
-1- 

Analysis of RNA-Seq  
RNA-Seq: Analysis of the transcriptional 

landscape in a knock out parasite 

A. Introduction  
 
In this module we are going to learn about RNA sequencing (“RNA-Seq” - Mortazavi et al., 
2008; Wang et al, 2009) using Illumina sequencing. The application today will be to compare 
a WT type Plasmodium berghei RNA-seq dataset with an RNA-seq data set from a mutant 
that had a transcription factor (Api AP2) gene knocked out. The goal of the exercise would be 
to determine the function of the gene that was knocked out. 
 
During the exercise you will be introduced to the genome viewer “Artemis” and how to 
visualize RNA-Seq reads. Next we are going to compare the expression of the genes with the 
aim to find differentially expressed genes. Those will be analysed in the PlasmoDB database. 
Last we should discuss the role of biological replicates and which tools could be used to 
perform differential expression. 
 
RNA-Seq 
 
Transcriptome sequencing is a very useful addition to genome sequencing projects as it helps 
to identify genes and thus aids in genome annotation. In this sense it is similar to earlier 
transcriptome sequencing using capillary methods (EST sequencing), but provides much 
higher coverage of the transcriptome.  
 
Sequence reads from RNA sequencing can be treated in much the same way as those from 
DNA sequencing. The exception is the occurrence of splicing, where intronic sequences are 
missing from RNA-seq reads. In this module we will use a similar approach used to map 
DNA sequencing data to map RNA sequencing data from Plasmodium berghei.  
 
Due to the vast number of reads produced by next-gen sequencing technology, the 
transcriptome is also sequenced very deeply. Each gene is sequenced in proportion to its 
abundance and the large number of reads means that even low abundance genes are sequenced 
to some extent. This means that expression levels of genes can be compared. One can 
visualize the “pile up” of reads in a particular region by looking at coverage plots. The higher 
the plot, the more expressed a transcript is. For the purpose of the following exercises, 
remember that the sequences originate from transcriptome sample (mRNA) and therefore only 
contains information about the exons and UTRs. 
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The first RNA-Seq study in Plasmodium parasites focused on P. falciparum (Otto et. al. 2010). 
The aim was to show the viability of the RNA-Seq protocol in comparison to microarrays and 
also to improve the genome annotation and find alternative splicing. Recently a group used RNA-
seq to identify differentially expressed genes, showing that parasites from vector transmitted 
infections are less virulence than serially blood passaged in the laboratory (Spence et al. 2013). 
There will be a many more to come… 
 
 
Exercise 
All data you will need for this exercise are available online. So you could repeat (or finish) the 
exercises later at home. 
 
In the appendix are all the commands used that you would need to replicate the analysis. This 
includes mapping and the differential expression. Alternatively you could also try webpages like 
http://pathogenportal.org. 
 
 

5’ UTR Exon 1 Exon 2 Exon 3 3’ UTR 

Reads belonging to the transcript are produced by the sequencing process.  

When the reads come out as raw data, there is no information about where they belong on the 
reference genome. What is more, all reads from several different transcripts come out together. An 
alignment algorithm finds where they belong in the reference genome based on similarity 
matches. 

 

The plots shown above the 
gene models (red and green 
lines) represent the number 
of reads that align to the 
genome at each base 
position. This allows us to 
identify coding regions: 
exons (yellow) and UTRs 
(white). 

 

In a more visual way … imagine this transcript is present in the sample 
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To work with the command line of Linux you will first need to open a terminal. Then go to 
the Module’s directory: 
 
$ cd ~/Module_6_RNA-Seq!
 
For the mapping, first an index of the reference (here chromosome 14 of P. berghei) must 
be constructed with bowtie-build. On the command line,  you should type: 
 
$ bowtie2-build berg14.fa berg14.fa!
 
This will generate the index need for bowtie. Most of the output you can ignore. Tophat 
first maps the un-spliced reads with bowtie, mapping the reads falling within exon 
boundaries. The non-mapping reads will be than split by Tophat. To start the command you 
should type: 
!
$ ln -s berg14.fa berg14.fa.fa!
$ tophat2 -o WT1 -I 2000 -r 150 -g 1 berg14.fa 
Pb_WT1.bam.Chr14_1.fastq.gz Pb_WT1.bam.Chr14_2.fastq.gz!
 
The mapping result will be written into the directory WT1/. If you have doubts about 
parameters of the program, type: 
 
$ tophat2 !
!
What would the –g parameter do? Does it seem an important option? 
 
Next you need to index the bam file 
!
$ samtools index WT1/accepted_hits.bam !
 
!
!
 
 

A. Mapping with Tophat 

First we will map RNA sequence reads from the WT parasite of Plasmodium berghei to the 
chromosome 14 sequence of the same strain. 
 
In the directory of the module you can find the Plasmodium chromosome 14 reference 
sequence (berg14.fasta) as well as the two files of RNA sequence reads of the WT: 
Pb_WT1.bam_1.fastq.gz and Pb_WT1.bam_2.fastq.gz. 
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1. Now click on File 
-> “Reads BAM/ 
VCF…” 

2. Select here the bam file from the WT1 
directory you just genereated and then press ok. 

4. You should see following window… 
any idea what it means? 

3. Confirm that the 
correct chromosome 
is chosen.  

We will now examine the read mapping in Artemis using the BAM view feature. 
Be sure to be in the same directory as before. Open Artemis and load berg14.embl. This 
contains exactly the same sequence as berg14.embl, but also has genome annotation so 
we can see the gene models. 
$ art berg14.embl &    ### to open Artemis 
 
First go to the position 2259160 (Goto -> navigator).  

B. Viewing the mapped reads in Artemis 
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Congratulations, you have opened a Malaria chromosome with RNA-Seq mapping on it! 
The horizontal blue/green lines are sequencing reads, mapped against the reference. Let’s 
have a look how the reads are “mapped” against the reference. 

Right click in “BAM 
view,, select Graph -> 
Coverage. Then zoom 
out again 

1. Zoom in as much 
as you can 

Each sequence represents a read. It is very similar to 
the genomic sequence at this regions, and therefore 
was mapped at this position. The abundance of reads 
represents the amount of mRNA of this gene. 

Those reads are mapped over a 
splice site. The bar shows the 
intronic regions, which should 
be skipped in the reads. Can you 
see where the other parts of the 
reads are mapping? 

This is the so-called one-
base pair resolution of 
RNA-Seq! 
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C. Interpreting the mapping 

Zoom out until you have the same view as below: 
 
 

Please discuss following aspects with your neighbour: 
 
The coverage represents the amount of reads mapped over each position. Why are reads 
mapped where no exons are? Can you distinguish transcription starts and stops of genes? 
 
Notice that different genes have different depths of coverage. What does this means?  
 
Scroll through the genome and look at half a dozen genes, also some longer ones. 
Why do some genes have less coverage? Have some genes no reads mapped to them? Is the 
coverage very even over the genes? 
 
   
 

To better see the splice sites, do right click. 
Select “Options…”: 
Set the window size to 1 (before unselect 
“Automatic…”) 

You can increase the size 
of the bam view, by 
dragging down with the 
mouse. 

You can move the reads up 
and down, on the right 
scroll bar. 
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Go to the position 8000 (Goto -> navigator).  

 

D. Uniqueness and GC content 

1. Enable the GC 
content, Graph -> GC 
Content. 
 
2. Change the window 
size 

3. What are those 
peaks? Is there a 
correlation to the GC 
content? 

4. You can filter reads by 
mapping quality and if 
they are mapped as proper 
mate pairs. 

5. Right click, 
than Filter 
Reads… 

6. Set the mapping 
quality to 10 and show 
proper pairs. What 
happens? 

Variation in coverage can have many reasons, one is GC content. Also 
important, reads can be placed more than once, when they are mapped 
repetitively. More conservative mapping is to just look at proper pairs, 
and ignore reads with a mapping quality score below 10. 
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E. Including the mutant data set 

Next we want to include the mutant (knock out) data set. 
 
The reads of the KO parasite are in directory bam.  

Right click here, 
select add BAM 

In the BAM view of the reads, it might be difficult to distinguish the differences between 
the two different BAM files (data sets). But in the coverage plot, one can see the 
differences in coverage by the color. You can color the read by the coverage plot (right 
click BAMview -> color by -> Coverage plot colors. 
 
First have a look at the knock out gene (PBANKA_143750). Is it really knocked out? 
 
 
 

Include the file 
Pb_MUT1.bam.Chr14.bam from the 
bams directory. 
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It seems quite convincing that this gene is not expressed at all in the mutant (blue coverage 
plot). So the knock out seem to have worked. 

 

Skim through the genome and compare the expression (coverage plots) between the two 
conditions. Again discuss the following questions with your neighbour or a tutor: 

Which genes have extreme different coverage? Find a few and write the gene id numbers 
down.  

Is it enough to look at raw coverage, or would you need some kind of normalization? 
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One possibility of normalizing the data is to generate the RPKM for each gene. RPKM 
stands for reads per kilobase per million mapped reads. It is a measure of how many reads 
map to a gene, normalized by the gene length and by the amount of mapped reads in the 
run. 

F. Normalization - RPKM  

1. Select all genes by: 
Click on Select -> All 
CDS Features 

2. Right click on the BAM 
view -> Analysis -> 
RPKM values of selected 
features…  

3. Unselect “Intron 
included” 

4. Wait until the box says 
it is done.   
Maybe take a break to do 
some stretching for your 
back… at home this will 
take longer. It is faster to 
use local copies of the 
BAM files! 

5. The upcoming window will have RPKM values for each gene, 
for both the WT and the mutant. This will be split by strand of the 
DNA and a total score for both strands of DNA. 
 
Save the file as Pb_RPKM.csv. This one you could load into 
LibreOffice (Excel), but here we are going to use a Linux “one-
liner”. 
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If your values are different - maybe you 
filtered the reads differently.  

Open at least the two marked genes in 
PlasmoDB (http://plasmodb.org) and 
enter the first (yellow) gene id. 

1. Type the 
gene IDs in 
here. 

3. The genome of P. 
falciparum 3D7 has a far 
richer annotation, so let’s 
look at the orthologue. 

2. Read the gene page. 
Does it tell you about 
the function of the 
down regulated gene? 

Now we would like to know which genes have the biggest difference in terms of expression 
between them. One way is to generate the ratio of the RPKM of WT and KO and look at the 
most extreme values. This can be done very easily on the command line: 

$ awk ‘{print $1,$4,$7,($4/($7+0.001)}’ Pb_RPKM.csv | sort -rnk 
4 | head -n 20!

The awk commands can access columns in a file (like Excel) and do mathematical operations in 
this case the ratio. The output is piped into the sort program, that sort numeric reverse and 
column 4 (k). And we are just interested in the top 20 lines (head -n 20).  

What happened if you try tail instead of head? 
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Scroll  down until you come to the 
transcriptome data for expression 
in the sexual stages . 

Doing the same with the following gene (PBANKA_144930), that has 
the annotation “CPW-WPC family protein, putative“, returns a similar 
pattern. 

When are those genes mostly expressed? Could you formulate a hypothesis what kind of 
genes the knocked out gene might control? 

What genes would you expected to be up regulated in the mutant? 

 

Conversely, how much can you trust those results? Could the variation be down to noise, 
or natural variation? 

 

What extra data would be useful to help us to be more confident about our conclusions?  
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Introduction 
 

Differential Expression 

Understanding the genome is not simply about understanding which genes are 
there. Understanding when each gene is used helps us to find out how 
organisms develop and which genes are used in response to particular external 
stimuli. The first layer in understanding how the genome is used is the 
transcriptome. This is also the most accessible because like the genome the 
transcriptome is made of nucleic acids and can be sequenced relatively easily. 
Arguably the proteome is of greater relevance to understanding cellular biology 
however it is chemically heterogeneous making it much more difficult to assay.  
 
Over the past decade or two microarray technology has been extensively applied 
to addressing the question of which genes are expressed when. Despite its 
success this technology is limited in that it requires prior knowledge of the gene 
sequences for an organism and has a limited dynamic range in detecting the 
level of expression, e.g. how many copies of a transcript are made. RNA 
sequencing technology using, for instance Illumina HiSeq machines, can 
sequence essentially all the genes which are transcribed and the results have a 
more linear relationship to the real number of transcripts generated. 
 
The aim of differential expression analysis is to determine which genes are more 
or less expressed in different situations. We could ask, for instance, whether a 
bacterium uses its genome differently when exposed to stress, such as excess 
heat or a drug. Alternatively we could ask what genes make human livers 
different from human kidneys.  
 
In this module we will try to gain more understanding of the genes differentially 
expressed between the wild type and knock out of our experiment. We are going 
to use three biological replicates of the WT and three biological replicats of the 
mutant to get more statistical power. Those were already mapped with tophat, as 
done before. 
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G. Finding differentially expressed genes with cuffdiff 

Cuffdiff is a part of the cufflinks package which will enumerate the number of 
reads mapping to gene models in different RNAseq experiments and calculate 
those genes which have significantly different levels of expression. 
 
Cufflinks requires a particular format of GFF file, which Artemis cannot output 
and so we introduce a Perl script to convert the EMBL file of chromosome 14 
into the appropriate format. The role of Perl script as glue between different 
programs, converting one format to another, is very important in bioinformatics.  

Convert the EMBL file into a GTF compatible with cuffdiff.  
 
$ ���perl ./embl2gff.pl berg14.embl > berg14.gtf!
 
Then use cuffdiff to determine which genes are differentially expressed: 
 
$ ���cuffdiff -u -N berg14.gtf bams/Pb_WT1.bam.Chr14.bam,bams/
Pb_WT2.bam.Chr14.bam,bams/Pb_WT3.bam.Chr14.bam bams/
Pb_MUT1.bam.Chr14.bam,bams/Pb_MUT2.bam.Chr14.bam,bams/
Pb_MUT3.bam.Chr14.bam !

Cuffdiff options for more accurate differential expression calculation: 
• -u rescue method 

•  Where sequence is non-unique, spread the expression signal across 
identical regions based on their local expression level 

• -N upper-quartile normalisation 
•  Rather than normalising the fragment counts for each gene by the 

total number of fragments sequenced, use the upper-quartile of 
fragments mapping to individual loci (more robust calls for less 
abundant genes) 

 

Optional: 
Run cuffdiff without the above options (-u, -N) and see how the results differ. How do 
your conclusions about differential expression of particular genes change? 
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Interpreting the results 

How many genes are predicted to be differentially expressed?  
 
How many are upregulated in the KO?  
 
How many are downregulated? 
 

Cuffdiff produces several files, but the one of interest to us is gene_exp.diff. This 
contains the statistics relating to the RNAseq read counts relating to each gene 
in the two timepoints. It is sorted by gene id, but it would be more useful to sort 
it by the significance of differential expression. Then the most clearly 
differentially expressed gene is at the top of the list. 

Sort the results file by q-value (corrected p-value) 
 
$ sort -k13 -g gene_exp.diff | more!
 
Infact we can get the most useful result using the following command 
 
$ sort -k13 -g gene_exp.diff | cut -f1,10,13,14 | grep yes!
!
However we lose the headers and can’t see which column is which so we can add in an 
extra command:!
!
$ ���head -1 gene_exp.diff | cut -f1,10,13,14; sort -k13 -g 
gene_exp.diff | cut -f1,10,13,14 | grep yes !
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Now let’s compare this list to the one before. What are the differences? Is the list similar to 
your first list of differentially expressed genes?  

Do you understand each column?  

Which results would you trust more (this or the ratio in the Excel table)?  

 

If time permits lookup more genes up in plasmodb… 

What other datasets would help in the interpretation of the results? 
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Maybe some of you have already determined the function of the transcription factor. But this 
would have been done manually. A more automated method would be to do a GO enrichment. 
Basically, statistics are used to test if a function (or GO term) is enriched in the down or up 
regulated genes compared to all of the GO terms associated to the genes that are expressed.  
 
Gene Ontology or GO, is a major bioinformatics initiative to unify the representation of gene 
and gene product attributes across all species, see http://en.wikipedia.org/wiki/Gene_ontology. 
GO terms are represented in directed acyclic graph, so functions can be further specified in a 
sub node. The GO enrichment test we will use takes the structure of this hierarchy into 
account. 
 
But the association of GO terms to genes depend on the known functions and level of 
curation. For example, in P. berghei, less than half of the genes have GO terms associated! 
 
In this exercise we will do a GO enrichment of the differentially expressed genes of the 
complete gene set (not just chromosome 14). 
 

Can you repeat the analysis  
 
This method obviously depends how many genes have GO terms associated.  

H. GO enrichment on the command line - OPTIONAL 

Change the directory and have a look at the files: 
!
$ cd ~/Module_6_RNA-Seq/GO!
$ ls!
 
The file full.gene_exp.diff has the same format as the output of cuffdiff you 
produced. But it was generated for all of the genes in the genome, not just for chromosome 
14. 
  
The next command will get all the gene ids of genes that are 
•  differentially expressed (grep yes)  
•  down regulated in the mutant ($10<0 - log fold change),  
•  have a FPKM of at least 40 ($8>40 - FPKM of WT), 
•  are three times more expressed in the WT ($8 > (3*$9)). 

To do the filtering, we are using the command awk. The “$” refers to the i-th column in the 
text file. As the first row contains the id’s, it is returned with cut -f 1 and then saved in 
a file, using the “>” command. (You could do that in excel, but it might take a bit more 
time…) 
  
$ grep yes full.gene_exp.diff | awk '$10<0 && $8>40 && $8>(3*
$9)' | cut -f 1 > list.down.txt!
$ head list.down.txt!
$ head Pb.GOterms.txt!
 
The two head commands give you an idea of the format of the two files we are going to use.  
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Can you repeat the analysis with with the other GO domains (CC and MF)? 
 
Would you be able to repeat the analysis with up regulated genes in the mutant? Which 
processes are enriched. Are the results expected? 
 
Would it make sense to change the criteria to generate the list of up and down regulated 
genes? If so, how and why? 

Though the enrichment test is done in R, using the bioconductor class topGO, we are going 
to call it directly from the command line. Maybe have a quick look at the code to see how the 
enrichment is done. 
 
$ cat doGO.R!
!
So next we are going to call the program, looking for the biological process (BP), see http://
en.wikipedia.org/wiki/Gene_ontology.  
 
$ R CMD BATCH "--args list.down.txt Pb.GOterms.txt BP “ doGO.R!
 
This command tells R to run from the command line the program doGO.R. Three 
parameters are given:  
1.  Genes of interest - which you generated 
2.  GO database   
3.  The domain search: BP (biological process, e.g. cell cycle), MF (molecular function, e.g. 

kinase) or CC (cellular component, e.g. nucleus, cytoplasm) 
 
The result is in file Result.txt 
 
$ cat Result.txt!

Google the first hit, “microtubule-based movement” including “malaria” as further search 
term. What paper pops out first? Does this help to understand which genes the knocked out 
transcription factor might regulate? 

Do not panic… 

… if you don’t understand everything! This is a very advanced methodology. It 
involved bioinformatics, statistics and deep knowledge into the parasite. At the 
same time, the results depend on many parameters like, experiment setup, quality 
of your RNA-Seq data, parameter used in the different steps and the quality of the 
GO database.  

Important: In the end you got several enriched functions as result of your 
experiment that characterize the function of the knocked out gene! Well done! 
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If time permits, include the further 4 data sets in Artemis (2 WT and 2 mutants, all on 
webpage), which we used in the differential expression. Skim through the genome and think 
about following questions: 
 
How well do they correlate? Do the differential expression results make sense? 
 
Is the Api AP2 knocked out in all mutant data sets? Would you need to redo the differentail 
expression? 
 

OPTIONAL: I. Including more data set 
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Key aspects of differential expression analysis 
 

Replicates and power 

In order to accurately ascertain which genes are differentially expressed and by how 
much it is necessary to use replicates. As with all biological experiments doing it 
once is simply not enough. There is no simple way to decide how many replicates to 
do, it is usually a compromise of statistical power and cost. Although we have seen 
that statistically significant differences in gene expression can be ascertained 
without replicates, this is often not the case. By determining how much variability 
there is in the sample preparation and sequencing reactions we can better assess 
whether genes are really expressed and more accurately determine any differences. 
The key to this is performing biological rather than technical replicates. This means, 
for instance, growing up three batches of parasites, treating them all identically, 
extracting RNA from each and sequencing the three samples separately. Technical 
replicates, whereby the same sample is sequenced three times do not account for the 
variability that really exists in biological systems or the experimental error between 
batches of parasites and RNA extractions. 

N.B. More replicates will help improve power for genes that are already detected at 
higher levels, while deeper sequencing will improve power to detect differential 
expression for genes which are expressed at lower levels. 

 

P-values vs. Q-values 

When asking whether a gene is differentially expressed we use statistical tests to 
assign a P-value. If a gene has a P-value of 0.05 we know that there is only a 5% 
chance that it is not really differentially expressed. However, if we are asking this 
question for every gene in the genome (~5,500 genes for Plasmodium parasites), 
then we would expect to see P-values less than 0.05 for many genes even though 
they are not really differentially expressed. Due to this statistical problem we must 
correct the P-values so that we are not tricked into accepting a large number of 
erroneous results. Q-values are P-values which have been corrected for what is 
known as multiple hypothesis testing. Therefore it is a Q-value of less than 0.05 
that we should be looking for when asking whether a gene is differentially 
expressed. 
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What do I do with a gene list? 

Differential expression analysis results is a list of genes which show differences 
between two conditions. It can be daunting trying to determine what the results 
mean. On one hand you may find that that there are no real differences in your 
experiment. Is this due to biological reality or noisy data? On the other hand you 
may find several thousands of genes are differentially expressed. What can you say 
about that? 

Other than looking for genes you expect to be different or unchanged, one of the 
first things to do is look at Gene Ontology (GO) term enrichment. There are many 
different algorithms for this, but you should annotate your genes with functional 
terms from GO using for instance Blast2GO (Conesa et al., 2005) and then use 
perhaps TopGO (Alexa et al., 2005) to determine whether any particular sorts of 
genes occur more than expected in your differentially expressed genes. 
 

Alternative software to cuffdiff 

There are a variety of programs for detecting differential expression in RNA-Seq 
data: DESeq (Anders & Huber, 2010), EdgeR (Robinson et al., 2010) and BaySeq 
(Hardcastle & Kelly, 2010) are good examples. 
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