
Module 3: Introduction to Computer Programming

-1-

Module 3
Introduction to Computer Pro-
gramming
Introduction
Recent advances in high-throughput technology have transformed modern biology into an area over-
flowing with large datasets. These datasets are pushing the limits of desktop applications, and we
are now finding that using an Excel spreadsheet is simply not enough. In addition, we often find
ourselves in situations where we have to repeat the same task or procedure for every item in our
dataset. This repetitive process can often be tedious and time consuming. By learning basic pro-
gramming we can write small programs, called scripts that allow us to easily manage these large
datasets and to automate repetitive tasks. Learning to program can be a daunting task, but it is also
extremely worthwhile. Not only will you improve your research, you will also learn new concepts
and have a lot of fun!

Aims
The aim of this module is to present you with an introduction to programming, guiding you through
useful Linux commands and essential programming concepts. The first part of this module intro-
duces you to more advanced Linux concepts, illustrating these with meaningful examples and exer-
cises. The second part of the module introduces the notion of shell scripting and demonstrates how
to save useful Linux commands for future use so that they can be used over and over again.

Many of the examples and exercises throughout this module are designed with sequence manipula-
tion tasks in mind, and at the end of it we hope you will be able to write some small scripts to help
you with your research. Like all modules, ‘if you don’t understand, please ask’. No-one is going
to become a programming expert in a few hours; the overall purpose of the module is to give you a
taste of what writing small scripts can do to automate and accelerate your analysis.

If at the end of this module you would like to learn more about programming, we have provided a
list of useful resources for further reading.

Module 3: Introduction to Computer Programming

-2-

Advanced Linux
Increasingly, the output of biological research exists as in silico data, usually in the form of large text
files. Linux is particularly suitable for working with such files as it has several powerful and flexible
commands that can be used to process and analyse these data. One advantage of learning how to use
Linux is that many commands can be combined in an almost unlimited fashion. So, if you can learn
just six Linux commands, you will be able to do a lot more than just six things.

You have already been introduced to some basic Linux commands including ls, pwd and cp. Linux
contains hundreds of commands, but, to conduct your analysis, you will probably only need around
10 to achieve most of what you want to do. In the following exercises we will introduce you to more
Linux commands and provide examples of how they can be used in bioinformatic analyses.

Exercises : More Linux commands

To begin: open a terminal window, move into the Module_3_Programming directory, then the
Linux directory (cd Module_3_Programming/Linux) and follow the instructions below.

BED files
We will be using a BED file in the examples that follow. A BED file (.bed) is a tab-delimited text
file that defines a set of features. To see the format of a BED file you can view it by running:

cd Module_3_Programming/Linux

less Pfalciparum.bed

BED lines have three required fields and nine additional optional fields. The first three required
BED fields are:

• chrom - The name of the chromosome or scaffold

• chromStart - The starting position of the feature in the chromosome or scaffold. The first
base in a chromosome is numbered 0.

• chromEnd - The ending position of the feature in the chromosome or scaffold.

Other additional optional BED fields include name, score, and strand. For more information on
BED files see: http://genome.ucsc.edu/FAQ/FAQformat.html#format1

Getting help man
To obtain further information on any of the Linux commands listed below you can use the man
command. For example, to get a full description and examples of how to use the sort command
type the following in a terminal window.

man sort

Module 3: Introduction to Computer Programming

-3-

Figure 1 The first part
of the Pfalciparum.bed file

sort - Sort values in a file or piped input

This command lets you sort the contents of the input. When you sort the input, lines with identi-
cal content end up next to each other in the output, which can then be fed to uniq (see below) to
count the number of unique lines in the input.

To sort the contents of the BED file type the following command:

sort Pfalciparum.bed [ENTER]

To sort the contents of the BED file on position type the following command:

sort -k 2 -n Pfalciparum.bed [ENTER]

The sort command can sort by multiple columns e.g. 1st column and then 2nd column by speci-
fying successive -k parameters in the command. Modify the previous command to sort the BED
file on chromosome and then gene position.

What does the -n option do?

Hint: use the command man sort.

Module 3: Introduction to Computer Programming

-4-

Figure 2 Sorting on a column. Since there is a lot of output head is used to return the
1st 10 lines.

awk - Pattern scanning and processing language

This command lets you manipulate the input text, making it very useful for chopping out the bits
of a file that your interested in and outputting them to another file or command.

To print out the first column of the BED file, enter the following command:

awk ’{print $1}’ Pfalciparum.bed [ENTER]

This is a very powerful and complex command, and is often used in conjunction with sed which
will be talked about later.

Figure 3 Extracting the first column with awk. Since there is a lot of output head is
used to return the 1st 10 lines.

Module 3: Introduction to Computer Programming

-5-

uniq - extract unique lines from a file or piped input

The uniq command is usually used in combination with sort to count unique values in the input.

To get the list of chromosomes in the BED file type the following command.

awk ’{print $1}’ Pfalciparum.bed | sort | uniq [ENTER]

How many chromosomes are there?

Now modify the previous command to count the number of features per chromosome.

Hint: use the man command to look at what are the options for the uniq command.

Figure 4 Counting the chromosomes in the BED file

Module 3: Introduction to Computer Programming

-6-

find - Finds files matching an expression

The find command will search the directory and all sub directories and return a list of files.
It can filter the files for you if you tell it the name of the file your searching for. A * denotes a
wildcard which can stand for any character(s).
To find all files in the current directory and all sub directories:

find . [ENTER]

To find all fastq files in the current directory and all sub directories:

find . -name “*.fastq” [ENTER]

Modify the command above to find all bed files in the current directory.

Use the find command to find all fastq files in the Module_3_Programming directory.

The find command is very powerful. It may be used to execute other Unix commands on the files
it finds using the command line option -exec. Type this command:
find . -name “*.fastq” -exec cp {} .. \; [ENTER]

Now look at the content of the parent directory for fastq files.

Figure 5 Finding files in the current directory

Module 3: Introduction to Computer Programming

-7-

Introduction to Regular Expressions. A regular expression, often called a pattern, is an expres-
sion that matches strings of text, such as particular characters, words, or patterns of characters.
Common abbreviations for "regular expression" include regex and regexp.

Matching operators:
. match any character
[] match one character found within the brackets

Positional flags:
^ match only at beginning of line. {\bf NOTE:} inside square brackets
this means match anything except the characters
$ match only at end of line

Quantifiers:
+ one or more times
* zero or more times
? zero or one time

Here are some examples:
colou?r matches both "color" and "colour".
ab*c matches "ac", "abc", "abbc", "abbbc", and so on.
ab+c matches "abc", "abbc", "abbbc", and so on, but not "ac".
[abc] matches either "a" or "b" or "c".
[^abc] matches anything but "a" or "b" or "c".

Additional reading: http://en.wikipedia.org/wiki/Regular_expression

Module 3: Introduction to Computer Programming

-8-

grep - For searching text files for character strings and regular expressions

grep is a command line tool which searches the content of text files for regular expressions and
text strings. At its most simple, grep can be used to search for a simple string of characters:

grep PF11 Pfalciparum.bed [ENTER]

grep has many command line options. Some example include -c which counts number of
matches, -i which ignores case of the matched string and -v which inverts the match, returning
lines which don’t include the matched string.
First modify the above command to count number of matches to PF11. Next, modify it to find all
lines not containing the text PF11.
As mentioned, one of the most powerful features of grep is its use of regular expression operators,
flags and quantifiers.
Using the information found in Introduction to Regular Expressions, search for features in the
bed file on chromosomes 10, 11 and 12 only.

Figure 6 Final part of last grep exercise followed by
count of lines found

Module 3: Introduction to Computer Programming

-9-

sed - For filtering and transforming text

sed is a powerful command line tool for editing the contents of a file and outputting the modified
contents to another file. For example, you can find all occurrences of a particular string of text
on each line of a file and replace them with another string of text. For example, we have found
a mistake in the feature names in our BED file where we need to replace all feature names that
begin with PFD with PF. To do this use the command:

sed ’s/PFD/PF/g’ Pfalciparum.bed > Pfalciparum.fixed.bed [ENTER]

Now modify the command to change all ‘VAR’ features to be called ‘VAR_gene’ and all
‘RIF’ features to be called ‘RIFIN_gene’. Write the final output to a file called Pfalci-
parum.modified.bed. How many features have changed?

Figure 7 Using sed to find and replace text in a file

Module 3: Introduction to Computer Programming

-10-

Conclusion
The commands we have just seen can process vast amounts of information in a very short amount
of time. They can be joined together to manipulate data and calculate results. Bioinformatics
software often produces vast quantities of output results and these commands will help you filter
things down to a more manageable level so that you can get meaningful findings out the other end.
Learning how to use this small set of commands will save you a substantial amount of time.

Module 3: Introduction to Computer Programming

-11-

What is a computer program?
A computer program is a sequence of written statements or instructions that can be understood by
a computer in order to perform an overall task. A program must be written in a specific language
(called a programming language) that is understood by the computer.

Many programming languages exists e.g. Perl, Python, Java, C++. It is not important which lan-
guage you learn first as once you become familiar with one programming language, it is much easier
to learn others. There is often a distinction between interpreted (e.g. Perl and Python) and com-
piled (e.g. C++ and Java) languages. People often call programs written in an interpreted language
‘scripts’. All you need to know is that a script is just a program and scripting is just programming.
In the remainder of this module we will introduce you to the notion of scripting using shell scripting.

Shell scripting
If you have a set of useful Linux commands that you want to use over and over again on different
datasets, how do you do this without having to type the same commands over and over again? The
command line has its own built in programming language and can be used to create a “shell script”.

To create a shell script, create a plain text file and add a series of Linux commands to the file and
then treat that file as if it was any other Linux command or program. When you want to repeatedly
execute the series of commands for multiple datasets, the shell script can be used to automate the
task and save you lots of time.

There are several shell programs on a Linux system that can be used to execute shell scripts. These
include ksh, tcsh and bash. You do not need to worry about this for now, you just need to know that
for the remainder of this module you will use bash (Bourne Again SHell) and the shell scripts that
you write will be called bash scripts.

Writing shell scripts
Any text editor can be used to write your script, but just remember that a word processor application
(like Microsoft Word or LibreOffice) is not a text editor. A text editor doesn’t allow you to format
text (e.g. bold, italics, font sizes) and produces files in a plain (non-proprietary) format (.txt) that is
readable by any computer.

Some freely available text editors

• Linux: vi, vim, nano, gedit, emacs

• Windows: notepad, Textpad, PSPad, Notepad++

• Mac OSX: vi, vim, nano, gedit, emacs, TextWrangler, TextEdit

Module 3: Introduction to Computer Programming

-12-

Figure 8 A basic shell script which does the same thing as the previous example. The
colours are added by the text editor to make it easier for a person to read and understand
the script. The colours aren’t used by the computer.

The basic structure of a shell script is shown in Figure 8. It is essentially just a list of Linux com-
mands which are the individual instructions for the computer to follow. When creating a shell script
it is standard practice to save it as a .sh file instead of a .txt file.

Running shell scripts
In order to get the computer to follow the instructions in a script you must execute (i.e. run) the
script. In Linux, text files can be executed (i.e. run) as programs, provided they contain instruc-
tions in some language and the very first line of the text file starts with #! (referred to as shebang)
followed by the path to a program that can understand (interpret) the instructions.

To run (execute) a text file you must give it execution privileges using chmod:

chmod +x sed_script.sh

and then execute it from the command line:

./sed_script.sh

Module 3: Introduction to Computer Programming

-13-

Exercise : Hello World!

First let us look at a basic shell script. Navigate to the Module_3_Programming directory and
then to the BASH directory and using your preferred text editor open the file hello.sh. You
should see the shell script shown in Figure 9.

1 #!/bin/bash

3 #print to the screen
4 echo "Hello world!"

Figure 9 Hello world script

This is a simple shell script which prints the text "Hello world!" to the screen.

• Line 1 tells the computer which program to use to execute this file, in this case it is the
bash program. Every bash shell script that you write will always begin with the text
#!/bin/bash.

• Line 3 is a comment and acts as a note to yourself about what a line of code does. It is always
good practice to add explanatory comments. In shell scripts, comments start with a # which
tells the computer to ignore everything on this line.

• Line 4 contains the Linux command echo which just prints text to the screen.

In a terminal window, type the following commands to give the hello.sh script execution privi-
leges and run the script.

chmod +x hello.sh

./hello.sh

Hello world!

Modify the script hello.sh so that it prints your name to the screen. Save this script as my-
name.sh, give it execution privileges and then run it.

Congratulations, you have just written your first shell script!

Now it is time to make some Linux shell scripts that might actually be useful.

Module 3: Introduction to Computer Programming

-14-

Figure 10 Hello world script

Module 3: Introduction to Computer Programming

-15-

Exercise : BWA mapping script

One common task in bioinformatics is to take raw reads from a sequencing machine and align
them to a reference sequence (called mapping). This task requires a number of different com-
mands to be run, with the bwa command performing the alignment of the sequences. If you have
several different files (e.g. from different samples) of sequence data to analyse this can be quite
time consuming. Therefore in this exercise we will create a shell script that can be used over and
over again to map different samples (also known as lanes) of sequence data. Essentially this in-
volves taking in 3 files and producing a single BAM file as output.

Navigate to the Module_3_Programming directory and then to the BASH directory and using
your preferred text editor open the file map_lanes.sh. You should see the shell script shown in
Figure 11.

1 #!/bin/bash

3 #read in values from command line
4 fastq1=$1
5 fastq2=$2
6 ref=$3
7 output=$4

9 #index the reference file
10 bwa index $ref

12 #map the sequence data
13 bwa aln $ref $fastq1 > F.sai
14 bwa aln $ref $fastq2 > R.sai
15 bwa sampe -a 700 $ref F.sai R.sai $fastq1 $fastq2 > $output.sam

17 #create a sorted and indexed bam file
18 samtools view -b -S $output.sam > $output.tmp.bam
19 samtools sort $output.tmp.bam $output
20 samtools index $output.bam

Figure 11 A shell script to map sequence data with bwa

This script performs the following set of standard mapping tasks:

• Line 1 tells the computer which program to use to execute this file, in this case it is the bash
program.

• Lines 4-7 reads in the values passed to the script from the command line. These values are
called command line arguments. We will discuss these in more detail later.

• Line 10 indexes the reference file.

• Lines 13-14 aligns the fastq files to the reference genome.

• Line 15 extracts alignments from bwa’s proprietary binary .sai file to a .sam file.

• Line 18 converts the .sam file into a .bam file using samtools.

• Lines 19-20 sorts and indexes the .bam file so that it can be viewed with Artemis.

Module 3: Introduction to Computer Programming

-16-

In a terminal window, make the map_lanes.sh script executable and run it using the following
commands:

chmod +x map_lanes.sh

./map_lanes.sh NV_1.fastq NV_2.fastq L2_cat.fasta NV

Please note that this script will run for several minutes, so please be patient. Lots of information
about the progress of the mapping will be printed to the screen, but its rare you’d ever need to
look at it. The data is from a Chlamydia trachomatis sample. While we wait let us learn more
about variables and command line arguments.

Variables
In bash scripting, as in any scripting language, you use containers called variables to store data,
change it, and access it later. New variables can be created like this:

name=value

In a bash script, you must do it exactly like this, with no spaces on either side of the equals sign,
the variable name must contain only alphanumeric characters and underscores and it cannot start
with a numeric character. Accessing the values stored in a variable can be done like this:

$name

In the map_lanes.sh script we create four different variables and use them to store the values
that are passed to the script from the command line.

fastq1=$1
fastq2=$2
ref=$3
output=$4

Later in the script we access the values stored in these variables. For example, we index the refer-
ence genome by passing the value that is stored in the ref variable to the bwa index command.

bwa index $ref

Module 3: Introduction to Computer Programming

-17-

Command Line Arguments
Since we want to use the map_lanes.sh script on different datasets, it takes some arguments on
the command line telling it what to work on. These arguments are:

• Name of the input fastq files

• Name of the reference file to use

• A prefix to use when writing output files (e.g. <prefix>.bam).

Remember we have run the map_lanes.sh script with the following command line arguments

$./map_lanes.sh NV_1.fastq NV_2.fastq L2_cat.fasta NV

A shell script can have any number of command line arguments which can be accessed in the
script using the variables $0, $1, $2, $3, $4, $5 etc.

• The variable $0 is the script’s name, when run with the command above this variable will
contain the value "./map_lanes.sh"

• The variable $1 is the first argument passed to the script, when run with the command above
this variable will contain the value "NV_1.fastq"

• The variable $2 is the second argument passed to the script, when run with the command
above this variable will contain the value "NV_2.fastq"

• The variable $3 is the third argument passed to the script, when run with the command above
this variable will contain the value "L2_cat.fasta"

• The variable $4 is the fourth argument passed to the script, when run with the command
above this variable will contain the value "NV"

• The total number of arguments is stored in $#.

When the map_lanes.sh script is finished running, type ls to see the contents of the direc-
tory. You should see a new file called NV.bam which contains the results of mapping the files
NV_1.fastq and NV_2.fastq to the L2_cat.fasta reference sequence.

Why is the file called NV.bam?

Now use the map_lanes.sh script to map the files AV_1.fastq and AV_2.fastq to the L2_cat.fasta
reference sequence.

Module 3: Introduction to Computer Programming

-18-

Exercise : BWA mapping script - what could go wrong?

Try running the map_lanes.sh script with the following command line arguments:

$./map_lanes.sh NV_1.fastq NV_2.fastq L2.fasta NV2

Did the script run successfully? If not, why not?

Often, the difference between a good script and a poor script is assessed in terms of the robustness
of the script. That is, the ability of the script to handle situations in which something goes wrong.
In this case, does the map_lanes.sh script handle the situation where a file supplied by the user
does not exist?

In this example we will look at improving the robustness of the map_lanes.sh script by adding
some argument and error checking to the script. Navigate to the Module_3_Programming
directory and then to the BASH directory and using your preferred text editor open the file
map_lanes_validate_inputs.sh. You should see the shell script shown in Figure 12.

1 #!/bin/bash

3 #read in values from command line
4 fastq1=$1
5 fastq2=$2
6 ref=$3
7 output=$4

9 #check the correct number of arguments are passed to the script
10 if [$# != 4]; then
11 echo "Usage: $0 fastq1 fastq2 reference out_prefix"
12 exit
13 fi

15 #check the fastq and reference files passed to the script exist
16 if [! -f $fastq1] || [! -f $fastq2] || [! -f $ref]; then
17 echo "Error: One of the input files does not exist"
18 exit
19 fi

21 #index the reference file
22 bwa index $ref

24 #map the sequence data
25 bwa aln $ref $fastq1 > F.sai
26 bwa aln $ref $fastq2 > R.sai
27 bwa sampe -a 700 $ref F.sai R.sai $fastq1 $fastq2 > $output.sam

29 #create a sorted and indexed bam file
30 samtools view -b -S $output.sam > $output.tmp.bam
31 samtools sort $output.tmp.bam $output
32 samtools index $output.bam

Figure 12 Error checking in a shell script

Module 3: Introduction to Computer Programming

-19-

This script performs some checks on the values passed to it from the command line and then per-
forms a set of standard mapping tasks:

• Lines 1-7 tell the computer which program to use to execute this file and reads in the values
passed to the script from the command line.

• Lines 10-13 checks that the correct number of command line arguments have been passed
to the script. The lines say if the number of command line arguments passed to the script is
NOT EQUAL TO 4, print a message to the screen telling the user what the correct usage is
and exit the script.

• Lines 16-19 checks that all the files passed to the script exist. The lines say if the first fastq
file does not exist OR the second fastq file does not exist OR the reference file does not exist,
print an error message to the screen and exit the script.

• Lines 22-32 perform a set of standard mapping tasks.

Please note:
$# is the number of command line arguments
!= means NOT EQUAL TO
$0 is the name of the script
! is the NOT operator
-f checks if a file exists
‖ means OR

Modify the script to check to see if the output file already exists. If it does exist, print a warning
message and exit from the script.

Decision Statements
Sometimes you will want to perform different tasks depending on whether a condition is true or
false. In bash this can be achieved with the keyword, if. The if statement consists of a condi-
tion that is evaluated, and a block of code that is run if the condition evaluates to true as shown in
Figure 13.

1 if [CONDITION]; then
2 # instructions to follow if condition is true
3 fi

Figure 13 BASH if statement

Module 3: Introduction to Computer Programming

-20-

Loops
In bioinformatics we often have to perform the same action/analysis multiple times. For example,
its quite common to multiplex a 96 well plate of samples into a single Illumina lane, so to analyse
your data you’ll need to run the same commands on all 96 sets of sequencing data. Rather than
running a script over and over again, you can use a loop. It will keep running a set of commands
until a condition is met, for example, loop over all files in a directory and run the commands on
each file.

In bash this can be achieved with the keyword FOR. The FOR statement consists of a list and a
variable name, then a block of commands to run. In the example in Figure 14, the ls command
is run to get a list of files in the current directory. Each file is then taken in turn and is assigned to
the variable i. The block of code is then run, and $i contains the name of the file. Here we just
print out the filename, but you can use any command.

1 FOR i in $(ls); DO
2 echo $i
3 DONE

Figure 14 Bash FOR statement

Exercise : Mapping to Multiple references

Modify the script map_lanes_validate_inputs.sh from the previous exercise so that it
takes in 2 fastq files and a directory containing references as input, and maps the fastq files to each
reference. The references are contained in the sub directory called references. It is sometimes
necessary to map to multiple different references, because you may not know in advance which
reference best represents the underlying genome of the sample you’ve sequenced.

Save this script as multiple_mappings.sh, make it executable and run it with the following
command line arguments:

./multiple_mappings.sh NV_1.fastq NV_2.fastq references

Hint: There are 3 references in the directory, so 3 BAM files should be produced as output.

Module 3: Introduction to Computer Programming

-21-

Useful resources
Although we are not teaching Perl as part of this course, we have included a copy of the e-book "Be-
ginning Perl for Bioinformatics" as a pdf which is a good starting point for anyone who wants to
delve further into programming and teach themselves Perl. This book is stored as a pdf file on the
USB disk and is called "Beginning_Perl_for_Bioinformatics.pdf".

Some further useful resources include:

Books

• “Unix in a Nutshell” by Arnold Robbins

• “Learning the Bash Shell” by Bill Rosenblatt and Cameron Newham

• “Learning Perl” by Randall Schwartz

• “Mastering Perl for Bioinformatics” by James Tisdall

• “Perl programming for biologists” by D. Curtis Jamison

• “Mastering Regular Expressions” by Jeffrey Friedl

Online resources

• http://www.perl.com/pub/a/2000/10/begperl1.html

• http://www.bioperl.org

• http://search.cpan.org

We hope you have fun learning to program!

