Analysis of RNA-Seq

RNA-Seq: Analysis of the transcriptional
landscape 1n a knock out parasite

A. Introduction

In this module we are going to learn about RNA sequencing (“RNA-Seq” - Mortazavi et al.,
2008; Wang et al, 2009) using Illumina sequencing. The application today will be to compare
a WT type Plasmodium berghei RNA-seq dataset with an RNA-seq data set from a mutant
that had a transcription factor (Api AP2) gene knocked out. The goal of the exercise would be
to determine the function of the gene that was knocked out.

During the exercise you will be introduced to the genome viewer “Artemis” and how to
visualize RNA-Seq reads. Next we are going to compare the expression of the genes with the
aim to find differentially expressed genes. Those will be analysed in the PlasmoDB database.
Last we should discuss the role of biological replicates and which tools could be used to
perform differential expression.

RNA-Seq

Transcriptome sequencing is a very useful addition to genome sequencing projects as it helps
to identify genes and thus aids in genome annotation. In this sense it is similar to earlier
transcriptome sequencing using capillary methods (EST sequencing), but provides much
higher coverage of the transcriptome.

Sequence reads from RNA sequencing can be treated in much the same way as those from
DNA sequencing. The exception is the occurrence of splicing, where intronic sequences are
missing from RNA-seq reads. In this module we will use a similar approach used to map
DNA sequencing data to map RNA sequencing data from Plasmodium berghei.

Due to the vast number of reads produced by next-gen sequencing technology, the
transcriptome is also sequenced very deeply. Each gene is sequenced in proportion to its
abundance and the large number of reads means that even low abundance genes are sequenced
to some extent. This means that expression levels of genes can be compared. One can
visualize the “pile up” of reads in a particular region by looking at coverage plots. The higher
the plot, the more expressed a transcript is. For the purpose of the following exercises,
remember that the sequences originate from transcriptome sample (mRNA) and therefore only
contains information about the exons and UTRs.
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In a more visual way ... imagine this transcript is present in the sample

5 UTR 3 UTR

Reads belonging to the transcript are produced by the sequencing process.

When the reads come out as raw data, there is no information about where they belong on the
reference genome. What is more, all reads from several different transcripts come out together. An
alignment algorithm finds where they belong in the reference genome based on similarity
matches.
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ﬁ first RNA-Seq study in Plasmodium parasites focused on P. falciparum (Otto et. al. 2m
The aim was to show the viability of the RNA-Seq protocol in comparison to microarrays and
also to improve the genome annotation and find alternative splicing. Recently a group used RNA-
seq to identify differentially expressed genes, showing that parasites from vector transmitted

infections are less virulence than serially blood passaged in the laboratory (Spence et al. 2013).
There will be a many more to come...

Exercise
All data you will need for this exercise are available online. So you could repeat (or finish) the
exercises later at home.

In the appendix are all the commands used that you would need to replicate the analysis. This

includes mapping and the differential expression. Alternatively you could also try webpages like
http://pathogenportal.org.
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A. Mapping with Tophat

/First we will map RNA sequence reads from the WT parasite of Plasmodium berghei to the\
chromosome 14 sequence of the same strain.

In the directory of the module you can find the Plasmodium chromosome 14 reference
sequence (bergl4.fasta) as well as the two files of RNA sequence reads of the WT:
Pb WTl.bam 1.fastqg.gz and Pb WT1l.bam 2.fastqg.gz.

- /

To work with the command line of Linux you will first need to open a terminal. Then go to
the Module’ s directory:

$ cd ~/Module 6 RNA-Seq

For the mapping, first an index of the reference (here chromosome 14 of P. berghei) must
be constructed with bowtie-build. On the command line, you should type:

$ bowtie2-build bergl4.fa bergl4.fa

This will generate the index need for bowtie. Most of the output you can ignore. Tophat
first maps the un-spliced reads with bowtie, mapping the reads falling within exon
boundaries. The non-mapping reads will be than split by Tophat. To start the command you
should type:

$ 1ln -s bergld4.fa bergl4d.fa.fa

$ tophat2 -o WT1 -I 2000 -r 150 -g 1 bergléd.fa

Pb WT1l.bam.Chrl4 1.fastqg.gz Pb WTl.bam.Chrl4 2.fastq.gz

The mapping result will be written into the directory WT1/. If you have doubts about
parameters of the program, type:

$ tophat2
What would the —g parameter do? Does it seem an important option?
Next you need to index the bam file

$ samtools index WT1l/accepted hits.bam
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B. Viewing the mapped reads in Artemis

We will now examine the read mapping in Artemis using the BAM view feature.

Be sure to be in the same directory as before. Open Artemis and load bergl4.embl. This
contains exactly the same sequence as bergl4 .embl, but also has genome annotation so
we can see the gene models.

$ art bergld4.embl & ##t to open Artemis

First go to the position 2259160 (Goto -> navigator).
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Congratulations, you have opened a Malaria chromosome with RNA-Seq mapping on it!
The horizontal blue/green lines are sequencing reads, mapped against the reference. Let’s
have a look how the reads are “mapped” against the reference.
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C. Interpreting the mapping

Zoom out until you have the same view as below:

hm_u_m_ﬂ.lﬂnﬂ.ﬂ
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You can move the reads up
and down, on the right
scroll bar.

| PBANKA 148080 PBANKR
b256800 |2257600 |2258400 |2259200 |2260000 |2260800 |2261600 228400

N\

You can increase the size
of the bam view, by
dragging down with the
mouse.

Configure Line{s)...
Options... <

To better see the splice sites, do right click.
Select “Options...”:

Set the window size to 1 (before unselect

.00 \ Coverage Options

“Automatic...”)

E] Zoon level before switching
To coverage view (in bases): 26000
Window size:|l]
[]Automatically set window size

[] Show Combined Plot

Please discuss following aspects with your neighbour:

coverage very even over the genes?

The coverage represents the amount of reads mapped over each position. Why are reads
mapped where no exons are? Can you distinguish transcription starts and stops of genes?

Notice that different genes have different depths of coverage. What does this means?

Scroll through the genome and look at half a dozen genes, also some longer ones.
Why do some genes have less coverage? Have some genes no reads mapped to them? Is the

6-
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D. Uniqueness and GC content

Ve
Go to the position 8000 (Goto -> navigator).
.
@ Artemis File Entries Select View Goto Edit Create Run Graplg_Display AERS,
e O O Artemis Entry Edit: berg14 /1 . Enable the GC \
JEntry: ™ berg1a | T comm— —
Nothing selected Content, Graph -> GC
GC Content (%) Window size: 120 Content

2. Change the window

Cize /
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4. You can filter reads by

800 Filter Reads

mapplng quallty and lf 5. nght Cllck, By Mappying Quality (mapq) cut-off:
they are mapped as proper than Filter —_
mate paII‘S. Reads 00 221::!: ;ﬁgwcziu’;\:;w or hide only the reads with

the flag set.

& Read Paired
4 Proper Pair
HIDE | = Read Unmapped
KL AN - 6. Set the mapping [5) wate unmappea
BAM files > : 2
N > quality to 10 and show 73] Read on negative strand
Ana yse proper pairs What s Mate on Negative Strand
. 9 4 First of Pair
views > \_happens? ) C =
Colour By S = Second of Pair
sh » 4 Not Primary Alignment
ow
G n > %! Read Fails Vendor Quality Check
ra
P 4 puplicate Read
v Asynchronous ~ .

Close

BamView Height I

S T Variation in coverage can have many reasons, one is GC content. Also
Filter Reads important, reads can be placed more than once, when they are mapped
List Reads ... repetitively. More conservative mapping is to just look at proper pairs,
and ignore reads with a mapping quality score below 10.

Clone window

7-
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E. Including the mutant data set

Next we want to include the mutant (knock out) data set.

The reads of the KO parasite are in directory bam.

Entry Edit: bergl14

select add BAM

l

™ O BAM / VCF View :: Select Files
BAM / VCF file:

(Right click here,
\

( select... )
~—

Ve N

Add More

1O OO OO ORE R 0RO O

€ ox )
Se—

UL T R T y

I DT I
PbGO1-2389g64 PbGB1-2 PbGA1-:
400 |s87200 |588000 |583300 |589600 |590400 Include the file
Pb MUTI1.bam.Chrl4.bam from the

bams directory.
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In the BAM view of the reads, it might be difficult to distinguish the differences between
the two different BAM files (data sets). But in the coverage plot, one can see the
differences in coverage by the color. You can color the read by the coverage plot (right
click BAMview -> color by -> Coverage plot colors.

First have a look at the knock out gene (PBANKA 143750). Is it really knocked out?
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It seems quite convincing that this gene is not expressed at all in the mutant (blue coverage
plot). So the knock out seem to have worked.

I e OO0 Artemis Entry Edit: bergl4
Entry: lz] bergl4 v Commit
One selected base on reverse strand: 1689888 = complement (1369685)

bergl4 v Q] Hide Read Height: == F————————————m Close

T R T T T T T
A0 00 0RO 00 OO0 0O OO AR O 00O OO 00O 100 R 10
[T B

PEANKA_143750. 1: exon{1}
[ [ [ I 2
4piAP2 PbGB1-2464d07 PbGO1-2373g11 -2432f03

1500 |1365600 |1366400 |1367200 |1365000 |_1368|80 |1369608 |1370400 |1371200 [1372000 |13

Skim through the genome and compare the expression (coverage plots) between the two
conditions. Again discuss the following questions with your neighbour or a tutor:

Which genes have extreme different coverage? Find a few and write the gene id numbers
down.

Is it enough to look at raw coverage, or would you need some kind of normalization?
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F. Normalization - RPKM

One possibility of normalizing the data is to generate the RPKM for each gene. RPKM
stands for reads per kilobase per million mapped reads. It is a measure of how many reads
map to a gene, normalized by the gene length and by the amount of mapped reads in the

run.

~
1. Select all genes by:
Click on Select -> All
CDS Features )

2. Right click on the BAM
view -> Analysis ->
RPKM values of selected
features. ..

J

[-NeNs] RPKM Options

@ Include all overlapping reads
@ Introns included :—

3. Unselect “Intron

‘ Name Options >>

| 0K | Cancel

_| Use reads mapped to all reference sequences

© O O Calculating

Total number of mapped reads

i 495

@er”.

é The upcoming window will have RPKM values for each gene,\
for both the WT and the mutant. This will be split by strand of the
DNA and a total score for both strands of DNA.

Save the file as Pb. RPKM.csv. This one you could load into
LibreOffice (Excel), but here we are going to use a Linux “one-

)

" RPKM

@M files!

Lincluded”

{ Wait until the box sayh

it is done.

Maybe take a break to do
some stretching for your
back... at home this will
take longer. It is faster to
use local copies of the

8 O O
#BAM: /Users/tdo/work/Plasmodium/Rodents/Pberg/Reference/bam/Pb_WT1.bam.Chrild4.bam Mapped Reads/million: 1.712122
#BAM: /Users/tdo/work/Plasmodium/Rodents/Pberg/Reference/bam/Pb_MUT1.bam.Chri4.bam Mapped Reads/million: 1.477062

Pb_WT1.bam.Chrl4.bam Pb_MUT1.bam.Chrl4.bam

Sense  Antisense Total Sense  Antisense Total
PBANKA_144140.1:exon{1,2} 208.649 199.098 407.747 80.902 76.644 157.545
PBANKA_142060.1:exon{1} 2271.909 2009.705 4281.614 4677.259 3665.370 8342.629
PBANKA_143750.1:exon{1} 61.153 60.487 121.640 1.929 1.543 3.472
PBANKA_143150.1:exon{1} 149.262 155.211 304.474 3.761 362.331 366.092
PBANKA_143240.1:exon{1} 89.168 85.274 174.442 5.642 5.190 10.832
PBANKA_143330.1:exon{1} 446.183 513.392 959.575 616.706 756.432 1373.139
PBANKA_142420.1:exon{1,2,3,4,5,6} 660.829 503.195 1164.024 147.267 1275.292 1422.5
PBANKA_144420.1:exon{1} 304.772 303.862 608.634 38.227 36.118 74.346
PBANKA_144600.1:exon{1} 40.339 39.702 80.042 5.414 4.430 9.844
PBANKA_142580.1:exon{1} 76.879 74.987 151.865 199.358 90.110 289.468
PBANKA_140200.1:exon{1,2} 156.536 154.231 310.767 170.090 173.163 343.253
PBANKA_142070.1:exon{1} 292.193 328.363 620.555 129.789 42.656 172.445
PBANKA_143760.1:exon{1} 1445.969 1434.393 2880.362 3039.879 3199.680 6239.560
PBANKA_141790.1:exon{1,2,3,4,5,6,7,8,9,10,11,12} 1050.181 837.926 1888.106 317.186 968.916
PBANKA_142020.1:exon{1,2} 141.859 101.167 243.026 35.962 167.561 203.523
PBANKA_145730.1:exon{1,2,3} 108.346 109.176 217.522 46.674 48.840 95.514
PBANKA_140100.1:exon{1,2,3,4} 227.114 229.285 456.399 44,701 46.957 91.658
PBANKA_143160.1:exon{1} 113.597 110.970 224.567 36.153 256.118 292.272
PBANKA_143250.1:exon{1} 843.507 899.681 1743.188 2787.313 3038.613 5825.926
PBANKA_143340.1:exon{1} 591.281 415.820 1007.101 1289.959 752.244 2042.203
PBANKA_143430.1:exon{1} 38.196 37.455 75.651 4.728 7.737 12.466
PBANKA_144520.1:exon{1} 49.680 43.414 93.093 130.735 128.141 258.876
PBANKA_144100.1:exon{1} 24,723 23.177 47.900 4.478 3.582 8.060

| Close | Save

-10-
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Now we would like to know which genes have the biggest difference in terms of expression
between them. One way is to generate the ratio of the RPKM of WT and KO and look at the

most extreme values. This can be done very easily on the command line:

$ awk ‘{print $1,$4,$7,($4/($7+0.001)}’ Pb RPKM.csv | sort -rnk

4 | head -n 20

The awk commands can access columns in a file (like Excel) and do mathematical operations in
this case the ratio. The output is piped into the sort program, that sort numeric reverse and

column 4 (k). And we are just interested in the top 20 lines (head -n 20).

What happened if you try tail instead of head?

PBANKA:146580 8.923 0.000 8923
PBANKA_146550 8.721 0.000 8721
PBANKA_146130 2590.934 11.878 218.11

If your values are different - maybe you

PBANKA 143150 329. 365 3.563 92. 4144 filtered the reads different]y.

PBANKA_145110 1346.027 17.551 76.688

PBANKA_142150 2189.604 37.739 58.0181 Open at least the two marked genes in

PBANKA_ 145480 351.872 6.454 54.5115 PlasmoDB (http://plasmodb.org) and

enter the first (yellow) gene id.

868.304 18.727 46. 3639

(l. Type the

e
Gene ID: PBANKA_143660 [

About PlasmoDB | Help | Login | Register | C

gene IDs in
here.

PBANKA_143660
inner membrane complex protein 1h (IMC1h) — (2 Read the gene page
Previous ID(s): PB000314.00.0 Does lt tell you about
Add the first user comment \,4" Add to Basket Add to Favorites .
View updated annotation at GeneDB the function of the
Updated product name(s) from GeneDB: inner membrane complex protein 1h dOWIl regulated gene?

)TE: The and of this are currently subjects of research and improvement. If you wish to publish whole genome or large-s
rase contact the primary investigator, or use the version in the F DB version 6.5 folder.

rerview
berghei ANKA protein coding gene on berg14 from 1,329,345 to 1,330,883 (Chromosome: 14)

enomic Context Hide

View in Genome Browser

(use right click or ctri-click to open in a new window)
1.39M 1.41

Pcha genes
— TS NS —_— E— —

Pf3D7 contig

Pf3D7 genes
—

3. The genome of P,

falciparum 3D7 has a far
richer annotation, so let’s
look at the orthologue.

PfIT contig / | ]
260K 2701

Gene: PF3D7_1221400
Species: Plasmodium falciparum 3D7

Gene Type: Protein Coding

Description: inner membrane complex protein 1h, putatiy;
Location: ~ Pf3D7_12_v3: 857097 - 858671
Basket: Add
Links: GBrowse | Gene Page

1.46M 1.47M

1500k

1.44n

-11-
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Scroll down until you come to the
transcriptome data for expression
in the sexual stages .

Transcriptomes of 7 sexual and asexual life stages Hide [Data Set{

o Uniquely Mapped O Non-Uniquely Mapped
Data Table Show

RPKM - PF3D7_1221400

150 - illumina-based sequencing of Plalclpamm 3D7 mRNA fom two gamatocyts stages (1 and V), ookinete, and four ime pointsof eytrocytc
stages and schizont
§ 100 Using synchvonizod Plasmoclum faliparum 307 parasites culured for one ful oyco, samples wro harvestod at 8, 19, 30, and 42 post
£ infection to ring, early fate d schizont stages, respectively. Gametocytes were produced fror
0 4 asexual cultures Rarvested at day 8 (stage I gametocyies) and Gay 15 (stage V gametocytos). Gokinete were narvested from 30 mosquito
midguts 24 h after a P falciparum infected blood meal.
— Seven libraries from ring, early and late . schizont, I, V, and ookinete, were sequenced using
Illumina methods.

Ring |

Schizont
Ookinete —{

x-axis
Pfalciparum seven life cycle stages cycle

Early Trophozoite o
Late Trophozoite —|
Gametocyte Il
Gametocyte V

-axis
Yranscript levels of reads per kiobase of exon model per millon mapped reads (RPKM). Stacked bars indicate unique and non-uniquely
mapped sequences. Non-Unique sequences are plotted to indicate the maximum expression potential of this gene.

Choose Gene to Display Graphs for
PF3D7_1221400 @

Choose Graph(s) to Display
mkm @ percentile

Doing the same with the following gene (PBANKA_144930), that has
the annotation “CPW-WPC family protein, putative®, returns a similar
pattern.

Transcriptomes of 7 sexual and asexual life stages Hide [Data Sets]

@ Uniguely Mapped O Non-Uniquely Mapped
el Hoppe " Hepee Data Table Show

RPKM - PF3D7_1234700

350 ipti )
300 Il\umlna-bjdsed senuencmg of Pfalctparum 307 mRNAerm two gampmcyte slages (H and V), ookinete, and four time points of
fing, e
250
Z 200 4 Using synchronized Plasmodium falciparum 3D7 parasites cultured for one full cycle, samples were harvested at 8, 19, 30, and 42 h
E 50 post infection corresponding to ring, early trophozoite, late trophozoite, and schizont stages, respectively. Gametocytes were
produced from asexual cultures harvested at day 8 (stage Il gametocytes) and day 15 (stage V gametocytes). Ookinete were
100 harvested from 30 mosquito midguts 24 h after a P. falciparum infected blood meal.
50
0 Seve: ibraries from ring, early and late , schizont, I, V, and ookinete, were
sequenceﬂ using IIIumma methods.

Ring

x-axis
Ptalciparum seven life cycle stages cycle

Early Trophozoite
Late Trophozoite |
Schizont
Gametocyte Il |

Gametocyte V —:I
Ookinete —

-axis
Transcript levels of reads per kilobase of exon mode! per millon mapped reads (RPKM). Stacked bars indicate unique and
ly mapped Non-Unique are plotted to indicate the maximum expression potential of this gene.

Choose Gene to Display Graphs for
PF3D7_1234700 (&

When are those genes mostly expressed? Could you formulate a hypothesis what kind of
genes the knocked out gene might control?

What genes would you expected to be up regulated in the mutant?

Conversely, how much can you trust those results? Could the variation be down to noise,
or natural variation?

What extra data would be useful to help us to be more confident about our conclusions?
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Differential Expression

Introduction

Understanding the genome is not simply about understanding which genes are
there. Understanding when each gene is used helps us to find out how
organisms develop and which genes are used in response to particular external
stimuli. The first layer in understanding how the genome is used is the
transcriptome. This is also the most accessible because like the genome the
transcriptome is made of nucleic acids and can be sequenced relatively easily.
Arguably the proteome is of greater relevance to understanding cellular biology
however it is chemically heterogeneous making it much more difficult to assay.

Over the past decade or two microarray technology has been extensively applied
to addressing the question of which genes are expressed when. Despite its
success this technology is limited in that it requires prior knowledge of the gene
sequences for an organism and has a limited dynamic range in detecting the
level of expression, e.g. how many copies of a transcript are made. RNA
sequencing technology using, for instance lllumina HiSeq machines, can
sequence essentially all the genes which are transcribed and the results have a
more linear relationship to the real number of transcripts generated.

The aim of differential expression analysis is to determine which genes are more
or less expressed in different situations. We could ask, for instance, whether a
bacterium uses its genome differently when exposed to stress, such as excess
heat or a drug. Alternatively we could ask what genes make human livers
different from human kidneys.

In this module we will try to gain more understanding of the genes differentially
expressed between the wild type and knock out of our experiment. We are going
to use three biological replicates of the WT and three biological replicats of the
mutant to get more statistical power. Those were already mapped with tophat, as
done before.

13-



Analysis of RNA-Seq

G. Finding differentially expressed genes with cuffdiff

/Cuffdif'f is a part of the cufflinks package which will enumerate the number of \
reads mapping to gene models in different RNAseq experiments and calculate
those genes which have significantly different levels of expression.

Cufflinks requires a particular format of GFF file, which Artemis cannot output
and so we introduce a Perl script to convert the EMBL file of chromosome 14
into the appropriate format. The role of Perl script as glue between different

Qrograms, converting one format to another, is very important in bioinformatics. /

Convert the EMBL file into a GTF compatible with cuffdiff.

$ perl ./embl2gff.pl bergld4.embl > bergld.gtf

Then use cuffdiff to determine which genes are differentially expressed:

$ cuffdiff -u -N bergld4.gtf bams/Pb WT1l.bam.Chrl4.bam,bams/
Pb WT2.bam.Chrl4.bam,bams/Pb WT3.bam.Chrl4.bam bams/

Pb MUT1.bam.Chrl4.bam,bams/Pb MUT2.bam.Chrl4.bam,bams/
Pb_MUT3.bam.Chrl4.bam

/Cuffdiff options for more accurate differential expression calculation: \
*-u rescue method
* Where sequence is non-unique, spread the expression signal across
identical regions based on their local expression level
*-N upper-quartile normalisation
» Rather than normalising the fragment counts for each gene by the
total number of fragments sequenced, use the upper-quartile of
fragments mapping to individual loci (more robust calls for less

\ abundant genes) /

Optional:
Run cuffdiff without the above options (-u, -N) and see how the results differ. How do
your conclusions about differential expression of particular genes change?
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Interpreting the results

Cuffdiff produces several files, but the one of interest to us is gene_exp.diff. This
contains the statistics relating to the RNAseq read counts relating to each gene
in the two timepoints. It is sorted by gene id, but it would be more useful to sort
it by the significance of differential expression. Then the most clearly
differentially expressed gene is at the top of the list.

Sort the results file by g-value (corrected p-value)

$ sort -kl13 -g gene exp.diff | more

Infact we can get the most useful result using the following command

$ sort -k13 -g gene exp.diff | cut -£f1,10,13,14 | grep yes

However we lose the headers and can’t see which column is which so we can add in an
extra command:

$ head -1 gene exp.diff | cut -£1,10,13,14; sort -k13 -g
gene exp.diff | cut -£f1,10,13,14 | grep yes

w

How many are upregulated in the KO?

ow many genes are predicted to be differentially expressed?

How many are downregulated?

- )

-15-



Analysis of RNA-Seq

Do you understand each column?

Now let’s compare this list to the one before. What are the differences? Is the list similar to
your first list of differentially expressed genes?

Which results would you trust more (this or the ratio in the Excel table)?

If time permits lookup more genes up in plasmodb...

What other datasets would help in the interpretation of the results?

gene_id

FPKM WT FPKM MUT log2(fold_change) p_value q value

significant Product

PBANKA_141930
PBANKA_143150
PBANKA_143140
PBANKA_142770
PBANKA_143660
PBANKA_144900
PBANKA_141450
PBANKA_146130
PBANKA_142150
PBANKA_145110
PBANKA_142100
PBANKA_144930
PBANKA_146300
PBANKA_145580
PBANKA_145880
PBANKA_143240
PBANKA_144570
PBANKA_146330
PBANKA_143750
PBANKA_146070
PBANKA_145480
PBANKA_140960
PBANKA_140500
PBANKA_140040

750.748

465.96
546.544
142.378
1182.46
515.961
1500.96
3136.98
2050.85
1208.73
380.233
1530.77
1518.42
555.181
859.311
306.389
920.771

5260.9
173.665
454.216
557.369
880.883
291.528
252.885

27.3873
16.4076
20.1401
6.53823
57.9624
25.6247
78.2363
166.499
133.127
81.5596
25.6954

120.38
160.372
46.8166

80.871
25.1039
§7.6543
585.865

15.731
53.3344
73.3843
110.469
36.7778
45.1361

-4.85164 5.00E-05
-4.8401 5.00E-05
-4.7622 5.00E-05

-4.44468 5.00E-05

-4.35053 5.00E-05

-4.33165 5.00E-05

-4.26191 5.00E-05

-4.23579 5.00E-05

-3.97322 5.00E-05

-3.88998 5.00E-05
-3.8873 5.00E-05

-3.66846 5.00E-05

-3.58043 5.00E-05

-3.56787 5.00E-05

-3.40945 5.00E-05

-3.39608 5.00E-05

-3.23705 5.00E-05

-3.14225 5.00E-05

-3.13777 5.00E-05

-3.09024 5.00E-05

-3.02508 5.00E-05

-2.99531 5.00E-05

-2.98673 5.00E-05

-2.69798 5.00E-05

0.000352198 yes
0.000352198 vyes
0.000352198 yes
0.000352198 yes
0.000352198 vyes
0.000352198 yes
0.000352198 yes
0.000352198 yes
0.000352198 vyes
0.000352198 yes
0.000352198 yes
0.000352198 yes
0.000352198 yes
0.000352198 yes
0.000352198 vyes
0.000352198 yes
0.000352198 yes
0.000352198 yes
0.000352198 yes
0.000352198 yes
0.000352198 vyes
0.000352198 vyes
0.000352198 yes
0.000352198 yes

conserved Plasmodium protein, unknown function
conserved Plasmodium protein, unknown function
conserved Plasmodium protein, unknown function
RuvB-like protein 1, putative

inner membrane complex protein 1h

aspartyl protease, putative

protein kinase, putative

conserved Plasmodium protein, unknown function
conserved Plasmodium protein, unknown function
conserved Plasmodium protein, unknown function
calmodulin, putative

CPW-WPC family protein, putative

osmiophilic body protein

GAS8-like protein, putative

kinesin, putative

perforin-like protein 2

conserved Plasmodium protein, unknown function
conserved Plasmodium protein, unknown function
transcription factor with AP2 domain(s),putative
dipeptidyl peptidase 2, putative

RNA binding protein, putative

conserved Plasmodium protein, unknown function
conserved Plasmodium protein, unknown function
fam-b protein
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H. GO enrichment on the command line - OPTIONAL

Maybe some of you have already determined the function of the transcription factor. But this
would have been done manually. A more automated method would be to do a GO enrichment.
Basically, statistics are used to test if a function (or GO term) is enriched in the down or up
regulated genes compared to all of the GO terms associated to the genes that are expressed.

Gene Ontology or GO, is a major bioinformatics initiative to unify the representation of gene
and gene product attributes across all species, see http://en.wikipedia.org/wiki/Gene ontology.
GO terms are represented in directed acyclic graph, so functions can be further specified in a
sub node. The GO enrichment test we will use takes the structure of this hierarchy into
account.

But the association of GO terms to genes depend on the known functions and level of
curation. For example, in P. berghei, less than half of the genes have GO terms associated!

In this exercise we will do a GO enrichment of the differentially expressed genes of the
complete gene set (not just chromosome 14).

Change the directory and have a look at the files:

$ cd ~/Module 6 RNA-Seq/GO
S 1s

The file full.gene exp.diff has the same format as the output of cuffdiff you
produced. But it was generated for all of the genes in the genome, not just for chromosome
14.

The next command will get all the gene ids of genes that are
 differentially expressed (grep yes)

* down regulated in the mutant ($10<0 - log fold change),

* have a FPKM of at least 40 ($8>40 - FPKM of WT),

* are three times more expressed in the WT ($8 > (3*$9)).

To do the filtering, we are using the command awk. The “$” refers to the i-th column in the
text file. As the first row contains the id’s, it is returned with cut —-f 1 and then saved in
a file, using the “>" command. (You could do that in excel, but it might take a bit more
time...)

$ grep yes full.gene exp.diff | awk '$10<0 && $8>40 && $8>(3*
$9)' | cut -f 1 > list.down.txt

$ head list.down.txt

S head Pb.GOterms.txt

The two head commands give you an idea of the format of the two files we are going to use.
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Though the enrichment test is done in R, using the bioconductor class topGO, we are going
to call it directly from the command line. Maybe have a quick look at the code to see how the
enrichment is done.

S cat doGO.R

So next we are going to call the program, looking for the biological process (BP), see http://
en.wikipedia.org/wiki/Gene_ontology.

$ R CMD BATCH "--args list.down.txt Pb.GOterms.txt BP “ doGO.R

This command tells R to run from the command line the program doGO.R. Three

parameters are given:

1. Genes of interest - which you generated

2. GO database

3. The domain search: BP (biological process, e.g. cell cycle), MF (molecular function, e.g.
kinase) or CC (cellular component, e.g. nucleus, cytoplasm)

The result is in file Result.txt
$ cat Result.txt
Google the first hit, “microtubule-based movement” including “malaria” as further search

term. What paper pops out first? Does this help to understand which genes the knocked out
transcription factor might regulate?

Can you repeat the analysis with with the other GO domains (CC and MF)?

Would you be able to repeat the analysis with up regulated genes in the mutant? Which
processes are enriched. Are the results expected?

Would it make sense to change the criteria to generate the list of up and down regulated
genes? If so, how and why?

4 Do not panic...

... if you don’t understand everything! This is a very advanced methodology. It
involved bioinformatics, statistics and deep knowledge into the parasite. At the
same time, the results depend on many parameters like, experiment setup, quality
of your RNA-Seq data, parameter used in the different steps and the quality of the
GO database.

Important: In the end you got several enriched functions as result of your
experiment that characterize the function of the knocked out gene! Well done!

- J
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OPTIONAL: 1. Including more data set

If time permits, include the further 4 data sets in Artemis (2 WT and 2 mutants, all on
webpage), which we used in the differential expression. Skim through the genome and think

about following questions:

How well do they correlate? Do the differential expression results make sense?

Is the Api AP2 knocked out in all mutant data sets? Would you need to redo the differentail

expression?

Add BAM ...

Analyse > v

Views > Vv

Colour By >

Show v

Graph > Vv
| V' Asynchronous v

g o e oo w—

—

Group BAMs ...

M Pb_WT1.bam.Chri4.bam
M Pb_MUT1.bam.Chrl4.bam
M Pb_MUT2.bam.Chr14.bam
M Pb_MUT3.bam.Chri4.bam
M Pb_WT2.bam.Chril4.bam
M Pb_WT3.bam.Chrl4.bam
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4 N

Key aspects of differential expression analysis

Replicates and power

In order to accurately ascertain which genes are differentially expressed and by how
much it is necessary to use replicates. As with all biological experiments doing it
once is simply not enough. There is no simple way to decide how many replicates to
do, it is usually a compromise of statistical power and cost. Although we have seen
that statistically significant differences in gene expression can be ascertained
without replicates, this is often not the case. By determining how much variability
there is in the sample preparation and sequencing reactions we can better assess
whether genes are really expressed and more accurately determine any differences.
The key to this is performing biological rather than technical replicates. This means,
for instance, growing up three batches of parasites, treating them all identically,
extracting RNA from each and sequencing the three samples separately. Technical
replicates, whereby the same sample is sequenced three times do not account for the
variability that really exists in biological systems or the experimental error between
batches of parasites and RNA extractions.

N.B. More replicates will help improve power for genes that are already detected at
higher levels, while deeper sequencing will improve power to detect differential
expression for genes which are expressed at lower levels.

P-values vs. Q-values

When asking whether a gene is differentially expressed we use statistical tests to
assign a P-value. If a gene has a P-value of 0.05 we know that there is only a 5%
chance that it is not really differentially expressed. However, if we are asking this
question for every gene in the genome (~5,500 genes for Plasmodium parasites),
then we would expect to see P-values less than 0.05 for many genes even though
they are not really differentially expressed. Due to this statistical problem we must
correct the P-values so that we are not tricked into accepting a large number of
erroneous results. Q-values are P-values which have been corrected for what is
known as multiple hypothesis testing. Therefore it is a Q-value of less than 0.05
that we should be looking for when asking whether a gene is differentially
expressed.

\ /
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~

What do | do with a gene list?

Differential expression analysis results is a list of genes which show differences
between two conditions. It can be daunting trying to determine what the results
mean. On one hand you may find that that there are no real differences in your
experiment. Is this due to biological reality or noisy data? On the other hand you
may find several thousands of genes are differentially expressed. What can you say
about that?

Other than looking for genes you expect to be different or unchanged, one of the
first things to do is look at Gene Ontology (GO) term enrichment. There are many
different algorithms for this, but you should annotate your genes with functional
terms from GO using for instance Blast2GO (Conesa et al., 2005) and then use
perhaps TopGO (Alexa et al., 2005) to determine whether any particular sorts of
genes occur more than expected in your differentially expressed genes.

Alternative software to cuffdiff

There are a variety of programs for detecting differential expression in RNA-Seq
data: DESeq (Anders & Huber, 2010), EdgeR (Robinson et al., 2010) and BaySeq
(Hardcastle & Kelly, 2010) are good examples.
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