
A brief introduction to R – 2017 
Overview of R  
R is a powerful and free scripting language and environment designed for statistical analysis and visualisation of 
data. It is suited to the use of large datasets, particularly those formatted along the lines of a spreadsheet. Due to its 
widespread use guidance and tutorials are easy to find online so if you run into a problem it is likely that a quick web 
search will yield a solution. For this introduction we shall be using R Studio, which can be downloaded for free from 
https://www.rstudio.com/.  

Layout of R studio 

 

When you open R Studio you will be presented with three windows, as shown above. The large window on the left 
hand side is the console window, where you input command and can view any data that has been created. The top 
right window is the workspace window, which lists both the recent commands used and all the data that has been 
loaded into R. The bottom right window contains tabs for files, plots, packages and help. Today we will mostly be 
using the plots tab. Throughout this introduction you will see text highlighted in the following ways: 

Things for you to attempt in R 

Commands to type into the console window 

Variable, folder and file names 

  

https://www.rstudio.com/


Getting help 
If you continue to use R outside of this introduction you will find yourself running into problems on a regular basis. I 
say this with certainty because even experienced programmers run into problems and often spend more time 
debugging their code than they did writing it in the first place. When this happens there are a few important steps to 
solving the issue: 

1. Check your code for mistakes such as spelling or putting the wrong number in. If R can run the command you 
typed it will, even if the result isn’t what you wanted. 

2. Keep a copy of your code in a separate file. This will help when it comes to finding errors but also makes it 
much easier to repeat an analysis. In the long run you can transform this into a pipeline, a set of instructions 
that can describes all the analysis in a project from start to finish. 

3. Look at the output from each step and check it did what you intended to. Many mistakes are missed because 
R returned an output that looked correct at first glance even though it isn’t. 

4. Search online. If you run into a problem it’s likely that somebody else has run into it beforehand, especially 
when using the most common functions. Learning how to search effectively will save you a lot of time in the 
long run. 

Working directory & loading files 
The working directory is the folder on your computer from which you are currently working and contains all the files 
needed for the current piece of work. For example if you are working on multiple projects you may have folders 
named plasmodium, trypanosoma and influenza. All of these folders may contain files with similar names, for 
example snps.txt, genomesequence.txt or currentcode.r. 

In order for R to know which folder we wish to work from we need to define the current working directory. After 
doing this R will automatically look in this folder when loading files and save data / plots to this folder unless we tell 
it otherwise. To check the current working directory we use the command: 

getwd() 

which will provide us with a line that looks like this: 

[1] “D:/folder/asecondfolder” 

To set the working directory we use the command: 

setwd(“D:/folder/asecondfolder”) 

This will return an error as those folders don’t exist. It’s important to note that the location is surrounded by “quote 
marks” which tells R that the content is plain text and not a variable. 

Try setting the working directory to D:/R-intro 

  



Using R as a calculator 
R can be used as a powerful calculator due to its ability to store and manipulate data and results. For example 
inputting the following: 

((15 * 2.59^3)-5)/13 

quickly returns 19.66228 

Basic variables 
A variable is a piece of data that has been assigned an name, which we can use to tell R which data to use when 
running scripts. The advantage here is that once data has been stored in a variable it can be recalled, copied and 
manipulated using its name rather than having to type it all in again. The simplest variables contain just 1 piece of 
data but more complex variables could contain an entire spreadsheet. 

To define a variable we take the data and assign it a name in one of two ways (they do exactly the same thing): 

a = 15 

a <- 15 

Here the variable is called ‘a’ and the data inside it is the number 15. 

Any time you want to see what is in a variable you can just type its name into R. Variables can be used in place of the 
data they contain, for example if we replace the 15 in our earlier calculation with the variable: 

((a*2.59^3)-5)/13 

it will still return 19.66228. We can also use variables to store text, such as: 

fish = “salmon” 

Note the quote marks, which tells R we wish to store the text “salmon” in the variable fish. 

fish = salmon 

If you type the above what error do you get? What do you think this means? 

  



Basic functions 
Functions are predefined instructions that tell R to perform a specific operation. An individual function can perform 
multiple actions using a single command, saving a lot of time when it comes to writing scripts. It is possible to define 
your own functions in addition to the hundreds that are installed as part of R. A typical function takes the form of 

functionname(variable, variable, etc) 

You can often find out what a function does by typing 

?functionname 

While typing 

functionname() 

without any variables will show the individual actions that are performed when the function is run. 

What does the class function do? Try using it with your a and fish variables 

Expanding variables further  

Most variables are more complex than the a and fish variables we defined above. Those were examples of scalar 
variables, which means they contains a single number or block of text. 

Vectors are like a row of numbers or words which are collected together into a single place. One of the ways you can 
create them is by concatenating data together using the c function: 

b = c(15,6,7) 

c = c(fish,”crab”,”boat”) 

which tells R to create a variables that groups the numbers or words together. 

Does c contain what you expected it to?  

What happens if you use b in our equation from earlier? What happens if you try and use c in the equation? 

What is the difference between c and c()? 

  



Variables can be expanded further by adding extra dimensions, generating tables such as those found in 
spreadsheets. We can do this using the matrix() command: 

matrixone = matrix(data = c(b,4,5,6,15,2,”fish”,7,44,2), ncol=3) 

What does matrixone look like? What do you think the ncol=3 is doing? 

If you look closely at the above you can see that inside the matrix function we have also used the concatenate c() 
function to group our data together, including the variable b which we defined earlier. Learning to combine 
functions and variables within one another is a core skill in scripting. Don’t be afraid to try different combinations 
but always check the results to see if it did what you wanted it to do. 

Dataframes are a special type of matrix where the columns are all assigned names in addition to the column number. 
This allows you to call or use a column without knowing the column number or order of all the columns. To create a 
dataframe use the following: 

sampledf = data.frame(“numbers” = b, “ocean” = c, “morenumbers” = c(11,33,65)) 

In order to call one individual column you use the $ sign as so: 

sampledf$ocean 

which should return salmon, crab and boat. This only works with dataframes as the $ symbol is pulling up columns 
based off of their name. 

Try creating a new dataframe called Continents that contains the columns Europe, Asia, Africa and NorthAmerica 
each containing 3 countries that can be found in these continents. 

Why did we call the 4th column NorthAmerica and not North America? 

  



Accessing data 
Once we have created a variable we will often then need to view, use or alter it. Using the $ symbol in our dataframe 
is one way of doing this. For scalars (such as a) this means just using the ID we gave it but what if we wanted to 
change the “boat” in c into “ship”? Here we use square brackets [ ] to tell R the position of the item we wish to 
change. “boat” is the third entry of c, so to get just that entry we would write: 

c[3] 

while to change it to “ship” we would do: 

c[3] = “ship” 

or 

c[3] <- “ship” 

where we have multiple dimensions, such as in matrixone we need to specify the position of each dimension.  

When we created matrixone we used the variable c to fill it with data. Has changing the contents of c changed 
matrixone? 

For a table we do this in the order of row number then column number. For example: 

matrixone[1,2] 

would return the number 5. If you wished to get all the data in column 2 you would remove the row number as so 
but leave the , in place so that R knows the 2 is the column number: 

matrixone[,2] 

Try changing the “fish” in matrixone into the number 42. 

  



Searching data 
When dealing with large datasets it is often necessary to search through them to find only the small number of 
entries you are interested in. While it is possible to use the above approach of listing specific rows or columns this 
isn’t feasible when you have thousands of possible entries to check. 

To search through variables we need to tell R to match an entry in the data to the number or piece of text we are 
looking for. The simplest way of doing this is to use a double equals sign == which means we want R to check if what 
is on both sides is the same, in other words do they match. For example: 

2 == 5 

“fish” == “fish” 

fish == “salmon” 

would return FALSE, TRUE and TRUE respectively.  

The last two examples above both return TRUE, what is the difference between them? 

Using this we can search data to find cases that return TRUE. If we go back to sampledf we can try to search for the 
entries that contain the word crab using: 

sampledf == “crab” 

What does this return? What do these results correspond to? 

What if we wanted to know all the data in the row associated with “crab”? (It helps here to imagine data being 
collected together as a spreadsheet with each row being a single entry). To answer this we need to specify that 
we’re looking for the word “crab” in the column called “ocean” which we do using one of these two ways: 

sampledf$ocean == “crab” 

which(sampledf$ocean == “crab”) 

This will either return a FALSE TRUE FALSE or just the number 2, both of which tell us that “crab” is the second entry 
(which in this case is a row) in the “ocean” column. To get the entire row we combine this with the square brackets [ 
] we used earlier: 

sampledf[sampledf$ocean == “crab”,] 

sampledf[which(sampledf$ocean == “crab”),] 

These should both give the same result, though for large datasets using the which() function is often quicker and 
more efficient. 



Copying data 
Often we will want to copy data from one variable to another. The most common reason for this is that we are 
interested in only a small part of the data and want to copy it to another variable where we can change it without 
changing the original. We do this in the same way as creating a new variable, by using the = sign. For example: 

matrixtwo = matrixone 

which will create an identical copy of matrixone called matrixtwo. This is particularly useful for creating a backup of 
your data in case you make a mistake later on. Alternatively we may want to copy just a portion of the data, which 
we can do as below: 

oceandata = sampledf$ocean  



More Functions – Try and put each of these to use 
Functions are a way of automating a process in order to speed up what you are doing, we’ve already seen examples 
of this with c() and matrix(). Many additional functions exist and the best way to learn how they work is to try them 
and see what they do. Most functions have multiple options that you can include, you can find out what these are by 
putting a ? in front of the function name, eg ?plot 

The following functions are some of the most commonly used and will be of use in the exercise at the end. It is also 
possible to write your own functions, allowing you to automate complex tasks that you perform on a regular basis. 

read.table() – Reads a file that is organised as a table. Normally we will want to then store this in a variable using 
variableID <- read.table(“filename.txt”) 

head() – Will return the first 6 row of a matrix or dataframe, useful for when there are hundreds or thousands of 
rows present. If you want more or less rows then use head(matrix, n=number) 

tail() – Will return the last 6 row of a matrix or dataframe, useful for when there are hundreds or thousands of rows 
present. 

dim() – Returns the dimensions of a matrix or dataframe, which will normally be the number of rows and columns. 

nrow() – Returns the number of rows in a matrix or dataframe 

ncol() – Returns the number of columns in a matrix or dataframe 

colnames() – Returns the column names for a dataframe 

length() – Returns the length of a vector or number of entries in a matrix / dataframe 

max() – Returns the largest value from a vector of numbers 

min() – Returns the smallest value from a vector of numbers 

sum() – Adds all the numbers in a vector together 

mean() – Calculates the mean of the numbers in a vector 

median() – Calculates the median value of the numbers in a vector 

table() – Summarises a vector as a table listing all the unique entries and the frequency with which they appear 

plot() – Attempts to plot the data in a manner that R thinks is correct. This is a powerful function with many inbuilt 
options 

barplot() – Attempts to plot a barplot of the data 

hist() – Attempts to plot a histogram of the data 

abline(h=X) or abline(v=X) – Add a horizontal or vertical line to a plot at position X  



After	this	little	intro	(thanks	to	Craig	Duffy),	we	have	now	three	exercises.		
	

1. Learn	a	bit	about	different	plots.	We	should	have	done	these	during	the	
presentation,	so	now	you	have	time	to	try	it	on	your	own.	

2. Work	with	SNP	data	from	a	publication	–	page	23.	
3. Do	a	Tajima’s	D	something	that	population	genetics	love	to	do.	We	don’t	expect	you	

do	to	it,	but	if	you	are	VERY	fast,	something	to	not	get	bored.		
	
	
IMPORTANT:	
All	the	relevant	data	can	be	found	at		
	

1. On	the	HPC	
/export/projects/bioinfo3/to16r/BioinfoWorkshop/Data/Module_R/		
You	can	copy	the	files	over.	
	

2. Webpage	(just	assessable	within	the	university	(use	VPN	if	needed))	
	
https://tinyurl.com/3Ibioinfo	
The	link	on	the	Tuesday	afternoon,	Rstuff.zip	or	directly:	
https://tinyurl.com/3Ibioinfo/Rstuff.zip	
	

3. On	the	ftp	site:	
ftp://ftp.sanger.ac.uk/pub/project/pathogens/tdo/Exercise/Rstuff.zip	
	
Enjoy,	and	ask	questions	when	stuck!	
	
	
	
	
PS:	Please	excuse	any	typos!	
	



R tutorial - Graphics

January 5, 2018

1 Examples from reads counts

This short tutorial will recap what was done in the demonstration.
As dataset we are going to work with the first single cell data of Plasmodium falciparum

(https://www.biorxiv.org/content/early/2017/02/10/105015). Plasmodium cells (or parasites
as unicellular) are from asexual and gametocyte parasites (supplemental table 6). The columns
represent the cells and the rows the genes. The number in each cell are the readcounts.

IMPORTANT: We could have used any type of RNA-Seq data. The main aim of this exercise is
for you to explore some visualization options of R and understand the underlying mechanimns.

First let’s load the readcounts file and make a little heatmap.

1.1 Loading the data

In [8]: d<-read.table("readcounts.txt", header=TRUE, row.names=1);
head(d)

PfG.43 PfG.44 PfG.45 PfG.46 PfG.47 PfG.48 PfG.49 PfG.53 PfG.54 PfG.55 PfAsex.785 PfAsex.786 PfAsex.787 PfAsex.789 PfAsex.790 PfAsex.791 PfAsex.792 PfAsex.793 PfAsex.794 PfAsex.795
PF3D7_1478800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PF3D7_1478600 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 8 0
PF3D7_1478100 0 0 0 303 56 0 0 1 0 0 51 0 0 0 0 0 0 0 0 0
PF3D7_1478000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PF3D7_1477800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PF3D7_1477700 0 0 0 0 0 0 0 0 0 0 0 0 0 101 0 0 0 0 0 0

This looks very easy, but from experience, to get the data in the correct format in the first place
can be very challenging. We are going to practice this on Thursday afternoon.

1.2 heatmaps and PCA

In [9]: library(gplots)
heatmap.2(log(0.1+as.matrix(d)),trace="none")
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You can see several pattern between the cells, where genes seem to have different reads counts.
Any idea why we used a log transformation?

heatmap.2 is VERY powerfull. You can see the options with

In [10]: ?heatmap.2

In the heatmap you can see several cells and genes without any readcounts. How can we get
rid of them?

In [24]: keep <- rowSums(d) >= 1000 ### keep row/genes with 1000 reads mapped over 400 cells
dnew <-d[keep,]
keep <- colSums(d) >= 50000 # keep columns/cells with at least 50k mapped reads (5500 genes)
dnew <- dnew[,keep]
dim(d) # first number is the dimension of the orignal files
dim(dnew) # the dimension of the reduced matrix
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1. 5266 2. 365
1. 4625 2. 325
Try to do the heatmap again. Did it change anything?
What about doing a PCA (principal component analysis)?

In [48]: fit <- princomp(as.matrix(dnew), cor=F)
plot(fit,type="lines") # scree plot
gsa.pred <- predict(fit)
plot(gsa.pred[, 1:2], xlab = "PC1", ylab="PC2",pch=".")
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Does it make a lot of sense? NO! we are looking at genes, rather then the cells here. But with
just some lines you can generate a PCA. Tomorrow afternoon we will come back to this!

1.3 Correlation and QC

Interestingly, we went directly into the heatmap and the tough stuff!
Sorry, first we should have done some QC. We could count how many genes have not reads

mapped, the higher read count, and look for correlation between the samples. Let’s start with the
correlation:

In [33]: cor(log(dnew[,1]+0.1),log(dnew[,300]+0.1))
cor(log(dnew[,1]+0.1),log(dnew[,2]+0.1))
plot(log(dnew[,1]+0.1),log(dnew[,300]+0.1))
c<-cor(log(dnew[,1]+0.1),log(dnew[,2]+0.1))
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c<-round(c,digits=3)
plot(log(dnew[,1]+0.1),log(dnew[,2]+0.1),

main=paste("dot plot between two samples (correlation ",c,")"),
xlab="sample 1", ylab="sample2",pch=".")

0.19289411349222
0.549042856275539
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Yes, a lot of things are going on here. First we are looking at the correlation between two
samples. Next, we ploted the two columns. The second plots looks nices, as it has label and a title.
We also include the correlation into the title. . .

But how do you know which samples 1, 2 or 300 are?

In [35]: head(d[,c(1,2,300)],1)

PfG.43 PfG.44 PfAsex.721
PF3D7_1478800 0 0 0

This is not very intuitive and it would be great to have the header (PfG.43 etc) in a variable,
but this is why I hate R from time to time. . . it is not so easy. We would need to read the table
again from the file. . . or do you know a better way?

But let’s look at more correlations:
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In [39]: install.packages("corrgram")
library(corrgram) # you might need to install it with install.packages("corrgram")install.packages("corrgram")
corrgram(log(dnew[,c(1,2,5,8,20,240,250,300)]+0.1),lower.panel=panel.pts, upper.panel=panel.pie)

The downloaded binary packages are in
/var/folders/rl/snk6w64922336q3fzybd35ym0000gn/T//RtmpMs2Ikd/downloaded_packages

So the correlation between the different life stages is higher. . . makes sense. But overall the
correlation does not seem perfect, at least compared to normal RNA-Seq. Reasons are likely to be
the single cell methods -, but do you like the plot? Google R corrgram to see other examples.

Let’s know look at other plots:
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In [44]: d2<-dnew[,c(1,2,5,8,20,240,250,300)]
boxplot(d2,las=2,main="example boxplot",ylab="read counts",xlab="conditions");
boxplot(log(d2+0.1),las=2,main="example boxplot",ylab="read counts (log)",xlab="conditions");
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Those plots give us an idea that most of the genes do not have expression - or it was not
captured by the single cell method (SMART-Seq2). Never the less, it will be published in a good
journal

1.4 ggplot2 - high quality graphics?

A nice library to do plots is ggplot2. It is a bit painful to run, but the plots are really for publication
(at least for my publications). So once you have the data in the correct format, things are easy.

In [52]: install.packages("ggplot2")
library(ggplot2) # this installs and loads the packages

The downloaded binary packages are in
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/var/folders/rl/snk6w64922336q3fzybd35ym0000gn/T//RtmpMs2Ikd/downloaded_packages

The file format is basicaly a list in Linux: >head GG.RC.txt Cell Gene RC PfG.637
PF3D7_1478100 181 PfAsex.758 PF3D7_1478100 105 PfAsex.751 PF3D7_1476800 798 PfAsex.753
PF3D7_1476800 982 PfAsex.758 PF3D7_1476800 203

In [77]: dat<-read.table("GG.RC.txt", header=TRUE);
p <- ggplot(dat, aes(x=Cell, y=RC, color=Cell)) + geom_violin(trim=FALSE)
p

The dataset has just values between 10 and 1000 read counts if not the plot would look weird.
Another plot
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In [78]: p<- ggplot(dat, aes(RC, fill = Cell, colour = Cell))
p + geom_density(alpha = 0.1)

In [80]: p <- ggplot(dat, aes(x = Cell, y = RC))
p + geom_boxplot()

11



I would agree with you, that the data might not be the best to obtain gobsmacking graphics.
But I hope you see that R is like a lego game, where you have to put the right briggs together. . .
don’t worry if you don’t understand each command 100% you are not alone. And I also find
myself googeling often for the correct command and syntax.
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Exercise 
The following exercise is designed to give you an opportunity to learn how to use R with a dataset from a study into 
genome wide selection in malaria (http://mbe.oxfordjournals.org/content/early/2014/04/08/molbev.msu106). The 
exercise will require you to put the prior examples to use, changing the input as required. For the most part we have 
avoided providing the actual commands you will need to type as working out how to structure the input is the best 
approach to learning how to use R. All of the tasks in this exercise can be completed using the functions and 
information you have already been provided with so try experimenting with them to work out what they do to the 
data. 

Set the working directory to D:/R-intro/ 

Load the provided data in this folder into a variable called ihsdata using  

ihsdata <- read.table(“standardised_ihs.txt”, header=T) 

here the header=T tells R to treat the first line as column names and load the data as a dataframe. 

Have a look at the dataframe to get an idea of how it is organised. 

Each row in ihsdata represents a single SNP in the genome of the human malaria parasite P. falciparum while the 
columns contain information about that SNP. The columns are: 

1. chr – which chromosome the SNP is on 
2. pos – the position of the SNP on the chromosome 
3. ref – the base present in the genome reference strain at this position 
4. Totalcov – the total sequencing coverage at this position from the 100 isolates this data was generated from 
5. gene – the ID of the gene that this SNP is positioned within (if within a gene) 
6. gene_old – the previous version of the gene ID (useful if you are looking up older papers) 
7. genpos – the position of the SNP in the genome 
8. colors – a column we’ll use to colour the chromosome later 
9. ihs – the ihs score for this SNP, which is a measure of direction selectional at this locus 

How many SNPs are there in the dataset? 

How many chromosomes are there? How many SNPs are on chromosome 5? 

What is the mean, max and min of the coverage? Why do you think none have a coverage of 0? 

Using the hist() function try and plot a histogram of the total coverage for the dataset 
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This dataset was used to identify regions of the genome under directional selection by calculating their integrated 
haplotype score (ihs) for each SNP and plotting these scores genome wide. To plot the scores across the genome, 
with the chromosomes coloured in an alternating red / black pattern use the following: 

plot(ihsdata$genpos, ihsdata$ihs, pch=’.’, cex=2, col=c(“black”,”red”)[ihsdata$colors]) 

which can be broken down as follows: 

plot – The plot function which is used to plot basic figures in R 

ihsdata$genpos – the position of each point of the x-axis, defined by the genpos column of ihsdata 

ihsdata$ihs – the position of each point on the y-axis, defined by the ihs column of ihsdata 

pch=’.’ – tells R to use . for drawing the points 

cex=2 – tells R how big to make each point 

col=c(“black”,”red”)[ihsdata$colors] – tells R to use the colours black and red determined by the values in the 
ihsdata$colors 

Now that you have the plot you should be able to see that there are clusters of SNPs with high scores. 

How many SNPs in ihsdata have ihs scores > 3? 

Only 4 SNPs have ihs scores > 7. Which genes are they in? 

The chloroquine resistance transporter (gene ID PF3D7_0709000) is the main gene responsible for chloroquine 
resistance in malaria and is located on chromosome 7. 

How many SNPs are present within this gene? 

Can you add a line to the plot to mark the position of this gene? 

Finally can you plot only the SNPs that are on chromosome 7? 



Computer Practical – 2017 
Use of R for the calculation and analysis of Tajima’s D 

Purpose and Scope 
Using the DNAsp program you have already investigated sequence polymorphism in six  
P. falciparum genes using data from a Kenyan population. There are, however, over 5000 genes 
spread across the entire genome and analysing each of these using DNAsp would be a laborious 
process. In this exercise we will therefore utilise genome wide SNP data from a 2008 Gambian 
dataset (Amambua-Ngwa et al. 2012 PLOS Genetics). This data was aligned to the P. falciparum 
3D7 reference genome using the same principles you learnt during week 1 of the module with SNPs 
subsequently called and filtered from the BAM files which were generated. 

Loading the data 
After opening R studio the first thing you need to do is to tell it which folder you will be working 
from by setting the working directory. For this exercise you'll be working from the folder called R-
intro which is located on the D drive. To set the working directory use the following command: 

setwd(“D:/R-intro”) 

You can check which directory you are in by typing the following command into the console: 

getwd() 

We’re also going to check the required files are present using: 

list.files() 

This should list files called tjddata.txt, tjdfunctions.r and standardised_ihs.txt. 
 
The tjdfunctions.r file contains the custom functions we are going to be using in this exercise, if you 
wish to see how custom functions are written you can open this file in notepad or wordpad to see 
some examples. To use these functions we need to tell R to load these into memory, making them 
available for later. This is done with the command: 

source(“tjdfunctions.r”) 

As we have already set the working directory R will automatically look there for the tjdfunctions.r 
file, if it was in a different folder we would need to tell R that. After loading the file you should see 
a list of functions appear in the workspace window in the top right of R studio. 
 



In addition to the functions we also need to load the data from tjddata.txt into a variable called 
snpdata using the command: 

snpdata <- read.table(“tjddata.txt”, header=T) 

Have a look at the snpdata variable using some of the commands you learnt in the 

introduction to R. 

 

Each row in snpdata represents a single SNP and the first 12 columns represent annotation 

information for that SNP. Can you work out what each of these columns represent? What do 

columns 13 onwards contain? 

 

How many SNPs are present in this dataset? How many samples are there? 

 
As you have seen when using a function we typically type the command functionname(argument) 
where the argument may be a variable, such as snpdata or a file such as data.txt (not all functions 
need an argument however).  
 
Using head(snpdata) you should have been able to view the first few rows of snpdata, which is a 
type of variable we encountered in the introduction to R called a data.frame. It is organised in a 
manner very similar to an excel spreadsheet with rows and columns. Remember that we can 
navigate through a subset of the data using [‘row number’ , ‘column number’] or [‘row name’ , 
‘column name’], for example: 

snpdata[30,9] 

snpdata[30,”gene”] 

will both bring up the data from row 30, column 9 as column 9 has been named “gene” 
 
If we want to get a range of rows or columns we can use the a colon ( : ) to specify a range of rows 
or columns, so  

snpdata[5:20,]  

 
would return rows 5 through to 20 (inclusive) of snpdata. 
 
What are the limitations of retrieving data in this way? 

 

Using this method try and find the position of the gene PF3D7_0800600 

 

Can you find the gene using one of the approaches from the introduction to R? 

  



Manipulating the data 
Just as we can view data by using square brackets [ ] we can copy the results to a new variable, 
which we’re going to do by creating two new variables, the first of which is called datalegend: 

datalegend <- snpdata[,1:12] 

As we haven’t specified any rows before the comma datalegend now contains every row from 
columns 1 to 12 of snpdata.  
 
Create a second variable called datagenotypes and then copy columns 13 to 64 of snpdata into 

it.  
 
Check it by comparing the contents of datagenotypes to snpdata. 
 
How many columns are there in datagenotypes? What is the first column name of 

datagenotypes? 

 
Before we can calculate our Tajima’s D scores we need to convert the data into a more usable 
format, which we do using the following two commands: 

genos <- converts(datagenotypes, as.character(datalegend[,3])) 

genos <- apply(genos, 2, as.numeric) 

Examine the genos variable and compare it to the datagenotypes and datalegend variables, can 

you work out what these two commands are doing? 

 
As we need to calculate Tajima’s D for each individual gene we also need to extract a list of the 
gene names using the following two commands: 

genenames <- names(table(datalegend[,”gene”])) 

genenames <- genenames[genenames != “-“] 

How many genes are listed in the genenames variable? 
 
You can use the length() functions to check this.  
 
Why might there be less genes listed than the 5772 that are present in the reference sequence? 

  



Calculating Tajima’s D 
We’re now ready to calculate Tajima’s D for our dataset, before we do that have a closer look at the 
tajmad1 function we’re going to be using by clicking on it in the workspace window. This should 
bring up multiple lines of code, which would be a lot to type out each time we wished to calculate 
Tajima’s D. By placing this code into a function we are able to run it simply by entering 
tajimad1(arguments) into the console. 
 
To calculate Tajima’s D you need to enter the following two lines of code: 

tajimascores <- NULL 

for (i in genenames){tajimascores <- rbind(tajimascores, tajimad1(genos, 
datalegend, i, 3, 1))} 

which will calculate the Tajima's D scores for each gene and store them in the variable called 
tajimascores. 
 
How many genes was Tajima’s D calculated for? 

 

Plotting the data 
One of the biggest strengths of R is its ability to plot data, which we’re going to do using a custom 
version of the plot function called plottd: 

plottd(tajimascores, 1) 

This will plot the Tajima’s D score for each gene on the Y axis while the X axis indicates the 
position of the gene in the genome. For this visualisation we have coloured each chromosome in 
alternating colours (black and red) while genes with a score of above 1 are coloured in blue. It 
should look like this: 

  



We now know that the majority of genes have a negative Tajima’s D score and only a small 
number have a score above 1. The negative scores across much of the genome is due to the presence 
of an excess of rare alleles compared to that expected under a neutral model of evolution. In malaria 
this was caused by a historical population expansion, with the rare SNPs having entered the 
population subsequently. 
 
In order to find out which genes have scores above 1 we can use the which() function, demonstrated 
below. Here we are using it to say “which rows in the tajimasd column of tajimascores are greater 
than or equal to 1” then using that to copy the data into a new variable, called highscores (For the 
purpose of this module you don’t need to understand exactly how which works, just that it is 
possible to select data in this manner). 

highscores <- tajimascores[which(tajimascores[,"tajimasd"] >= 1),c(1:3,6)] 

 

How many genes have a Tajima’s D score of >= 1? 

 
What is the gene with the highest scoring Tajima’s D score? What is its function? (the website 

www.plasmodb.org will be useful here). 

 
Genes with high Tajima’s D scores are predicted to be under balancing selection, indicating that 
there is an excess number of alleles with intermediate frequencies at these loci.  
 
What sort of genes in malaria might be subject to this type of selection? 

 

What processes might drive balancing selection? Do you think the top scoring gene fits this 

model? 

http://www.plasmodb.org/
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