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Module 6: Genome Assembly and Analysis 

Introduction 
 
One of the greatest challenges of sequencing a genome is determining how to arrange 
sequencing reads into chromosomes and plasmids. This process of determining how the reads fit 
together by looking for overlaps between them is called genome assembly. In this module we 
concentrate on genome assembly using Illumina sequence platform data, although the 
techniques you will learn are applicable to other technologies (e.g. 454 GS FLX and ABI 
SOLiD). Current Illumina machines can produce around 600 Gigabases of sequence data in ten 
days. This is the equivalent of around 300 human genomes or 300,000 bacterial genomes!  
 
The data from the Illumina machine comes as relatively short stretches (35-150 base pairs) of 
DNA – around 6 billion of them. These individual sequences are called sequencing reads. 
There are a range of assembly programs that have been specifically designed to assemble 
genomes from next generation sequence (NGS) data. Genome assembly using sequence reads of 
around 100bp is complicated due to the high frequency of repeats longer than the sequence read 
length in genomes, for example: IS elements, rRNA operons; and the massive amount of data 
the programs have to handle. In addition to finding overlaps in the sequence, the assembly 
programs can also use information from the predicted insert size where paried reads are used, to 
link and position reads in an assembly. 
 
Where a genome is piecing together without any reference sequence to compare it to, or scaffold 
it against, is is termed a de novo assembly. Due to the previously mentioned challenges of 
assembly, de novo assembly will not produce complete genomes, but will be fragmented into 
multiple contiguous sequences (contigs), the order of which is arbitrary, and does not 
necessarily bear not any relation to their real order in the genome.  
 
Where a closely related reference sequence is available, to is possible to improve an assembly 
by ordering the contigs in comparison to the reference, and also transferring annotation. In this 
case, nearly all of the genome will be present, i.e. genes and features, but there will be some 
regions that will contains gaps, or contigs that will not be accurately placed, because they are 
not present in the reference used. Although technically incomplete, ordered genome assemblies 
can provide valuable insights into the genetics and biology of an organism. 
 
 
 
The aims of this exercise are: 
 i) To show how Next Generation Sequencing data can be assembled in to a draft genome. 
ii) Order the draft genome against a reference sequence, and transfer annotation from the 
reference to the draft genome 
iii) To show how, using comparative genomics, regions of difference that distinguish genomes 
can identified and analysed. 
  
 

Module 6 
Genome Assembly and Analysis  
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Background 
Staphylococcus aureus is a bacterial pathogen that has gained notoriety in recent years due to 
its ability to evolve new virulent and drug resistant variants. In particular, the spread of S. 
aureus in hospitals has placed an increased burden on health care systems; S. aureus is the 
most common cause of hospital-acquired infection. Accompanying the spread of this 
bacterium has been an increase in the resistance to antibiotics. In parts of Europe, the US and 
Japan, 40-60% of all hospital S. aureus are now resistant to the β-lactam antibiotic 
methicillin. Methicillin resistant S. aureus (MRSA) strains were first described in the 1960s 
and successful clones of MRSAs have spread round the globe. 
 
The example 
In this module we will assemble the genome of a strain of S. aureus, 16B, that was sequenced 
as part of an MRSA outbreak investigation, (Köser et al., 2012, N Engl J Med. 366:2267-75). 
Using multi locus sequence typing (MLST) the isolate was identified as belonging to 
sequence type 1 (ST1), a lineage of S. aureus that is more frequently associated with 
infections in the community rather than in hospitals, and tends to be less resistant to 
antibiotics than the S. aureus commonly associated with hospital-acquired infection.  

The exercises 
We are going to generate a 16B assembly, and  
compare it to the chromosomes of 2 other ST1 
isolates: MSSA476, which was isolated in the 
UK (Holden et al., 2004, PNAS. 101:9786-91), 
and MW2, which was isolated in the USA (Baba 
et al., 2002, Lancet 359:1819-27). Both 
MSSA476 and MW2 have been completely 
sequenced, annotated and deposited in EMBL. 
The MSSA476 genome consists of a 2.8 Mb 
chromosome (left) and a 20.6 kb plasmid, pSAS. 
We will use the MSSA476 chromosome to order 
the 16B assembly, and also transfer annotation 
to it. In order to check the assembly for 
misassembles and copy number variants we will 
map the 16B sequence reads back to the ordered 
16B assembly.  

The research question 
The three ST1 isolates are closely related but exhibit different antibiotic resistance profiles: 
16B is resistant to penicillin, fusidic acid, methicillin and erythromycin; MSSA476 is 
resistant to penicillin and fusidic acid; and MW2 is resistant to penicillin and methicillin.  
 
Using a comparative genomic approach we will identify regions of difference, and 
investigate the genetic basis of the antibiotic resistance in 16B, and genetic mechanisms that 
driving the evolution of resistance. 
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To begin the exercise we need to open up a terminal window just like the one you used for the 
UNIX Module. We will then need to move into the ‘Module_6_Genome_Assembly_Analysis’ 
directory using the UNIX command cd  

 A: Generating a de novo assembly 

To generate the de novo assembly you are going to use a assembly package called Velvet 
(Zurbino et al., 2008, Genome Res. 8:821-9); other assembly programs are available, e.g. 
SOAP (soap.genomics.org.cn) and ABySS (Simpson et al., 2009, ABySS: a parallel 
assembler for short read sequence data. Genome Research, 19:1117-2 ). Velvet takes in 
short read sequences, removes errors then produces high quality unique contigs. It then 
uses paired-end read and long read information, when available, to retrieve the repeated 
areas between contigs.  
 
The algorithm at the heart of Velvet is based on de Bruijn graphs (a mathematical 
structure used to model relationships between objects). When doing assembly with short 
reads the first step is to find all the possible overlaps between all the reads. One efficient 
way is to look for k-mers (words/nucleotide patterns of a specific length) in each read. If 
two reads contain the same k-mer they might also overlap. Each read contains several k-
mers, and k-mers from the same read can be connected in a graph. Velvet represents 
overlaps between k-mers in a de Bruijn graph. By simplifying the graph Velvet can try to 
generate connected sequences, where k-mers in the graph are connected and thereby it is 
able to piece together sequences and generate contigs.  
 
In this module we are not going to explore the options available in Velvet, but are going 
to run it with basic parameters. If you would like to know more about theory behind 
Velvet, or the various options, see the Velvet web site (www.ebi.ac.uk/~zerbino/velvet/). 
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The Velvet package contains two programs: velveth and velvetg, which are run in 
succession to generate the assembly. velveth helps you construct the dataset for the 
following program, velvetg, and indicates to the system what each sequence file represents. 
velvetg is the core of Velvet where the de Bruijn graph is built then manipulated, and which 
ultimately produces the assembly that we are interested in. 

To perform the assembly you are going to run a series of commands that you will type on 
the command line. Make sure that you type the commands carefully as UNIX is case 
sensitive.  
 
First of all, do a quick check to see if you are in the correct directory: when you type the 
UNIX command ls you should see the following files in the resulting list. 

The first program of the velvet package we are going to use is velveth. 
 
At the prompt type and return the command line: 
 
velveth S_aureus_16B.49 49 -shortPaired –fastq –separate 
16B_1.fastq 16B_2.fastq  

S_aureus_16B.49 - is the directory into which results are written 
!
49 - is the the k-mer value we are using (i.e. 49 nucleotides). Other k-mers can be used 
and can alter the performance of assembly, however for this module we will run it with a 
value of 49 which will perform adequately. 
  
-shortPaired –fastq –separate - tells the program that the input sequence 
data is forward and reverse short paired reads in fastq format in separate files 
 
16B_1.fastq 16B_2.fastq - forward and reverse fastq files 

The forward and reverse reads for the isolate 16B (16B_1.fastq and 16B_2.fastq) were 
generated using an Illumina HiSeq machine and are 75bp paired-end reads.  
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The next program of the velvet package we are going to use is velvetg. 
 
At the prompt type the following and press enter: 
 
velvetg S_aureus_16B.49 -exp_cov auto -min_contig_lgth 200 !
-cov_cutoff auto -ins_length 350 !

S_aureus_16B.49 - is the directory in which velvetg can find the velveth output files 
which are necessary to run velvetg: Sequences and Roadmaps files  
!
-exp_cov auto -  allow the system to infer the expected coverage of unique regions 
 
-min_contig_lgth  200  -  minimum contig length of 200 bp exported to the 
output file 
 
-cov_cutoff auto - allow the system to infer removal of low coverage nodes 
 
-ins_length 350 - expected distance between two paired-end reads in the short-
read dataset: 350 bp 
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There is a lot of output printed to the screen, but the most important is in the last line: 
 
Final graph has 250 nodes and n50 of 225963, max 613961, total 2777676, using 
3847086/4000000 reads. (Result might differ depending on the velvet version used). 
 
This line first gives you a quick idea of the result. 250 nodes (contigs) are in the final graph. 
An n50 of 225963 means that 50% of the assembly is in contigs of at least 225963 bases. This 
n50 parameter is most commonly used as an indicator of assembly quality. The higher, the 
better! max is the length of the longest contig. total is the size of the assembly, here it is 2.78 
Mb. The last two numbers tell us how many reads were used from the 4 million pairs. 
 
A typical S. aureus genome is 2.8 Mb in size, therefore the de novo assembly that we have 
produced should contain over 99% of this isolate’s genome. 

All of the results are written into the directory you specified, e.g. S_aureus_16B.49.  
 
Use the UNIX cd command to move into this directory, and the ls command to look at the 
contents. 

The final contigs are in contigs.fa. This files contains the contigs in multifasta format, i.e. the 
sequence of each contig is written as a separate fasta sequence, with all the contigs fasta 
sequences concatenated together. The stats.txt file holds some information about each contig, 
its length, the coverage, etc.. The other files contain information for the assembler. 
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We are now going to look at the assembly in Artemis. 
 
Double click on the Artemis Icon or type ‘art &’ on the command line of your terminal  
window and press return. Once you see the initial Artemis window, open the contigs.fa file  
via File, Open. 
 
Once open, zoom out so you can see the whole sequence in your window. The individual  
contigs in the multifasta file are alternately coloured orange and brown and displayed on 
The forward DNA line in the sequence view window. To look at a summary of the  
contigs.fa, click View, then Overview. You should see that there are 35 contigs in total (35 
 Number of features in active entry). 

From the Graph menu, open GC Deviation (G-C)/(G+C) by clicking on the button next to it. 
Rescale the plot for to a more appropriate window size for this zoomed out view: Right click 
on the graph, and click Maximum Window Size , and select 20000. Then move the graph 
slider of the right hand side of the screen down to the bottom of the bar. 
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From the graph you can see that plot generally varies about a upper level and a lower level 
across the assembly, with shifts occurring at contig boundaries. As you will have seen in the 
previous Module looking at the GC Deviation plot of the Salmonella Typhi sequence, there 
is a GC skew across the chromosome that is caused by a mutation basis that means that the 
leading strand of the replication fork is G and T rich, as opposed to the lagging strand, 
which is C and A rich. If you look at the circular diagram on page 2 of this Module, you can 
see the GC skew for the MSSA476 chromosome (the purple and olive inner plot on the 
figure). The origin and the terminus of replications are approximately half way round the 
chromosome (the origin is at the top, and the terminus is at the bottom), therefore there is a 
strong signal of GC deviation between these sites, i.e. as you move round the chromosome 
the GC Deviation plot will be either be at a high or low level, and after the origin or 
terminus of replication, the plot will shift to converse level.  
 
Looking at the GC Deviation plot in Artemis of the 16B assembly you can see there are 
multiple shifts from high to low indicating that the contigs in the assembly as displayed, are 
not in the correct order and orientation relative to the true origin and terminus of replication 
of the 16B chromosome. 
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At the Wellcome Trust Sanger Institute we have developed a tool called ABACAS 
(Assefa et al., 2009) to order contigs against a reference sequence. Any spaces between 
the contigs (gaps) can be filled in with “N” characters to ‘pad’ the sequence with 
equivalent sized regions to those on the reference that may be missing in the assembly. 
The result is called a pseudo-molecule. This can be loaded into ACT along with the 
reference sequence and then be analyzed. 
 
The sequence we are going to use as a reference belongs to an ST1 MSSA strain, 
MSSA476 (EMBL accession number BX571857). Before we begin, make sure you are 
back in the Module 6 directory. To check where you are use the UNIX pwd command. If 
you were in in the S_aureus.49 directory, use the cd .. command to move into the 
directory above. 
 
At the prompt type and return the command line: 
 
abacas.1.3.1.pl -r MSSA476.dna –q S_aureus.49/contigs.fa –p 
nucmer -b -d -a –c –o 16B.ordered!

 B: Ordering the assembly against a reference chromosome 

-r  - reference sequence in a single fasta file (MSSA476.dna) 
-q - contigs in multi-fasta format (contig.fas file in the S_aureus.49 directory) 
-p  - MUMmer program to use: nucmer (nucleotide-nucleotide comparison) 
-d - use default nucmer parameters, which is in this case is faster  
-b  - generate a bin of contigs that don’t map. This is very important 
-a  - append contigs in bin to the pseudo-molecule 
-o  - prefix for the output file name (16B.ordered) 
-c  - reference sequence is circular 
 
To see a complete list the option available you can type the command:  
abacas.1.3.1.pl -h!

Once ABACAS is done, it indicates which files it generated and how to load them into 
Act: 
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Before opening the files in ACT, we are going to generate a BLASTN comparison file, 
rather than using the comparison file that ABACAS generates. This is because the 
ABACUS generated file is based on MUMMER and just aligns the contigs and does not 
report smaller matches within contigs. 
 
Previously in Module 3 we generated the comparison rules using a web site, WebACT. 
This time you are going to do it yourself using the locally installed version of BLAST. We 
will run two programs: formatdb, which formats one of the sequences as a BLAST 
database; and the other blastall, runs the BLAST comparison. 
 
At the prompt type and return the command line: 
 
formatdb -p F -i MSSA476.dna!

-p  - is the sequence protein (True or False). Ours is DNA sequence therefore we use F!
-i - input sequence to format (MSSA476.dna) 

Next type and return the command line: 
 
blastall -p blastn -m 8 -d MSSA476.dna -i 16B.ordered.fasta -o 
MSSA476.dna_vs_16B.ordered.fasta!

-p - BLAST program to use (blastn = nucleotide blast)!
-m - alignment output type (8, one line per entry) 
-d - database file (MSSA476.dna). This must be the file used for the formatdb command 
-i - query File (16B.ordered.fasta) 
-o - output file name (MSSA476.dna_vs_16B.ordered.fasta) 

We are now going to look at the Abacus ordered 16B assembly in ACT with the BLASTN 
comparison file we have just generated. 
 
At the prompt type and return the command line: 
 
act MSSA476.embl MSSA476.dna_vs_16B.ordered.fasta <(cat 
16B.ordered.tab 16B.ordered.fasta) &!

The command <(cat  16B.ordered.tab  16B.ordered.fasta) loads both the 
tab file containing contig features and fasta file at the same time 
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Once ACT has opened, zoom out so you can see the whole of the sequences (you may have 
to re-size the ACT window) and reduce the size of the BLASTN footprint that is displayed, 
bymoving the slider on the right-hand side of the comparison window down to the bottom 
of the bar. 
 
As before, display the GC Deviation (G-C)/(G+C) plots for both of the sequences (under 
the Graph menu there will be two sequences, top and bottom sequences, click on each to 
open the graphs for each). Remember to rescale the plot for a more appropriate window 
size (use 20000 as before, then move the graph slider of the right hand side of the screen 
down to the bottom of the bar). 

MSSA476 

16B 

MSSA476  
annotation 

Origin and terminus of 
replication of the MSSA476 
chromosome, and a clear GC 
skew visible between Similarity between the 

selected genomes   

Region of difference  
containing unique sequence 
in 16B compared to MSSA476

  

Contigs ordered and 
flipped around (reverse 
complemented) 
against the reference.

  

Non-mapping contigs 
(yellow) from the bin 
added to the end of the 
pseudo-molecule. These 
are unique contigs to 
16B assembly   
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In the ACT figure there are several regions of interest that are worth investing. The first 
region we are going to look at is the inverted region in the centre of the assembly that is 
covered by the hourglass shaped blue matches in the comparison panel. This 130 kb region 
spans the terminus of replication region, and is present at one end of a contig. At the other 
end of the putative inverted region there is a contig break. In order to check if this a real 
inversion or a mis-assembly produced by Velvet, we are going to map the 16B sequence 
reads back to 16B assembly we have just created, to see if there are reads that span 
inversion point within the contig.  

Putative inverted  
region 

Inversion site in  
contig 

C: Mapping reads back to the ordered assembly 

In this next exercise you are going to use the same mapping method as you did in Module 
4, to map the 16B strain forward and reverse reads (16B_1.fastq and 16B_2.fastq) against 
the pseudo-molecule that you created using ABACAS (16B.ordered.fasta). Can you think 
of a quick way to do this? 
 
At the prompt type and return the command line: 
 
bwa index 16B.ordered.fasta 
 
Once this is finished next type and return the command line: 
 
bwa aln -q 15 16B.ordered.fasta 16B_1.fastq > F.sai  
 
Once this is finished next type and return the command line: 
 
bwa aln -q 15 16B.ordered.fasta 16B_2.fastq > R.sai  
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Once this is finished next type and return the command line: 
 
bwa sampe 16B.ordered.fasta F.sai R.sai 16B_1.fastq 
16B_2.fastq > mapping.sam 
 
Once this is finished next type and return the command line: 
 
samtools view -b –S mapping.sam > mapping.bam 
 
Once this is finished next type and return the command line: 
 
samtools sort mapping.bam 16B 
 
Once this is finished next type and return the command line: 
 
samtools index 16B.bam 
 
Once this has finished you will now have a BAM file that you can load up into ACT. 
 
If you closed ACT before running the mapping, you can open it as before: act 
MSSA476.embl MSSA476.dna_vs_16B.ordered.fasta <(cat 
16B.ordered.tab 16B.ordered.fasta) & 

To load the BAM file into ACT, click File on the menu and them click the 63 entry, and 
then the Read BAM / VCF. 
 
In the pop-up box click Select, select the 16B.bam file, click Open, then click OK. 
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If you are not already there, go to the inversion region, and the inversion point in the contig 
(the region below illustrated in the image). You should see the BAM view as a panel at the 
bottom of the screen, rather than at the top of the screen as you will have done previously in 
Artemis. This is because we are looking at the bottom sequence, 16B.ordered.fasta. 

Inversion site in the 
contig we are going  
to look at in more  
Detail. 

Zoom in further keeping the inversion site in the centre of the ACT screen.   

The reads in the BAM view appear to break at the junction of the inversion 
indicated by the BLASTN match; no reads span the junction point (click on the 
reads around the junction to see their pair) suggesting that there may be problems 
with the assembly of the 16B DNA across this region.  

Inversion site 
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From the inferred size view you can see that there are no reads with predicted inserts that 
span this region. This suggests that the inversion may not be present, and that the 
sequence generated by Velvet in this region has not assembled correctly, and needs 
further investigation. To check if this is a misassembly, you could change the parameters 
of the original Velvet runs, or alternatively design PCR primers and do a PCR to check 
for the orientation of this region in the genomic DNA.  

Inversion site 

To get another perspective of the mapping to this region, change the BAM view to show the 
inferred size of the insert. To do this right click on the BAM view window, move the cursor 
over Views, and click Inferred Size. 

In addition to allowing us to check for potential mis-assemblies we can also use the 
mapping data to look for copy number variants in the assembly, as you did in Module 4. 
 
In ACT change the read view back to Stack view, and zoom out to see the whole 
sequence 
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From this view of you can see that the average coverage across the whole 16B sequence 
is about 120 fold, and that there is subtle reduction in coverage from the origin to the 
terminus of replication. You can also see that the non-mapping sequences from the bin at 
the right-hand side of the sequence have a higher level of coverage than the rest of the 
sequence that matches to the MSSA476 chromosome. 
 
Zoom into this region to look in more detail. 

The non-mapping contigs are indicated by the yellow features. There are 7 contigs and 
the two larger sequences are 20.6 kb and 2.5 kb. The read coverage across these regions 
increases considerably from the average (120 fold), to about 400 fold for the 20.6 kb 
contig, and 1400 fold for the 2.5 kb contig. It is therefore likely that these two contigs are 
separate multicopy plasmids that are part of the 16B genome. 

20.6 kb 
contig 

2.5 kb 
contig 
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Now we have the contigs ordered against the reference, and have mapped back the reads to 
identify a possible misassembly, and also identified putative plasmid sequences. However 
we are still not yet in a position to drill down into the biology of the strain. For this we 
need to add some annotation to the newly assembled genome. To do this we can transfer 
the annotation of reference strain we used in ABACAS, as this has been annotated and is 
clearly highly related. We have developed a tool called RATT (Otto et al., 2011, Nucleic 
Acids Res 39:e57) that can do this.  
 
In the first step the similarity between the two sequences is determined and a synteny map 
is constructed. This map is used to map the annotation of the reference onto the new 
sequence. In a second step, it tries to correct gene models. One advantage of RATT is that 
the complete annotation is transferred, including descriptions. Thus careful manual 
annotation from the reference becomes available in the newly sequenced genome. 
Obviously, where no synteny exists, no transfer can be done. Let’s see if this will work for 
our assembly. 

D: Annotation transfer 

As input we use the reference genome’s annotation (the MSSA476 genome consists of a 
single chromosome and plasmid therefore are going to use them both) and the output of 
abacas (16B.ordered.fasta).  
 
At the prompt type and return the command line: 
 
start.ratt.sh embl 16B.ordered.fasta 16B Assembly > 
out.ratt.txt!

embl – directory which contains all the EMBL files to be transferred (EMBL files for the 
MSSA476 chromosome and plasmid, pSAS) 
 
16B.ordered.fasta – multifasta file to which the annotation will be mapped 
 
16B – prefix to give results files 
 
Assembly – Transfer type: Assembly, transfer between different assemblies  
 
out.ratt.txt – output summary file 
 
For a full list of RATT options type and return: 
start.ratt.sh -h!
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RATT produces an EMBL format file containing the assembly and transferred annotation 
ending in the suffix .final.embl (e.g. 16B.ordered_staph-55e08.q2c2068.final.embl) 
 
Load this up into ACT with the MSS476 reference chromosome. At the prompt type and 
return the command line: 
 
act MSSA476.embl MSSA476.dna_vs_16B.ordered.fasta <(cat 
16B.ordered.tab 16B.ordered_staph-55e08.q2c2068.final.embl) &!
 

RATT generates a lot of output, such as synteny block information, which genes were 
corrected, and most importantly how many genes were transferred. A summary of this is in 
the file out.ratt.txt. 
 
To take a look at the contents of this file type at prompt and return the command line: 
 
more out.ratt.txt!
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Region 1 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
In this region near at the left hand side of the reference chromosome and near the origin of 
replication you can see that there are two regions without annotation transferred. The first 
is at the very end of the assembly. If you look this region, it matches to DNA in the 
reference chromosome. This contig spans the origin of replication and therefore matches 
two separate regions of the reference (left and right ends of the MSSA476 chromosome), 
therefore RATT has failed transfer annotation to the whole of this contig because it has 
effectively been split and separated in comparison to the reference. 
 
The second region lacking annotation spans two contigs. This ~22 kb region, contains 
BLASTN hits in the middle of the sequence, that match sequence in the MSSA476 
reference (top) that is also present in the 16B assembly (positions 85000 to 90000). This 
suggest that the ~22 kb region shares some similarity with the region downstream. 

RATT has transfered 2432 gene features to the reference, and if you look in ACT you will see 
that most of the 16B assembly now has annotation. There are a few regions that do not have 
annotation, and these mainly coincide with regions that do not share DNA-DNA with the 
reference. We will quicky have a look at these regions. 

Region 1 

Region 2 

Region 3 
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Region 2 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
From the ACT figure it would appear that there is a large insert in the 16B assembly 
relative to the MSSA476. If you zoom in and look at the sequence you will see that is 
composed of Ns rather than bases (in the figure you can make out regions with Ns, as they 
do not have any black lines that indicate stop codons on the forward and reverse 
translations). In this case ABACAS has mis-predicted a gap in this region, and therefore 
RATT has not transferred annotation. 

Region 3 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
In this region near at the right hand side of the assembly, we have the non-mapping contigs 
(yellow). Previously we have seen that the two largest contigs are likely to be separate 
plamids. The larger of the contigs has annotation transferred to it, however if you look in 
ACT, you will see that there it has no BLASTN matches to the MSSA476 chromosome. If 
you then look at the the annotation that has been transferred, you will see that it has come 
from the MSSA476 plasmid, pSAS, rather than the chromosome, this is because we 
included EMBL files for both the plasmid and chromosome in the RATT transfer. This 
indicates that 16B contains a similar plasmid to that found in MSSA46. 
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For the regions of difference that do not have any annotation, we can use a useful function 
of ACT (and also Artemis) to see what similar regions there are in the public sequence 
databases. To do this we are going to the run a BLAST search at the NCBI from the Run 
menu in ACT. 
 
Navigate yourself back to Region 1. Select the DNA region in the 16B assembly that is 
unique (Right click and hold, drag the cursor to the end of the region and release). Left click 
the Create menu, and move the cursor over the lower entry (63), and click Feature From 
Base Range. In the pop up feature box, change the Key to misc_feature, then click Apply.  

Click on the misc_feature you have just created. Click the Run menu, and move the cursor 
the over lower entry (63), then over NCBI searches. 
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In the NCBI searches sub-menu you will see the various flavours of BLAST that you can 
run. We are going to run a BLASTN (DNA-DNA comparison) and also a BLASTX 
(translated DNA-Protein comparison) search for the feature. First click blastn. An Options 
for blastn window will appear that allows you to change the blast parameters. We are going 
to run it with the default settings, therefore click OK. 
 
The BLAST job is now sent by ACT to the NCBI, and the Web browser window will open, 
and the results will appear when they have finished. 

Look at the BLASTN 
results and see what 
matches there are, and 
how much coverage there 
is of the region we are 
interested in. 
 
What is the identity of 
some of these sequences? 
 
Does it correspond to 
particular type of mobile 
genetic element (MGE) 
and what genes would 
you expect to find on this 
element? 
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Having seen the DNA-DNA matches, we are now going to repeat the NCBI search with 
BLASTX this time (Click the Run menu, and move the cursor over the lower entry (63), then 
over NCBI searches, and click blastx). This will search for protein coding sequences in the 
region of interest that have BLAST matches to proteins in UniProt. 

What is the identity of 
the matching sequences 
and their predicted 
function? 
 
How does this relate to 
t h e  a n t i b i o t i c 
resistance? 

If you want to easily 
locate the proteins 
sequences in the 16B 
a s s e m b l y  t h a t 
co r r e spond to t he 
BLASTX matches, you 
can select sequence 
f r o m t h e B L A S T 
alignment (displayed in 
the browser) and use 
the Navigator function 
found under the the 
Goto menu (copy and 
paste a small portion of 
the match into the Find 
Amino Acid String of 
the Navigator). 

Now that you have done this for Region 1, go and have a look at Region 3. What is the 
identity of the second largest contig in the non-mapping contigs, and what does it encode? 
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Before we begin this exercise close down any ACT session you have open. 
 
In order to examine the regions of difference in the 16B assembly with MW2 we are 
going generate a comparison file that we can load in ACT, as we did previously for 
MSSA476. 
 
At the prompt type and return the command line: 
!
formatdb -p F –i 16B.ordered.fasta!
 
Next type and return the command line: 
!
blastall -p blastn -m 8 –d 16B.ordered.fasta –i MW2.dna –o 
16B.ordered.fasta_vs_MW2.dna!
!
We are now going to load up the three sequences and relevant comparison files into 
ACT. You can do this either from the command line of by clicking on the ACT icon. If 
you prefer to do it from the command line you can type: 
 
act MSSA476.embl MSSA476.dna_vs_16B.ordered.fasta <(cat 
16B.ordered.tab 16B.ordered_staph-55e08.q2c2068.final.embl) 
16B.ordered.fasta_vs_MW2.dna MW2.embl & 
!
!

Up until now we have compared the 16B assembly to only one other ST1 S. aureus strain, 
MSSA476. We are now going introduce another strain to the comparison, MW2, and start 
looking at the genetic differences between the isolates that may impact on their biology. 
Although MW2 was isolated in a different country (USA), many thousands of miles away 
from 16B and MSSA476 (both UK), it still belongs to the same clone, and probably share 
a common ancestor tens rather than hundreds of years ago. A clinically important 
phenotypic difference between these isolates are their antibiotic resistances: 
 
16B - penicillinR, fusidic acidR, methicillinR, erythromycinR 
MSSA476 – penicillinR, fusidic acidR 
MW2 – penicillinR, methicillinR 
 
As you will hopefully have just discovered, it is possible to use genome sequence data 
find the genes responsible for antibiotic resistance. Examining the genetic context of these 
genes helps us to understand the mechanism that are driving the evolution of resistance in 
these S. aureus isolates. In this final part of the Module you are going use the comparisons 
with MW2 and MSSA476 to identify regions of difference regions that distinguish the 
isolates, and explain the differences in the antibiotic resistance phenotypes. 

E: Examining the evolution of drug resistance in ST1 S. aureus 
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Now that you have included the MW2 sequence to the comparison you should see an ACT 
view with three DNA panels and two comparison panels separating them. In this zoomed out 
view, MSSA476 is on the top, 16B is in the middle and MW2 on the bottom. You will also 
notice that in the ACT menu at the top there are now three entry options.  

To help you with your investigations, we have also provided two additional annotation files 
that contain misc_features which mark the extent of MGEs identified in the MSSA476 and 
MW2 chromosomes. These can be loaded into the appropriate entry (from the menu click 
File, the entry you want, then Read An Entry). The misc_features are colour coded in the 
ACT view according to the type of MGE (see legend on page 2 of this Module). 
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Compare the other regions containing MGEs. How do these regions vary in the three strains, 
and what do they encode? Does this explain the differences in the antibiotics phenotypes of 
the isolates? Can you find any other important genes associated with MGEs that are vary in 
the isolates that are clinical relevant (clue, think toxins). 

Here is the Region 1 that we have looked at previously, now with MW2 at the bottom. The 
regions of 16B that lacking annotation transferred from MSSA476, contains a matches to a 
region of the MW2. Does the identity of this MW2 region correspond to what you have seen 
from the NCBI BLAST searches? What has occurred in this region of the 16B chromosome 
that could explain the structure of this region in comparison to the other strains? 
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Annotated Annotation 
 
In the example we have looked at, we are fortunate that we have annotation for a closely 
related reference sequence that that we can use to transfer to our isolate of interest’s 
assembly. In this case most of the query isolate’s assembly is covered by the transferred 
annotation. What if you are not so lucky, and you do not have a appropriate reference 
which you can use? What options are available to you?  
 
If you are dealing which relatively small amount of sequence it may be feasible to 
annotate it be hand using some of the freely available tools and resources, such as 
BLAST querying of the public sequence databases, protein motif database searches, 
TMHMM searches etc. (see Appendix V). If you are dealing with a large amount of 
sequence, or volume of isolates, this is not going to be practical. One solution is to use 
some of the automated bacteria genome annotation pipelines that are available via the 
web. 
 
There are several sites that will allow you to upload your sequence, and then run various 
tools on it to predict features and functions, which you can then subsequently download 
and examine. The automated annotation servers vary in their analyses, and also the 
options that you can apply, but generally they will run an automated gene prediction on 
the sequence and annotate the genes based on similarity searches to protein databases 
and motif searches. 
 
Whilst the annotation produced by these servers does not necessarily contain the 
accuracy or insight that human generated annotation provides, it does provide a valuable 
start point from which from which you can improve the annotation. 
 
Because of the time that it can take for some of these servers to produce results, even for 
small sequences (several hours, as they are often busy with many jobs), it is not practical 
for us to include using one of these servers in the Module exercises.  If you are 
interested in what the results of one of these pipelines looks like we have included the 
results of an automated annotation of the 16B assembly in the Extra_files directory in 
the Module_6_Genome_Assembly_Analysis directory. 
 
The resource that we used was RAST (rast.nmpdr.org) (Aziz et al., 2008 BMC 
genomics. 8;9:75). If you want to have a play with it, you have to register with them it 
before you use it, and this can can take a couple of hours. 
 
The starting sequence that was used was the 16B.ordered.fasta file that we produced. 
The default parameters were used (see images on the following page for screen shots 
from the submission).  



-28- 

Module 6: Genome Assembly and Analysis 

RAST  
(rast.nmpdr.org)  


