
Computer Practical – 2017
Use of R for the calculation and analysis of Tajima’s D

Purpose and Scope

Using the DNAsp program you have already investigated sequence polymorphism in six

P. falciparum genes using data from a Kenyan population. There are, however, over 5000 genes

spread across the entire genome and analysing each of these using DNAsp would be a laborious

process. In this exercise we will therefore utilise genome wide SNP data from a 2008 Gambian

dataset (Amambua-Ngwa et al. 2012 PLOS Genetics). This data was aligned to the P. falciparum

3D7 reference genome using the same principles you learnt during week 1 of the module with SNPs

subsequently called and filtered from the BAM files which were generated.

Loading the data
After opening R studio the first thing you need to do is to tell it which folder you will be working

from by setting the working directory. For this exercise you'll be working from the folder called R-

intro which is located on the D drive. To set the working directory use the following command:

setwd(“D:/R-intro”)

You can check which directory you are in by typing the following command into the console:

getwd()

We’re also going to check the required files are present using:

list.files()

This should list files called tjddata.txt, tjdfunctions.r and standardised_ihs.txt.

The tjdfunctions.r file contains the custom functions we are going to be using in this exercise, if you

wish to see how custom functions are written you can open this file in notepad or wordpad to see

some examples. To use these functions we need to tell R to load these into memory, making them

available for later. This is done with the command:

source(“tjdfunctions.r”)

As we have already set the working directory R will automatically look there for the tjdfunctions.r

file, if it was in a different folder we would need to tell R that. After loading the file you should see

a list of functions appear in the workspace window in the top right of R studio.

In addition to the functions we also need to load the data from tjddata.txt into a variable called

snpdata using the command:

snpdata <- read.table(“tjddata.txt”, header=T)

Have a look at the snpdata variable using some of the commands you learnt in the

introduction to R.

Each row in snpdata represents a single SNP and the first 12 columns represent annotation

information for that SNP. Can you work out what each of these columns represent? What do

columns 13 onwards contain?

How many SNPs are present in this dataset? How many samples are there?

As you have seen when using a function we typically type the command functionname(argument)

where the argument may be a variable, such as snpdata or a file such as data.txt (not all functions

need an argument however).

Using head(snpdata) you should have been able to view the first few rows of snpdata, which is a

type of variable we encountered in the introduction to R called a data.frame. It is organised in a

manner very similar to an excel spreadsheet with rows and columns. Remember that we can

navigate through a subset of the data using [‘row number’ , ‘column number’] or [‘row name’ ,

‘column name’], for example:

snpdata[30,9]

snpdata[30,”gene”]

will both bring up the data from row 30, column 9 as column 9 has been named “gene”

If we want to get a range of rows or columns we can use the a colon (:) to specify a range of rows

or columns, so

snpdata[5:20,]

would return rows 5 through to 20 (inclusive) of snpdata.

What are the limitations of retrieving data in this way?

Using this method try and find the position of the gene PF3D7_0800600

Can you find the gene using one of the approaches from the introduction to R?

Manipulating the data
Just as we can view data by using square brackets [] we can copy the results to a new variable,

which we’re going to do by creating two new variables, the first of which is called datalegend:

datalegend <- snpdata[,1:12]

As we haven’t specified any rows before the comma datalegend now contains every row from

columns 1 to 12 of snpdata.

Create a second variable called datagenotypes and then copy columns 13 to 64 of snpdata into

it.

Check it by comparing the contents of datagenotypes to snpdata.

How many columns are there in datagenotypes? What is the first column name of

datagenotypes?

Before we can calculate our Tajima’s D scores we need to convert the data into a more usable

format, which we do using the following two commands:

genos <- converts(datagenotypes, as.character(datalegend[,3]))

genos <- apply(genos, 2, as.numeric)

Examine the genos variable and compare it to the datagenotypes and datalegend variables, can

you work out what these two commands are doing?

As we need to calculate Tajima’s D for each individual gene we also need to extract a list of the

gene names using the following two commands:

genenames <- names(table(datalegend[,”gene”]))

genenames <- genenames[genenames != “-“]

How many genes are listed in the genenames variable?

You can use the length() functions to check this.

Why might there be less genes listed than the 5772 that are present in the reference sequence?

Calculating Tajima’s D
We’re now ready to calculate Tajima’s D for our dataset, before we do that have a closer look at the

tajmad1 function we’re going to be using by clicking on it in the workspace window. This should

bring up multiple lines of code, which would be a lot to type out each time we wished to calculate

Tajima’s D. By placing this code into a function we are able to run it simply by entering

tajimad1(arguments) into the console.

To calculate Tajima’s D you need to enter the following two lines of code:

tajimascores <- NULL

for (i in genenames){tajimascores <- rbind(tajimascores, tajimad1(genos,

datalegend, i, 3, 1))}

which will calculate the Tajima's D scores for each gene and store them in the variable called

tajimascores.

How many genes was Tajima’s D calculated for?

Plotting the data
One of the biggest strengths of R is its ability to plot data, which we’re going to do using a custom

version of the plot function called plottd:

plottd(tajimascores, 1)

This will plot the Tajima’s D score for each gene on the Y axis while the X axis indicates the

position of the gene in the genome. For this visualisation we have coloured each chromosome in

alternating colours (black and red) while genes with a score of above 1 are coloured in blue. It

should look like this:

We now know that the majority of genes have a negative Tajima’s D score and only a small

number have a score above 1. The negative scores across much of the genome is due to the presence

of an excess of rare alleles compared to that expected under a neutral model of evolution. In malaria

this was caused by a historical population expansion, with the rare SNPs having entered the

population subsequently.

In order to find out which genes have scores above 1 we can use the which() function, demonstrated

below. Here we are using it to say “which rows in the tajimasd column of tajimascores are greater

than or equal to 1” then using that to copy the data into a new variable, called highscores (For the

purpose of this module you don’t need to understand exactly how which works, just that it is

possible to select data in this manner).

highscores <- tajimascores[which(tajimascores[,"tajimasd"] >= 1),c(1:3,6)]

How many genes have a Tajima’s D score of >= 1?

What is the gene with the highest scoring Tajima’s D score? What is its function? (the website

www.plasmodb.org will be useful here).

Genes with high Tajima’s D scores are predicted to be under balancing selection, indicating that

there is an excess number of alleles with intermediate frequencies at these loci.

What sort of genes in malaria might be subject to this type of selection?

What processes might drive balancing selection? Do you think the top scoring gene fits this

model?

http://www.plasmodb.org/

