Sequence Assembly

Assembly of Sequence Data

Introduction

Improvements in DNA sequencing technology have led to new opportunities for studying
organisms at the genomic and transcriptomic levels. Applications include studies of genomic
variation within species and gene identification. In this module, we will concentrate on data
generated by the Illumina and the Pacific Biosciences technologies, although the techniques you
will learn are applicable to other technologies (e.g. 454 GS FLX, Capillary data, Ion torrent and
or Oxford Nanopore). A single Illumina machine can produce over 3.5 terabases of sequence
data in a week! This is the equivalent to many human genomes! The data from the Illumina
machine comes as relatively short stretches (35-250 base pairs) of DNA. These individual
sequences are called sequencing reads. The older capillary sequencing method produces
longer reads of ~500bp, but is much slower and more expensive. The PacBio technologies
produces reads over 30k, with a mean of 13kb, but there error level is not good - 15% of errors.

With the Illumina technologies one of the greatest challenges of of a genome project is
determining how to arrange sequencing reads into chromosomes. This process of determining
how the reads fit together by looking for overlaps between them is called genome assembly.
Capillary sequencing reads (~500bp) are considered a good length for genome assembly, and
assembling PacBio reads is now considered “easy”. The difficulty of sequence assembly is
when the reads are shorter than repetitive sequences. Further, the programs have to deal with a
lot of data.

When doing assembly with short reads (Illumina), the most time consuming part would be to
find all the possible overlaps between all the reads. One efficient way is to look for k-mers
(words of a specific length) in each read. If two reads contain the same k-mer they might also
overlap. Each read contains several k-mers (n-k+1, assuming n is the read length). k-mers from
the same read are connected in a graph. (A graph is an construct that helps to visualise abstract
data structures, with ‘nodes’ that are connected by ‘edges’). Many short read assemblers exist
and most are based on de Bruijn graphs, like Velvet (Zebrino et al., 2008) or ABYSS (Simpson
et al., 2009). The k-mers are encoded in the de Bruijn assembly graph and then the software
attempts to simplify the graph to generate connected sequences, where all k-mers are
represented. For most purposes, you don’t really need to know how an assembler works in
detail to use it and get good results, but a basic understanding is important.

Other good assembly pipelines are Masurca or Allpaths, which apart of doing just the assembly
also perform other tasks like read correction or gap filling.

In this module we are going to assemble one chromosome of a malaria parasite, Plasmodium
falciparum IT clone and compare it to the known reference. One aim is to compare the
assembly of [llumina reads with PacBio reads. Important will be how to look at assemblies and
understand possible errors. In the end we are going to annotate the final assembly with a new
annotation pipeline.

Sequence Assembly

A: Starting the PacBio de novo assembly

In this exercise we will look at a lab strain of P. falciparum, the IT clone. We have
sequenced the genome with PacBio and Illumina. First we are going to start the PacBio
assembly using the PBcR program. It first corrects the reads and then uses the Celera
assembler to merge the long reads into contigs.

Double-click on the desktop icon “Module 7 Assembly”, which will open a terminal in the
correct directory for this module.

The filtered reads are called PBReads . fastq. Have a look at the configuration file
pacbio.spec. Any idea what it means?
Here the command to start the assembly.

$ canu -p PB -d Pacbio -s file.specs -pacbio-raw
PBReads.fastqg &> output.txt

Be sure that the process is running. For example use the top command to see if a

6 9

program is running... it might be jellyfish. Use “q” for quit to exit top.

If something is not running, check the output file “output.txt” to see what the error is.

This assembly will run for a while. In the meantime we are going to assemble the same
chromosome with Illumina. But first you can do a little bit a assembly by hand, if you
want.

Sequence Assembly

Doing a de Brujin graph by hand - OPTIONAL

Here we are going to do an example of the de Brujin graph by hand! Sit together with your
neighbour and build the graph from the reads and find the contig(s).
Use a k-mer of five, to finish the graph. (In this example we ignore the reverse complement!)

Reads:
AGCTGG TGGTGA GATCAG
GAGCTG CTEGTG ATCAGE
GCTGGT GGTGAT TGATCA TCAGCG
AGCGAG CAGCGA GTGATC GeeAGE CGAGCT

To help you, we already generated all the k-mer of the length of five. Is it easy to find the
contig? Some edges are already included.

ATCAG
TGATC GATCA
GTGAT
TCAGC
CAGCG
GGTGA
AGCTG
CTGGT AGCGA
CGAGC
TGGTG GCTGG GCGAG

The contig has the sequence:

What is difficult here? Maybe translate it, to find the “origin”.

Sequence Assembly

B: Generating de novo assemblies is useful even with a
reference

Before we are doing the de novo assembly, please have a look at the following
screenshots.

Why is the mapping approach not helpful in those regions?

. 4

T 11 | N I [1Tl

Sl | lwa [RCRUTRTTE LT LI T
T 1 A VI M L T o A A | AR [RRIN 1

0 111 T O O 1 1 A 111

e

1.Wwhy is this gene
not covered?

2. Should there be
heterozygous SNPs in
a haploid lab strain?

[1262100 |1262400 |1262700 |1263000 [1263300 [1263600

Here some examples of regions, with problematic mapping: 1) Gene not covered. 2) Heterozygous
SNP. If you want to have a look by yourself:

$ art -Dbam=IT.Chr5.bam,var.IT.Chr5.bcf P£f3D7 05.embl

Sequence Assembly

C: Doing the first lllumina assembly

One way to resolve problematic mapping is to do an assembly. Here, we go through step
by step how to perform an assembly and analyse it. This will be just a draft assembly,
which wouldn’ t be the final result, but it should give insight into some of the problems
discussed above.

We are going to use the assembler velvet. As input we are using the same reads as the ones
for the mapping. The only difference is that the files are zipped, so that they use less disc
space. Be sure to be in the directory [1~/course data/Module7 Assembly/

$ velveth k.assembly.49 49 -shortPaired -fastqg -separate
IT.Chr5_1l.fastqg IT.Chr5_ 2.fastqg

49 is the k-mer size. “k.assembly.49” is the name of the directory where the results are
going to be written. The other options specify the type of the input data. With the
following command you can see all possible options, but don’ t be afraid, not all must be
used.

S velveth

Now the assembler has to build the graph and find the path, as we did before in the
exercise:

$ velvetg k.assembly.49 -exp cov auto -ins length 350

The first parameter specifies the working directory. The second is to let velvet find the
median read coverage rather than specify it yourself. Last, the insert size of the library is
given. There is a lot of output, but the most important is in the last line:

Final graph has 978 nodes and n50 of 10508, max 54529, total 1374552, using
1397134/1510408 reads. (Result might differ depending on the velvet version used).

The output can be different depending on the version of the software.

- N

his line first gives you a quick idea of the result. 978 nodes are in the final graph. An n50
of 10508 means that 50% of the assembly is in contigs of at least 10508 bases, it is the
median contig size. This number is most commonly used as an indicator of assembly
quality. The higher, the better! “Max” is the length of the longest contig. “Total” is the size
of the assembly, here 1347kb. The last two numbers tell us how many reads were used
from the 7.5 million pairs.

)

_5-

Sequence Assembly

That wasn’ t too bad! Now we have to try to improve the assembly a bit. The kmer size has
the biggest impact. Also the -cov_cutoff parameter can play a role. This means that nodes
with less than a specific k-mer count are deleted from the graph. More parameters can be
changed, but we would run out of time. In the beginning the changes look a bit random,
but with more experience, you will get a feeling for them.

First rerun velvet with a k-mer size of 49. As parts of the graph are already done, the
program will run far quicker. velveth doesn’ t need to be rerun.

$ velvetg k.assembly.49 -exp cov auto -ins length 350 \
-min _contig lgth 200 -cov_cutoff 5

Maybe do assemblies for different k-mer sizes i.e. 55, 41, here the example is a k-mer
length of 55

$ velveth k.assembly.55 55 -shortPaired -fastq —separate \
IT.Chr5 1.fastg IT.Chr5 2.fastqg

$ velvetg k.assembly.55 -exp cov auto -ins length 350
-min_contig_lgth 200 -cov_cutoff 5

Write down the results for each assembly made using different k-mer sizes. Which one
looks the best?:

k-mer Nodes n50 largest contig

41

49

55

If you want to play with other parameters, like the -min_pair _count, go for it. All the
options can be seen by typing:

$ velvetg

4 N

All the results are written into the directory you specified, e.g. k.assembly.49. The final
contigs are in contigs.fa. The stats.txt file holds some information about each contig, its
length, the coverage, etc. The other files contain information for the assembler.

- J

Sequence Assembly

Another way to get more stats from all the runs is to use a little program called stats. It
displays the number of contigs, the mean size and a lot of other numbers. It might help to

pick “the best” assembly.

Just type:
$ assembly-stats k.*/*.fa

stats for k.assembly.41/contigs.fa

sum = 1435372, n =199, ave = 7212.92, largest = 75293

N50=22282,n=19
N60 =16569, n =27
N70=13251,n=37
N80 =9535,n=49
N90 =4730,n =69
N100=202,n=199
N_count=51974

stats for k.assembly.49/contigs.fa

sum = 1452034, n = 175, ave = 8297.34, largest = 85317

N50=28400,n=17
N60 =26582,n=23
N70=16485,n=29
N80 = 12065, n =39
N90=6173,n=155
N100=202,n=175
N_count = 57000

stats for k.assembly.55/contigs.fa

sum = 1461496, n = 181, ave = 8074.56, largest = 71214

N50=28059,n=19
N60 =22967, n=25
N70=14871,n=33
N80 =11360, n =44
N90 = 4885, n = 64
N100=205,n =181
N_count = 69532

It looks that the best choice is a k-mer size of 49. The n50, average contig size and the
largest contigs have the highest values, while contig number is the lowest. Before we look

at the assembly itself, what could the N_count mean?

Sequence Assembly

Scaffolding

As we discussed before, DNA templates can be sequenced from both ends, resulting in
mate pairs. Their outer distance is the insert size. Imagine mapping the reads back onto the
assembled contigs. In some cases the two mates don’ t map onto the same contig. We can
use those mates to scaffold the two contigs e.g. orientate them to each other and put N’ s
between them, so that the insert size is correct, if enough mate pairs suggest that join.
Velvet does this automatically (although you can turn it off). The number of mates you
need to join two contigs is defined by the parameter -min_pair _count.

Here is the description:

-min pair count <integer> : minimum number of paired
end connections to justify the scaffolding of two long
contigs (default: 5)

Here a schema:

— — Reads and 2 mate pairs
Contigs oriented by mate pairs
nnn Scaffold

It might be worth mentioning, that incorrect scaffolding is the most common source of error in
assembly (so called miss-assemblies). If you lower the min_pair count too much, the likelihood
of generating errors increases.

Other errors are due to repeats. In a normal assembly one would expect that the repeats are all
collapsed, if they are smaller than the read length. If the repeat unit is smaller than the
insertsize, than it is possible to scaffold over it, leaving the space for the repeats with n’s.

To get the statistic for the contigs, rather than supercontigs, you can use following command:
$ fastaqg scaffolds to contigs k.assembly.49/contigs.fa
tmp.contigs.fasta

S assembly-stats tmp.contigs.fasta

depending from which assembly you would like the statistics.

_8-

Sequence Assembly

D: Reference based Assembly

/Velvet has an option to use a reference to help to resolve repetitive regions. When Velvet\
cannot resolve a repetitive region in the de Brujin graph, it can look where read with this
k-mer are mapping in the reference. This way it is possible to untangle the graph to
simplify to find the path in the graph. This module is called velvet columbus.

Although it is still work in progess, the results seem to be better than the normal assembly.
The only difference would be to include: -reference -fasta Pf3D7_05.fasta in the velveth
call. Important is to map the reads against the reference what we already did.

\For the following exercises we are going to use this assembly, with a k-mer of 55. /

Run it as follow:

$ velveth k.columbus.55 55 -reference -fasta Pf3D7 05.fasta
-shortPaired -fastq -separate IT.Chr5 1l.fastqg

IT.Chr5_ 2.fastqg

$ velvetg k.columbus.55 -exp cov auto -ins length 350 -
min contig lgth 200 -cov_cutoff 5

Now compare the results with the stats program. Are they better?

$ assembly-stats k.*/*.fa

Sequence Assembly

E: Looking at the assembly

4 I
So far we have only looked at the stats for our assembly, and don’ t know anything about
the content of each contig. One way would be just to open the contigs in Artemis.

- J

Assuming you choose the k-mer 55 of the velvet columbus assembly, type:

$ art k.columbus.55/contigs.fa

@ ®® Artemis Entry Edit: contigs.fa
File Entries Select View Goto Edit |eat Run Graph Display

Entry: [v]contigs.fa

Nothing selected
GC Content (%) Window size: 120

1 1 A AT {00 A O LI

T s

113 DI THP | T_TBMHDT IF \ NG
NODE_33_Length 431 cov_20. 4404519 _cov_52.335165 NODE_76_length_Xg9_cov_55.827751 41
6500 Tazo 19500 |z6000 [z2500 [z0600 |ass00 |52000 |se500 |ssee0

I A 0 N
I T
I 00 O 100

| «

Select create and “Mark
Ambiguities”. This will show
you the gaps in the supercontigs.

Possible open reading frames (ORF), e.g.
no stop codons and high GC content

Although we see some open reading frames, lot of work would need to be done to produce
gene models e.g. find open readings frames, adjust the gene boundaries, do functional
annotation, to then start to compare this assembly of the IT clone to the reference
sequence.

There is a better way! Couldn’t we use the reference somehow?

Optional: Which gene is in the first reading frame? Can you generate a gene model and
blast it?

(Double click mouse wheel; Create -> Feature from base range; Accept the new model;
Select the model and run a blast against Uniprot)

-10-

Sequence Assembly

F: Contig ordering

At the Wellcome Trust Sanger Institute we developed a tool called ABACAS (Assefa et al.,
2009) to order contigs against a reference. Spaces between the contigs (gaps) will be N
characters. The result is called a pseudo-molecule. It can be loaded into ACT (a bit like a
sandwich of two Artemis views) and then be analysed.

- /

In order to start ABACAS you need a reference sequence (Pf3D7_05.fasta) and the contigs
(we assume k.assembly.49/contigs.fa - but you can use another assembly). Next you decide
if you want to do a comparison of nucleotides (nucmer) or amino acids (promer).

$ abacas.l1.3.1l.pl -r Pf3D7 05.fasta -g
k.columbus.55/contigs.fa -p promer -b -d -a -o IT.ordered

Abacas has many options. We use

-b to generate a bin of contigs that don’t map. This is very important
-a will append the bin onto the pseudo molecule

-d uses the standard comparison parameter, in this case faster

-0 IT.ordered is the prefix for the output file.

The command

$ abacas.1.3.1.pl -h

will give you a complete list of all options.

-s int minimum length of exact matching word (nucmer default = 12,
promer default = 4)

Higher values decrease the runtime for the price of sensitivity.

-e Escape contig ordering i.e. go to primer design
If you just would like to generate primers over gaps regions.

-c Reference sequence is circular

-11-

Sequence Assembly

Once abacas is done, it indicates which data it generated and how to load them into Act:

To view your results in ACT
Sequence file 1: Pf3D7_05.fasta
Comparison file 1: IT.ordered.crunch
Sequence file 2: IT.ordered.fasta

ACT feature file is: IT.ordered.tab

Contigs bin file is: IT.ordered.bin

Gaps in pseudomolecule are in: IT.ordered.gaps

Before opening the file in Act, we generate a BLAST comparison file:

$ blastn -subject Pf3D7 05.fasta -query IT.ordered.fasta \
-evalue le-20 -outfmt 6 -out comparison.blast

$ act Pf3D7 05.embl comparison.blast <(cat IT.ordered.tab
IT.ordered.fasta) &

Act has two Artemis Gene models of
windows reference

\ A
@ () ACT: PF3D7_05.embl vs 63
File] F ies Select View Goto Edit Create Run Graph Displg

lmmm RN II L I O L IIJMMWW“W

|s500 |_3000 |_9500 |26000 |_32500 |39000

|assaa |52000 |58500

[T] |
T 1 AT T R TR Gl [
., IR I || L | \' YT AL LIS UL * ol ol mm iz = |

score: KOO ercent id: B8

|s5000 |71500 |75000 |34508 =]

i
I |

I N
\ '. Ih\ ‘\k\ _____

IHM ‘\WW ‘| i) m h I”'l‘”' ” I||||||”|| mul'l'_;[”'”u\"l ﬂllnlll'\'_: TR mﬂm i T .]‘;\

i
|30000 |45500 |_65000 |71500
N°°Esz i TR ST & WM
’|| ||\F ‘ oo I
‘

\l Interestingly, this is
Similarity between the a VAR gene , which was Contigs ordered
selected items not covered by mapped

reads, see page 4!

|78000

against the reference.

-12-

Sequence Assembly

Scroll though the assembly. Maybe zoom in and out. How does it look? Are there any assembly
errors?

What happened with the gene PF3D7 05325007

ACT: PF3D7_05.embl vs 63
File Entries Select View Goto Edit Create Run Graph Display

Il

b

Wm‘“}"ﬂ um:”&'%& »&Fﬁ’ v 1kebaos st 'I'"f

D ID P B l> II III
W

[175000 350000 525000 |700000 |§75000

[1oseoee 123 oco

<l||<l AN] @NN <1<l|]|<l|<l]|ﬂ||lﬂll<]l 44
4 @ 4 M KAEHRiEn 1[40 | II 1 Ja

[4] 4EKEH 14 K] Gl 404 1 48l <0

FOD) , P RO i3) Ml

__»]

L] |l T Tl

[]l«]

k 175000 350000 525000 700000 875000.~" [1050000 [122%oo0 [[1400000
(@ q L
Kl 5 I y4 ol
There are no big mis- Why is there no contig
assembly, as there are for the assembly here?

no synteny breaks.

13-

Sequence Assembly

We ran abacas with the -a option. This means that contigs that didn’t map against the reference are
appended at the end. Scroll to the right hand site. Any idea what those contigs are? Could you order
some into the core of the chromosome?

This looks like on open reading frame. Can

Has this gene not enough you determine the function? It seems to have
similarity or were the contigs not similarity with the reference.
ordered well enough? Why is it not ordered against the reference?

O ® G ACT: PF3D7_05.2mbl vs 63
Goto Edit Create Run Graph

Display

File Entries Select Vid

P
1293500 1300000 [1306500 [1313600 [1319500 [1326000 [1332500 [1339000

I RS

1300000 1306500 1313000 1319500 |_326000 1332500 1339000 1345500 1352000 1365000

IIMMWWI’IMW Rl WMMMMWNMMMWHHMMMW :
/

1. Right click -> View selected
matches. Double click on it.

File Sort

365120. .

13668074 -

A ® G ACT: PF3D7_05.embl vs 63 366159, . 136635) -> 3

File Entries Select View Goto Edit Create Run Graph Display

W W\WM.BJJ"'!L'@ e

|z16800

000 |z10200 |_312400 |z14600

\ || l ~ i This contig is indeed wrongly ordered. If you want
J‘M‘W MM AM il w IMF \E you can do the following optional exercise to order
e s s S the contig manually.

Don’t close Act for the next exercise.

-14-

Sequence Assembly

G. Looking at the PacBio assembly

So the Illumina assembly is not bad, but neither perfect. Let’s have a look at the PacBio
assembly, which should have finished by now.

First you have to find the final file. It is not obvious to find it, so here a bit of a help:
$ 1n -s */PB.contigs.fasta PB.fasta

Now use the assembly-stats script to look at the stats of the assembly. What do you think?

Ok, isn’t that great? If this is not, ask your neighbour or a teacher... next have a look in act
to compare the results.

$ blastn -outfmt 6 -evalue le-20 -subject P£f3D7 05.fasta \
—-query PB.fasta -out comp.PB.blast

$ act PB.fasta comp.PB.blast Pf3D7 05.embl Pre/comp.blast
Pre/abacas.artemis

If you have mapped the reads yourself, adapt the command. You can do the blast with:
formatdb -p F -i Pf3D7 05 .fasta

blastall -p blastn -W 30 -m 8 -e 1e-20 -d Pf3D7 _05.fasta -i <input> -o comp..blast
(adapt the command to your input file)

File | Entries Select View Goto Edit Create Run Gre (First load the bam
S [FIE RN o IT onPacBio.bam file
PB.fasta . Entry ... | o

S e A 7 onto the reference
Pf3D7_05.embl M save Entry »
abacas.artemis § > -
Save fs Inage Files (png/svg) Next load the bam file

As S fsvgl. . | wed
Print Hrite \4‘ / IT.Chr5.bam on Pf3D7 05 and
Print Preview Read EEk) VCF — Pre/IT_OnDenOVO.bam on the first
Edit In Artemis

Close

T genome.(this file is different if you remappe

the rpmk)

So the next task would be to compare the mapped reads against the reference with the mapped

reads of the assembly. Notice, these are the same reads! Skim through the assembly, and look for:
1.Regions that weren’t covered before

2.Regions where the mapping was weird (i.e. heterozygous SNP, distant mate pairs)

3.Partially mapped reads

Important: highlight SNPs (BAMVIEW, right click, show SNP MARKS). Also show the forward
and reverse frame lines (ask for help if needed!).

So far we have already established that the VAR genes were too divergent to have mapped reads,

but the de novo assembly of them looks good.

Sequence Assembly

Frame shift due to problem with the
error profile in PacBio.

Bl i allid E—iﬁ'%fﬁ% Js —'_;E_; :Eféfgéé;égég—%f; _agdfi
R T e o '.'"'.'.'J.'|l".l'.'ﬁ'."'l.'.".I'M’““’“‘ Al AN o R
%Tv' IILIIIITI;O;IIII ‘I :_I‘lSF:h})Illlll FINOTIT | Ihv:iEIEIKITO |_mml ITAI\OO |I I ILIlITI200 I:_ITOI(IM: |_ZOIEI‘OIOIIIIIIM |_|2I1I600 Lmﬁ

YLA.....W. i .\N W At \WM i WW i ﬂu it

B

=== ==
102400 |183200 [104

{PE3D7 05021
I I I |

(R ""_l ‘_'Jf”\""f E"N\ﬁ'\,d'||||E_|W_'W||H|m| bl hnWhM'hUl '|'|H|_||A|| Mu#\llu |h|F'||h'n||uH ! HA\' i il

95200 Igeoao |oss00 |_97600 Iga 0o [o9200 [100000 [100800 01600

2 matc h selected
LOCKEr' '
E ==

Doliel Tulell«l Tol=]4]

EEEE=

. m.o.l.lwﬂ TImAT L

v
»
r | \I ’ .

3400 99200 100000 100800 101600 102400 103200 104000 104800 105600 106400 107200

\Illl [IV D ||I|fhf\|mw|” IIHI" I | |I IIIINIHI "||I I|||||~I‘II " MHI”"IIIHIAII‘” MII” II‘II ||IIV|IIIII I||| lIN |||||||If| I’IIIIIIIMI\Illlv"IIIf l I||| || ||III I’ I|| |

-16-

Sequence Assembly

8 O O X\ ACT: PB.fasta vs Pf3D7_05.embl vs abacas.artemis
File Entries Select View Goto Edit Create Run Graph Display

4
II| [| IH [11T |I|| ITTT T =)
| I IIH I "“ I||I “Ihﬂhlll r 11 - |I| | | II||| (I H | ﬁlllll hl | ” H | IIJ ” W T |
|_2618E)D |_262100 |1262400 [1262700 [1263000 [1263300 |_26360GI |_2639E)D |_264200 |_264500
II“ N I|I|| ‘Iq llllllllH“HIIhMHHIMHWHMWMWMWMMMHMIIIPMIWHlHI ‘I I |I "IMHh " |

i|| I'l |II|I ﬂ\ III

[1256100

1 249602 1 249768 > 1 2631 92 126335
score 167 percent id: 106%
LOCKED ‘

[1250400 |_250700 1251000

Ti] | »]
[1 | CRETICTETT TITnrTim |

M |HIIII 1

|1249500

[1248600 1248900 [1249200
[FE3D7 0530600

ordered_Pf3D7_05 |w

[V]Hide Read Height: = }—————"

IHIHII J ﬂHIII |"T ||||I I| HI””HIII r " |II |ﬂ [T I|I | | II||| I|| III \:T

S llll” IIH| I||“H“| II I I I’l |/

hl}ﬂ [IJ [Il

" | I | |III qh”l" W|MI IIHHIh

| IfIIIIIIfIII||||I lUI f I hl Ihll

I IIII

IIIH

Those regions look better!
No gaps, but compressed
repeats. Does it look ok in
the PacBio?

-17-

Sequence Assembly

[PF3D7 _0530900: IT has an insertion at this position. 1

\

e 00 N\ ACK: PB.fasta vs Pf3D7_05.embl vs abacas.artemis
File Entries Select View Goto Edit Create Run Graphf Display

Al AP Wl o SN ‘W"NWWM WNW'

R e
L AR Al WWWW% m

(Mmoo [FE307 65310)
1249600 1251300 1254606 1256200 1258400 |1260600 1262800 [126%000 [1267200 12@9400 1271600 [1273800 [1276000
8 tches selec
LOCKEJ'”,

'LHd RedH ght

A e i e MWW

1260600 1262300 1265000 1267200 1269400 1271600 1273800 276000 127820 1250400 1282600 1234300 128700¢

|I‘ “I H H M | IHI |II|I|||III|IIIIIIHIIIIJII\I\IIIIIIIIIIIIIIIII|||IIIH|II\IIh\IIIIHII | | I, M LT T
{1 N |I [0 O

Nl\n Il HII Wlhlll

If you zoom further in, you’ll see it is a repetitive

This regions has definitely improved in the Illumina.
region. The PacBio has again frameshifts.

In summary, we did different assemblies and could improve some regions. The PacBio
assembly does look very good, but still has some frame shifts. The [llumina has some gaps,
but most of the difficult regions are now in a better shape. The best way to prove this is to
see which reads map with their full length, without any differences to the reference (red
point).

You may have noticed that the new assembly doesn’t have any annotation. Before we work
on this, some more comments on assembly...

18-

Sequence Assembly

H: Annotation

With the PacBio sequence with have a pretty good assembly. But for the analysis we do need an

annotation! Normally we would need to do ab initio gene finding. Or we could use a tool that uses
the annotation of the reference, and adapt it to the new assembly. We developed a tool called

RATT (Otto et al., 2011 “Rapid annotation transfer tools”), that can transfer the annotation from a
reference to a new assembly.

But this would not covered the new genes. .. therefore we generated Companion which not only
merges ab initio gene finding with reference based transfer, but also does RNA detection,
functional annotation, pseudo gene detect and in the end generates a ready to submit format.
This tool is designed for parasites. But there are alternatives, for Bacteria the RAST server or the
Maker server for human. Just search a bit in the web.

€ https://companion.sanger.ac.uk

COMPANICN Examples Howitworks FAQ

COMPANION

Easy and reliable parasite genome annotation.

Annotate your sequence!

Step 3: Transcript evidence

The Companion pipeline can optionally make use of a

Yes, use tr

@® No, do not use transcript evidence.

Step 4: Reference organism

Please pick a reference organism for this annotation
pseudochromosome contiguation.

-- Select One --

-- Select One --

Leishmania braziliensis
Leishmania major Friedlin
Trypanosoma brucei TREUS27
Trypanosoma cruzi CL Brener
Plasmodium berghei

P

Plasmodium falciparum 3D7

Plasmodium falciparum 3D7 chromosome 5 (example

The steps should be obvious. Important is:
Step one: Give some names.

Step two: Upload the PacBio assembly.
Step three: Leave it the way it is. (No protein evidence as they triples the run time)
Step four: Select Plasmodium falciparum P. falciparum 3D7 Chromosome 5 (example)
Step five: Select “No, do not modify my input sequences.”
And confirm through “create job”.

https://tinyurl.com/WTAC-PB2017

Open the webpage https://companion.sanger.ac.uk/. Click on “annotate your sequence” and
follow the instructions.

This might take 12 minutes for the first to submit... and the results will come through
accordingly the submission order of the job. In case you don’t want to wait, bookmark the run
you started and then look for the preprocessed results, see:

Sequence Assembly

Examples of the output of
indicates where your newly

sequences sits.

which genes are new in the new
genomes.

overall synteny between the
reference and the new genome.

download the result files.

companion. The phylogenetic tree

The orthmcl is helpful to understand

The circos view allows to see the

Obviously, you want to be able to

Genome statistics Result files Orthology Phylogeny Synteny Job parameters Pipeline logs

Click and drag in the diagram below to pan around. Use the mouse wheel to zoom in and out.

Rectangular = Circular | Radial | Diagonal

History u

& Multiple sequence alignment for this tree (FASTA)
iZ Core genes used to build this tree

Pf3D7_05_v3

Click on the numbers to view clusters and singleton gene lists.

11 singletons

544 singletons

]

& Pseudochromosome level genomic sequence (FASTA)
&, Pseudochromosome level genes (GFF3)

&, Pseudochromosome layout (AGP)

3, Scaffold level genomic sequence (FASTA)

&, Scaffold level genes (GFF3)

&, Scaffold layout (AGP)

& Functional GO annotation (GAF1)

3. Protein sequences (FASTA)

Genome statistics Result files Orthology Phylogeny

Synteny

’.mmornosorne level sequence and annotation (EMBL)

Job parameters Pipeline logs

Skim a little bit through the
visualization, orthomcl, tree
and the statistics. In the end,
download the annotation
results (result file tab) as embl
file, untar them (tar xzvf
embl.tar.gz) and load them
into act.

-20-

Sequence Assembly

A good way to analyse the transferred gene models is to load the data into act. Start it by:

$ act Pf3D7 05.embl comp.PB.blast <name of downloaded embl
file>

Gene model is adapted to
the frameshift.

/

ACT: if3D7 05.embl vs PfIT_05.embl

WMI Ao e ol AT AL ELRRCAL AT '

|_7600 |19800 |2z000 |_4200 |_6400 |28600 [33000 |_5200 |_7400 |39¢

” |||'||“'"Mn' II| I| |Illl | HMIHH || l | I | |I\IIJ |I“mlwll Iw I I’ i IIIII WI wm " MI’ i v mw i Imm %’__JI M_.!__'1

N/

|30800

|
iR e T AT TR TORRT

|28600 |_osoo 00 |35200 |_74oo [39600 l[41800 [44000 la6200 l48400

p i A R ANCTAGTR 0 R P e R R

m\ | |||Hw Bj

[26400

Regions without synteny.
Diverse or new genes.

In summary, we did different assemblies and could look into some regions. Our new
PacBio chromosome 5 of the IT clone has no gaps. The genes are ok annotated. But never
the less we can see some over prediction and could improve the models manually if
required.

-21-

Sequence Assembly

I: Fixing frameshifts

4 N

The PacBio sequence is not perfect. First, the telomere repeats are missing - but this has to
do how we obtained the subset to do the assembly of just chromosome 5. But on the other
site, we still have those frame shift, see pages 16 and 18.

One way of correcting those is to run Quiver or icorn2. Let’s try icorn2.

-)

With this command you can run RATT. As input we use the reference annotation and the
output of abacas.

S icorn2.serial.sh IT.Chr5 500 PB.fasta 1 3 > out.icorn.txt
&

Iteratively (3 times) the reads are being mapped, variation is called with gatk and the
differences are corrected. Last, the corrections are checked, by looking if the amount of
perfectly mapped reads does not decrease. If you don’t want to wait, you can have a look
at the corrected and annotated sequence.

$ act PB.fasta comp.PB.blast Pf3D7_ 05.embl \
Pre/comp.Pbcor.blast Pre/PfIT.pb.chr5.embl

Upload the annotation if you want and then check how many of the frame shifts are
corrected. ..

Here the correction stats of the three iterations (icorn2.collectResults.pl):

Increase in mapped reads Performed changes Rejected changes
Hiter perfectl% |perfect2% SNP INS DEL Rej.SNP |Rej.INS |Rej.DEL
1 37.39 42.02 153 2493 34 0 71
2 41.89 42.26 24 261 3 1 13
3 42.23 42.3 11 39 0 0 3

_20.

Sequence Assembly

ﬂmportant aspects of the assembly procedure \

The secret is the read quality and the insert size

For a good assembly you need good libraries. For Illlumina, in our case we used a
PCR-free library (Kozarewa et al., 2009), with a good insert size of 350bp. A
standard library would have generated far more contigs, and probably an N50 of
1-3kb. With a large insert size library (approx 3kb) our assembly might have
returned in less than 10 pieces. For good libraries, you need enough DNA, good
hands (experience) and a well tuned sequencing machine.

For Pacific Bioscience you need enough high molecular weight DNA (> 5ug).
Important is it size select your library, for small and large fragment. We consider
a good run, if more then 600mb per cell are product with a mean ROI length >
9kb.

Powerful computers

In this example we assembled a single chromosome. We used reads that were
already mapped onto the known IT chromosome. The methodology for the
complete assembly would be the same. The k-mer size might need to be bigger
because a 49 k-mer might be unique in a chromosome, but not for the complete
genome. Also the computer would need to have more memory (up to 30 gb) and
more time. For even bigger genomes (>100gb), memory requirements would
increase significantly.

Bacterial genomes are easier

The good news is that for bacterial genomes the lllumina methodology should
generate sufficiently good results to do the analysis, so between 10-100 contigs.
For PacBio one cell should generate the complete genome of a bacteria!

Bin assembly

In some cases, you may just want to do an assembly of the reads that didn’t map.
This should return you contigs unique to your sample, with less computer power.
Tips

= |tis always a good idea to try different programs for any particular problem in
computational biology. If they all produce the same answer you can be more
certain it is correct.

= The field of assembly develops fast! There are always new tools to improve
assembly. For example the reads can be corrected before the assembly, or the
assembly can be improved by image and iCORN, as mentioned.

= Always evaluate your assembly. You can use a reference and map reads
back and look for badly mapped mates/reads!

\\-There will be always problems with repeats! /

_23-

Sequence Assembly

~

What to do without a reference?

In some cases no closely related reference is available, or the quality of the
reference is rather poor (many contigs, bad annotation). To obtain then a good
assembly is far more work intensive (and expensive).

Mix of insert size libraries

To obtain large supercontigs you will need a range of insert sizes. A small one, 300-
500bp, a 3kb, and if working with mid size (> 40mb) eukaryotes, 8k and 20kb.

Better your assembly is, easier will be the analysis - less genes split, more context
around genes.

Improve assembly

You can improve the assembly as described on page 23 (Further improvement to
assemblies)

Expression data

To find the genome models in eukaryotes you will need to use expression data, to
manual curate the genome and train gene finder. You would need at least 200
models which can take up to two weeks. In bacteria you would just run a gene finder.

This topic will be covered in the next module.

Different assembler

There are many assembler and to date even for lllumina new assembler are
produced. There are several comparison papers, like the Assemblathon and the
CAGE paper. Important is to always try different assemblers.

For PacBio also several assemblers are available, e.g. HGAP, SPRAI or Falcon. The
first two like PBcR are build around the Celera assembler. Falcon suppose to be able
to split haplotypes.

& /

-24-

Sequence Assembly

With the advent of long reads, manual improvement of assemblies might be obsolete.
Anyhow, in case you are ultra keen or you have Illumina assemblies to correct, below
examples how to do so.

_25-

Sequence Assembly

IX: Bin assembly (OPTIONAL)

G) far we did a completely new assembly of one chromosome of Plasmodium. The main \
motivation was to resolve issues of mid size indels and too divergent or novel sequence.
If you are just interested in novel sequence (or very divergent one, so that reads don’ t
map), you won’ t need to do a complete assembly, but just an assembly of non mapping
reads. We call this “Bin” assembly.

First we will get all the reads that don’ t map against the reference from the bam and then
assemble them.

)

First we get the reads that don’t map.

$ samtools view -f 0X04 IT.Chr5.bam > bin.IT.Chr5.sam

This command returns all the reads that don’t map (they have the 0x04 flag in the
bamfile). Next we do a normal assembly as before. Note that the way we used the
command, we don’t have the correct format for read pair data, so we use the reads as
single end reads. (Any idea how to get both mates?).

$ velveth k.bin assembly.49 49 -short -sam bin.IT.Chr5.sam
$ velvetg k.bin assembly.49 -exp cov auto

Have look at the n50. Which genes would you expect to be in this assembly?

The next steps could be to abacas it, or to blast open reading frames... but we might run
out of time doing this.

Important to notice is that the bin assembly runs faster, as less reads have to be assembled.
The assembly of a certain region might also be better, as less reads are included into the
assembly, so certain k-mer might not be repetitive as in the complete assembly.

- J

A perl script would be one option to get also the mate pair of the reads that doesn’t map.

_26-

Sequence Assembly

X: Manual contig ordering (Optional)

Here we describe how you can reposition (or order) a contig of your choice manually by
drag and drop. At first it might feel fidely, but just give it a go.

First note the name of the contig you want to reposition (NODE 132). Next note down
between which contig you want to place it (NODE 131 and NODE _138).

~

1. Right click on the contig to 2. Right click and zoom in x1/10.

order -> Edit -> Contig Ordering. Be a bit patient when you zoom,
) for the window to update.

Zoom In P x 1/5
<l Zoom Out M| x 1/10]
1231489, . 1324532, NODE_339_length_92990_cov_19, 844919

X Contig Tool

28030|NODENNODEYNMYNODE_SIODE_1 PMNCRODE_81 UNGUNGYIMODE_49S_Tength_20791_cov_19.2108476

1
<] / [l]

[1364279. .1366776, NODE_13yength_2444_c0v_19. 711129

ll [»

[«]{n]»

3. Select the contig, and drag it to the left

Conti4 Tool
cov_20, 2803C0N0DE_13

GNRMODE_499 Tength_20791 cov_19.210476

-
4. Do this until you place the contig at the correct position. Maybe use the zoom out zoom it.

Just play around.

-
X Contig Tool
—_— ODE_131_1ength_50410_c0v_18-

A4

4| [Il | [»]
|484807. .487304, NODE 132 length 2444 cov_19.711129

-27-

Sequence Assembly

Observe, when you move the contig around, the act window get automatically updated.
At first, the blast hits look weird, just score a bit to a site, and it should look as below.

The gene order is now restored. Any idea why the contig might have been placed wrongly?

Contig Tool

< | i [[»]
|484807. . 487304, NODE_132_length_2444_cov_19.711129

File Entries Select View Goto Edit Create Run Graph Display

T
WIH'N W et el Tl

[l
4 matches selected —
ILOCKE

il y
i T e i

s = e =
| ODE 127
| 477400 [a79600 |ae1800 |ac4c00 Igsezoo 483400 490600 492800 495000

LI TET e | |’|' | | A

DLl Y A e

——
=

PE3D7 0S0780C

|323400

v
-

[

| II‘

EvM

As this exercise is optional, and we are using for the next exercise a pre-computered bam file, you
can

1.Save the assembly with the ordered contig, and remap the reads.

2.or, close Act without saving and reopen it.

_28-

Sequence Assembly

XI: Manual correction of assembly (Optional)

Were you able to find a miss-assembly? Look for synteny breaks, were a region maps to
another part of the genome.

This regions of the reference has In the new
similarity to another region of assembly is a gap.
assembly.

% ACT: PF3D7_05.embl vs Transfer.ordered_PF3D7_0%.final.embl
File Entries $elect View Goto Edit Create Run Grapf® Display

=t

|_04000 110500 117000 [123500 [=

mw‘ ”H |‘II r _”_I 'I I J.‘. | I II‘IIIII ﬁ I||| I

12 matches selected

78000 BdSOO 91000 97500 104000 110500 117000 123500 13(=

| H”HII |” II | IIIIIIWIHII ||IIIII| IHIHIH”II}II ||| IH |||"|||I|| ||I||I

4] I l

F

Find the region with the similarity in the new assembly. Does it look like a miss-assembly?

What kind of information could you use to track down a possible miss-assembly?

_29-

Sequence Assembly

ACT: PF3D7_05.embl vs Transfer.ordered_Pf3D7_05.final.embl

File Entries Select View Goto Edit Create Run Graph Display

This is the region

WTWWWM’WW-wmﬂ'm"'m"mwrw'" A I il

[79200 31400 |s3600 |ssae0
ull W‘W
| [|

i
I’WWM N ll 1 || | ‘H \ Wl “l ‘ M i IHW [| IH' LA M ’I III‘MIIWII

[z16800

|72600 |74800 |77000 |ese00

(i I

|]‘HI A N

T

323400 325600

||IIII|I| I T

[z19000
L1
(I L1

L321200

[316200

II‘I:W ‘I [“l 1 |“ ’ I} ’\W\“]IWI H

[312400 [314600

I‘I f |\HI

]?r(lere(l_PfB[ﬂ_OS |~ i [v] Hide

b A

327800

Igozoo

HHI\I

=

4

This looks like a miss-assembly. But yet we don’ t
have the full prove! Zoom in that position and have
a look at the mate pairs.

"'T..'JL

330000 |

with the similarity.

:

i »\1

There is again a
gap.

Change the view ->
Strand Stack. Can you see
read pairs that bridge this

oan

Filter Reads

By Mappying Quality (mapq) cut-off:
SET

7By SAM FLAG column:

Select below to show or hide only the reads with
the flag set.

Filter the Proper Pairs (right click, Filter) v| Read Paired
/ > HIDE |+ Proper Pair
HIDE |w Read Unmapped

ACT: PF3D7_05.embl vs Transfer.ordered_Pf3D7_05.final.embl
File Entries Select View Goto Edit Create Run Graph

Display

Now you can see reads that map

Tir]

4
Il

II\

IIIIH| ”llHll

Dl

on the reverse strand. Right click Ul I ”” Ay T L e A ” !
on one read and SeleCt ﬁrSt the laSt bagoo Igszoo |gssea |gssea 56100 |_86400 |_86700
, then the second last option. (NI LI
11/ |||| | | | ||| IIf || | | 11
| |||| |
L1st Re :!fj') =
I || I III [T [T [T | M T TT74
Clone wando [[L N n ol ’I | f [
- - | XIII ‘ 11 \III IIRII NIIIIIII (111 IIIIIZ
D 1o mate of + 1129 AN14:8:73:8016: 0161273 1=
Go to mate of L3y 5014:8:73:5016:9161#3 [315300 [315600 [315000 [316200 [316500 [316800 [z17
Show details of : IL39 6014:8:73:5016:9161#3 ||||| |||| “\‘H }I M L] [|| I f" ||| ||”| II|”||
| II|| \ [||||||H|||| IH 111 I 1
K »
IL39_6014:8:4:15852:3935#1 ordered_Pfa07_05 || .
Read Name IL39_6014:8:4:15852: 3935#1
Coordinates 315987, . 316062
Length 76
Reference Name ordered_Pf3D7_05 =
Inferred Size ;225585 315200 315600 316000 316400 316800 u
Mapping Quality 37 i
Cigar String 76M e
Strand - ||
Mate Coordinates 90402, 90477 \ =
Mate Length 76
Mate Reference Name ordered_Pf3D7_05
Mate Inferred Size 225585
Mate M Quality 37 o
..S]tZ Croar String | 7on | The last option show you were the mate
< Il . 0
Close 1S mapping.

The second last option will just to the
position. Where 1is it?

-30-

Sequence Assembly

Over ten mate pairs indicate that they are mapping very far apart, and suggest that the contig
should be broken here and place in the gap, of two site before. With the fact that synteny breaks in
the core regions of plasmodium are rare and the sequencing gaps at the left hand site, we can
assume that this is a miss-assembly.

\If you want to fix the miss-assembly, this is the way to do it: /

T
Lt

[Bl6800 (310000 321200 [32340¢

'MMWWMMMMMMWH ;

1. Delete the light blue contig.

[D

510480 313600 L 316800 320000 23260

The reads can help you!

[2. Select the region that is miss-place.

Goto
Edit
3. Right click on the selected region ——>1 Create

-> Create -> Feature from Base Range Write
Run

*er Feature

Feature From Base Range

Features From Non-matching Region
Intron Features

Intergenic Features

v v w\ v w

)

[Start Codons
W Stop Codons

4. Change the key to contig, and press o o
apply Add Qualifier: [note

)

Complement | Grab Range | Remove Range | Goto Feature | Select Feature || TAT| Object

Apply

manually as before to the correct

5. Now you can order this contig p” p—
postion

0 |310200 |z12400 |_314600 |_316800 [319600 [321200 [323400

i WWW NN.W’WL‘W’ WMWM Uy -

Please be aware that this is pretty advanced edit. At the Wellcome Trust we are currently
working on software to break this regions automatically (Maybe google REAPER).
After this step one order the new contig set again with abacas.

Perl could here help to find the reads that map wrongly in a more automated easier way.

-31-

Sequence Assembly

~

Though until now we could determine that the assembly represent the sequence,
it is not perfect, as it still has compressions and gaps. One reason for this is that
the assembly of Plasmodium is more difficult than for most bacteria (due to the
high AT content and repeats). It is nevertheless a useful example, highlighting the
problems you will encounter with assembling genomes.

A good assembly of bacteria will return you 20-100 supercontigs. Here we
describe which methods you could use to improve the assembly. All the tools are
installed on the USB stick, except SSPACE.

Further improvement to assemblies

SSPACE (Boetzer et al, 2011) is a tool that scaffolds contigs. Although Velvet
also does this, SSPACE generally performs better.

Abacas (Assefa et al, 2009) has the option to design primers which can be used
to generate a PCR product to span a possible gap. This new sequence can then
be included in the assembly. This process is called finishing.

Circlator (Hunt et al, 2015) is a tool that uses long sequencing reads (PacBio or
Oxford Nanopore) to tidy up and circularize bacterial chromosomes, plasmids, or
eukaryotic mitochondria.

IMAGE (Tsai et al, 2010) is a tool that can close gaps in the assembly
automatically. First the reads are mapped against the assembly. When a read
maps close to a gap and its pair would be “in the gap”, all those reads and their
mates are gathered together and a local assembly is done. This is repeated
iteratively. This procedure can close up to 80% of the sequencing gaps.

iCORN (Otto et al, 2010) can correct base errors in the sequence. Reads are
mapped against the reference and differences are called. Those differences that
pass a certain threshold are corrected. A correction is accepted if the amount of
perfect mapping reads doesn’t decrease. This algorithm also runs iteratively. N.B.
perfect mapping = the read and its pair map in the expected insert size without
any difference to the iteratively derived reference.

REAPR (Hunt et al, 2013) can find errors in the assembly and automatically
break at those errors. It does this by checking how read pairs map to an
assembly, and so does not need a reference sequence to compare the assembly
against.

Several of these tools come as part of the PAGIT suite (post assembly genome
improvement toolkit) to improve genome assembly (Swain et al 2012,

\\http://www.sanger.ac.uk/resources/software/pagit/). /

-32-

Sequence Assembly

References
Abbot, J. C. et al. (2005) Bioinformatics 21(18) 3665-3666.

WebACT — an online companion for the Artemis Comparison Tool

Carver T.J. et al. (2012) Bioinformatics 28 (4): 464-9.
Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based
experimental data.

Carver T.J. et al. (2012) Brief Bioinform (doi: 10.1093/bib/bbr073).

BamView: visualizing and interpretation of next-generation sequencing read alignments.

Carver T. J. et al. (2005) Bioinformatics 21: 3422-3.
ACT: the Artemis Comparison Tool.

Kozarewa, 1., Z. Ning, et al. (2009). "Amplification-free Illumina sequencing-library preparation
facilitates improved mapping and assembly of (G+C)-biased genomes." Nature methods 6(4): 291-
295.

Rutherford et al. (2000) Bioinformatics 16 (10) 944-945.
Artemis: sequence visualization and annotation.

Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD. REAPR: a universal tool for
genome assembly evaluation. Genome Biol. 2013 May 27;14(5):R47.

Swain MT, Tsai 1J, Assefa SA, Newbold C, Berriman M, Otto TD. A post-assembly genome-
improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc. 2012

Otto TD, Sanders M, Berriman M, Newbold C. Iterative Correction of Reference Nucleotides
(ICORN) using second generation sequencing technology. Bioinformatics. 2010

Tsai 1J, Otto TD, Berriman M. Improving draft assemblies by iterative mapping and assembly of short
reads to eliminate gaps. Genome Biol. 2010 (IMAGE)

Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: algorithm-based automatic
contiguation of assembled sequences. Bioinformatics. 2009 Aug 1;25(15):1968-9. doi:
10.1093/bioinformatics/btp347. Epub 2009 Jun 3. PubMed PMID: 19497936; PubMed Central
PMCID: PMC2712343.

Step by step of de novo assembly:
Otto TD. From sequence mapping to genome assemblies. Methods Mol Biol. 2015;1201:19-50. doi:
10.1007/978-1-4939-1438-8 2

-33-

Sequence Assembly

Appendix

Here we present the solution for the de Bruijn graph exercise, as well as the code for the
PERL scripts we mentioned in the assembly module.

The exercise is on page 2 of the assembly module. The first step of the solution would be to
generate all the k-mers from the reads. For example the k-mers of length 5 for the read
GCGAGC are GCGAG and CGAGC. Those two k-mers will be nodes in the de Bruijn
graph, and moreover, will be connected (bold red edge). Doing this for all the reads,
generates the following graph:

ATCAG
TGATC GATCA
GTGAT
TCAGC
CAGCG
GGTGA
AGCTG
CTGGT N\ AGCGA
CGAGC
GAGCT -~
TGGTG GCTGG GCGAG
It is not always easy and might be confusing [
which node to connect. Remember, the AGCTGG
concept of k-mers and the de Bruijn graph GCTGGT
CIGGTG
are needed to be able to process the large TGGTGA.
amount of short reads generated by the GGTGAT!
sequencing machines. G:Fgﬁ:}:g A
GAICAG...
The graph can also be represented as a ATCAGC:
multiple alignment, as shown on the right Tgﬁggg A
hand site. All reads are aligned against each AGCGAG
- GCGAGE. .
other. The dotted boxes are examples of k CEAGET:
mers: GAGCTG

Now just follow the path thought the graph. Starting at the arrow, the first k-mer is GAGCT, so
this would be the start of our contig. The graph indicates the next k-mer AGCTG. So we add a G
to the contig. The next k-mer is GCTGG. The new letter is another G. Doing this for the whole
graph, we get: GAGCTGGTGATCAGC. As you see, the graph is circular. So depending where
you start, you get a different contig! If you do a six frame translation, you might see which is a
good starting point for the contig.

_34-

Sequence Assembly

PERL: Find read pairs that map too far apart

gor some applications it would be useful to know whether read pairs map too far apart or whetheh
they don’ t map pointing to each other. This could be an indication of mis-assemblies, but also
duplications or rearrangements, which are are looking for when comparing sequences of different
strains.

To find read pairs (RPs) that map too far apart we just need columns 2 and 9 from the BAM file
(mapping flag and insert size), and a PERL one-liner. We successively make the query more and
more complex, until we find the mis-assembly. Please keep in mind that this is advanced
programming! It should give you an idea how useful programming could be. /

Assuming your BAM file is called IT onDenovo.bam and you want to list RPs that map more
than 2000bp apart:

$ samtools view IT onDenovo.bam | perl -nle 'my
($Sread, Sflag, Sref, Spos, SmappingQual, $cigar,SmateRef, SmatePos, $insertSize, $seq, $
seqQual, Sother)=split(/\t/); if($insertSize>2000){print}' | head

Here is also a shorter version, using an array (not as readable):

$ samtools view IT onDenovo.bam | perl -nle 'my @ar=split(/\t/);
if(Sar[8]>2000){print}' | head

There is a lot of output. Many read pairs map all over the place. We would like to bin those into
chunks of 1kb, and then list of the most abundant:

$ samtools view IT onDenovo.bam | perl -nle 'my

($read, $flag, Sref, Spos, SmappingQual, $Scigar, $SmateRef, SmatePos, $insertSize, $seq,$
seqgQual, Sother)=split(/\t/); if($insertSize>2000) {print

int ($pos/1000)."\t".int ($matePos/1000)}' | sort | uniq -c | sort -rn | head

This does look more complex! In the output the first column is the number of RPs that connect the
first bin (2" column) with the second bin (3" column). For example 418 1360 1373 means
that 481 RPs connect the region 1360000-1361000 of genome with the regions 1373000-
13731000 of the genome. The list shows us that in the subtelomeric regions many RP map far
apart!

The following command ignores the subtelomeric ends, by excluding 75kb at each end.

$ samtools view IT onDenovo.bam | perl -nle 'my

(Sread, $flag,Sref, Spos, SmappingQual, $Scigar,SmateRef, SmatePos, $insertSize, $seq, $
seqQual, Sother)=split(/\t/); if($insertSize>10000 && $pos>75000 && S$matePos <

1300000) {print int($pos/1000)."\t".int($matePos/1000)}' | sort | unig -c | sort
-nr

The third line 21 81 323 shows us our mis-assembly. What are the other entries?

We are fully aware that is this a quite complex piece of code, and just used as a one liner. It uses the
LINUX commands sort and uniq. But keep in mind that this command canfind you all mate pairs
mapping too far apart for any bam file (if you adjust the insertSize parameter for your data)!

.

-35-

Sequence Assembly

Getting non mapping reads and their mates

4)

Here is an example of how to get the mates of non mapping reads. It is a good example of
L PERL one-liners.

First we are going to get reads that don’t map with PERL. The original command is:
$ samtools view -f 0X4 IT.Chr5.bam | head

In PERL this would be:
$ samtools view IT.Chr5.bam | perl -nle 'my
(Sread,$flag)=split(/\t/); if ($flag & O0x4) {print }’ | head

Now we need to get the reads where the mate is not mapped. Looking at the samtools
manual:

Bit Description
0x1 template having multiple segments in sequencing
0x2 each segment properly aligned according to the aligner

0Ox4 segment unmapped
0x8 next segment in the template unmapped
0x10 SEQ being reverse complemented
0x20 SEQ of the next segment in the template being reversed
0x40 the first segment in the template
0x80 the last segment in the template
0x100 secondary alignment
0x200 not passing quality controls
0x400 PCR or optical duplicate

The 0x8 tells if the mate pair is not mapped. So if the read is not mapping (0x4) or the
mate is not mapping (0x8) then print the sam line into a file:

$ samtools view IT.Chr5.bam | perl -nle 'my
(Sread, $flag)=split(/\t/); if (S$flag & 0x4 or $flag & 0x8)
{print }' | sort > NonmappingReadsPlusmate.sam

This file can now be used in VELVET for de novo assembly as explained in the Assembly
module.

We hope that this illustrates the power of PERL one-liners!

-36-

