain.Three.txt.gephi
Library
List
Module_Assembly.pdf
Movies
Music
Pac the Man X
PfHB3_04.embl.gz

6

Pictures
Pleasesortout
Prec.BOTH.99.50.jpg
Public
PvP01_09_v1.embl
R
RebuttalForReview_final20171203_tdo.docx
Sanger Dec 2014.ppt
Sites
TEST.gephi
TMP.gephi
TMP.gephi_temp
Transfer
Tree final.inx
Untitled.pdf
Untitled.rtf
VMshare
VirtualBox VMs
VirtualMachine
Windows
artemis.svg
bin
circular5.mus.aln
citatino.bib
colin.docx
cp.zip
du.Feb.txt
du.txt
embl-index
findoverlaps_ver3.pl
fontconfig
gephdy.gephi
gephi.cys.1kb.hits.gephi
gephi.cys.1kb.hits.gephi_temp
graph.svg
igv
list.Rdata.txt
list.fofn
list.sam
memX.txt.rtf
miniconda3
noconflicts.pdf
ont_todate26JAN14.pptx
out
presentation.pdf
print_me
rodent malaria meeting 03_12_2014.pptx
sam2fastq.2files.pl

7

sangerconnect.sh
svn
test.DistMat.pdf
test.pdf
test.pl
test.rar
test.svg
tmp
tmp.internalVAR
tmp.tmp
tmp.txt
tmpX.txt
tmp_delete
toutou
untitled folder
white-peak-trails-map.pdf
work

Try moving between directories a few times. Can you get into the Pfalciparum/ and then back
into Styphi/?

1.10 cp - copy a file

The command cp stands for copy.
The cp command will copy a file from one location to another and you will end up with two

copies of the file.
To copy the file Styphi.gff to a new file called StyphiCT18.gff type:

In [13]: cp Styphi.gff StyphiCT18.gff

Use ls to check the contents of the current directory for the copied file:

In [14]: ls

Styphi.fa Styphi.noseq.gff
Styphi.gff StyphiCT18.gff

1.11 mv - move a file

The mv command stand for move.
The mv command will move a file from one location to another. This moves the file rather than

copies it, therefore you end up with only one file rather than two. When using the command, the
path or pathname is used to tell Unix where to find the file. You refer to files in other directories
by using the list of hierarchical names separated by slashes. For example, the file called bases in
the directory genome has the path genome/bases. If no path is specified, Unix assumes that the
file is in the current working directory.

To move the file StyphiCT18.gff from the current directory to the directory above type:

8

In [15]: mv StyphiCT18.gff ..

Use the ls command to check the contents of the current directory and the directory above to
see that StyphiCT18.gff has been moved.

In [16]: ls

Styphi.fa Styphi.gff Styphi.noseq.gff

In [17]: cd ..
ls

Pfalciparum StyphiCT18.gff directory_structure.png
Styphi basic.ipynb

1.12 rm - delete a file

The command rm stands for remove.
The rm command will delete a file permanently from your computer so take care!
To remove the copy of the S. typhi file, called StyphiCT18.gff type:

In [18]: rm StyphiCT18.gff

Use the ls command to check the contents of the current directory to see that the file
StyphiCT18.gff has been removed.

In [19]: ls

Pfalciparum basic.ipynb
Styphi directory_structure.png

Unfortunately there is no “recycle bin” on the command line to recover the file from, so you
have to be careful.

1.13 find - find a file

The find command can be used to find files matching a given expression. It can be used to recur-
sively search the directory tree for a specified name, seeking files and directories that match the
given name.

To find all files in the current directory and all its subdirectories that end with the suffix gff:

In [20]: find . -name "*.gff"

./Styphi/Styphi.gff

./Styphi/Styphi.noseq.gff

9

How many gff files did you find?
To find all the subdirectories contained in the current directory type:

In [21]: find . -type d

.

./.ipynb_checkpoints

./Pfalciparum

./Pfalciparum/annotation

./Pfalciparum/fasta

./Styphi

How many subdirectories did you find?
These are just two basic examples of the find command but it is possible to use the following

find options to search in many other ways:

• -mtime : search files by modifying date
• -atime : search files by last access date
• -size : search files by file size
• -user : search files by user they belong to

1.14 Exercises

Many people panic when they are confronted with a Unix prompt! Don’t! All the commands you
need to solve these exercises are provided above and don’t be afraid to make a mistake. If you get
lost ask a demonstrator. If you are a person skilled at Unix, be patient this is only a short exercise.

To begin, open a terminal window and navigate to the basic directory in the Unix directory
(remember use the Unix command cd) and then complete the exercise below.

1. Use the ls command to show the contents of the basic directory.
2. How many files are there in the Pfalciparum directory?
3. What is the largest file in the Pfalciparum directory?
4. Move into the Pfalciparum directory.
5. How many files are there in the fasta directory?
6. Copy the file Pfalciparum.bed in the Pfalciparum directory into the annotation directory.
7. Move all the fasta files in the directory Pfalciparum to the fasta directory.
8. How many files are there in the fasta directory?
9. Use the find command to find all gff files in the Unix directory, how many files did you

find?
10. Use the find command to find all the fasta files in the Unix directory, how many files did

you find?

10

files

January 21, 2018

1 Looking inside files

A common task is to look at the contents of a file. This can be achieved using several different
Unix commands, less, head and tail. Let us consider some examples.

But first, change directory into the Unix/files/ directory (hint: you might need to go up a
directories first using cd ../..). Check that the following commands give you a similar output:

In [1]: pwd
ls

/Users/tdo/Google_Drive/Teaching/Linux_Course_Pathogens/linux_III/Notebooks/Unix/files
Pfalciparum.bed Styphi.gff files.ipynb
Styphi.fa Styphi.noseq.gff

1.1 less

The less command displays the contents of a specified file one screen at a time. To test this
command type the following command followed by the enter key:

less Styphi.gff
The contents of the file Styphi.gff is displayed one screen at a time, to view the next screen

press the space bar. As Styphi.gff is a large file this will take a while, therefore you may want
to escape or exit from this command. To do this, press the q key, this kills the less command
and returns you to the Unix prompt. less can also scroll backwards if you hit the b key. Another
useful feature is the slash key, /, to search for an expression in the file. Try it, search for the gene
with locus tag t0038. What is the start and end position of this gene?

1.2 head and tail

Sometimes you may just want to view the text at the beginning or the end of a file, without having
to display all of the file. The head and tail commands can be used to do this.

The head command displays the first ten lines of a file.
To look at the beginning of the fie Styphi.gff file type:

In [2]: head Styphi.gff

##gff-version 3
##sequence-region AE014613 1 4791961

1

#!Date 2011-07-11
#!Type DNA
#!Source-version EMBOSS 6.3.1
AE014613 EMBL databank_entry 1 4791961 0.000 + . ID="AE014613.1";organism="Salmonella enterica subsp. enterica serovar Typhi str. Ty2";sub_species=enterica;strain="Ty2";mol_type="genomic DNA";serovar="Typhi";db_xref="taxon:209261"
AE014613 EMBL gene 190 255 0.000 + . ID="AE014613.2";gene="thrL";locus_tag="t0001"
AE014613 EMBL CDS 190 255 0.000 + 0 ID="AE014613.3";codon_start=1;transl_table=11;gene="thrL";locus_tag="t0001";product="thr operon leader peptide";note="corresponds to STY0001 from Accession AL513382: Salmonella typhi CT18";db_xref="GOA:Q8XG12";db_xref="InterPro:IPR011720";db_xref="UniProtKB/Swiss-Prot:Q8XG12";protein_id="AAO67735.1";translation="MNRISTTTITTITITTGNGAG"
AE014613 EMBL gene 337 2799 0.000 + . ID="AE014613.4";gene="thrA";locus_tag="t0002"
AE014613 EMBL CDS 337 2799 0.000 + 0 ID="AE014613.5";codon_start=1;transl_table=11;gene="thrA";locus_tag="t0002";product="aspartokinase I";note="corresponds to STY0002 from Accession AL513382: Salmonella typhi CT18; homoserine dehydrogenase I";db_xref="GOA:Q8Z9R7";db_xref="HSSP:1EBF";db_xref="InterPro:IPR001048";db_xref="InterPro:IPR001341";db_xref="InterPro:IPR001342";db_xref="InterPro:IPR002912";db_xref="InterPro:IPR005106";db_xref="InterPro:IPR011147";db_xref="InterPro:IPR016040";db_xref="InterPro:IPR018042";db_xref="InterPro:IPR019811";db_xref="UniProtKB/TrEMBL:Q8Z9R7";protein_id="AAO67736.1";translation="MRVLKFGGTSVANAERFLRVADILESNSRQGQVATVLSAPAKITNHLVAMIEKTIGGQDALPNISDAERIFSDLLAGLASAQPGFPLARLKMVVEQEFAQIKHVLHGISLLGQCPDSINAALICRGEKMSIAIMAGLLEARGHRVTVIDPVEKLLAVGHYLESTVDIAESTRRIAASQIPADHMILMAGFTAGNEKGELVVLGRNGSDYSAAVLAACLRADCCEIWTDVDGVYTCDPRQVPDARLLKSMSYQEAMELSYFGAKVLHPRTITPIAQFQIPCLIKNTGNPQAPGTLIGASSDDDNLPVKGISNLNNMAMFSVSGPGMKGMIGMAARVFAAMSRAGISVVLITQSSSEYSISFCVPQSDCARARRAMQDEFYLELKEGLLEPLAVTERLAIISVVGDGMRTLRGISAKFFAALARANINIVAIAQGSSERSISVVVNNDDATTGVRVTHQMLFNTDQVIEVFVIGVGGVGGALLEQLKRQQTWLKNKHIDLRVCGVANSKALLTNVHGLNLDNWQAELAQANAPFNLGRLIRLVKEYHLLNPVIVDCTSSQAVADQYADFLREGFHVVTPNKKANTSSMDYYHQLRFAAAQSRRKFLYDTNVGAGLPVIENLQNLLNAGDELQKFSGILSGSLSFIFGKLEEGMSLSQATALAREMGYTEPDPRDDLSGMDVARKLLILARETGRELELSDIVIEPVLPDEFDASGDVTAFMAHLPQLDDAFAARVAKARDEGKVLRYVGNIEEDGVCRVKIAEVDGNDPLFKVKNGENALAFYSHYYQPLPLVLRGYGAGNDVTAAGVFADLLRTLSWKLGV"

The tail command displays the last ten lines of a file.
To look at the end of Styphi.gff type:

In [3]: tail Styphi.gff

tattgaggttttccacacccttgccgacgcgctccacgatgtggattttaccgtagcgac
gacagcccgcagccgggcaaaatttcattactacgcttcgcccgctgaactggttccctt
attacaggaaaaatcacgctggatgcgtcatgccgcgctggtttttggccgtgaggattc
cggtctgaccaacgacgagctggcgctggcggatgtattgaccggcgtgccgatggcggc
ggattacccttcgctcaatctgggtcaggcggtcatggtgtattgctatcaattagcagg
tttaatgcaacagaccccggaatccgttgatattgctgatgaatcgcagttacaggcgtt
acgcgcgcgccttttacgcctgctaaccactctggaggcggccgatgaccacaaattaac
cgactggctacaacagcgaatcggcctgctgggacagcgagatacggcaatgttgcaccg
tttggtccatgatattgaaaaaaaactaacaaaataacgtgttgtaatttttaaaataat
a

The amount of the file that is displayed can be increased by adding extra arguments. To in-
crease the number of lines viewed from 10 to 25 add -n 25 to the command:

In [4]: tail -n 25 Styphi.gff

tcgaatacatcatagccttccgcttcgaaaatacttttcaacgtgttgcgtgttaccaac
tcgtcttcaacgataagaatgtgcggggtctgcatgtttgctacctaaattgccaactaa
atcgaaacaggaagtacaaaagtccctgacctgcctgatgcatgtcgcaaattaacatga
tcggcgtaacatgactaaagtacgtaattgcgttcttgatgcactttccatcaacgtcaa
caacatcattagcttggtcgtgggtactttccctctggacccgacagtgtcaaaaacggc
tgtcatcctaaccattttaacagcaacataacaggctaagacgtaccggacacctaataa
aactacgcttcgttgacatatatcaagttcaattgtagcacgttaacagtttgatgaaat
catcgtagctaaatgctagctttcatcacaaatttgcaatattccaactagttacgtaag
ccaactaataaatgcgatgaatccaaagaacaggatctattttaaattaaattatcctaa
ataaacagcaggataacgatgttctgttaacataaacagcaatagtacagatacgcaata
gtgtagcgtcttttacgaaatcaaaaatgctttttcagtgatatccgttaaaattttgta
aatttgcgaagcgtaatatgcttacaaacgccagctaatttcctgtaaattagtcaaaaa
gagtaatgaaatgcgtgtaacaatcgttcttgtcgctcccgccagagcggaaaatatcgg
cgcagccgcccgggctatgaagaccatgggatttactgacctgcgtattgtcgacagcca
ggcgcacctagagcccgctacccgttgggtcgcacatggatctggagatattattgataa
tattgaggttttccacacccttgccgacgcgctccacgatgtggattttaccgtagcgac
gacagcccgcagccgggcaaaatttcattactacgcttcgcccgctgaactggttccctt

2

attacaggaaaaatcacgctggatgcgtcatgccgcgctggtttttggccgtgaggattc
cggtctgaccaacgacgagctggcgctggcggatgtattgaccggcgtgccgatggcggc
ggattacccttcgctcaatctgggtcaggcggtcatggtgtattgctatcaattagcagg
tttaatgcaacagaccccggaatccgttgatattgctgatgaatcgcagttacaggcgtt
acgcgcgcgccttttacgcctgctaaccactctggaggcggccgatgaccacaaattaac
cgactggctacaacagcgaatcggcctgctgggacagcgagatacggcaatgttgcaccg
tttggtccatgatattgaaaaaaaactaacaaaataacgtgttgtaatttttaaaataat
a

In this case you’ve given tail an argument in two parts. In this case the -n says that you want
to specify the number of lines to show and the 25 bit tells it how many. Unlike earlier when
we merged arguments like ls -lha together, it’s not a good idea to merge multiple two part
arguments together because otherwise it is ambiguous which value goes with which argument.

-n is such a common argument for tail and head that it even has a shorthand: -n 25 and -25
mean the same thing.

1.3 Saving time

Saving time while typing may not seem important, but the longer that you spend in front of a
computer, the happier you will be if you can reduce the time you spend at the keyboard.

• Pressing the up/down arrows will let you scroll through previous commands entered.

• If you highlight some text, middle clicking on the mouse will paste it on the command line.

• Tab completion doesn’t just work on filenames, it also works on commands. Try it by typing
fin and pressing tab. . .

fin

Although tab completion works on commands and filenames, unfortunately it rarely works
on options or other arguments.

1.4 Getting help man

To obtain further information on any of the Unix commands introduced in this course you can use
the man command. For example, to get a full description and examples of how to use the tail
command type the following command in a terminal window.

man tail

There are several other useful commands that can be used to manipulate and summarise in-
formation inside files and we will introduce some of these next, cat, sort, wc and uniq.

1.5 Writing to files

So far we’ve been running commands and outputting the results into the terminal. That’s obvi-
ously useful but what if you want to save the results to another file?

Type this:

3

In [5]: head -1 Styphi.gff > first_Styphi_line.txt

It may look like nothing has happened. This is because the > character has redirected the output
of the head command. Instead of writing to the standard output (your terminal) it sent the output
into the file first_Styphi_line.txt. Note that tab completion works for Styphi.gff because it
exists but doesn’t work for first_Styphi_line.txt because it doesn’t exist yet.

1.6 cat

cat is another way of reading files, but unlike less it just throws the entire contents of the file
onto your standard output. Try it on first_Styphi_line.txt

In [6]: cat first_Styphi_line.txt

##gff-version 3

We don’t need first_Styphi_line.txt any more so delete it by typing

In [7]: rm first_Styphi_line.txt

The cat command can also be given the names of multiple files, one after the other and it will
just output the contents of all files. The order in which the files are displayed is determined by the
order in which they appear in the command line. You can use this concept and the > symbol to
join files together into a single file.

Having looked at the beginning and end of the Styphi.gff file you should notice that in the
GFF file the annotation comes first, then the DNA sequence at the end. If you had two separate
files containing the annotation and the DNA sequence, it is possible to concatenate or join the two
together to make a single file like the Styphi.gff file you have just looked at.

For example, we have two separate files, Styphi.noseq.gff and Styphi.fa, that contain the
annotation and DNA sequence, respectively for the Salmonella typhi CT18 genome. To join to-
gether these files type:

In [8]: cat Styphi.noseq.gff Styphi.fa > Styphi.concatenated.gff

The files Styphi.noseq.gff and Styphi.fa will be joined together and written to a file called
Styphi.concatenated.gff.

The > symbol in the command line directs the output of the cat program to the designated file
Styphi.concatenated.gff. Use the command ls to check for the presence of this file.

In [9]: ls

Pfalciparum.bed Styphi.fa Styphi.noseq.gff
Styphi.concatenated.gff Styphi.gff files.ipynb

4

1.7 wc - counting

The command wc counts lines, words or characters.
There are two ways you could use it:

In [10]: wc -l Styphi.gff

88961 Styphi.gff

or

In [11]: cat Styphi.gff | wc -l

88961

Both give a similar answer. In the first example you tell wc the file that you want it to review
(Styphi.gff) and pass the -l option to say that you’re only interested in the number of lines.

In the second example you use the | symbol which is also known as the pipe symbol. This pipes
the output of cat Styphi.gff into the input of wc -l. This means that you can also use the same
wc tool to count other things. For example to count the number of files that are listed by ls type:

In [12]: ls | wc -l

6

You can connect as many commands as you want. For example, type:

In [13]: ls | grep ".gff" | wc -l

3

What does this command do? You will learn more about the grep command later in this
course.

1.8 sort - sorting values

The sort lets you sort the contents of the input. When you sort the input, lines with identical
content end up next to each other in the output. This is useful as the output can then be fed to the
uniq command (see below) to count the number of unique lines in the input.

To sort the contents of a BED file type:

sort Pfalciparum.bed

Now type:

In [14]: sort Pfalciparum.bed | head

5

01 104936 105441 PFA0115w 1
01 107429 108580 PFA0120c -1
01 110984 116033 EBA181 -1
01 11513 12397 RNAzID:13 1
01 119275 121483 FIKK1 -1
01 124752 125719 PFA0135w 1
01 126553 128375 PFA0140c -1
01 129194 131074 PFA0145c -1
01 132320 133858 PFA0150c -1
01 134587 139491 PFA0155c -1

In [15]: sort Pfalciparum.bed | tail

14 979397 979586 RNAzID:2132 1
14 981211 982551 PF14TR004 1
14 981536 981592 RNAzID:2134 -1
14 982830 982889 RNAzID:2136 -1
14 983283 984503 PF14_0232 -1
14 985307 987697 PF14_0233 -1
14 987657 987729 RNAzID:2137 1
14 989162 992872 PF14_0234 1
14 993594 994242 PF14_0235 1
14 995103 1000448 PF14_0236 -1

To sort the contents of a BED file on position, type the following command.

sort -k 2 -n Pfalciparum.bed

The sort command can sort by multiple columns e.g. 1st column and then 2nd column by
specifying successive -k parameters in the command. Type the following commands:

In [16]: sort -k 2 -n Pfalciparum.bed | head

06 653 1432 PFF0005c -1
14 1394 5344 PF14_0001 1
14 2215 5392 PF14TR001 1
06 3503 12835 VAR 1
09 6841 7670 RNAzID:4487 1
14 7113 7207 RNAzID:1975 1
14 7209 8539 RIF -1
11 8419 9249 RNAzID:585 1
03 8435 8527 RNAzID:2735 -1
14 8936 9033 RNAzID:1976 1

In [17]: sort -k 2 -n Pfalciparum.bed | tail

6

14 3272513 3273783 RIF 1
14 3274613 3274669 RNAzID:2440 -1
14 3276165 3277436 RIF 1
14 3279435 3280597 RIF 1
14 3282002 3282056 RNAzID:2456 1
14 3282664 3283687 PF14_0771 1
14 3285383 3285466 RNAzID:2463 -1
14 3285835 3286938 RIF 1
14 3289946 3290002 RNAzID:2468 1
14 3290888 3291436 PF14_0773 1

Why not have a look at the manual for sort to see what these options do? Remember that you
can type / followed by a search phrase, n to find the next search hit, N to find the previous search
hit and q to exit.

man sort

1.9 uniq - finding unique values

The uniq command extracts unique lines from the input. It is usually used in combination with
sort to count unique values in the input.

To get the list of chromosomes in the Pfalciparum bed file type:

In [18]: awk '{ print $1 }' Pfalciparum.bed | sort | uniq

01
02
03
04
05
06
07
08
09
10
11
12
13
14

How many chromosomes are there? You will learn more about the awk command later in this
course.

Warning: uniq is really stupid; it can only spot that two lines are the same if they are right next
to one another. You therefore almost always want to sort your input data before using uniq.

Do you understand how this command is working? Why not try building it up piece by piece
to see what it does?

7

awk '{ print $1 }' Pfalciparum.bed | less
awk '{ print $1 }' Pfalciparum.bed | sort | less
awk '{ print $1 }' Pfalciparum.bed | sort | uniq | less

1.10 Exercises

Open up a new terminal window, navigate to the files directory in the Unix directory and com-
plete the following exercise:

1. Use the head command to extract the first 500 lines of the file Styphi.gff and store the
output in a new file called Styphi.500.gff.

2. Use the wc command to count the number of lines in the Pfalciparum.bed file.
3. Use the sort command to sort the file Pfalciparum.bed on chromosome and then gene

position.
4. Use the uniq command to count the number of features per chromosome in the

Pfalciparum.bed file. Hint: use the man command to look at the options for the uniq com-
mand. Or peruse the wc or grep manuals. There’s more than one way to do it!

8

grep

January 21, 2018

1 Searching inside files with grep

A common task is to extract information from large files. This can be achieved using the Unix com-
mand grep, which stands for “Globally search for a Regular Expression and Print”. The meaning
of this acronym will become clear later, when we discuss Regular Expressions. First, we will con-
sider simpler examples.

Before we start, change into the Unix/grep directory and double check that the following com-
mands gives you a similar output:

In [1]: pwd
ls

/Users/tdo/Google_Drive/Teaching/Linux_Course_Pathogens/linux_III/Notebooks/Unix/grep
answers.md list_example.1
exercises.fasta list_example.2
gene_expression.bed list_example.3
gene_expression_sneaky.bed regex_example.txt
grep.ipynb sequences.fasta

1.1 Simple pattern matching

We will use a small example file (in “BED” format), which contains the expression levels of some
genes. This is a column-based file, with a tab character between each column. There can be more
than 10 columns, but only the first three are required to be a valid file. The file format is described
in full here: http://genome.ucsc.edu/FAQ/FAQformat#format1. We will use the first 5 columns:

1. Sequence name
2. start position (starting from 0, not 1)
3. end position (starting from 0, not 1)
4. feature name
5. score (which is used to store the gene expression level in our examples).

Here is the contents of the first example BED file used in this course:

In [2]: cat gene_expression.bed

1

http://genome.ucsc.edu/FAQ/FAQformat#format1

chr1 10 100 gene1 10 +
chr1 350 500 gene2 1000 -
chr2 20 35 gene3 0 +
chr2 110 200 Gene4 4 -
chr3 1000 2000 gene5 100 +
chr10 1 100 gene6 11 -
chrX 60 90 Gene7 2 +
chrY 80 120 GENE8 42 -

In reality, such a file could contain 100,000s of lines, so that it is not practical to read manually.
Suppose we are interested in all the genes from chromosome 2. We can find all these lines using
grep:

In [3]: grep chr2 gene_expression.bed

chr2 20 35 gene3 0 +
chr2 110 200 Gene4 4 -

This has shown us all the lines that contain the string “chr2”.
We can use a pipe to then just extract the genes that are on the positive strand, using grep a

second time:

In [4]: grep chr2 gene_expression.bed | grep +

chr2 20 35 gene3 0 +

However, since grep is reporting a match to a string anywhere on a line, such simple searches
can have undesired consequences. For example, consider the result of doing a similar search for
all the genes in chromosome 1:

In [5]: grep chr1 gene_expression.bed

chr1 10 100 gene1 10 +
chr1 350 500 gene2 1000 -
chr10 1 100 gene6 11 -

Oops! We found genes in chromosome 10, because “chr1” is a substring of “chr10”.
Or consider the following file, where the genes have unpredictable names (which is not un-

usual for bioinformatics data).

In [6]: cat gene_expression_sneaky.bed

chr1 10 100 gene1 10 +
chr1 350 500 gene2 1000 -
chr1 350 500 sneaky-gene3 1000 +
chr2 20 35 gene4 0 +

2

chr2 110 200 gene5 4 -
chr3 1000 2000 gene6 100 +
chr8 20 100 chr11.gene1 1000 -
chr10 1 100 gene7 11 -
chr11 20 100 sneaky-gene8 1000 +

Now we try to find genes on chromosome 1 that are on the negative strand. We put the minus
sign in quotes, to stop Unix interpreting this as an option to grep, as opposed to the string we are
searching for:

In [7]: grep chr1 gene_expression_sneaky.bed | grep '-'

chr1 350 500 gene2 1000 -
chr1 350 500 sneaky-gene3 1000 +
chr8 20 100 chr11.gene1 1000 -
chr10 1 100 gene7 11 -
chr11 20 100 sneaky-gene8 1000 +

The extra lines are found by grep because of matches in columns we were not expecting to
match. Remember, grep is reporting these lines because they each contain the strings “chr1” and
“-” somewhere.

We need a way to make searching with grep more specific.
Regular expressions
Regular expressions provide the solution to the above problems. They are a way of defining

more specific patterns to search for.
Matching the start and end of lines
First, we can specify that a match must be at the start of a line using the symbol “ˆ”, which

means “start of line”. Without the ˆ, we find any match to “chr1”:

In [8]: grep chr1 gene_expression_sneaky.bed

chr1 10 100 gene1 10 +
chr1 350 500 gene2 1000 -
chr1 350 500 sneaky-gene3 1000 +
chr8 20 100 chr11.gene1 1000 -
chr10 1 100 gene7 11 -
chr11 20 100 sneaky-gene8 1000 +

However, notice the effect of searching for ˆchr1 instead. Note that we put the regular expres-
sion in quotes, to avoid Unix errors. Not using quotes may or may not give an error, but it is safest
to use quotes for anything but the simplest of searches.

In [9]: grep '^chr1' gene_expression_sneaky.bed

chr1 10 100 gene1 10 +
chr1 350 500 gene2 1000 -

3

chr1 350 500 sneaky-gene3 1000 +
chr10 1 100 gene7 11 -
chr11 20 100 sneaky-gene8 1000 +

Good! We have removed the match to the badly-named gene “chr11.gene1”, which is on chro-
mosome 8. Now we want to avoid matching chromosomes 10 and 11. This can be done by also
looking for a “tab” character, which is represented by writing \t. For technical reasons, which
are beyond the scope of this course, we must also put a dollar sign before the quotes to make any
search involving a tab character work.

In [10]: grep $'^chr1\t' gene_expression_sneaky.bed

chr1 10 100 gene1 10 +
chr1 350 500 gene2 1000 -
chr1 350 500 sneaky-gene3 1000 +

To find the genes on the negative strand, all that remains is to match a minus sign at the end
of the line (so that we do not find “sneaky-gene3”). We can do this using the dollar “$”, which
means “end of line”.

In [11]: grep $'^chr1\t' gene_expression_sneaky.bed | grep '\-$'

chr1 350 500 gene2 1000 -

1.1.1 Wildcards and alphabets

Another special character in regular expressions is the dot: “.”. This stands for any single charac-
ter. For example, this finds all matches to chromosomes 1-9, and chromosomes X and Y:

In [12]: grep $'^chr.\t' gene_expression.bed

chr1 10 100 gene1 10 +
chr1 350 500 gene2 1000 -
chr2 20 35 gene3 0 +
chr2 110 200 Gene4 4 -
chr3 1000 2000 gene5 100 +
chrX 60 90 Gene7 2 +
chrY 80 120 GENE8 42 -

In fact, the earlier command that found all genes on chromosome 1 that are on the negative
strand, could be found with a single call to grep instead of two calls piped together. To do this,
we need a regular expression that finds lines that:

• start with chr1, then a tab character
• end with a minus
• have arbitrary characters between.

4

The asterisk “*” has a special meaning: it says to match any number (including zero) of what-
ever character is before the *. For example, the regular expression ‘AC*G’ will match AG, ACG,
ACCG, etc. The simpler, improved command is:

In [13]: grep $'^chr1\t.*-$' gene_expression_sneaky.bed

chr1 350 500 gene2 1000 -

As well as matching any character using a dot, we can define any list of characters to match,
using square brackets. For example, [12X] means match a 1, 2, or an X. This can be used to find all
genes from chromosomes 1, 2 and X:

In [14]: grep $'^chr[12X]\t' gene_expression.bed

chr1 10 100 gene1 10 +
chr1 350 500 gene2 1000 -
chr2 20 35 gene3 0 +
chr2 110 200 Gene4 4 -
chrX 60 90 Gene7 2 +

Or just the autosomes may be of interest. To do this we introduce two new features:

• Ranges can be given in square brackets, for example [1-5] will match 1, 2, 3, 4 or 5.
• The plus sign “+” has a special meaning that is similar to “*”. Instead of any number of

matches (including zero), it looks for at least one match. To avoid simply matching a plus
sign, it must be preceded by a backslash: “\+”. For example, the regular expression ‘AC\+G’
will match ACG, ACCG, ACCCG etc (but will not match AG).

Warning: Adding a backslash is often called escaping (e.g. escape the plus symbol). Depending
on the software you’re using (and the options you give it), you may need to escape the symbol to
indicate that you want its special regex meaning (e.g. multiple copies of the last character please)
or its literal meaning (e.g. give me a ‘+’ symbol please). If your command isn’t working as you
expect, try playing with these options and always test your regular expression before assuming it
gave you the right answer.

The command to find the autosomes is:

In [15]: grep $'^chr[0-9]\+\t' gene_expression.bed

chr1 10 100 gene1 10 +
chr1 350 500 gene2 1000 -
chr2 20 35 gene3 0 +
chr2 110 200 Gene4 4 -
chr3 1000 2000 gene5 100 +
chr10 1 100 gene6 11 -

5

1.2 Other grep options

The Unix command grep and regular expressions are extremely powerful and we have only
scratched the surface of what they can do. Take a look at the manual (by typing man grep) to
get an idea. A few particularly useful options are discussed below.

1.2.1 Counting matches

A common use-case is counting matches within files. Instead of output each matching line, the
option “-c” tells grep to report the number of lines that matched. For example, the number of
genes in the autosomes in the above example can be found by simply adding -c to the command.

In [16]: grep -c $'^chr[0-9]\+\t' gene_expression.bed

6

1.2.2 Case sensitivity

By default, grep is case-sensitive. It can be useful to ignore the distinction between upper and
lower case using the option “-i”. Suppose we have a file of sequences, and want to find the
sequences that contain the string ACGT. It is not unusual to come across files that have a mix of
upper and lower case nucleotides. Consider this FASTA file:

In [17]: cat sequences.fasta

>sequence1
aACGTaaacaca
>sequence2
TacgtAAAAA
>sequence3
AAAAAAAA
>sequence4
agcACgtAA

A simple search for ACGT will not return all the results:

In [18]: grep ACGT sequences.fasta

aACGTaaacaca

However, making the search case-insensitive solves the problem.

In [19]: grep -i ACGT sequences.fasta

aACGTaaacaca
TacgtAAAAA
agcACgtAA

6

Searching in more than one file So far, we have restricted to searches in one file, but grep
can be given a list of files in which to search. As an example, we are given three files called
list_example.1, list_example.2, and list_example.3. They are simple lists of genes, for illus-
trative purposes. For example, the first file looks like this:

In [20]: cat list_example.1

gene1
gene2
gene3
gene4
gene5

Which files contain “gene1”?

In [21]: grep '^gene1$' list_example.1 list_example.2

list_example.1:gene1

gene1 only appears in the file list_example.1. The output format of grep has now changed,
because it was given a list of files. The format is:

• filename:line_that_matches

ie, the name of the file has been added to the start of each matching line.
For convenience, there’s also a way of specifying all of the list examples:

In [22]: echo list_example.*

list_example.1 list_example.2 list_example.3

In [23]: grep '^gene1$' list_example.*

list_example.1:gene1

How about gene42?

In [24]: grep '^gene42$' list_example.*

list_example.2:gene42
list_example.3:gene42
list_example.3:gene42

gene42 appears once in list_example.2 and twice in list_example.3.

7

1.2.3 Inverting matches

By default, grep reports all lines that do match the regular expression. Sometimes it is useful
to filter a file, by reporting lines that do not match the regular expression. Using the option “-v”
makes grep “invert” the output. For example, we could exclude genes from autosomes in the BED
file from earlier.

In [25]: grep -v $'^chr[0-9]\+\t' gene_expression.bed

chrX 60 90 Gene7 2 +
chrY 80 120 GENE8 42 -

1.3 Replacing matches to regular expressions

Finally, we show how to replace every match to a regular expression with something else, using
the command “sed”. The general form of this is:

sed 's/regular expression/new string/' input_file

This will output a new version of the input file, with each match to the regular expression
replaced with “new string”. For example:

In [26]: sed 's/^chr/chromosome/' gene_expression.bed

chromosome1 10 100 gene1 10 +
chromosome1 350 500 gene2 1000 -
chromosome2 20 35 gene3 0 +
chromosome2 110 200 Gene4 4 -
chromosome3 1000 2000 gene5 100 +
chromosome10 1 100 gene6 11 -
chromosomeX 60 90 Gene7 2 +
chromosomeY 80 120 GENE8 42 -

1.4 Exercises

The following exercises all use the FASTA file exercises.fasta. Before starting the exercises,
open a new terminal and navigate to the grep/ directory, which contains exercises.fasta.

Use grep to find the answers. Hint: some questions require you to use grep twice, and possibly
some other Unix commands.

1. Make a grep command that outputs just the lines with the sequence names.
2. How many sequences are in the file?
3. Do any sequence names have spaces in them? What are their names?
4. Make a grep command that outputs just the lines with the sequences, not the names.
5. How many sequences contain unknown bases (an “n” or “N”)?
6. Are there any sequences that contain non-nucleotides (something other than A, C, G, T or

N)?

8

7. How many sequences contain the 5’ cut site GCWGC (where W can be an A or T) for the
restriction enzyme AceI?

8. Are there any sequences that have the same name? You do not need to find the actual re-
peated names, just whether any names are repeated. (Hint: it may be easier to first discover
how many unique names there are).

9

awk

January 21, 2018

1 File processing with AWK

AWK is a programming language named after the initials of its three inventors: Alfred Aho, Peter
Weinberger, and Brian Kernighan. AWK is incredibly powerful at processing files, particularly
column-based files, which are commonplace in Bioinformatics. For example, BED, GFF, and SAM
files.

Although long programs, put into a separate file, can be written using AWK, we will use it
directly on the command line. Effectively, these are very short AWK programs, often called “one-
liners”.

Before we start, change into the Unix/awk directory and double check that the following com-
mands gives you a similar output:

In [1]: pwd
ls

/Users/tdo/Google_Drive/Teaching/Linux_Course_Pathogens/linux_III/Notebooks/Unix/awk
answers.md awk.ipynb exercises.bed genes.gff

1.1 Extracting columns from files

awk reads a file line-by-line, splitting each line into columns. This makes it easy to do simple things
like extract a column from a file. We will use the following GFF file for our examples.

In [2]: cat genes.gff

chr1 source1 gene 100 300 0.5 + 0 name=gene1;product=unknown
chr1 source2 gene 1000 1100 0.9 - 0 name=recA;product=RecA protein
chr1 source5 repeat 10000 14000 1 + . name=ALU
chr2 source2 gene 10000 1200 0.95 + 0
chr2 source1 gene 50 900 0.4 - 0 name=gene2;product=gene2 protein
chr3 source1 gene 200 210 0.8 . 0 name=gene3
chr4 source3 repeat 300 400 1 + . name=ALU
chr10 source2 repeat 60 70 0.78 + . name=LINE1
chr10 source2 repeat 150 166 0.84 + . name=LINE2
chrX source1 gene 123 456 0.6 + 0 name=gene4;product=unknown

The columns in the GFF file are separated by tabs and have the following meanings:

1

1. Sequence name
2. Source - the name of the program that made the feature
3. Feature - the type of feature, for example gene or CDS
4. Start position
5. Stop position
6. Score
7. Strand (+ or -)
8. Frame (0, 1, or 2)
9. Optional extra information, in the form key1=value1;key2=value2;. . .

The score, strand, and frame can be set to ‘.’ if it is not relevant for that feature. The final
column 9 may or may not be present and could contain any number of key, value pairs.

We can use awk to just print the first column of the file. awk calls the columns $1, $2, . . . etc,
and the complete line is called $0.

In [3]: awk -F"\t" '{print $1}' genes.gff

chr1
chr1
chr1
chr2
chr2
chr3
chr4
chr10
chr10
chrX

A little explanation is needed.

• The option -F"\t" was needed to tell awk that the columns are separated by tabs (more on
this later).

• For each line of the file, awk does what is inside the curly brackets. In this case, we simply
print the first column.

The repeated chromosome names are not nice. It is more likely to want to know just the unique
names, which can be found by piping into the Unix command sort.

In [4]: awk -F"\t" '{print $1}' genes.gff | sort -u

chr1
chr10
chr2
chr3
chr4
chrX

2

1.2 Filtering the input file

Similarly to grep, awk can be used to filter out lines of a file. However, since awk is column-based,
it makes it easy to filter based on properties of any columns of interest. The filtering criteria can
be added before the braces. For example, the following extracts just chromosome 1 from the file.

In [5]: awk -F"\t" '$1=="chr1" {print $0}' genes.gff

chr1 source1 gene 100 300 0.5 + 0 name=gene1;product=unknown
chr1 source2 gene 1000 1100 0.9 - 0 name=recA;product=RecA protein
chr1 source5 repeat 10000 14000 1 + . name=ALU

There are two important things to note from the above command:

1. $1=="chr1" means that column 1 must be exactly equal to “chr1”. This means that “chr10”
is not found.

2. The “{print $0}” part only happens when the first column is equal to “chr1”, otherwise
awk does nothing (the line gets ignored).

Awk commands are made up of two parts, a pattern (e.g. $1=="chr1") and an action (e.g. print
$0) which is contained in curly braces. The pattern defines which lines the action is applied to.

In fact, the action (the part in curly braces) can be omitted in this example. awk assumes that
you want to print the whole line, unless it is told otherwise. This gives a simple method of filtering
based on columns.

In [6]: awk -F"\t" '$1=="chr1"' genes.gff

chr1 source1 gene 100 300 0.5 + 0 name=gene1;product=unknown
chr1 source2 gene 1000 1100 0.9 - 0 name=recA;product=RecA protein
chr1 source5 repeat 10000 14000 1 + . name=ALU

You might remember using another of awk’s defaults in a previous exercise. In that example
we supplied an action but no pattern. In this case, awk assumes that you want to apply the action
to every line in the file. For example:

In [7]: awk -F"\t" '{print $1}' genes.gff

chr1
chr1
chr1
chr2
chr2
chr3
chr4
chr10
chr10
chrX

3

Multiple patterns can be combined using “&&” to mean “and”. For example, to find just the
genes from chromosome 1:

In [8]: awk -F"\t" '$1=="chr1" && $3=="gene"' genes.gff

chr1 source1 gene 100 300 0.5 + 0 name=gene1;product=unknown
chr1 source2 gene 1000 1100 0.9 - 0 name=recA;product=RecA protein

The entire line need not be printed (remember, if not specified, awk assumes a print $0).
Suppose we want only the sources of the genes on chromosome 1:

In [9]: awk -F"\t" '$1=="chr1" && $3=="gene" {print $2}' genes.gff | sort -u

source1
source2

Similarly to using “&&” for “and”, there is “||” to mean “or”. To find features that are repeats
or made by the tool “source2”:

In [10]: awk -F"\t" '$2=="source2" || $3=="repeat"' genes.gff

chr1 source2 gene 1000 1100 0.9 - 0 name=recA;product=RecA protein
chr1 source5 repeat 10000 14000 1 + . name=ALU
chr2 source2 gene 10000 1200 0.95 + 0
chr4 source3 repeat 300 400 1 + . name=ALU
chr10 source2 repeat 60 70 0.78 + . name=LINE1
chr10 source2 repeat 150 166 0.84 + . name=LINE2

So far, we have only used strings for the filtering. Numbers can also be used. We could ask
awk to return all the genes on chromosome 1 that start before position 1100:

In [11]: awk -F"\t" '$1=="chr1" && $3=="gene" && $4 < 1100' genes.gff

chr1 source1 gene 100 300 0.5 + 0 name=gene1;product=unknown
chr1 source2 gene 1000 1100 0.9 - 0 name=recA;product=RecA protein

Instead of looking for exact matches to strings, regular expressions can be used. The symbol
“~” is used instead of “==”. For example, to find all the autosomes, we need to use a regular
expression for matches to the first column. The regular expression is written between forward
slashes.

In [12]: awk -F"\t" '$1 ~ /^chr[0-9]+$/' genes.gff

4

chr1 source1 gene 100 300 0.5 + 0 name=gene1;product=unknown
chr1 source2 gene 1000 1100 0.9 - 0 name=recA;product=RecA protein
chr1 source5 repeat 10000 14000 1 + . name=ALU
chr2 source2 gene 10000 1200 0.95 + 0
chr2 source1 gene 50 900 0.4 - 0 name=gene2;product=gene2 protein
chr3 source1 gene 200 210 0.8 . 0 name=gene3
chr4 source3 repeat 300 400 1 + . name=ALU
chr10 source2 repeat 60 70 0.78 + . name=LINE1
chr10 source2 repeat 150 166 0.84 + . name=LINE2

Like with grep, matches can be inverted. grep has the option -v, but with awk we use “!~” to
mean “does not match”. This inverts the previous example:

In [13]: awk -F"\t" '$1 !~ /^chr[0-9]+$/' genes.gff

chrX source1 gene 123 456 0.6 + 0 name=gene4;product=unknown

If we do not specify a column, awk looks for a match anywhere in the whole line (it assumes
we wrote $0 ~ /regex/). So, in some sense, awk can be used as a replacement for grep:

In [14]: awk '/repeat/' genes.gff

chr1 source5 repeat 10000 14000 1 + . name=ALU
chr4 source3 repeat 300 400 1 + . name=ALU
chr10 source2 repeat 60 70 0.78 + . name=LINE1
chr10 source2 repeat 150 166 0.84 + . name=LINE2

(the -F"\t" was omitted because the match is to the whole line, so how the columns are sepa-
rated is not relevant.)

In [15]: grep repeat genes.gff

chr1 source5 repeat 10000 14000 1 + . name=ALU
chr4 source3 repeat 300 400 1 + . name=ALU
chr10 source2 repeat 60 70 0.78 + . name=LINE1
chr10 source2 repeat 150 166 0.84 + . name=LINE2

However, with awk we can easily pull out information from the matching lines. Suppose we
want to know which chromosomes have repeats. It is easy with awk.

In [16]: awk -F"\t" '/repeat/ {print $1}' genes.gff | sort -u

chr1
chr10
chr4

5

Sanity checking files Never, ever trust the contents of Bioinformatics files (even if you made
them!). We now have enough skills to do some basic sanity checking of a GFF file. For example,
to check that every gene has been assigned a strand:

In [17]: awk -F"\t" '$3=="gene" && !($7 == "+" || $7 == "-")' genes.gff

chr3 source1 gene 200 210 0.8 . 0 name=gene3

Something went wrong when this file was made: gene3 has an unknown strand.
Do the start and end coordinates of all the features make sense?

In [18]: awk -F"\t" '$5 < $4' genes.gff

chr2 source2 gene 10000 1200 0.95 + 0

According to the file, this gene starts at position 10000 and ends at position 1200, which does
not make sense. Also, it has no name (the final optional column is empty). We could check if there
are any other genes with no name. One way to do this is to use the special variable “NF”, which
is the number of columns (fields) in the current line. Since the final column is optional, each line
might have 8 or 9 columns. We need to write a command that will check:

• If the feature is a gene, and if it is:
• check if the number of columns is less than 9. When there are 9 columns, check if there is a

name defined.

In [19]: awk -F"\t" '$3=="gene" && (NF<9 || $NF !~/name/)' genes.gff

chr2 source2 gene 10000 1200 0.95 + 0

Note the distinction between NF (the number of columns) and “$NF” (the contents of the final
column).

As promised earlier, we now consider the relevance of the option “-F"\t"”, to tell awk that the
columns in the input file are separated with tab characters. If we forgot to use this option, then
awk will use its default behaviour, which is to separate on any whitespace (which usually means
tabs and/or spaces). However, consider the final column of the file - it can contain whitespace,
which means that messy things happen. Suppose we try to extract the optional extra final column
of the file, when it is present. Compare the effect of running awk with and without “-F"\t"”.

In [20]: awk -F"\t" 'NF>8 {print $NF}' genes.gff

name=gene1;product=unknown
name=recA;product=RecA protein
name=ALU
name=gene2;product=gene2 protein
name=gene3
name=ALU
name=LINE1
name=LINE2
name=gene4;product=unknown

6

In [21]: awk 'NF>8 {print $NF}' genes.gff

name=gene1;product=unknown
protein
name=ALU
protein
name=gene3
name=ALU
name=LINE1
name=LINE2
name=gene4;product=unknown

One more sanity check: each line should have 8 or 9 columns (remembering to use -F"\t"!)

In [22]: awk -F"\t" 'NF<8 || NF>9' genes.gff

There was no output, which means that every line does indeed have 8 or 9 columns.
Changing the output In addition to filtering, awk can be used to change the output.
Every value in a column could be changed to something else, for example suppose we want to

change the source column (column number 2) to something else.

In [23]: awk -F"\t" '{$2="new_source"; print $0}' genes.gff

chr1 new_source gene 100 300 0.5 + 0 name=gene1;product=unknown
chr1 new_source gene 1000 1100 0.9 - 0 name=recA;product=RecA protein
chr1 new_source repeat 10000 14000 1 + . name=ALU
chr2 new_source gene 10000 1200 0.95 + 0
chr2 new_source gene 50 900 0.4 - 0 name=gene2;product=gene2 protein
chr3 new_source gene 200 210 0.8 . 0 name=gene3
chr4 new_source repeat 300 400 1 + . name=ALU
chr10 new_source repeat 60 70 0.78 + . name=LINE1
chr10 new_source repeat 150 166 0.84 + . name=LINE2
chrX new_source gene 123 456 0.6 + 0 name=gene4;product=unknown

This is close, but look carefully at the output. What happened? The output is not tab-separated,
but is instead separated with spaces. To restore the tabs, we need to use another special variable
called “OFS” (Output Field Separator), and change it before awk does any processing of the input
file. This can be achieved by adding “BEGIN{OFS="\t"}”, as in the next example. Before awk reads
any lines of the file it runs the BEGIN block of code, which in this case changes OFS to be a tab
character.

In [24]: awk -F"\t" 'BEGIN{OFS="\t"} {$2="new_source"; print $0}' genes.gff

chr1 new_source gene 100 300 0.5 + 0 name=gene1;product=unknown
chr1 new_source gene 1000 1100 0.9 - 0 name=recA;product=RecA protein
chr1 new_source repeat 10000 14000 1 + . name=ALU
chr2 new_source gene 10000 1200 0.95 + 0

7

chr2 new_source gene 50 900 0.4 - 0 name=gene2;product=gene2 protein
chr3 new_source gene 200 210 0.8 . 0 name=gene3
chr4 new_source repeat 300 400 1 + . name=ALU
chr10 new_source repeat 60 70 0.78 + . name=LINE1
chr10 new_source repeat 150 166 0.84 + . name=LINE2
chrX new_source gene 123 456 0.6 + 0 name=gene4;product=unknown

Processing the data More in-depth processing is possible. For example, we could print the
length of each repeat (and then sort the results numerically)

In [25]: awk -F"\t" '$3=="repeat" {print $5 - $4 + 1}' genes.gff | sort -n

11
17
101
4001

Perhaps we would like to know the total length of the repeats. We need to use a variable to
add up the total lengths and print the final total. In the same way that awk has a BEGIN block, it
can also be given an END block that is only run when awk has finished reading all lines of the input
file.

In [26]: awk -F"\t" 'BEGIN{sum=0} $3=="repeat" \
{sum = sum + $5 - $4 + 1} \
END{print sum}' genes.gff

4130

The total repeat length was stored in a variable called sum. The previous awk command can be
broken down into three parts:

1. The BEGIN{sum=0} sets sum to zero before any lines of the file are read.
2. awk reads each line of the file. Each time a repeat is found, the length of that repeat is added

to sum.
3. Once all lines of the file have been read, awk runs the END block: END{print sum}. This prints

the value of sum.

In fact, the command can be shortened a little. Adding a number to a variable is so common,
that there is a shorthand way to write it. Instead of

sum = sum + $5 - $4 + 1

we can use

sum += $5 - $4 + 1

to get the same result.

8

In [27]: awk -F"\t" 'BEGIN{sum=0} \
$3=="repeat" {sum += $5 - $4 + 1} \
END{print sum}' genes.gff

4130

Maybe we would like to know the mean score of the genes. We need to calculate the total
score, and divide this by the number of genes. To keep track of the number of genes, we use a
variable called count. Each time a new gene is found, 1 must be added to count. This could be
done by writing

count = count + 1

but instead we will use the shorthand

count++

In [28]: awk -F"\t" 'BEGIN{sum=0; count=0} \
$3=="gene" {sum += $6; count++} \
END{print sum/count}' genes.gff

0.691667

Finally, awk has a default behaviour that means we do not even need the BEGIN block. It can be
completely omitted in this example because we are setting sum and count to zero. The first time
awk sees a variable being used, it will set it to zero by default. For example, when awk reads the
first line of the file, the piece of code

count++

tells awk to add 1 to count. However, if awk has not encountered the variable count before, it
assumes it is zero (as if we had written BEGIN{count=0}), then adds 1 to it. The result is that count
is equal to 1. Similar comments apply to the variable sum.

In [29]: awk -F"\t" '$3=="gene" {sum += $6; count++} \
END{print sum/count}' genes.gff

0.691667

If this confuses you, then be explicit and use the BEGIN block of code. The result is the same.

1.3 Exercises

The following exercises all use the BED file exercises.bed. Before starting the exercises, open a
new terminal and navigate to the awk/ directory, which contains exercises.bed.

Use awk to find the answers to the following questions about the file exercises.bed. Many
questions will require using pipes (eg “awk ... | sort -u” for question 1).

9

1. What are the names of the contigs in the file?
2. How many contigs are there?
3. How many features are on the positive strand?
4. How many features are on the negative strand?
5. How many genes are there?
6. How many genes have no strand assigned to them (ie the final column is not there)?
7. Are any gene names repeated? (Hint: you do not need to find their names, just a yes or no

answer. Consider the number of unique gene names.)
8. What is the total score of the repeats?
9. How many features are in contig-1?

10. How many repeats are in contig-1?
11. What is the mean score of the repeats in contig-1?

10

bash_scripts

January 21, 2018

1 BASH scripts

So far, we have run single commands in a terminal. However, it is useful to be able to run multiple
commands that process some data and produce output. These commands can be put into a sepa-
rate file (ie a script), and then run on the input data. This has the advantage of reproducibility, so
that the same analysis can be run on many input data sets.

1.1 First script

It is traditional when learning a new language (in this case BASH), to write a simple script that
says “Hello World!”. We will do this now.

First, open a terminal and make a new directory in your home called scripts, by typing

cd
mkdir ~/scripts

Next open a text editor, which you will use to write the script. What text editors are available
will depend on your system. For example, gedit in Linux. Do not try to use a word processor,
such as Word! If you don’t already have a favorite, try gedit by running the following command:

gedit &

Type this into the text editor:

echo Hello World!

and save this to a file called hello.sh in your new scripts directory. This script will print
Hello World! to the screen when we run it. First, in your terminal, check that the script is saved
in the correct place.

In [1]: cd scripts
ls hello.sh

hello.sh

If everything is OK, then next try to run the script. For now, we need to tell Unix that this is a
bash script, and where it is:

In [2]: bash hello.sh

Hello World!

1

1.2 Setting up a scripts directory

It would be nice if all our scripts could simply be run from anywhere in the filesystem, with-
out having to tell Unix where the script is, or that it is a BASH script. This is how the built-in
commands work, such as cd or ls.

To tell Unix that the script is a BASH script, make this the first line of the script:

#!/usr/bin/env bash

and remember to save the script again. This special line at the start of the file tells Unix that
the file is a bash script, so that it expects bash commands throughout the file. There is one more
change to be made to the file to tell Unix that it is a program to be run (it is “executable”). This is
done with the command chmod. Type this into the terminal to make the file executable:

In [3]: chmod +x hello.sh

Now, the script can be run, but we must still tell Unix where the script is in the filesystem. In
this case, it is in the current working directory, which is called “./”.

In [4]: ./hello.sh

Hello World!

The final thing to do is change our setup so that Unix can find the script without us having to
explicitly say where it is. Whenever a command is typed into Unix, it has a list of directories that
it searches through to look for the command. We need to add the new scripts directory to that list
of directories. Try typing

echo $PATH

It returns a list of directories, which are all the places Unix will look for a command. Before we
add the scripts directory to this list, check what happens if we try to run the script without telling
Unix where it is:

hello.sh
bash: hello.sh: command not found

Unix did not find it! The command to run to add the scripts directory to $PATH is:

export PATH=$PATH:~/scripts/

If you want this change to be permanent, ie so that Unix finds your scripts after you restart or
logout and login again, add that line to the end of a file called ~/.bashrc. If you are using a Mac,
then the file should instead be ~/.bash_profile. If the file does not already exist, then create it
and put that line into it.

The following command is only here so that this notebook finds scripts correctly and the re-
maining examples work. Do not type the next command into your terminal.

In [5]: PATH=$PATH:$PWD # do not type this into your terminal!

2

Now the script works, no matter where we are in the filesystem. Unix will check the scripts
directory and find the file hello.sh. You can be anywhere in your filesystem, and simply running

hello.sh

will always work. Try it now.

In [6]: hello.sh

Hello World!

In general, when making a new script, you can now copy and edit an existing script, or make
a new one like this:

cd ~/scripts
touch my_script.sh
chmod +x my_script.sh

and then open my_script.sh in a text editor.

1.3 Getting options from the terminal and printing a help message

Usually, we would like a script to read in options from the user, such as the name of an input file.
This would mean a script can be run like this:

my_script.sh input_file

Inside the script, the parameters provided by the user are given the names $1, $2, $3 etc (do
not confuse these with column names used by awk!). Here is a simple example that expects the
user to provide a filename and a number. The script simply prints the filename to the screen, and
then the first few lines of the file (the number of lines is determined by the number given by the
user).

In [7]: cat options_example.sh

#!/usr/bin/env bash

echo filename is: $1
echo

echo First $2 lines of file $1 are:
head -n $2 $1

In [8]: options_example.sh test_file 2

filename is: test_file

First 2 lines of file test_file are:
test file line 1
test file line 2

3

The options have been used by the script, but the script itself is not very readable. It is better
to use names instead of $1 and $2. Here is an improved version of the script that does exactly the
same as the previous script, but is more readable.

In [9]: cat options_example.2.sh

#!/usr/bin/env bash
filename=$1
number_of_lines=$2

echo filename is: $filename
echo

echo First $number_of_lines lines of file $filename are:
head -n $number_of_lines $filename

Checking options from the user
The previous scripts will have strange behaviour if the input is not as expected by the script.

Many things could go wrong. For example:

• The wrong number of options are given by the user
• The input file does not exist.

Try running the script with different options and see what happens.
A convention with scripts is that it should output a help message if it is not run correctly. This

shows anyone how the script should be run (including you!) without having to look at the code
inside the script.

A basic check for this script would be to verify that two options were supplied, and if not then
print a help message. The code looks like this:

if [$# -ne 2]
then

echo "usage: options_example.3.sh filename number_of_lines"
echo
echo "Prints the filename, and the given first number of lines of the file"
exit

fi

You can copy this code into the start of any of your scripts, and easily modify it to work for
that script. A little explanation:

• A special variable $# has been used, which is the number of options that were given by the
user.

• The whole block of code has the form “if [$# -ne 2] then fi”. This only runs
the code between the then and fi, if $# (the number of options) is not 2.

• The line exit simply makes the script end, so that no more code is run.

In [10]: options_example.3.sh

4

usage: options_example.3.sh filename number_of_lines

Prints the filename, and the given first number of lines of the file

Another check is that the input file really does exist. If it does not exist, then there is no point
in trying to run any more code. This can be checked with another if ... then ... fi block of
code:

if [! -f $filename]

then
echo "File '$filename' not found! Cannot continue"
exit

fi

Putting this all together, the script now looks like this:

In [11]: cat options_example.3.sh

#!/usr/bin/env bash
set -eu

check that the correct number of options was given.
If not, then write a message explaining how to use the
script, and then exit.
if [$# -ne 2]
then

echo "usage: options_example.3.sh filename number_of_lines"
echo
echo "Prints the filename, and the given first number of lines of the file"
exit

fi

Use sensibly named variables
filename=$1
number_of_lines=$2

check if the input file exists
if [! -f $filename]
then

echo "File '$filename' not found! Cannot continue"
exit

fi

If we are still here, then the input file was found
echo filename is: $filename
echo

5

echo First $number_of_lines lines of file $filename are:
head -n $number_of_lines $filename

Two new features have also been introduced in this file:

1. The second line is “set -eu”. Without this line, if any line produces an error, the script will
carry on regardless to the end of the script. Using the -e option, an error anywhere in the file
will result in the script stopping at the line that produced the error, instead of continuing. In
general, it is best that the script stops at any error. The -u creates an error if you try to use a
variable which doesn’t exist. This helps to stop typos doing bad things to your analysis.

2. There are several lines starting with a hash #. These lines are “comment lines” that are not
run. They are used to document the code, containing explanations of what is happening. It
is good practice to comment your scripts!

The above script provides a template for writing your own scripts. The general method is:

1. Tell Unix that this is a BASH script, and to stop at the first error.
2. Check if the user ran the script correctly. If not, output a message telling the user how to run

the script.
3. Check the input looks OK (in this case, that the input file exists).
4. Process the input.

1.4 Using variables to store output from commands

It can be useful to run a command and put the results into a variable. Recall that we stored the
input from the user in sensibly named variables:

filename=$1

The part after the equals sign could actually be any command that returns some output. For
example, running this in Unix

wc -l filename | awk '{print $1}'

returns the number of lines. In case you are wondering why the command includes | awk
'{print $1}', check what happens with and without the pipe to awk:

In [12]: wc -l options_example.3.sh

31 options_example.3.sh

In [13]: wc -l options_example.3.sh | awk '{print $1}'

31

With a small change, this can be stored in a variable and then used later.

In [14]: filename=options_example.3.sh
line_count=$(wc -l $filename | awk '{print $1}')
echo There are $line_count lines in the file $filename

There are 31 lines in the file options_example.3.sh

6

1.5 Repeating analysis with loops

It is common in Bioinformatics to run the same analysis on many files. Suppose we had a script
that ran one type of analysis, and wanted to repeat the same analysis on 100 different files. It
would be tedious, and error-prone, to write the same command 100 times. Instead we can use a
loop. As an example, we will just run the Unix command wc on each file but instead, in reality this
would be a script that runs in-depth analysis. We can run wc on each of the files in the directory
loop_files/ with the following command.

In [15]: for filename in loop_files/*; do wc $filename; done

2 8 28 loop_files/file.1
5 20 70 loop_files/file.2
6 24 84 loop_files/file.3
1 4 14 loop_files/file.4
0 0 0 loop_files/file.5

1.6 Exercises

1. Write a script that gets a filename from the user. If the file exists, it prints a nice human-
readable message telling the user how many lines are in the file.

2. Use a loop to run the script from Exercise 1 on the files in the directory loop_files/.
3. Write a script that takes a GFF filename as input. Make the script produce a sum-

mary of various properties of the file. There is an example input file provided called
bash_scripts/exercise_3.gff. Use your imagination! You could have a look back at the
awk section of the course for inspiration. Here are some ideas you may wish to try:

• Does the file exist?
• How many records (ie lines) are in the file?
• How many genes are in the file?
• Is the file badly formatted in any way (eg wrong number of columns, do the coordinates

look like numbers)?

7

unix_cheat_sheet

January 21, 2018

1 UNIX Quick Reference Guide

1.1 Looking at files and moving them around

pwd # Tell me which directory I'm in
ls # What else is in this directory
ls .. # What is in the directory above me
ls foo/bar/ # What is inside the bar directory which is inside the foo/ directory
ls -lah foo/ # Give the the details (-l) of all files and folders (-a) using human

readable file sizes (-h)
cd ../.. # Move up two directories
cd ../foo/bar # Move up one directory and down into the foo/bar/ subdirectories
cp -r foo/ baz/ # Copy the foo/ directory into the baz/ directory
mv baz/foo .. # Move the foo directory into the parent directory
rm -r ../foo # remove the directory called foo/ from the parent directory
find foo/ -name "*.gff" # find all the files with a gff extension in the directory foo/

1.2 Looking in files

less bar.bed # scroll through bar.bed
grep chrom bar.bed | less -S # Only look at lines in bar.bed which have 'chrom' and

don't wrap lines (-S)
head -20 bar.bed # show me the first 20 lines of bar.bed
tail -20 bar.bed # show me the last 20 lines
cat bar.bed # show me all of the lines (bad for big files)
wc -l bar.bed # how many lines are there
sort -k 2 -n bar.bed # sort by the second column in numerical order
awk '{print $1}' bar.bed | sort | uniq # show the unique entries in the first column

1.3 Grep

grep foo bar.bed # show me the lines in bar.bed with 'foo' in them
grep foo baz/* # show me all examples of foo in the files immediately within baz/
grep -r foo baz/ # show me all examples of foo in baz/ and every subdirectory within it
grep '^foo' bar.bed # show me all of the lines begining with foo
grep 'foo$' bar.bed # show me all of the lines ending in foo
grep -i '^[acgt]$' bar.bed # show me all of the lines which only have the characters

a,c,g and t (ignoring their case)

1

grep -v foo bar.bed # don't show me any files with foo in them

1.4 Awk

awk '{print $1}' bar.bed # just the first column
awk '$4 ~ /^foo/' bar.bed # just rows where the 4th column starts with foo
awk '$4 == "foo" {print $1}' bar.bed # the first column of rows where the 4th column is foo
awk -F"\t" '{print $NF}' bar.bed # ignore spaces and print the last column
awk -F"\t" '{print $(NF-1)}' bar.bed # print the penultimate column
awk '{sum+=$2} END {print sum}' bar.bed # print the sum of the second column
awk '/^foo/ {sum+=$2; count+=1} END {print sum/count}' bar.bed # print the average of the

second value of lines starting
with foo

1.5 Piping, redirection and more advanced queries

grep -hv '^#' bar/*.gff | awk -F"\t" '{print $1}' | sort -u
grep => -h: don't print file names
-v: don't give me matching files
'^#': get rid of the header rows
'bar/*.gff': only look in the gff files in bar/
awk => print the first column
sort => -u: give me unique values

awk 'NR%10 == 0' bar.bed | head -20
awk => NR: is the row number
NR%10: is the modulo (remander) of dividing my 10
awk is therefore giving you every 10th line
head => only show the first 20

awk '{l=($3-$2+1)}; (l<300 && $2>200000 && $3<250000)' exercises.bed
Gives:
contig-2 201156 201359 gene-67 24.7 -
contig-4 245705 245932 gene-163 24.8 +
Finds all of the lines with features less than 300 bases long which start
after base 200,000 and end before base 250,000
Note that this appears to have the action before the pattern. This is
because we need to calculate the length of each feature before we use it
for filtering. If they were the other way around, you'd get the line
immediatly after the one you want:
awk '(l<300 && $2>200000 && $3<250000) {l=($3-$2+1); print $0}' exercises.bed
Gives:
contig-2 201156 201359 gene-67 24.7 -
contig-2 242625 243449 gene-68 46.5 +

1.6 A script

#!/usr/bin/env bash

2

set -e # stop running the script if there are errors
set -u # stop running the script if it uses an unknown variable
set -x # print every line before you run it (useful for debugging but annoying)

if [$# -ne 2]
then

echo "You must provide two files"
exit 1 # exit the programme (and number > 0 reports that this is a failure)

fi

file_one=$1
file_two=$2

if [! -f $file_one]
then

echo "The first file couldn't be found"
exit 2

fi

if [! -f $file_two]
then

echo "The second file couldn't be found"
exit 2

fi

Get the lines which aren't headers,
take the first column and return the unique values
number_of_contigs_in_one=$(awk '$1 !~ /^#/ {print $1}' $file_one | sort -u | wc -l)
number_of_contigs_in_two=$(awk '/^[^#]/ {print $1}' $file_two | sort -u | wc -l)

if [$number_of_contigs_in_one -gt $number_of_contigs_in_two]
then

echo "The first file had more unique contigs than the second"
exit

elif [$number_of_contigs_in_one -lt $number_of_contigs_in_two]
then

echo "The second file had more unique contigs"
exit

else
echo "The two files had the same number of contigs"
exit

fi

1.7 Pro tips

• Use tab completion - it will save you time!
• Always have a quick look at files with less or head to double check their format

3

• Watch out for data in headers and that you don’t accidentally grep some if you don’t want
them

• Watch out for spaces, especially if you’re using awk; if in doubt, use -F"\t"
• Regular expressions are wierd, build them up slowly bit by bit
• If you did something smart but can’t remember what it was, try typing history and it might

have a record
• man the_name_of_a_command often gives you help
• Google is normally better at giving examples (prioritise stackoverflow.com results, they’re

normally good)

1.8 Build commands slowly

If you wanted me to calculate the sum of all of the scores for genes on contig-1 in a bed file, I’d
probably run each of the following commands before moving onto the next:

head -20 bar.bed # check which column is which and if there are any headers
head -20 bar.bed | awk '{print $5}' # have a look at the scores
awk '{print $1}' bar.bed | sort -u | less # check the contigs don't look wierd
awk '{print $4}' bar.bed | sort -u | less # check the genes don't look wierd
awk '$4 ~ /gene-/' bar.bed | head -20 # check that I can spot genes
awk '($1 == "contig-1" && $4 ~ /gene-/)' bar.bed | head -20 # check I can find

genes on contig-1
check my algorithm works on a subset of the data
head -20 bar.bed | awk '($1 == "contig-1" && $4 ~ /gene-/) {sum+=$5}; END {print sum}'
apply the algorithm to all of the data
awk '($1 == "contig-1" && $4 ~ /gene-/) {sum+=$5}; END {print sum}' bar.bed

1.9 Which tool should I use?

You should probably use awk if:

• your data has columns
• you need to do simple maths

You should probable use grep if:

• you’re looking for files which contain some specific text (e.g. grep -r foo bar/: look in all
the files in bar/ for any with the word ‘foo’)

You should use find if:

• you know something about a file (like it’s name or creation date) but not where it is
• you want a list of all the files in a subdirectory and its subdirectories etc.

You should write a script if:

• your code doesn’t fit on one line
• it’s doing something you might want to do again in 3 months
• you want someone else to be able to do it without asking loads of questions

4

• you’re doing something sensitive (e.g. deleting loads of files)
• you’re doing something lots of times

You should probably use less or head:

• always, you should always use less or head to check intermediary steps in your analysis

5

	Unix module
	Introducing Unix
	Why Unix?
	Sections of the Unix course
	Setting the variables
	Acknowledgements
	Cheat sheet

