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Thomas Keane EMBL-EBI

Dr Thomas Keane completed his PhD degree in the area of
distributed computing and high-throughput phylogenomics from
NUI Maynooth (Ireland) in 2006. He worked at the Wellcome Trust
Sanger Institute from 2006-16, co-founding the Vertebrate
Resequencing Informatics team, and lead the Sequence Variation
Infrastructure team (2014-16). In these roles, he managed the
production for the 1000 Genomes Project, the UK10K project, and
the Mouse Genomes Project. In 2016, he joined EMBL-EBI as
head of the European Genome-phenome Archive (EGA) and the
European Variation Archive (EVA). His research interests include
mouse genetics and genomics, methods for structural variation,
and genome assembly. He leads the Large Scale Genomics
workstream of the Global Alliance for Genomics and Health
(GA4GH).

Jacqui Keane Wellcome Sanger Institute

Jacqueline McQuillan has a PhD in Software Engineering. She
joined the Pathogen Genomics group at the Wellcome Trust
Sanger Institute as a postdoctoral fellow in 2008 where she
worked on RNA-Seq gene finding in helminth genomes. From
2010, she has managed the Pathogen Informatics team at
Sanger. The Pathogen Informatics team is responsible for
providing pipelines and analysis support to the Pathogen
Genomics group along with developing and maintaining key
pieces of software such as Artemis, ACT and GeneDB.

Shaun Aron is currently a bioinformatics consultant and lecturer at
the Sydney Brenner Institute for Molecular Bioscience (SBIMB) at
the University of the Witwatersrand in Johannesburg, South
Africa. After pursuing an undergraduate degree in Genetics and
Microbiology followed by an Honours degree in Human Genetics,
he handed over the pipettes to the experts and entered the then
still developing field of bioinformatics pursing an MSc degree.
Currently he is a member of the H3Africa Pan African
Bioinformatics Network (H3ABioNet), which is a network
consisting of 28 research institutes in 18 countries, tasked with developing and supporting
informatics and genomics research in Africa. His research interests include GWAS of complex
diseases in African populations, exploring population diversity, structure and admixture in Africa
and bioinformatics education and training.
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Gerrit Botha University of Cape Town, South Africa

Gerrit Botha is a Bioinformatics engineer at the Computational
Biology division of the University of Cape Town. His background is
electronic engineering but gained experience in bioinformatics
whilst working as a software developer at the division. His area of
expertise is in human variant analysis, microbial analysis and
bioinformatics compute environment and pipeline design.

Petr Danecek Wellcome Sanger Institute

Petr Danecek has a background in computer science and PhD in
biophysics.

After his PhD he worked at the University of Texas Medical
Branch in Galveston, focusing on development of statistical
methods for flavivirus vaccines. Petr joined WTSI in 2009 to
participate in the Mouse Genomes Project where he was
responsible for variant calling, data analysis and data processing.
His focus is methods development and is one the lead SAMtools,
BCFtools and HTSIib developers. He has participated in the large-
scale sequencing projects such as 1000 Genomes Project or
UK10k, most recently he has been involved in the HipSci and
DDD projects.
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Amel Ghouila Institut Pasteur de Tunis, Tunisia

Amel Ghouila is currently a bioinformatician at Institut Pasteur de
Tunis, where she works on the frame of the pan-African
bioinformatics network H3ABionet supporting researchers and
their projects while developing bioinformatics capacity throughout
Africa. She is has a background in computer sciences with a PhD
in Bioinformatics from the Laboratory of

Informatics, Robotics and Microelectronics, Montpellier, France.

Within H3ABionet, Amel is involved in postgraduate courses
organisation and teaching.

Amel is also part of the Institut Pasteur IGDA network core
teaching team for the hands-on NGS courses and introductory
Bioinformatics courses organized across the Pasteur International N
Network. == S

Her main research interests are in DataScience and Bioinformatics of Pathogens. She works
mainly on NGS analysis pipelines for pathogens genomics and transcriptomics data analysis,
combining different data sources to enhance functional annotation and perform comparative
studies.

She is a Mozilla Science fellow -- an Open Science and Open Education advocate. She was
nominated by Mozilla as one of “50 People Who Are Making the Internet a Better Place.

She is the general secretary for the African Society of Bioinformatics and Computational Biology
(ASBCB) and is a regional ambassador for the Technovation program: the global tech
entrepreneurship for young girls.

Fatma Guerfali Institut Pasteur de Tunis, Tunisia

Fatma Guerfali is member of the Institut Pasteur de Tunis (IPT),
Laboratory of Transmission, Control and Immunobiology of
Infections. Fatma worked on high-throughput approaches applied
to analyze dual host and pathogen interactions. She is currently
involved in the generation, analysis, and data mining of high
throughput DNAseq and RNAseq data from non-model pathogens
showing differential disease manifestation in human patients and
classified according to their associated virulence. Fatma is
actively involved in organizing/providing bioinformatics trainings
adapted to LMIC context and has been invited as a
trainer/speaker in several local and international courses and
workshops for post-graduates in the field of NGS.
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Phelelani Mpangase — University of the Witwatersr South Africa

Phelelani Mpangase joined the Sydney Brenner Institute for
Molecular Bioscience at University of the Witwatersrand as a
Bioinformaticist. He has since provided Bioinformatics support to |
students and researchers in the University. He has worked on |
projects involving protein structure and function, next generation
sequencing data analysis, pipeline design, metagenomics and
transcriptomics. Apart from being a Bioinformaticist, he is also in |
the 3rd year of his PhD in Bioinformatics. His PhD project is |
mainly focused at analysing transcriptomic data from black South
African patients with the Systemic Sclerosis disease and
designing reproducible pipelines in Nextflow for analysing
transcriptomic data and metagenomics.

Victoria Offord Wellcome Sanger Institute

Victoria is a bioinformatician in the Pathogen Informatics team,
providing support to pathogen groups at the Wellcome Trust
Sanger |Institute. She studied biological sciences as an
undergraduate at the University of Exeter where she also
completed her Masters in bioinformatics. She then joined the
Royal Veterinary College (RVC) as part of the BioChip consortia,
developing tools and resources for the pan-viral array. This led to
a passion for all things pathogenic, her doctorate and a fellowship
in marine mammal innate immunity, during which she provided
core support in bioinformatics analysis to RVC researchers.

Sumir Panji University of Cape Town, South Africa

Sumir Paniji is a bioinformatician within the H3ABioNet consortium
working on the implementation and interpretation of bioinformatics
solutions and new technologies to diverse biological problems,
and is actively involved in providing bioinformatics support and
training to the H3Africa projects. Sumir's main interests lie in high
quality bioinformatics education, creating and implementing
computational and analyses workflows, biological algorithms, high
performance computing, the overall application of bioinformatics
and genomics to better understand complex biological systems and is passionate about developing
bioinformatics capacity on the African continent.
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Abdalla Munir Khalid Abdalla National University Research Institute,
SUDAN

I’'m interested in tackling biological problems in a broad view, more
in the realms of systems biology type of view. NGS technology
offers this possibility by providing high throughput data at the whole
genome and transcriptome level. Currently my research interests
include: WGS of bacterial isolates, genome evolution and
dynamics, metagenomics of human microbiome. Our ongoing
research is WGS of 250 clinical isolates of MRSA from Sudan
hospitals to determine antibiotic resistance and virulence properties
using illumina platform. The Course will help to acquire the skill to
analyze the NGS data.

Chioma Achi Usmanu Danfodiyo University, NIGERIA

My current research is on the genomic analysis of antimicrobial
resistant Salmonella recovered from humans and animals from
Nigeria. | am a Researcher at the Centre for Advanced Molecular
Research and Training (CAMRET) and a Lecturer of Veterinary
Public Health and preventive Medicine in Usmanu Danfodiyo
University Sokoto, Nigeria. | am a 2nd year PhD student at the
University of Cambridge with strong interest in molecular biology. It
is my hope that by attending this course, | will be able to improve
my bioinformatics skills on Next Generation sequencing and be
able to transfer the knowledge and skills learnt.

Abdul-Rahman Adamu Bukari Kumasi Centre for Collaborative
Research, KNUST, GHANA

| have a research interest in infectious disease epidemiology,
pathogenesis and hostpathogen interaction. Specifically, | am keen
on employing genomics and other molecular-based techniques in
understanding the (re)emergence, spread and pathogenesis of
infections of zoonotic origins. Currently, | seek to employ Next
Generation Sequencing (NGS) Bioinformatics tools to identify
zoonotic (viral and bacterial) pathogens reserved in livestock and
their keepers across Ghana. This hands-on introduction to NGS
Bioinformatics course comes at a perfect time as my research will
heavily rely on generating and analysing large amount of NGS
sequence data. | join this course with the ‘ { %
objective of obtaining the requisite practical and theoretical underplnnlng of operatlon the NGS
technology and the accompanying post-sequencing analysis. But also this will be a great
opportunity for networking and exposure to the cutting-edge work of invited speakers.
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Currently, | am working on discovery of genetic variation in
pharmacokinetic i.e., absorption distribution, metabolism and
excretion (ADME) genes among African; particularly Sudanese
patients with aggressive prostate cancer and their influence on
response to anti-neoplastic chemotherapy.

Data of this project will be generated from Whole Genome
Sequencing (WGS) for selected Sudanese patients and their
controls; data will be subjected for downstream analysis for variant
calling, structural analysis, copy number variation analysis and
pathway analysis. < I
These information will be tailored to develop precision medicine plan for African populations.

Samuel Ahuno Kwame Nkrumah University of Science and
Technology, GHANA

Samuel is a Research Assistant/Student in Alexander Kwarteng
(CIFAR-Azrieli Global Scholar | Humans and Microbiome) research
group. His interest extends to Cancer Genomics and is part of the
Ghanaian research team studying liquid biopsies for early breast
cancer in collaboration with American Cancer Genomics experts
Prof. Will Foulkes, McGill University and Dr. Paz Polak, Icahn
School of Medicine at Mount Sinai. Following this course he aims
to be able to establish the bioinformatics pipelines after Ultra-Low
Pass Sequencing (ULPS) and Whole Genome Sequencing (WGS)
of cell-free DNA samples to understand mutational signatures of
Ghanaian breast cancer patients.

Rayan Ali University of Khartoum, SUDAN

My name is Rayan Ali from Sudan. | am a PhD student at Brighton
and Sussex Medical School, UK based at the Mycetoma Research
Centre, University of Khartoum, Sudan. My research focuses on
studying genetic susceptibility to mycetoma which is a slow-
growing, destructive infection of the skin and underlying tissues that
is endemic in impoverished Sudanese communities. | joined this
course to learn more about the pipelines used to analyse NGS data
and WES analysis to be more specific, since part of my PhD project
will be done using this technology.
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Olaitan Awe University of Ibadan, NIGERIA

Olaitan's research involves the analysis of molecular sequencing
data, including the development of tools to analyze Next-
Generation Sequencing datasets. He develops a computational
model for the identification of protein-coding and non-coding
regions in transcriptomes. He uses comparative genomics
techniques to investigate the genetic relationships between
pathogenic viruses like Ebola and other filoviruses and also
between Zika virus and its related arboviruses. He also investigates
gene expression and novel viruses in RNA sequencing datasets for
cancer research to see if there is a correlation between an unusual
expression of these genes and cancer e.g. Human Endogenous
Retroviruses in Acute Myeloid Leukemia.

Odunayo Azeez University of Ibadan, NIGERIA

Dr Odunayo Azeez is a Lecturer in Veterinary Physiology in the Department of Veterinary Physiology
and Biochemistry, University of Ibadan, Nigeria. He has a PhD in Veterinary Anatomy and Physiology
from the University of Pretoria, South Africa.

He is currently studying Transcriptomic characterization of non-model animals and the effects of
pollution, inflammation and stress on non-model organisms, using NGS by RNASeq.

The training on NGS and Bioinformatics shall broaden his horizon and provide the requisite
knowledge needed for analysis of NGS data using Bioinformatics on currently available data and
new data to be generated in future projects and studies.

Shakuntala Baichoo University of Mauritius, MAURITIUS

My current and ongoing research consists of performing the
computational analysis of cancer datasets, in order to advance
knowledge discovery from various angles including pan-genome
perspectives, workflow development and predictive modeling. The
datasets to be analysed will come from public data banks such as
ICGC, AACR and TCGA,; these will be mostly in the form of NGS
datasets such as WGS, RNA-Seq and WES. Hence this course is
of utmost relevance to my ongoing research as it will equip me with
the appropriate know-how to perform the necessary data analyses,
to advance knowledge discovery in the field of cancer omics.
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Christina Balle University of Cape Town, SOUTH AFRICA

My research focuses on examining the impact of different hormonal
contraceptive methods on the vaginal microbiota in a randomized,
crossover cohort of adolescent females from Cape Town. We have
assessed whether hormonal contraceptive-induced changes to the
vaginal microbiota affect the numbers, activation status and co-
receptor expression of genital immune cell populations (analyzed
by flow cytometry) and the inflammation status of the genital tract
mucosa (cervical cytokine levels analyzed by Luminex) to establish
a biological basis of how hormonal contraception and the vaginal
microbiota potentially alters HIV susceptibility. Whole genome,
virome and RNA sequencing and analyses are yet to be conducted.

'3

Chisom Ezekannagha Bioscience Center, NIGERIA

My current research focuses on developing RNA-Seq data analysis
pipeline in order to understand the molecular mechanism and
identify set of genes that can demonstrate that they are differentially
expressed under different conditions of the Cassava Mosaic
disease (CMD). NGS techniques are clearly suited to explaining the
downstream analyses of these transcriptomic data from which |
seek to identify important biological information. Being involved in
the course, | expect to acquire deep and comprehensive training
required to assess and analyze the large volumes of RNA-Seq data
and to gain practical experience of analytical techniques in NGS.

Coccidiosois is a renown intestinal disease of livestock which is
caused by the apicomplexa parasite of the genus Eimeria. | am
currently working on these parasite species among broilers
chickens in KwaZulu-Natal province of South Africa. My research
involves the use of different genomic fragments genes to identify
and determine the genetic diversity among these species. In
addition, we are also exploring the genomic diversity of Eimeria
tenella which is highly pathogenic and widely distributed species of
this genus with a genetic diversity and population structure that is
geographically unique. This big data necessitates strong
bioinformatics skills.
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Amira Khalaf Medical research institute, EGYPT

My PhD Thesis work entitled (Molecular characterization of
Oculoauriculovertebral spectrum in Egyptian patients) relies mainly
on array CGH and NGS technologies to reveal the etiology of this
heterogeneous group of disorders. The work is performed in France
and data is now being ready for analysis. | was hosted for one
month training there but | wish | could gain more skills in the field of
Bioinformatics to be qualified to begin my data analysis .Attending
this course is a great opportunity and will help me a lot in completing
my thesis which is the corner stone in building my career.

The Molecular Disease Epidemiology unit at the National
Zoological Garden of South Africa performs epidemiological
research on various infectious diseases (viruses, bacteria and
parasites) that occur in wildlife (for which there is very little
data/information). This includes conventional characterisation and
classification of these pathogens via traditional parasitology,
virology, bacteriology and mycology techniques. Next-Generation
Sequencing (NGS) and bioinformatics is being used to further F¥
investigate and characterise selected veterinary and zoonotic
pathogens, which will facilitate development of a national sequence
database with reference genomes of South African isolates/strains
of important veterinary pathogens and parasites (e.g. Toxoplasma
gondii and Gastrointestinal parasites in wildlife in South Africa).

Standford Kwenda National Institute for Communicable Diseases,
SOUTH AFRICA

My goal is to become an independent researcher in the field of
Systems  Immunology, focusing on implementation of
bioinformatics methods, in deciphering key cell types of the immune
response and their gene expression profiles contributing to health
and disease. My current interests include HIV-1 functional cure
research, using RNA-seq for mRNA, long noncoding RNA and
microRNA profiling, including implementation of co-expression
network analysis to identify potential regulatory ncRNA biomarkers
of importance in HIV-1 control. This course will help enhance my
bioinformatics skills by equipping me with current, advanced
techniques and necessary expertise in transcriptome profiling and
network construction.
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Imen Larbi Pasteur Institut of Tunis, TUNISIA

Imen Larbi graduated from the Ecole veterinaire de Sidi Thabet,
Tunisia. She holds a MSand a PhD degree in Biology from the
Faculty of Sciences Tunis. Currently she is conducting researches
in the Laboratory of Epidemiology and Veterinary Microbiology,
Institut Pasteur of Tunis. The sphere of her research includes
virology poultry infectious disease and it mainly covers
epidemiological studies on avian influenza disease. She earned
from the University of Paris Diderot, France a degree(diplome
d’université).She had a fellowship from the U.S. Civilian Research
& Development Foundation (CRDF Global) to conduct her project
on avian influenza virus. She is taking part in the Tunisian national
surveillance of avian influenza research programs carried by the
Institute Pasteur deTunis.

Jessica Levesley University of Witwatersrand, SOUTH AFRICA (Zuid
Afrika)

Currently, | am involved in investigating the allele sequence
diversity of the loci associated with Huntington disease in African
Ancestry individuals. To ultimately assess the role of sequence
diversity in modifying disease. In order to achieve this, a specialised
high throughput next-generation sequencing assay and data
analysis pipeline has been used. Attending the course would allow
for additional knowledge and skills to aid in the analysis of the
generated NGS data. As well as provide exposure to
methodologies that could be applied to my current dataset as well
as future projects.

Zané Lombard University of Witwatersrand, SOUTH AFRICA q
My research is focused on understanding human genetic variation >
and how it impacts on disease. | study African populations, and
therefore | am also keen to better understand African-specific
genetic variation. | am currently at a place in my career where | am
using my genetics and computational skills to build my own
research group focused on neurodevelopment and - disorders. | am
committed to applying new technologies to improve the diagnosis
of patients with rare developmental diseases and believe
understanding the genetic causes of these disorders, and their
underlying biological mechanisms, will give us fundamental insights
into human development.
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Faridath Abéni Tatiane Massou National Reference Laboratory of
Mycobacteria, BENIN

| am currently working on a project named DIAMA (DIAgnosis of
Multidrug resistant tuberculosis in Africa). The goal is to identify a
test that will allow avoiding the use of culture for both diagnosis and
follow-up of multidrug resistant tuberculosis patients by using
molecular tools such as the sequencing of several genes. We have
already been trained on the technical part but not on the analysis
of the results. This training will be helpful because no fund was
planned for that. | will get essential bioinformatics skills and
knowledge required to analyze our data during the project and
beyond. )

Christina Meiring Stellenbosch University, SOUTH AFRICA

My research involves the investigation of genomic variation within
African wild dogs in the Kruger National Park (KNP). The aim of this
study is to sequence the genomes of wild dog individuals from KNP
to understand their susceptibility/resistance to diseases and other
threats; and to develop tools to identify genetic factors conferring
adaptive advantages. This study requires working with large
volumes of next-generation sequence data and it is therefore
relevant to this course as | will gain the necessary expertise to be
able to handle large amounts of data and to subject it to numerous
analyses.

Kelebogile Moremi Stellenbosch University, SOUTH AFRICA
Gl

My current research interest is to embrace the application of NGS
technologies and bioinformatics tools to advance precision
medicine in Africa. This involves analysing WES data of breast
cancer patients to filter for deleterious mutations in known disease-
associated genes (ExAc gene-list). Variant classification is
performed using international criteria, extended to family screening
where appropriate. Ongoing research is focused on comparative
analyses of data generated using WES and Nanopore sequencing
platforms in genetically uncharacterised breast cancer patients.

The course outline set for the WGCAC NGS Bioinformatics Course
will provide an ideal training environment to better equip myself.
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Abel Abera Negash Armauer Hansen Research Instltute ETHIOPIA

I am currently working on a PhD project that aims to serotype and
genotype Streptococcus pneumoniae isolates from Ethiopian
children with pneumococcal diseases. We are now planning to
perform whole genome sequencing (WGS) on selected isolates.
This course will therefore prepare me for the ensuing data analysis.
There is also a considerable lack of expertise in the area of
performing next generation sequencing and analyzing the
generated data in Ethiopia. The training will therefore give me a
platform in which | can contribute my share in filling this void.
Through and beyond my PhD project, | aspire to apply WGS to
study the molecular epidemiology, transmission dynamics and
antimicrobial resistance of bacterial pathogens in Ethiopia. The
training will therefore undoubtedly be a stepping stone for me to
achieve these goals.

Patracia Nevondwe University of the Witwatersrand, SOUTH AFRICA

My PhD project will be looking at the contribution of de novo
mutations in the development of neurodevelopmental disorders. |
will perform a targeted NGS mutation screening on genes known to
cause or interact with causative genes of neurodevelopmental
disorders. My objectives for the course are to learn how to analyse
NGS data generated from targeted and exome sequencing, with
more emphasis on how to call and interpret de novo mutations.

Jean Pierre Rutanga University of Rwanda, RWANDA

| am currently working on my PhD project entitled “Development of
new molecular tools for diagnosis and surveillance of invasive
Salmonellosis”. This project has two main goals:

1) development of 16S rRNA based diagnostic tools for bacterial
bloodstream infections (using lllumina Miseq) and 2) development
of point-of-care Salmonella Typhi genome sequencing workflows
(using lllumina Miniseq and MinlonTM). Therefore, | am confident
that following this course, | will get sufficient knowledge in next
generation sequencing bioinformatics tools that | will be using
during the analysis of data resulting from my project.
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Natalie Smyth Sydney Brenner Institute for Molecular Bioscience,
SOUTH AFRICA

| am currently a research assistant at the SBIMB biobank. My work
involves extracting, quantifying and storing DNA from human tissue
samples, and performing PCR and genotyping. In 2019, | will be
registering for my PhD through the University of Witwatersrand,
with the title ‘Understanding the genetic basis of high and low LDL-
cholesterol in African populations.’ This course will be beneficial for
the completion of this project as the protocol includes using a
targeted sequencing approach on approximately 150 samples in
order to elucidate pathogenic variants that may contribute to high
and low LDL- cholesterol in Africa.

| am trying to explore the genes and molecular pathways involved
in the pathogenesis of hereditary spinocerebellar degeneration
(SCD) in a cohort of Sudanese families. To accomplish this; my
toolbox contains: next-generation sequencing, homozygosity
mapping, in addition to the basic molecular genetic techniques. |
am planning also to use the Zebra fish as an animal model to study
the molecular consequences of the identified novel mutations.




PROGRAMME

The hands-on programme will cover several aspects of next generation sequencing
data analysis, including lectures, discussions and practical computational sessions*
covering the following:

e Introduction to NGS technologies

e Introduction to the unix command line

e Advanced unix

o NGS data formats and tools

e Sequence alignment+QC

« SNP/indel theory and practical

e Structural variation theory and practical

« RNA-seq analysis

e ChiP-seq analysis

« Sequencing data visualisation with the Integrated Genomics Viewer
e Accessing public sequencing repositories

« Participant projects and presentations (final day)

Learning Outcomes
On completion of the course, participants should be able to:

o Use the unix command-line as a tool for data analysis

o Describe the different NGS data file formats available

o Perform QC assessment of high throughput sequencing data

» Explain the algorithmic concepts behind short read alignment, variant calling
and structural variant detection

o Perform read alignment, variant calling and structural variation detection using
standard tools

e Analyse RNA-Seq and CHiP-seq data

o Perform a genome assembly using NGS data

o Describe the different data types available in public sequence repositories and
how they are organised

The practical sessions will be taught exclusively through Unix/Linux. Introductory
tutorials to the UNIX/Linux operating system and command line, can be found on the
following links:

http://www.ee.surrey.ac.uk/Teaching/Unix
http://swcarpentry.github.io/shell-novice/
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Sunday
27/1/2019

Monday
28/1/2019

Tuesday
29/1/2019

Wednesday
30/1/2019

Thursday
31/1/2019

Friday
1/2/2019

08:00

08:30

09:00

09:30

10:00

10:30

11:00

11:30

12:00

12:30

13:00

13:30

14:00

14:30

15:00

15:30

16:00

16:30

17:00

17:30

18:00

18:30

19:00

19:30

20:00

Registration
buffet lunch
Place: Hotel

Intro and
Advanced Learning and

Training (ALT) Session 1

Place: Hotel
Martin

Teal/Coffee

Introduction
WTAC
Instructors and
Participant Talks
Place: Hotel

Welcome Drinks
and speed networking
Place: Hotel

Dinner
Place: Hotel

Bus to Institute
Introduction to

Sequencing Technologies
Fatma

Tea/Coffee

Intro the the VM
Jacqui

Bus to Hotel

Tea/Coffee

Bus to Institute

Tea/Coffee

Read alignment
Thomas

Tea/Coffee

Bus to Hotel

Bus to Institute
Variant Calling
Petr

Tea/Coffee

Tea/Coffee

Bus to Hotel

Bus to Institute
ChIP-Seq
Victoria

Teal/Coffee

RNA-Seq
Victoria

Teal/Coffee

Group Task Prep
All

ALT session 2
Martin
Bus to Hotel

Bus to Institute

Assembly
Thomas

Tea/Coffee

Lunch

Group
Presentations
All

Tea/Coffee

Bus to Hotel

08:00

08:30

09:00

09:30

10:00

10:30

11:00

11:30

12:00

12:30

13:00

13:30

14:00

14:30

15:00

15:30

16:00

16:30

17:00

17:30

18:00

18:30

19:00

19:30
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Template DNA
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Primer Extension
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Lack an -OH group at the 3-

carbon position

Cannot add another P~P~P 45 O
nucleoside at that position

Prevent further DNA 4 1

synthesis

All Possihle Terminations

Dideoxy Nucleotides
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DNA Polymerase reads the template strand and synthesizes a new second strand to match:

5‘
3!

- TRCGCGGIRRCGG"\I’G“CGRCCG]’IIHGCTRCCGR% I
- ATGCGCCATTGCCATACARGCTGGCARATCGATGGETA CAR - 5°

IF 5% of the T nuc leotides are actually dideoxy T, then each strand will terminate
when & gets a ddT on is growing end:

5
G
&
g
5
=
L
-
»
g

= TRCGCGGTARCGGTATGTTCGRCCGTTTAGCTACCGAT
- TACGCGGTARCGGTATGTTCGRCCGTTTAGC T

=~ TACGCGGTAACGGTATGTTCGRCCGTTT.

=~ TACGCGGTARCGGTATGTTCGACCGT T

-~ TACGCGGTAARCGGTATGT TCGACCGTe

- TACGCGGTAACGGTATGT Te

-~ TACGCGGTARCGGTATGTe

= TACGCGGTARCGGTATe

- TACGCGGTARCGGT.

- TACGCGGTe

inger



LD R

Original Sanger Sequencing”

» 4 sequencing reactions performed for each
template, each with different terminator

» Radioactive primer or nucleotide used

» Sequencing reactions run on <imm
polyacrylamide gel cast between two glass
plates to separate fragments according to
size

» After run gel exposed to film and
developed to reveal image i+ Sanger

LD R

Sequencing gel autorad .

DNA
e | abeled
DNA polymerase | primer

+ 4 dNTPs + |
[ 1. .k 1
&IATP  ddTTP  ddCTP  ddGTP T A G C 3“:,?;?12‘.’2?&
i i Il I

T

—_— T

— A

— { | A

— p— C

— — C

— { — C

s G

Acrylamide . ‘ A
gel prves i
Po— A

— — 6

— | - C

—_— | (o3

Eml G

‘ —’_'§ &

| — - : A

“y: Sahger
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g
Fluorescent Terminators «°®

Primer extension reactions:

ddA reaction: ddC reaction:
TACTATGCCAGA — TACTATGCCAGA
- AT ——————— ATGATA®
Primer
ddG reaction: ddT reaction:
TACTATGCCAGA —  TACTATGCCAGA
ATGATAC® ——— ATGAD
Electrophoresis:
— A
Sty -, 3
—_— A
E—
S
— Y
s— T
S—
=
— 11
— A
T
Fluorescent light —>, &— Laser light
emitted by band
Detector Laser
as welicome
s @ = sa
To computer .gs ..sm,,!e) ger

T @ mle EdR Gel Sample  Manager Window Help 1342
= 01.02230 Gel File
P T I e e

v o2 11 B RN e N N E R

Y 0 0000000008000060030000600000804

LT

-
-
-
-
-

- welicome
Liwrent Cab T5p2 (o1 m peatz): Squwe locth i Sanger

B = institute
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DNA Sequence F11es

. ..de\. WH lx I MW«M“MN
me.u bt Py
h.M\m H “ “h ‘\l ‘ il muml m‘g 0._

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

) d.mum ) ul 9\ mtm“

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

ABI Capillary 3730 © %

» Individual reactions -> 96 capillary array
» Accurate, Q30

» PCR errors

» Cloning bias

» 1000-base reads
» 1-2 hour run time




Error

» Sequence quality Q is reported on a log scale
» Q10 1s 1 error in 10

» Q20 1s 1 error in 100

» Q30 1s 1 error in 1000

» Q40 1s 1 error in 10000

» Q50 is 1 error in 100000

) R

» PCR
Or

» DNA Miniprep

= " wellcome
;. Sahger



Capillary Sample Prep

Fragment genome

X -

\\ \ G Clone into
bacterial vector
G% Grow and purify
% G ' 'l- wellcome

Wy ager

» Fast + easy for individual samples
» Robust technology
» .0001 Gb / run

» £150k instrument
» $1,000,000 / Gb




NGS

2005 - present

Next Generation sequencing

Is massively parallel
Not limited to few reactions per run

. =l- wellcome
g SANnger
i, 3ang



Capillary sequencing

I | |

1 tube N 1 capillary
1 template 1000 bases

---------
-------
-----

Next-Generation Sequencing

%) O A 7

1 feature 3 1 chip,thousands or
1 template millions of features
Output Mb-Tb

. =l- wellcome
-¢",: sanger
.l= . 'nstiwteg



» Started NGS (2005)

» First massively parallel sequencer
» Bought by Roche in 2007

» Based on pyrosequencing of bead-
bound DNA in microwells

. =l- wellcome
g SANnger
-l= -'llslitmeg



Polymerase

SN I

Annealed

27—

3 f = l primer
Sulfurylase

a4

Luciferin

nght + Oxy Luciferin

» The incorporation of new bases releases inorganic pyrophosphate

» A chemical cascade converts luciferin to oxy-luciferin + 1ight
gt sanger

454 Shotgun Library Prep

N & _/ Quantify FAM
Nebulize End Repair & Lignse& 7 Ny SpR) with
& Puri A Tailin » Adaptor [ ) ” »
urify a P \r ./ Sizing Solution .\ -/
7 b 3 | —
° £ -\. »

Standard Library Preparation in 17 Steps
1. Calibrate SPRI Beads

2. Nebulize 3,000 ng

3. Column Purification

4. SPRI Cleanup

5. DNA 7500 Chip Rapid Library Preparation in 6 Steps
6. End Repair

1. Nebulize 500 ng

7. Column Purification
8. Ligation

9. Column Purification
10. SPRI Cleanup

11. Bead Immobilization
12. Fill-In Reaction

13. Melt

14. Column Purification
15. RiboGreen Assay
16. RNA 6000 Chip

17. Calculate Molecules/ul based on Size and Mass

2. Column Purification
— 3. End Repair and A Tailing

4. Adaptor Ligation

5. SPRI with Sizing Solution

6. Quantify with FAM Standard

,-_ _sanger



454 Emulsion PCR

l?

74

Single DNA Beads + emPCR w/ Emulsion is Primer is
molecule anneals PCR biotinylated broken w/ annealed ready
to new bead via reagents are primer + lots of 1.P. alcohol. for pyro-
adapter formed into 1- Taq polymerase No-DNA . HEque!ﬂnﬁ
sequences bead droplets beads el Sa gel"
removed L Ee e instiute

Load beads into
PicoTiter™Plate

Centrifugation




e @v. q
454 Data Example ¢#

100 200 300 400

Flow Number
A=Green, C=Blue, G=Black, T=Red

=-' wellcome
.. sanger
e SaNg



» Long read lengths — good for amplicons
and de-novo sequencing

» High error rate near homopolymers

—— ey
—— |

» Fast turnaround
» Emulsion PCR
» Single end only

» .7 Gb / run
» 700 base reads
» <24 hour run time

» $7,000 / Gb

Roche announced will discontinue in 2016

. =l- wellcome
g’ Sanger
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[llumina Sequencing
Technology

Michael Quail
mql@sanger.ac.uk

Solexa 0@

» Launched their Genome Analyzer in 2006

» Spinout from Cambridge University, set
up at Gt. Chesterford in 2000

» Genome Analyzer; 1Gb/run

» Acquired by Illumina in 2007 e
. Sager



[llumina Paired End
Library Prep

n o>

T4 DNA Ligase
R1 sequencing primer

+
>
—
o

T
’ A
3

\PS

5

Reverse compliment of R2 primer

Hybridize primers

—

L A

I A
F T I T
A
¥ 5
Limited PCR
5 . 7 I, . g
3 A I I 5 . ..
' Sanger
Make clusters and sequence ll = institute

/, <@v.
. Cluster Amplification

AIRTITHN| |

I I SURFACE " i i SURFACE I
Single-molecule Cluster 1.5 Billion
array ~1000 clusters on a
molecules single glass chip

-sanger

ll = institute
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» Extend by 1 base

|- -,

(]
gl" » Image
‘l' » Reverse
termination

o » Repeat

Y% @v. (

PPP 5’ Base
Natural dNTP: l :o : I

3OH
Illumina modified NTP:
PPP Base PPP Base =—
o CLEAVAGE l ; 0 : I
Fluorescent
dye OH
Reversible
terminator

=-- wellcome
g SANnger
.l= . 'nstitmeg



I1lumina

» Cheap $6-$30/Gb

» Highly accurate data mostly Q30

» Massively parallel. Millions of reads
» Short read

) R
Life Technologies SOLiD ¢ *#

. =l- wellcome
g’ Sanger
g -l= . nsmmeg



Ligate probe

Image

Cut probe

Repeat
Wy Sahger

i S
5,.0,

ABI SOLiD

Fluorescent dye

Cleavage site

3’ Ligation site

Sequencing probe

4 Dyes, 256 probes per dye (1,024 total)

n= degenerate bases z= universal bases

. =l- wellcome
g SANnger
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Ligation-Based Chemlstry

universal seq primer .
ligase
sTTTTTTTTTITITITIT lps

5,
nnnGGZzz
rrrrrrr/ ""TJ

nnn AT z zz

1um
bead
5 3
Template Sequence
. =-' wellcome
=ug
e, Sanger
T
Ligati
Imaging
ligase
universal seq primer /
I' A
1um

bead

Template Sequence

as " . wellcome
=,: Sanger



Cleavage

universal seq primer /

ium
bead

Cleave 1 Silver Nitrate

Cleave 2 B -mercapto ethanol

1um universal seq primer

bead FTTTTTTTITITITITITITITITT
1pm
bead

Template Sequence

4 More Ligations Completes
First Primer sequence

Ligation
) ) 1 2 3 4 5
universal seq primer s
Trrrrrrrrerrrrrrrripal g Tigal Ty old 3
- LIl irreenreneennirterl
ea
5, 4,5 9,10 14,15 19,20 24, 25

. = welicome
+g".» sanger

88 = institute



L4
0

4 More Probe sets completes sequence”

+

Trrrrrrrrrrrrrfllipalld || LI
i L1111l Lyl Lt 111l
bead
57 45 9,10 14,15 19,20 2425 3’
Primer
universal seq primer
1 4,5 9,10 14,15 19,20 24,25
reset /
universal seq primer n-1
> 3.4 8,9 13,14 18,19 23,24
reset /unwersal Se rimer n-2
qp 2,3 7,8 12,13 17,18 22,23
reset / universal seq primer n-3
qp 1,2 6,7 11,12 16,17 21,22
reset /
universal seq primer n-4
I_I_I_I_I_I_I_I_I_I_I_I_I_l 0,1 5,6 10,11 15,16 20,21
=l
' Sanger
"8 . institute

Colour Space 2 base encoding

O

Possible Dinucleotides Encoded By Each Color

2nd Base

V& Template Sequence
A G G )
A OOO )
» C GA
8 _\— CG CA cc TC
= | G —— GC GT GG AG
- TA TG TT T
- I
. 4

Double Interrogation

With 2 base encoding each
base is defined twice




ABI SOL1D

» High throughput + low cost for genomes
» Very good error rates (<.1%)

» Like 454 utilises clone amplification by emulsion PCR and loading
in microwell plates

» New Wildfire procedure eliminates emPCR

» Beads in emulsion

» Ligation—based chemistry
» >100 Gb / run (2 slides)

» 60-base mate-pair reads

» 7 day run time

» $30 / Gb




Complete Genomics

Complete

genomics

ABGI Gompany

=l- wellcome
g SANnger
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Ad1L Size Selected DNA, 400-500bp Ad1R

nzyme

PCR, Methylate, Add
Circularize [ij Restriction
E

~387-487bp Ad1 13 bp
1

D6 o
CR Methylate, add {1
Circularize Jlj Restriction Ad2R
Enzyme

13 bp Ad1 13 bp Ad2 ~374.1474@‘;,
A
K R Y oy ’ =
PCR, Add Restriction
DY Circularize Enzyme PR
Ad3L

Complete Circular
Template

Cut Out ~322 422bp

Newly Synthesized
Strand Adapter2
/-\Adapters
Adapter4

Circular ssDNA
Template

«—300nM ————>
DNANanoball

- sahger



Complete Genomics
Nanoball arrays on flowcell

Flow Cell” Nanoball

Etched pit
in Array r

it




Complete Genomics




Complete Genomics Revolocity

» 10,000 genomes/year

» $12M

» 10-120 samples at a time
» Sample to answer

» 8 day turnaround

» 96% genome coverage

» 1 error in a million (raw 0.5%)
» 300 bp insert. 2 x 28bp reads

. =l " welicome
4y Sahger

A <%

Complete Genomics BGISEQ-500

» 8-200 Gb output

» 2 chips. CG nanoball sequencing
» 100 base reads

» 24 hour turnaround

» Currently for Chinese market

» High accuracy

» Instrument 33% less than cost of a
HiSeq
» Competes with HiSeq on cost per Gb

. =l wellcome
g SANnger
-l= . nstmneg



RSIT: 1800 lbs. and ~11 feet long ! ;_==:;. ga?ﬁger

i @v. q

--------
---------

Pacific Biosciences © #

SMRT cell



<

"y O

Pacific Biosciences

Zero-Mode
Waveguide
@Mw)
Metal
Cladding

Glass Substrate.

0
-50 -25 0 25 50
nm

Individual ZMW Laser light illuminates the ZMW

ZMW with DNA polymerase ZMW with polymerase + nucs. =m



Fragment DNA —
S

mm—

RIS

Ligate Adapters Ligate Adapters
AT Blunt End
(=500 bp) T ﬁ
AREURURRURRUROURIRAURIURIANRURALRRRURIAIRINY Tl

(= 500 bp)
A

Exonuclease
digestion of linear
DNA

2 xSPRI

v

Quantify and QC

PacBio Template Preparation

e T T T T T Sequencing
Primer o a(-ii;;;;-
L | Il | 3
Ligated hairpin &
-,

Extension with
polymerase

Ligated hairpin DNA fragment

1 Anneal primer

2  Bind polymerase

59
£} L3
R

o
%";;;

. _——
S iSERasanittg

3 Sequence




A A ACA AAG GAG
| 7 |

| i lM I

‘
WIESARSE)
R T R P T

. =I. welicome
g Sanger



Reads

Concordance - Accuracy (QV)

99.99999% (QV 70)

99.9999% (QV 60)

99.999% (QV 50)

V == E.coll
99.99% (QV 40) / o |
99.9% (QV 30) / Y Perfect consensus

99% (QV 20) —#

y

90% (QV 10)

40 60 80 100

Coverage

P6-C4 CHEMISTRY READ LENGTH PERFORMANCE (RS II)

Half of data in reads: > 20 kb

Yield / SMRT Cell: 0.5 —1Gb
20 kb size-selected library

4 hour movie

P6-C4 chemistry

Maximum read length: > 60 kb

r
|
| Users have reported:
| Max Read Lengths: >80 kb
| Yield / SMRT Cell: >1.5 Gb
1 |
-
B |
j—‘\
40,00 ‘d:ll 50,000 45,000 9; o0

Read Length

" welicome
.- sanger
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HGAP - Pre-assembly

140000
1/
o \ g|2ue
1 d reads| =
100000 f ong seed reads| =
0 11500 §
g —I
g 20000 |- E
S &
\0‘2 60000 1000 A
(o] e}
£ =
N
40000 o
{500 *
20000} | .
v
OL‘ It ]
0~ 2000 4000 6000 8000 10000 12000 14000 16000 18000

Subread Length
correct with smaller

reads pre-assembled to 20K accurate reads
mean, mode, median, all around 6 kb
Example assembly
(bacterial genome)
pacbio e ey o

illumina p b B D ) .
524900 1049800 1574700 2099600 2624500 3148400 3674300 14199200 4724100
<{ERSOSER QERS088252. 7642 7. d ER-G ERSEY

welicome
. sanger

= institute



IPD Ratio

A GO
7

@‘ q
[ ] [ ] [ ] : .
Base Modifications © *

Prokaryotic Eukaryotic DNA Damage

PR ! © 2
. P 5 M s s N il
¢ A I . ;‘1 7 { ] j P
o Sy~ S8 = N S ¥
1 3 i SkC
»
e S4mC » OfmG
‘ ﬂ 2 - 1 et
" -
b s ,;_._AJLJ. | RSN ) ST | 1] SOV | | NE—0— .s
0 [ ] L e
'™ ' n » i 1
o 5§ o -y

' MJ!,.,._. ! T sk o N [ | e i

P
o,
, o x
L o~
~n
PR RN
g’ -
£ 2
i
- " & & ) w
s
2 2
[ T
BT
e N
2 3
bt
p—
w\
z
-}

B ’ o
o, ol - n é& ©
5 s (R e ook 4 N
v [ Fy [ o~ |
Y s ¢ J

. ey |- i el < " 2 o

S ¥ 4 L v__z e ShmU
i ; . o Scall b . ¥ 'b’—o I-Ll
= SmA £ ey Thyueine dinser . ,
3 2 2 et ik LA Lol i
s L L — Y TSN, | S | Lt »
® ol I e o _° e °

Template Position

"al . institute ~¥

DETECTION OF DNA BASE MODIFICATIONS USING KINETICS

Example: N°-methyladenine
o 400

w
=]
S

Fluorescence
intensity (a.u.)
N
(=]

o

o
=]

=}

— 705 71.0 715 720 ) 725 73.0 735 740 745
Time (s)

R “NG T ¢ G A TC AAST A C A

5 300 1

= 200

Fluorescence
intensity (a.u.)

0 1
A 1045 105.0 1055 106.0 106.5 107.0 107.5 108.0 1085
Time (s)

SMRT Sequencing uses kinetic information from each nucleotide addition to call bases

This same information can be used to distinguish modified and native bases by comparing results of SMRT Sequencing to an in silico
kinetic reference for incorporation dynamics without modifications.

. =l- wellcome
4 Sanger
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IPD Ratio

) R
Base Modifications

Prokaryotic Eukaryotic DNA Damage
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Template Position

An example of signal strength
with m6A

LA URR R IR RIRR AR RURE L R TR TRRES RIRIRN WUIRE LR RO LD RE R RRE LR L TR LE R0 B LU LR SRR LR LR R I IR DR AR R Rl )
LU L(CE UL COR O SEI TSI AT N LT AU TR L B
[ nnt T L i L i | [ Leh o o Wy
BS8 (124 bp)
35.759bp 1,035.771bp 1.035.784bp 1,035.796bp 1,035,308bp 1.035.821bp

L] @

— - — - L_,..q_w

‘AATATTCAGATGAATATT GTAT TATT GAACAACGATGGTGGCGGTATTTTT TCATATTT ACCACAAAAAG)
\TTATAAGTCTACTTATAACATAATAACTTGTTGCTACCACCGCCATAAAAAAGTATAAATGGT GTTTTTE

——— — it e e e, I_H_— ————————— "




Pacific BioSciences ¢
Applications

» Long read applications
» De Novo sequencing
» Full length cDNA sequenicng
» Haplotyping

» DNA modification studies

A <%

Pacific Biosciences © #

» Single polymerase mol. in a 20nm hole
» Watch incorporation in real time

» ~2 bases per second

» Yield 200-500Mb on RSII
» Yield upto 7Gb Sequel

» Some reads 20Kb +




Semiconductor
Sequencing

" v. q
Ion Torrent’s PGM ¢ #

. =l welicome
Capital cost $50,000 i Sanger



Ion Torrent’s Technology

DNA
polymerase
nucleotides

/ well

ion-sensing layer
&

electronics layer
| |

DNA(n)+ nucl. = DNA(n+1) + PPi-> PPi + H+

Flow through A then T then ... like 454

Nucleotide incorporates

into DNA -
\\\, e
NLF \ yf ,/‘Zf
‘ \ Hydrogen ion

“ is released

H+

Micro-machined wells

lon-sensitive layer

Proprietary lon sensor




Ion Torrent

» Library prep like original 454

» Amplification on beads by emPCR

» CMOS chip detection

» Cyclic addition sequencing - pH changes

» Not single-molecule —

» Emulsion-PCR being
replaced

) R

Ion Torrent 318 (PGM)

» 11 million wells

» 1Gb / run

» Read length ~400
» Error rate 1-2%

» 2-4 hr. run time

» $1000 / Gb ($75K)




Ion Proton

» Proton I: 165 million wells
» 10 Gb / run

» Read length ~100

» Error rate 1-2%

» 2 hr. run time

» $100 / Gb ($250K)

lon AmpliSeq™ technology: As Simple As PCR
Your Targets, Your Genome, Your Panel

The most comprehensive gene coverage
with the lowest amount of DNA or RNA Input

Simple Scalable Fast
» 10 ng of DNA * Up to 24,000 * 1 day from
per pool primers per pool DNA to results
» FFPE-compatible » 1-1000s of genes * 2 hours to design
custom panels
» PCR-based * 96 barcodes for
target selection multiplexing » 3.5 hours for target
selection and library
preparation

@ 6



lon GeneStudio S5 Series | Flexible Portfolio Configurable to Your Needs

lon GeneStudio™ S5 lon GeneStudio™ S5 Plus lon GeneStudio™ S5 Prime

New New

|

Flexible. Powerful

lon 510™ lon 520™ lon 530™ Chip lon 540™ Chip lon 550™ Chip
Chip Chip 15-20 M reads 60—-80 M reads 100-130 M reads
2-3 M reads 3-6 M reads Up to 600 bp Up to 200 bp Up to 200 bp
Up to 400 bp Up to 600 bp
For Research Use Only. Not for use in diagnostic procedures. * Throughputs based on 200bp sequencing
ThermoFisher
90 SCIENTIFIC

Output and Turn-Around Time to Meet Your Lab’s Peak Volume Needs

lon GeneStudio™ S5 lon GeneStudio™ S5 Plus lon GeneStudio™ S5 Prime

Speed* 19 hrs 10 hrs 6.5 hrs

Output (max/day): 15 Gb/80 M 30 Gb/160 M 50 Gb/260 M

Chips (max/day): 1 x 540 2 x 540 or 1 x 550 2 x 550

* Based off 540 chip — sequencing (2.5 hours) and analysis (varies) time

For Research Use Only. Not for use in diagnostic procedures.




~45 Minutes Hands-On Time from DNA to Data | Only 2 Pipetting Steps per Sample

Automated Automated
lon AmpliSeq™ library template Sequencing
construction preparation

Pipet Load cartridge : Pipet Load cartridge : Load reagents Transfer chip
sample and primer onto lon Chef System library into lon Chef onto lon Chef System onto lon GeneStudio™ to lon GeneStudio S5
pools into lon Chef™ :  cartridge for templating : S5System System for sequencing
cartridge for library 1 and chip loading H
prep :

o [ ] [ ]

- - -
\ 15 min N 15 min N 15 min
hands-on time hands-on time hands-on time

For Research Use Only. Not for use in diagnostic procedures.

92 SCIENTIFIC

Coming Soon: lon AmpliSeq HD Technology

»

Technology exclusively available for lon Torrent™ customers
Novel core technology with the ability to process mixed or challenging sample types—extendable to multiple applications

Customizable
Design flexibility. Add or remove content

y 6‘ Low sample input down to 1ng
) L Y
as your biomarker of relevance changes

To identify rare variants

I
=4
'if ¢ Process multiple sample types
. o -
Achieve down to 0.1% LOD 4 £+ ideally suited for cfDNA and
With custom panels o]
5 FFPE samples.
@
e
&
2-3 hour prep time @ @ Scalable technology
Shorter turn-around time For all variant types found in DNA and RNA

The content provided herein may relate to products that have not been officially released and are subject to change without notice.

For Research Use Only. Not for use in diagnostic procedures.

9 SCIENTIFIC



lon AmpliSeq On-Demand Panels | Now 5,000 Pre-Designed, Pre-Tested Genes Available

Expanded Gene Content Across Disease Research Areas

2500 -
o 2000
£
S 1500 -
o
4= 1000 -
o
* 500 -
0 - - :
> » O . > Q> & o @ > o
SR N \g N N N N © O N @ >
@Q}\ ro‘"’*‘oo *é@ & @ \’Z}(b Q‘\q}\ & \{~\é\ ) Q\(b%@ 2 ¢ ’500\\ c\&& 'QG? QQ’Q\ \O@tb
¢ & & P F K & & @ SR
&° @0 @ SRS @ X S SN W N N O
& . & boé S° ,b<\° & & R & ,boé L & @&Q °
S 'S N NN O < (\& ¥ CJo(\ 6(\0)
<<06\ \z\?) q@(\\ k\\\ ’b(\ ‘ o\’b
& > N &
) 2 O\O
Average of 1154 genes per major UMLS disease research area category
For Research Use Only. Not for use in diagnostic procedures.
o4 ThermoFisher
SCIENTIFIC

List prices 2018

* lon GeneStudio S5™ System A38194 Runs 510, 520, 530 and 540 chip. 50,528 GBP

* lon GeneStudio S5™ Plus System A38195 Runs 510, 520, 530, 540 and 550 chip. 104,942 GBP
* lon GeneStudio S5™ Prime System A38196 Runs 510, 520, 530, 540 and 550 chip. 132,150 GBP
« lon Chef(TM) System 4484177 45,240 GBP

All instruments include 12 months warranty

Promo: Trade-in any current NGS or CE instrument for up to 50% discount.

For Research Use Only. Not for use in diagnostic procedures.

95 SCIENTIFIC



World’s first complete Sample to Insight NGS solution

Designed to deliver actionable insights

96

Vg PSS, o R R

SCIENTIFIC
AT OC__i - MMANT . A7 OF ~ ~~ YATIAT

Qiagen Gene Reader

+ SBS chemistry developed by intelligent biosystems

» Sequencing system that can prep DNA, do targeted library prep and run upto 20 x 1Gb
yield flowcells

* Sequencing by synthesis but one base at a time

—|! it—m

97



First truly complete NGS solution

—o|ntegrated

Nucleic Acid
collection &
extraction

Library Nextt-_ Data
preparation genera '.on analysis
sequencing

Interpretation

QClI

Automation
QlAcube/  :: QlAcube :GeneRead Gene
QIAsymphony | QlAcube Reader
Quality : E
control Qubit  QlAxcel
)
GeneRead Assistant
Data |
management —8

GeneRead Link / LIMS & IT support

Offering everything needed from one vendor for NGS solutions

98

—=o Actionable

Vg PSS, » R

GeneRead Actionable
Insights Tumor Panel

CNTAOY O MMNANL . 7 OF ~ ~ ~ YATIAT

ILMN Tumor 15
Panel

AmpliSeq™ HotSpot
Tumor Panel V2

Panel size

Insight size
Amplicons

Average amplicon
size

DNA input

Throughput

Variant frequency

Amplicon coverage

Variant insight

12 genes/ 16.7 kb

773 unique variant positions
330

134 bp

10 ng x 4
1-48 samples per run
5%

>500x: 96.4%
>200x: 98.5%
Average: ~5000x

>500x: 99.8%

15 genes / 44 kb

Not available
250

150-175 bp

10 ng x 2

8 samples per run
5%

>500x: 93.5%

>200x: not available
Average: n/a

50 genes / Not provided
2855 variants

207

154 bp

10 ngx 1
2/8/16 samples per chip
5%

>500x: not available
>200x: not available
Average: 1000-4000x

Not availabl Not availabl
coverage >200x: 99.9% ot available ot available
Note: Coverage is average of 12 NA12878 datasets
ThermoFisher
” SCIENTIFIC

N Ty T

NTAO O .. MDYNNNL L ~A7rOr

~ o~~~ YATYAT



The ultimate objective of NGS in molecular pathology resea

H *", QlAact Actionable Insights Tumor Panel
7397
AnyGenomlcs LOb-f_‘,’\'g: ® For the GeneReader NGS System (RUO)
Report Date Jan 1, 2015
Report Status  FINAL

Sample Metadata Laboratory Information Specimen
sample D Sample 1 Lab FacilityName Specimen Type  Biopsy
Date of birth ~ Aug 5, 1967 Technician  Technician ID Specimen ID  Specimen ID
Ethnicity  African Scientist Scientist ID Collection Date  Jan 1, 2015

Sex Male Accession Date Jan 3, 2015
Accession  1somatic_max_api_test Primary Tumor Site  Blood Vessel

Diagnosis  stage 42 glioblastoma

Interpretation

2 Clinically Significant Variants Reported 2 Approved Therapies 2 Potential Clinical Trials

2 alterations were identified that may potentially be responsive to other treatments.
2 clinical trials were identified that target the detected alterations. One alteration is associated with resistance

Summary of Clinically Significant Variants

Variants Reported FDA Approved FDA Approved Therapies Associated Potential Clinical
Therapies for Therapies for Other with Resistance Trials
Indication Indications

EGFR 2 potential trials

p.E746_AT750del

Variant Details

Gene Exon # Nucleotide Change Amino Acid Change Effect on Protein

19 NM_005228.3: E746_A750 Gain of Function
el ©.2235_22494eIGG PR

EGFR is an oncogenic receptor tyrosine kinase involved in cell survival by regulating the RAS and PI3K pathways. Gain of
function mutations and amplification cause EGFR activation. Somatic mutations have been reported in 36% of NSCLCs, 8.6% of
gliomas and 2% of breast cancers [PMID: 15938733]. EGFRvii allele is associated with poor prognosis in patients with
glioblastoma. EGFR amplification in patients with EGFR mutation-positive NSCLC is associated with increased resistance to
osimertinib, erlotinib and gefitinib therapies. In over 40% of patients with NSCLC, EDFR amplification coexists with EGFR
mutations [PMID: 17666241]. TKI-sensitive EGFR mutations are more common in female never-smokers and in partients with
adenocarcinomas [PMID: 14555582).

Page 10f3
QIAGEN | support.iagen.com | QIAGEN.com
The QIAGEN GeneReader® is intended for research use only (RUO). This product is not intended for the diagnosis, prevention or treatmant of  disease

100 ThermoFisher
For Research Use Only not for use in diagnostic pro€ddutes! F I €
T
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Sequencer behaving like 3 sequencers in 1

A
IntegratedC:B
Actionable —»L

—eFlexible \} " Turntable design

Affordable
Reliable

dwell

cleave

Ext A

o )
Ext B
Scaling up and down depending on number of samples
w01 ThermoFisher
SCIENTIFIC
N T A NTHOY O - MDNNAL . A7 O7F A~~~ YATIAT -




Rigorous testing by customers: Case 2

A
Integrated/a
—=o Actionable —»L

Flexible \’g

Affordable : -
Reliable Universitat i
zu Koln
= MiSeq vs GeneReader
©
$ 100.0
e y=0.9732x+ 1.2355 B
G 800 R?=0.946
e
Z 600
C
()
3 400
o
L
o 200
©
< 00 - x ; : . .
0.0 20.0 40.0 60.0 80.0 100.0
Allele Frequency (Alternative NGS)
10 ThermoFisher
SCIENTIFIC
M _ - _ T __A___ AT O___x - MDYNNL . A rOr ~ ~~ YATYAT -
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NANOPORE SENSING

NANOPORE DNA SEQUENCING

How does it work?

Algorithm
RNN to determine DNA sequence from
raw data

Nanopore Reader

Run Conditions

Membrane

Oxford
An explanation from @ NANOPQRF id

. H wellcome
s}y Saiger

Multiple nanopore sensors arrayed in one
device

Operate independently but at the same time

Oxford
An explanation from @ NANOPQBWE "

. =l- wellcome
.t Sdnger
] as “sumg



»

»

by 4 pores & records only 1 ‘
at the tie Q

»

»

Oxford Nanopore Technologiés®

Flow cell design

Application-Specific Integrated
Circuits (ASICs) contains 512
channels

Each channel is surrounded

512 pores max recorded at the time

Scan for “fresh” active pores
automatically every 24h or when
manual restarted

% '@‘ <

5-base words = 1024 current levels

. =l- wellcome
g SANnger
-l= = institute g



Current (pA)
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Slide courtesy of David Buck. WTCGH

smer current signals
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From Szalay & Golovchenko, Nat. Biotech., 2015.



ONT 2D Library prep

HMW genomic DNA

fragmented genomic DNA (10kb or more)

\/N

g shear
o 5'overhang o 3'overhang
|
|

C l end-repair
/Y C
recessed 3'end filled in
( p 2 A-tail
A
Al:_@
l ligation of T-tailed adapters

and enzymes loaded

€ —3
1 < 1 T ] A
\)ﬁm:—r

tethers attached

ONT 1D Library prep

wellcome
. Sanger

Genomic DNA Amplicon cDNA from strand switching*
high molecular
DNA sample — weight gDNA
= — = =\ AN N %
U e = = > T T s S A —
constriction —} + = ~—" == z N
; — e

. 30 mins
fragmentation optional

Nanopore Sequencing Kit

Com
* or 2D cDNA synthesis '

end-repair and .
dA tailing 20 mins

&0

\.—,__T { adapter ligation 12 mins

J
// '\ 12 mins

\'
{

" welicome
. sanger
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1D?
Problems with 2D

2D HAS BEEN CHALLENGING FOR MANY YEARS

O 50% of sample is lost in library preparation
O Signal problems arise from 2° structure under the pore

—  Hairpins formed change the DNA signal (“uplift”)

—  Secondary structure is variable, broad distribution of accuracies
- “Uplifted” signal results in lower accuracy

~  Missing sections also present from enzyme slips

O Problems much worse with 450 bps chemistry

Combined
(2D)

Template

Complement

70 80 90 100

4

template “good”

complement

In
sequencing
(L)

template “bad”
complement
{) NANOPORE

1D2
Improved template — complement data

SEQUENCING SCHEME WHERE STRANDS ARE NOT JOINED

O Complement follows template as separate independent strand
-~  Each molecule has it's own motor-adapter
~  Each individual strand has high 1D accuracy
-~ No secondary structure problems

O Simple library preparation, compatible addition to 1D methods
—~  Compatible with E8 and 450 bps

L
\

1D? chemistry Combined

@ 450 b/s (1D%)

Template

Complement

70 80 90 100
A %

\ ccuracy )

L




&
Ly

1D?
Efficiency
[ 1D? Pair ]
BUILDING ON 1D CHEMISTRY e
O Targeting same throughput as 1D @ 450 bps oo [ Template ] [ Complement ] [ Template (only) ]
-~ 1D?is free information ‘:3 -
O Typically the second strand immediately follows the §
template, with a short return to open-pore g e '
50
137812+, H H ) . ' ' Vi
EFFICIENCY 287098 2875 2880 2885 vmmm 2895 2900 20544
© 1D? occurs naturally at < 1% efficiency 273061 -
O Changes to the R9.4 pore have improved efficiency - | -
O For R9.5 > 60% of strands are 1D? pairs 1 e sl
E 150 M !
— e — — 3 1004 i
(| K P e B A Yo il

137812+, |
287976 28798

RAPID SEQUECING KIT

3 "
L Return to open pore

2802 28029
Time (s)

{) NANOPORE

. =l " welicome
4y Sahger

A two-step, 10 minute protocol

(transpose + adapters)

8

high molecular

10 mins

simultaneous cleavage and
addition of transposase

P—

l ligation of sequencing adapters

7 e

™~

Starting material will be fragmented; recomme
starting size >30 kb for genomic DNA

nded



MinKNOW Interface
read distribution graph

Read Summary

Total 67098 Events 540632171 Channels 498 of 512
101,854,511

............

Data Quality

2D error rate 2-3%, 1D error rate 8-9%

Read lengths as long as template. Record >1Mb but
shorter fragments give higher yield

Some AT bias? Low coverage at high AT and GC.
Systemmatic errors in and around homopolymers

Yield per minION flowcell dependent on DNA
1-17Gb.

. =-- wellcome
g SANnger
.l= . 'nstiwteg



MinlON: PORTABLE DNA/RNA SEQUENCING
Sample to scientific insight easily, quickly 512

Simple workflow

- - contains sensing chemistry,

o o nanopore, and electronics
i I

Real time
analysis Sensor chip works with custom ASIC
for control and data processing

USB powers device MinlON docks with flow cell, dala streamed to USB

An explanation from O NANOPORE

GridION X5

Bench top sequencing device

SEQUENCING
« 5 individually addressable flow cells
§ « Based on current MinlON flow cell design
« Road map to on board Run Until... and Read Until

COMPUTE
« Embedded high performance compute

» Full Real time basecalling and data analysis in the box
« Simple user interface and single ethernet for data transfer

Component Specification

Size and weight H200 x W 360x D 360 mm , 10 kg

Power 600 W

Compute spec 8 TB SSD Storage, 64 GB RAM
Latest Gen CPU for OS and orchestration
FPGA processor

Pre-loaded software Linux OS, MinKNOW

Connections 5x USB 3. 1x USB-C 1 x HDMI. 1 x Ethernet =




PromethlON: ON-DEMAND, HIGH-THROUGHPUT

48 individual fiow cells

Sample added to flow cell here. Currently this is
prepared DNA/RNA, from any original sample

Each flow cell comprises up to 3,000 active

48 x
3,000
=144.000

Instrument and flow cells

O Modular: 48 flow cells
can be used
individually/together for
on-demand sequencing

Integrated compute

module

O Real time compute
provided

O Web based/remote,
real time administration
& monitoring

Compute module Sequence module channels and has four sample inputs ©
An explanation from O NANOPQRE
NANOPORE SYSTEMS
Summary

Sequencer type

System Price

Data produced by starter pack
(based on internal best Mar 17)

Fee For Service available

Run Time
Yield per flow cell

Yield per Instrument run

»”

Mobile Benchtop
Starter pack of $1000  $0 when ordering 300
flow cells
Up to 40GB Up to 6TB
No Yes

1 min - 48 hours
20GB 20GB
20GB 100GB

* PromethION yield still in development through the PromethlON Early Access Programme

1 min - 48 hours

Benchtop

Starter pack of
$135,000

Coming soon

Yes

1 min - 48 hours

50GB*

247TB*



ONT applications

» Super-long reads (>1Mb)

» “Run until” done. W.I.M.P

» Selective reads

» Casg mediated enrichment

» Mobile sequencing

» Direct blood analysis?

» Direct methylation detection?
» Direct RNA sequencing

o " bome
'« sanger
.u.l=:- hsumeg

@v.\ q
ONT Predicted Performancé 4"

» MinION: 100 Mb/hr. 1-20Gb
» PromethION: >1Tb/day

» Read length potentially as long as
molecule

» Run until done
» $60-600/Gb minION, no capital cost
» $15-25/Gb GridION

g g o
=’ « SANGer
.nll=:- mumeg



wellcome trust

sanger

INstitute
iy Sager

Current Sanger Platforms

“% @v’ q

» ABI 3730 Capillary (outsource)
» Illumina Xten + 5 HS2500 + 2 HS4000
» 5 Novaseq

» MiSeq (6)

» PacBio RSII and Sequel(2)

» Oxford Nanopore minION (4)

» Oxford Nanopore gridION (1)

» Oxford Nanopore promethION (1)

as welicome

iy, Sanger



KEEP
CALM

ITS

COMPETITION
TIME!
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6. How accurate is Q207
7. What technology features nanoballs
8. What does SBS stand for

9. What does SMRT stand for

10. Name 2 technologies that use
sequencing by ligation

. =l- wellcome
g’ Sanger
g -l= = institute g



Identify the Sequencer

Pacific Biosciences RSII
minION

Illumina NovaSeq
Y Ion Torrent PGM

6. How accurate is Q207

1 error in 100; 99%

7. What technology features nanoballs

Complete Genomics (BGI)

8. What does SBS stand for

Sequencing by Synthesis

9. What does SMRT stand for

Single Molecule Real Time

10. Name 2 technologies that use sequencing by ligation
Solid and Complete Genomics

. =l- wellcome
-g",: sanger
g -l= = institute g



The future

Qz.s,‘.ou .
gnubio
sanger

targeted sequencer
Details on James Hadfield’s blog:

http://enseqlopedia.com/2017/02/nanostrin
g-hybseq/

. =l- wellcome
g’ Sanger
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»

Base4

Based in Cambridge, UK.
Developing microfluidics based sequencer

Individual bases are cleaved from DNA one
at a time, captured into droplets in oil

Presence of particular base in droplet causes
characteristic fluoresence. Order of droplets
= order of bases

g B ome
-=g’,: sanger
LU institute

Base4 B

L& BASE4 Microdroplet Sequencing Overview
Aprocess called The released nucleotides Inside the microdroplets, each
“3) pyrophosphorolysis P nucleotide initiates our proprietary
releases nucleotides cascade reaction, creating a

from the captured DNA bright fluorescent signal

A single molecule of

S

From this
fluorescence,

we can ‘call’
e the base that

—

By maintaining

:
:

the droplets,

00 - 0000000000

900000 00 - 000

i

$00000 - 8eees

i
§
g

the DNA

- =%-s wellcome

"B

3. Sanger
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GnuBio

» Acquired by BioRad

» Sequencing by hybridisation in
microfluidic oil droplets

» Extremely accurate

» $200 for ~100 amplicons of 1kb

Isolate High Molecular Label Specific Transfer Labeled DNA into Load, Linearize & Image Labeled DNA in Repeated
Weight DNA Sequences Across the | Cartridge for Scanning Cycling to Scan Whole Genome

W Homrme |
X g =

High-Throughput, High-Resolution Imaging Gives Contiguous Reads up to Mb Length

Algorithms Convert Images Assembly Algorithms Align Molecules de novo for Cross-Mapping Across Multiple
into Molecules Constructin g Consensus Genome Maps Samples or to a Reference
muem Ll - N
marm oy -
e e iy ] \
" - LU L D / S
e —r w o wavaws /. T W,
[ - - —
/
- ———— o f « Automated SV Detection
o — e \ + Scaffoldi
i b \ o
T e — oo * Gap Sizing
- o .

ger



N T S Magnets

L Ligation N ,
Sequence —> [T >
of interest Dig { o ‘ 2;1::‘::5
sy’ -3 s

“Single-molecule mechanical identification and sequencing” Ding F., Manosas M., Spiering
M.M., Benkovic S.J., Bensimon D., Allemand J-F., & Croquette V. Nature Methods, published

online: 11 March 2012 | doi:10.1038/nmeth.1925 i
an

*, ms - welcome
=g’ Sanger

a8 =« institute

LD R

Depixus

Parisian company using magnetic tweezers and
SPR to detect binding to surface bound DNA

Ftest
T Ftest

T Ftest

T
4‘5 4;59;,

L«

“TrTTTY 'rvmr’

A

zZp — unzip ——» unzZip ——» block ——» re-zZip

il nger




QuantMDx

» UK company based in Newcastle. Currently
sell microfluidics genotyping device
(mPOC). Disease specific cartridges. Uses
probes on nanowires. Hybridisation to
target gives signal in < 5mins.

» SBS. Base incorporation changes charge of
DNA fragments. This can be detected with

nanowires 4 Sanger

Genapsys

» Small benchtop sequencer. Works in
similar way to Ion Torrent

» Eventually may be 10x cheaper than
Illumina

» 1kb reads




7S Genetics

The single-stranded DNA is made into double-stranded DNA using heavy-atoms/modified dNTPs

Each modified dNTP-type contains a unique label that is separately identifiable in the electron microscope-generated image, for example by “large” black dots,

smaller black dots and large grey dots.

ar

Noblegen

Convert Capture and optical read
Convert DNA Tag ESR Pull ESR through Record flashes w/
into expanded » with color‘ pore; as beacons zip ‘ camera; translate
synthetic coded off, they emit color light color into base
representation beacons coded light calls
(ESR) G,ATC Nanopore Instrument
+  Convert Hybridize Detect
: —
s, f H 3
Tsh EE “» E “ L ‘
=t — -
2%? E 4 E/‘
x N
\ % U
B
Bulk (massively parallel) Single Molecule l
NO AMPLIFICATION! NO ENZYMES, NO MOVING PARTS!

Automated, scalable workflow w/ small instrument Noblegen

BIOSCIENCES

o Read 96 genomes: 17h
msuuite




Genia

5' template 3'
primer
tether @ tag 4
tag 1 nanopore
tag 3
. =l. welicome
tag2 @ 4 Sanger
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Potential for $100 genome
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Stratos

Probe
Reporters Hexamer X-Probe
(Full Library Size: 4096 )
=- wellcome
em@ =
5.e0, Sanger

Stratos

Reporter —. NTP

X-NTP
(Full Library Size: 4)



Stratos

SBX SEQUENCING DEMONSTRATION

in WT Hemolysin Nanopore

STRATOS Xpandomer Sequencing H
C G A T

G T Hp

. =l " welicome
e Sanger

» FISSEQ fluorescent in situ Sequencing:
Lee, Daugherty et al Science 2014

Cyclic in situ sequencing with reversible terminators.
Can sequence a few molecules per cell.

Takes several days.

. =l- wellcome
-g",: sanger
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Joakim Lundeberg -Spacial Transcriptomics
(ST) At SciLifeLab

» Histochemistry/RNA seq on single cell layer

» Have spacially segregated barcoded oligo dT
primers on glass slides

Joakim Lundeberg -Spacial Transcriptomics
(ST) At SciLifeLab

» Lyse, capture and do cDNA synthesis on surface. Cut
off cDNA and make library. Sequence and sort
according to barcode.

» High density array. 135k unique Barcodes .These are
3' tag libraries. Sequence 50 K reads per feature

» Each 13um square approximates a single cell. All cells
on array treated equally

. =i " welicome
oy Eiger



Joakim Lundeberg -Spacial Transcriptomics
(ST) At SciLifeLab




Any Questions

mgi@sanger.ac.uk

. =- " welicome
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NGS Bioinformatics:

Virtual Machine

Jacqui Keane

jm15@sanger.ac.uk

WELLCOME
GENOME
CAMPUS

- Sabger CRYMREEING

1/11/18

WT NGS Bioinformatics

Operating System (OS)

» Software that supports the computer's basic functions
» Manages computer hardware (screen, mouse, keyboard)
»  Provides tools for managing files, running software

» Provides a way via software applications to interact with the
computer

Hardware

WT NGS Bioinformatics

Elsanger
——

Operating System (OS)

» Software that supports the computer's basic functions
» Manages computer hardware (screen, mouse, keyboard)
»  Provides tools for managing files, running software
» Provides a way via software applications to interact with the

computer
User
» Examples: ?
»  Windows L
R 0S X Application
y Unix .
N Linux Operating System
N
Hardware
WTNGS Bioinformatics Blsanger




Operating System (OS)

» Software that supports the computer's basic functions
» Manages computer hardware (screen, mouse, keyboard)
»  Provides tools for managing files, running software
» Provides a way via software applications to interact with the

computer
User
» Examples:
»  Windows [
» 0OS X Application
»  Unix it <
» Linux Operating System

it &

Hardware

WT NGS Bioinformatics

Elsanger
—

1/11/18

Virtual Machine (VM)

» VM is a computer environment that can be run on any computer
» OS, data, software applications

» Allows you to run one OS (Linux) on another OS (Windows)

» Created a VM for this course
» Linux OS
» Data for practicals
» Bioinformatics software (bwa, samtools, vcftools, velvet etc.)

» Take it home and use on your own machine
» Take the course again!
» Run bioinformatics analysis

WT NGS Bioinformatics

Elsanger
L2 S

Getting Started

eoe Oracle VM VirtualBox Manager
o
O
New Setings Discard  Stat "
NGSBioinformatics15 5 General
© Powered Off

Name: NGSBioinformati
e

Operating System: Ubuntu (64-bit)

[ system NGSBioinformatics15

Base Memory: 8032 MB.
Boot Order:  Floppy, Optical, Hard
Disk

Acceleration:  VT-x/AMD-V, Nested
Paging, KVM
Paravirtualization

Display

Video Memory: 12M8

Remote Desktop Server: Disabled

Video Capture: Disabled

) storage

Controller: IDE

IDE Secondary Master: [Optical Drive] Empty
Controller: SATA
Bio-linux.8.0.7.vdi (Normal, 410.65 GB)

WT NGS Bioinformatics

Blsanger
L ey




Virtual machine at home

What is a virtual machine?

A virtual machine (VM) is a software computer that, like a physical computer, runs an
operating system and a set of software applications. It allows you to run one operating
system (e.g. Linux) within another operating system (e.g. Windows).

Adding the virtual machine to VirtualBox

Open VirtualBox on your machine and select ‘New’.
® Oracle VM VirtualBox Manager

New Settings Discard Start_

Name and operating system
er. The list is
Please choose a descriptive name for the new virtual machine g
and select the type of operating system you intend to install # \
b ~

on it. The name you choose will be used throughout
VirtualBox to identify this machine.

| 7
Name: l l ?./
Type: = Microsoft Windows a ! f
Version: = Windows 7 (64-bit) a

Expert Mode Go Back Continue Cancel

Enter a name for your VM, ‘NGSBioinformatics16’. Select ‘Linux as the’ type of operating

system that will run on your VM. Select the version as ‘Ubuntu (64-bit) and click Continue.
@ Oracle VM VirtualBox Manager

5 2

New Settings Discard Start_

Name and operating system

er. The list i
Please choose a descriptive name for the new virtual machine g
and select the type of operating system you intend to install “‘(
on it. The name you choose will be used throughout \
VirtualBox to identify this machine. 3 'Y

Name: lNGSBioinformatics‘lS

Type:  Linux

il
.

[N o

Version: = Ubuntu (64-bit)

Expert Mode GoBack  [Confinuely =~ Cancel



Select the amount of memory (RAM) to allocate to this VM, the values available to you will
depend on the amount of memory (RAM) available on the host machine. For this course,

please select 12GB and click ‘Continue’.
[ ] Oracle VM VirtualBox Manager

i e |
@ @ v

New Settings  Discard Start_

Memory size
er. The list is
Select the amount of memory (RAM) in megabytes to be _—
allocated to the virtual machine. “V
The recommended memory size is 768 MB. }

B

4 MB 8192 MB

Go Back Cancel

ue.

As we have already created the virtual hard disk for you, select ‘Use an existing virtual hard

disk file’ and click on the folder with a green plus on the right hand side.
[ ] Oracle VM VirtualBox Manager

Lo Lol
@ w @9

New Settings Discard Start_

Hard disk
er. The list is
If you wish you can add a virtual hard disk to the new —

machine. You can either create a new hard disk file or select “"V
one from the list or from another location using the folder icon. \

If you need a more complex storage set-up you can skip this 4
step and make the changes to the machine settings once the N
machine is created. #

The recommended size of the hard disk is 8.00 GB. !

Do not add a virtual hard disk
(") Create a virtual hard disk now
© Use an existing virtual hard disk file

|

(5]

Empty

Go Back Create Cancel



Navigate to the USB drive and select the file ‘Bio-linux.8.0.7.vdi and click ‘Create’.
Oracle VM VirtualBox Manager

New Settings Discard Start,

Hard disk
er. The list is

If you wish you can add a virtual hard disk to the new -

machine. You can either create a new hard disk file or select “-‘/

one from the list or from another location using the folder icon. \
[ .

If you need a more complex storage set-up you can skip this 4
step and make the changes to the machine settings once the -
machine is created. #

The recommended size of the hard disk is 8.00 GB.

Do not add a virtual hard disk
Create a virtual hard disk now
Use an existing virtual hard disk file

Bio-linux.8.0.7.vdi (Normal, 410.65 GB) 7]

Go Back Create Cancel

You should then see the screen below containing your VM ‘NGSBioinformatics16’ switched
off.

Oracle VM VirtualBox Manager

[ NN

New Settings  Discard Start

NGSBioinformatics15 = General Sl preview
Powered Off
@ Name: NGSBioinformati
cs15
Operating System: Ubuntu (64-bit)
[x] system NGSBioinformatics15

Base Memory: 8032 MB
Boot Order: Floppy, Optical, Hard

Disk
Acceleration:  VT-x/AMD-V, Nested

Paging, KVM

Paravirtualization
Display A/
Video Memory: 12 MB

Remote Desktop Server: Disabled
Video Capture: Disabled



Removing the virtual machine from VirtualBox

In the main VirtualBox window, select your virtual machine (on the left).
Then right click on the name of the machine and select ‘Remove’.

[ NN Oracle VM VirtualBox Manager

fd 8 =
3 °
L= M EINE (&) Snapshots

v
New Settings  Discard Start

&) | NGS-2015 = General = Preview
% (@) Powerert N¥

Settings... #S NGS-2015

Clone... 80 'stem: Ubuntu (64-bit)

Group #U

y: 2425 MB

Start > Floppy, Optical,

Pause 3P Hard Disk

Reset #¥T | VI-/AMD-V,

Close Nested Paging,

A

Then select ‘Remove only’, do not select the ‘Delete all files’ option as this will delete the the

vdi file that contains the virtual machine.
D Oracle VM VirtualBox Manager
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New Settings Discard Start

& "565'2015 N\ You are about to remove following virtual machines
@ Powered Off » 4 from the machine list:
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Would you like to delete the files containing the virtual
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also remove the files containing the machine's virtual
hard disks if they are not in use by another machine.

w Remove only Delete all files

Paravirtiializatinn

Username and password

The username is “manager” and the password is also “manager”.

Shared folders

By default, none of the files on the host machine are visible from inside the virtual machine.
The instructions below show how to share data between the host and the virtual machine.
This is done by sharing a folder on the host, so that the folder can be used inside the virtual
machine.



Settings in VirtualBox

First, make sure that the virtual machine is not running.

In the main VirtualBox window, select your virtual machine (on the left).
Then go to Settings -> Shared Folders.

£23 NGS 2015 - Settings =<
@ General Shared Folders
System Folders List
Bl Name Path Auto-mount Access E@
S Machine Folders (i
Storage =
o Audio
@ Network

ﬁ Shared Folders

E User Interface

Invalid settings detected [ OK ][ Cancel ] [ Help ]

Click on the blue folder with a green plus on the right hand side. In the pop up box, select
“Other” from the Folder Path option.

o =

{23 Add Share @

Folder Path: <not selected> E]

<not selected >
Folder Name:
[ Read-only Displays a

[7] Auto-mount

OK Cancel

Find the folder that you would like to share with the Virtual Machine. It should now be visible
in the Folder Path box. Tick the Auto-mount box.



e

{=3 Add Share

Folder Path: | H:i\shared_data ad

Folder Name: shared_data
[] Read-only
Auto-mount

[ ok || cancel

Now click on OK. The new shared folder should be in the Folders List:

,
{3 NGS 2015 - Settings

Shared Folders

Co e

@ General
System Folders List
Display Name Path Auto-mount  Access | [
o 4 Machine Folders Iﬂ
Storage [shared_data H:\shared_data Yes Ful |5
Pa Audio
@ Network
@ Serial Ports
(> uss
ﬁ Shared Folders
lﬁ User Interface
Invalid settings detected [ OK ] [ Cancel ] [ Help ]

Select OK and you will return to the main VirtualBox window. Now start the virtual machine.

Finding the shared folder in the virtual machine

Inside the virtual machine, the shared folder will be inside the directory “/media”. It will have
the same name as on the folder on the host machine, but with “sf_” added. For example, if

the folder is called “shared_data” on the host, then it will be called “/media/sf_shared_data/”
inside the virtual machine.
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Output of lots of biological research exists in large text files
Very suitable for working with such files

Powerful and flexible commands for processing large text files
Save you time

Widely used in scientific community

Powerful, robust and stable operating system

WT NGS Bioinformatics

Elsanger
L2 S

W [Running]
Fle Edit

computer

i Home

& Deskop 8l o

2 Documents oo s
@ Downloads

@ husic
@ Pictures

e Module_1_Artemis Module 2. Module_3 Mapping

Module_3
comparifive_ Phylogenetics

= Filesystem genomics
S RubbishBin

Network d d

Madule 6 Module&
Browse Net...
“ Programming Amotation  DifferentislExpressi

) 2

Lt
Pictures Public Templates.

€

Videos Examples

QLUI/PEAU GBI

WTNGS Bionformatcs Blsanger
e




Terminals and Commandline
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Unix Commands

Command  What it does

1s List the contents of the current directory
cd Changes a directory

mv Moves a file

cp Copies a file

rm Remove a file

less Displays the contents of a file
head Displays the first ten lines of a file
tail Displays the last ten lines of a file
cat Concatenate files together

pwd Print working directory

mkdir Make a new directory
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Directory Structure

/ — root directory
|
[ \ \ \ |
Jusr /bin /home Jetc /mnt
/Nlocal Ifred
Ibin lib /man /bab
\ \ \
/bob Ifred /tu01 /tu02 /tu03
genome.seq

/home/tu01/genome.seq
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Unix Tips & Tricks

» Unix is case sensitive
» Typing LS is NOT the same as typing Is

» You need to put spaces between
» acommand

» the values passed to the command

> mkdir new_dir will create a new directory
»  mkdirnew_dir will just give an error!

» Unix is not psychic! If you misspell the name of

command or a file it will not understand you
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1.1 Introducing Unix

Unix is the standard operating system on most large computer systems in scientific research, in
the same way that Microsoft Windows is the dominant operating system on desktop PCs.

Unix and MS Windows both perform the important job of managing the computer’s hardware
(screen, keyboard, mouse, hard disks, network connections, etc...) on your behalf. They also
provide you with tools to manage your files and to run application software. They both offer a
graphical user interface (desktop). These desktop interfaces look different between the operating
systems, use different names for things (e.g. directory versus folder) and have different images
but they mostly offer the same functionality.

Unix is a powerful, secure, robust and stable operating system which allows dozens of people to
run programs on the same computer at the same time. This is why it is the preferred operating
system for large-scale scientific computing. It runs on all kinds of machines, from mobile phones
(Android), desktop PCs... to supercomputers.

1.2  Why Unix?

Increasingly, the output of biological research exists as in silico data, usually in the form of large
text files. Unix is particularly suitable for working with such files and has several powerful and
flexible commands that can be used to process and analyse this data. One advantage of learning
Unix is that many of the commands can be combined in an almost unlimited fashion. So if you
can learn just six Unix commands, you will be able to do a lot more than just six things.

Unix contains hundreds of commands, but to conduct your analysis you will probably only need
10 or so to achieve most of what you want to do. In this course we will introduce you to some basic
Unix commands followed by some more advanced commands and provide examples of how they
can be used in bioinformatics analyses.

1.3 Sections of the Unix course

¢ Basic unix
¢ Files

¢ grep

e awk

® Bash scripts

We’ve also included a cheat sheet. It probably won’t make a lot of sense now, but it might be a
useful reminder of this module later in the course.

1.4 Following the course in a terminal

To follow this course, please type all the commands you see into a terminal window. This is similar
to the “Command Prompt” window on MS Windows systems, which allows the user to type DOS




1 Unix module 1.4 Following the course in a terminal

commands to manage files.

To get started, double-click the icon on the desktop called “Module 1 Unix”. This will open a
terminal, ready for you to follow the module.

Throughout this manual, each command to be typed in the terminal is shown in white text on a
black background, next to a picture of a keyboard: E=). The expected output is shown underneath
with a yellow background.

For example, try typing this into your terminal, followed by the Return key.

echo hello world

hello world

Now follow the instructions in the Basic Unix section.
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2.1 The Commandline

The commandline or ‘terminal’ is an interface you can use to run programs and analyse your data.
If this is your first time using one it will seem pretty daunting at first but, with just a few com-
mands, you'll start to see how it helps you to get things done much quicker. You're probably more
familiar with software which uses a graphical user interface, also known as a GUI; unfortunately
most of the best bioinformatics software has not been programed with this capability.

2.2 Getting started

Before we get started, let’s check that you're in the right place. If you haven’t done so already,
double-click the desktop icon called “Module 1 Unix”, which will open a new terminal window.
Then type the following, and press Return. Do not worry about the meaning of this for now — it is
explained later in the module.

(no output)

There should be no output to your terminal. Now continue through the course, entering any
commands that you encounter into your terminal window.

However, before getting started there are some general points to remember that will make your
life easier:

¢ Unix is case sensitive - typing 1s is not the same as typing LS.

¢ Often when you have problems with Unix, it is due to a spelling mistake. Check that you
have not missed or added a space. Pay careful attention when typing commands across a
couple of lines.

2.3 Files and directories

Directories are the Unix equivalent of folders on a PC or Mac. They are organised in a hierarchy,
so directories can have sub-directories and so on. Directories are very useful for organising your
work and keeping your account tidy - for example, if you have more than one project, you can
organise the files for each project into different directories to keep them separate. You can think of
directories as rooms in a house. You can only be in one room (directory) at a time. When you are
in a room you can see everything in that room easily. To see things in other rooms, you have to
go to the appropriate door and crane your head around. Unix works in a similar manner, moving
from directory to directory to access files. The location or directory that you are in is referred to as
the current working directory.

If there is a file called genome. seq in the dna directory its location or full pathname can be
expressed as /nfs/dna/genome.seq.
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Directory structure example

| | I I
Jusr /oin Infs Ivar /home
/local ffred
|
I I I
Ibin lib fman Keta
I I I |
Ima /pfam /dna /protein /cosmids
Hierarchy

2.4 pwd - find where you are

The command pwd stands for print working directory. A command (also known as a program) is
something which tells the computer to do something. Commands are therefore often the first
thing that you type into the terminal (although we’ll show you some advanced exceptions to this
rule later).

As described above, directories are arranged in a hierarchical structure. To determine where you
are in the hierarchy you can use the pwd command to display the name of the current working
directory. The current working directory may be thought of as the directory you are in, i.e. your
current position in the file-system tree.

To find out where you are, type this into your terminal.
pwd

/home /manager/course_data/Modulel_Unix/Notebooks/Unix/basic

Remember that Unix is case sensitive, PWD is not the same as pwd.

pwd will list each of the folders you would need to navigate through to get from the root of
the file system to your current directory. This is sometimes refered to as your ‘absolute path” to
distinguish that it gives a complete route rather than a ‘relative path” which tells you how to get
from one folder to another. More on that shortly.

2.5 Is - list the contents of a directory

The command 1s stands for list. The 1s command can be used to list the contents of a directory.

To list the contents of your current working directory type:
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S

‘

basic.ipynb directory_structure.png Pfalciparum Styphi

You should see that there are 4 items in this directory.

To list the contents of a directory with extra information about the items type:

1ls -1
total 56
—-rw—-rw—-r—— 1 manager manager 19512 Sep 27 10:16 basic.ipynb
-rw—-rw-r—— 1 manager manager 28513 Sep 27 10:16 directory_structure.png

drwxrwxr—-x 4 manager manager 4096 Sep 27 10:16 Pfalciparum
drwxrwxr—-x 2 manager manager 4096 Sep 27 11:42 Styphi

Instead of printing out a simple list, this should have printed out additional information about
each file. Note that there is a space between the command 1s and the -1. There is no space
between the dash and the letter 1.

-1 is our first example of an option. Many commands have options which change their behaviour
but are not always required.

What do each of the columns represent?

To list all contents of a directory including hidden files and directories type:

ls —a -1

total 64

ArwXrwxr—x manager manager 4096 Sep 27 10:16 Pfalciparum

manager manager 4096 Sep 27 11:42 Styphi

drwxrwxr-x 4 manager manager 4096 Sep 27 11:42
drwxrwxr—-x 8 manager manager 4096 Sep 27 10:16
—-rw—rw-r—— 1 manager manager 19512 Sep 27 10:16 basic.ipynb
—-rw—-rw-r—— 1 manager manager 28513 Sep 27 10:16 directory_structure.png
—-rw-rw—-r—— 1 manager manager 0 Sep 27 10:16 .hiddenl
—-rw-—rw-r—— 1 manager manager 0 Sep 27 10:16 .hidden2
4
2

Arwxrwxr—-x

This is an example of a command which can take multiple options at the same time. Different
commands take different options and sometimes (unhelpfully) use the same letter to do different
things.

How many hidden files and directories are there?

Try the same command but with the —h option:

ls —alh

m ‘
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total 64K

drwxrwxr—x
drwxrwxr—x

drwxrwxr—-x 4 manager manager 4.0K Sep 27 11:42
drwxrwxr—-x 8 manager manager 4.0K Sep 27 10:16
—-rw—-rw—-r—— 1 manager manager 20K Sep 27 10:16 basic.ipynb
—-rw—-rw—-r—— 1 manager manager 28K Sep 27 10:16 directory_structure.png
—-rw-rw-r—— 1 manager manager 0 Sep 27 10:16 .hiddenl
-rw-rw-r—— 1 manager manager Sep 27 10:16 .hidden2
4
2

0
manager manager 4.0K Sep 27 10:16 Pfalciparum
4.

manager manager 0K Sep 27 11:42 Styphi

You'll also notice that we’ve combined -~a -1 -h into what appears to be a single —alh option.
It’s almost always ok to do this for options which are made up of a single dash followed by a
single letter.

What does the ~h option do?

To list the contents of the directory called Pfalciparum with extra information type:

ls -1 Pfalciparum/

total 24472

manager manager 23241585 Sep 27 10:16 Malaria.fa
manager manager 183279 Sep 27 10:16 Pfalciparum.bed

—IwXrwxr—x

drwxrwxr—-x 2 manager manager 4096 Sep 27 10:16 annotation
drwxrwxr—-x 2 manager manager 4096 Sep 27 10:16 fasta
—-rw-rw—-r—— 1 manager manager 654069 Sep 27 10:16 MALLl.fa
—-rw-rw—-r—— 1 manager manager 962943 Sep 27 10:16 MAL2.fa
1
1

—IrWXrwXr—XxX

In this case we gave 1s an argument describing the relative path to the directory Pfalciparum
from our current working directory. Arguments are very similar to options (and I often use the
terms interchangably) but they often refer to things which are not prefixed with dashes.

How many files are there in this directory?

2.6 Tab completion

Typing out file names is really boring and you're likely to make typos which will at best make
your command fail with a strange error and at worst overwrite some of your carefully crafted
analysis. Tab completion is a trick which normally reduces this risk significantly.

Instead of typing out 1s Pfalciparum/, try typing 1s P and then press the tab character (in-
stead of Enter). The rest of the folder name should just appear. If you have two folders with
simiar names (e.g. my_awesome_scripts/ and my_awesome_results/) then you might need
to give your terminal a bit of a hand to work out which one you want. In this case you would type
1s -1 m, when you press tab the terminal would read 1s -1 my_awesome_, you could then
type s followed by another tab and it would work out that you meant my_awesome_scripts/
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2.7 File permissions

Every file and directory have a set of permissions which restrict what can be done with a file or
directory.

* Read (r): permission to read from a file/directory

* Write (w): permission to modify a file/directory

¢ Execute (x): Tells the operating system that the file contains code for the computer to run, as
opposed to a file of text which you open in a text editor.

The first set of permissions (characters 2,3,4) refer to what the owner of the file can do, the second
set of permissions (5,6,7) refers to what members of the Unix group can do and the third set of
permissions (8,9,10) refers to what everyone else can do.

2.8 cd - change current working directory

The command cd stands for change directory.

The cd command will change the current working directory to another, in other words allow you
to move up or down in the directory hierarchy.

To move into the St yphi directory type the following. Note, you'll remember this more easily if
you type this into the terminal rather than copying and pasting. Also remember that you can use
tab completion to save typing all of it.

cd Styphi/

(no output)

Now use the pwd command to check your location in the directory hierarchy and the 1 s command
to list the contents of this directory.

pwd
1s

/home /manager/course_data/Modulel_Unix/Notebooks/Unix/basic/Styphi
Styphi.fa Styphi.gff Styphi.noseq.gff

You should see that there are 3 files called: Styphi.fa, Stypi.gff, Styphi.noseq.gff

2.9 Tips

There are some short cuts for referring to directories:

¢ . Current directory (one full stop)

¢ .. Directory above (two full stops)

~ Home directory (tilda)

/ Root of the file system (like C: in Windows)

Try the following commands, what do they do?
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1s

Styphi.fa Styphi.gff Styphi.noseq.gff

1s

basic.ipynb directory_structure.png Pfalciparum Styphi

ls ~

bin data Downloads Pictures Templates
course_admin Desktop igv Public Videos
course_data Documents Music sf_pathogens-vm

Try moving between directories a few times. Can you get into the Pfalciparum/ and then back
into Styphi/?

2.10 cp - copy a file

The command cp stands for copy.

The cp command will copy a file from one location to another and you will end up with two
copies of the file.

To copy the file Styphi.gff to a new file called StyphiCT18.gff type:

cp Styphi.gff StyphiCT18.gff
(no output)
Use 1s to check the contents of the current directory for the copied file:

1s

StyphiCT18.gff Styphi.fa Styphi.gff Styphi.noseq.gff

2.11 mv - move a file

The mv command stand for move.

The mv command will move a file from one location to another. This moves the file rather than
copies it, therefore you end up with only one file rather than two. When using the command, the
path or pathname is used to tell Unix where to find the file. You refer to files in other directories
by using the list of hierarchical names separated by slashes. For example, the file called bases in
the directory genome has the path genome/bases. If no path is specified, Unix assumes that the
file is in the current working directory.

To move the file St yphiCT18.gff from the current directory to the directory above type:
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mv StyphiCT18.gff ..

(no output)

Use the 1s command to check the contents of the current directory and the directory above to see
that StyphiCT18.gff has been moved.

1s

Styphi.fa Styphi.gff Styphi.noseq.gff

cd

1s

basic.ipynb directory_structure.png Pfalciparum Styphi StyphiCT18.gff

2.12 rm - delete a file

The command rm stands for remove.
The rm command will delete a file permanently from your computer so take care!

To remove the copy of the S. typhi file, called St yphiCT18.gff type:

rm StyphiCT18.gff
(no output)

Use the 1s command to check the contents of the current directory to see that the file
StyphiCT18.gff has been removed.

1s

basic.ipynb directory_structure.png Pfalciparum Styphi

Unfortunately there is no “recycle bin” on the command line to recover the file from, so you have
to be careful.

2.13 find - find a file

The find command can be used to find files matching a given expression. It can be used to
recursively search the directory tree for a specified name, seeking files and directories that match
the given name.

To find all files in the current directory and all its subdirectories that end with the suffix gff:
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find . —-name "x.gff"

./Styphi/Styphi.noseq.gff
./Styphi/Styphi.qgff

How many gff files did you find?

To find all the subdirectories contained in the current directory type:
find . —-type d

./Styphi

./Pfalciparum
./Pfalciparum/annotation
./Pfalciparum/fasta

How many subdirectories did you find?

These are just two basic examples of the find command but it is possible to use the following find
options to search in many other ways:

* -mtime : search files by modifying date

* —atime : search files by last access date

* —size: search files by file size

¢ —user : search files by user they belong to

2.14 Exercises

Many people panic when they are confronted with a Unix prompt! Don’t! All the commands you
need to solve these exercises are provided above and don’t be afraid to make a mistake. If you get
lost ask a demonstrator. If you are a person skilled at Unix, be patient this is only a short exercise.

To begin, open a terminal window and navigate to the basic directory in the Unix directory
(remember use the Unix command cd) and then complete the exercise below.

1. Use the 1s command to show the contents of the basic directory.

How many files are there in the Pfalciparum directory?

What is the largest file in the Pfalciparum directory?

Move into the Pfalciparum directory.

How many files are there in the fasta directory?

Copy the file Pfalciparum.bed in the Pfalciparum directory into the annotation di-

rectory.

Move all the fasta files in the directory Pfalciparum to the fasta directory.

How many files are there in the fasta directory?

9. Use the find command to find all gff files in the Unix directory, how many files did you

find?

10. Use the £ind command to find all the fasta files in the Unix directory, how many files did
you find?

SNSRI

S
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3 Looking inside files

A common task is to look at the contents of a file. This can be achieved using several different
Unix commands, less, head and tail. Let us consider some examples.

But first, change directory into the Unix/files/ directory (hint: you might need to go up a
directories first using cd ../ ..). Check that the following commands give you a similar output:

pwd

1s

/home/manager/course_data/Modulel_Unix/Notebooks/Unix/files
files.ipynb Styphi.concatenated.gff Styphi.gff
Pfalciparum.bed Styphi.fa Styphi.noseq.gff

3.1 less

The less command displays the contents of a specified file one screen at a time. To test this
command type the following command followed by the enter key:

less Styphi.gff

The contents of the file Styphi.gff is displayed one screen at a time, to view the next screen
press the space bar. As Styphi.gff is a large file this will take a while, therefore you may want
to escape or exit from this command. To do this, press the q key, this kills the 1ess command
and returns you to the Unix prompt. less can also scroll backwards if you hit the b key. Another
useful feature is the slash key, /, to search for an expression in the file. Try it, search for the gene
with locus tag t0038. What is the start and end position of this gene?

3.2 head and tail

Sometimes you may just want to view the text at the beginning or the end of a file, without having
to display all of the file. The head and tail commands can be used to do this.

The head command displays the first ten lines of a file.

To look at the beginning of the fie Styphi.gff file type:

head Styphi.gff

##gff-version 3
##sequence-region AE014613 1 4791961
#!Date 2011-07-11

#!Type DNA
#!Source-version EMBOSS 6.3.1
AE014613 EMBL databank_entry 1 4791961 0.000 + . ID="AE(014613.1";

— organism="Salmonella enterica subsp. enterica serovar Typhi str. Ty2";
> sub_species=enterica;strain="Ty2";mol_type="genomic DNA"; serovar="Typhi
— ";db_xref="taxon:209261"

11
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AE014613 EMBL gene 190 255 0.000 + . ID="AE014613.2";gene="
— thrL";locus_tag="t0001"
AE014613 EMBL CDS 190 255 0.000 + 0 ID="AE014613.3";

— codon_start=1l;transl_table=11;gene="thrL";locus_tag="t0001";product="thr

— operon leader peptide";note="corresponds to STY0001l from Accession

— AL513382: Salmonella typhi CT18";db_xref="GOA:Q08XG1l2";db_xref="InterPro:

— IPR011720";db_xref="UniProtKB/Swiss—-Prot:Q8XG1l2";protein_id="AA067735

— .1";translation="MNRISTTTITTITITTGNGAG"
AE014613 EMBL gene 337 2799 0.000 + . ID="AE(014613.4";gene="

— thrA"; locus_tag="t0002"
AEQ014613 EMBL CDS 337 2799 0.000 + 0 ID="AE014613.5";
codon_start=1;transl_table=11;gene="thrA"; locus_tag="t0002";product="
aspartokinase I";note="corresponds to STY0002 from Accession AL513382:
Salmonella typhi CT18; homoserine dehydrogenase I";db_xref="GOA:Q8Z9R7";
db_xref="HSSP:1EBF";db_xref="InterPro:IPR001048";db_xref="InterPro:
IPR0O01341";db_xref="InterPro:IPR001342";db_xref="InterPro:IPR002912";
db_xref="InterPro:IPR005106";db_xref="InterPro:IPR011147";db_xref="
InterPro:IPR016040";db_xref="InterPro:IPR018042";db_xref="InterPro:
IPR019811";db_xref="UniProtKB/TrEMBL:Q8Z9R7";protein_id="AA067736.1";
translation="

R

n

The tail command displays the last ten lines of a file.

To look at the end of Styphi.gff type:

tail Styphi.gff

tattgaggttttccacacccttgccgacgecgectccacgatgtggattttaccgtagegac
gacagcccgcagccgggcaaaatttcattactacgecttecgececgetgaactggttceectt
attacaggaaaaatcacgctggatgcgtcatgccgcgctggtttttggeccgtgaggattce
cggtctgaccaacgacgagctggcgctggcggatgtattgaccggecgtgeccgatggcgge
ggattacccttcgctcaatctgggtcaggcggtcatggtgtattgctatcaattagcagg
tttaatgcaacagaccccggaatccgttgatattgctgatgaatcgcagttacaggegtt
acgcgcgcgccttttacgcecctgctaaccactctggaggcggeccgatgaccacaaattaac
cgactggctacaacagcgaatcggcctgctgggacagcgagatacggcaatgttgecaccg
tttggtccatgatattgaaaaaaaactaacaaaataacgtgttgtaatttttaaaataat
a

The amount of the file that is displayed can be increased by adding extra arguments. To increase
the number of lines viewed from 10 to 25 add -n 25 to the command:

tail —n 25 Styphi.gff

tcgaatacatcatagccttccgecttcgaaaatacttttcaacgtgttgegtgttaccaac
tcgtcttcaacgataagaatgtgcggggtctgcatgtttgctacctaaattgccaactaa
atcgaaacaggaagtacaaaagtccctgacctgcecctgatgcatgtcgcaaattaacatga
tcggcgtaacatgactaaagtacgtaattgcgttcttgatgcactttccatcaacgtcaa
caacatcattagcttggtcgtgggtactttccctctggacccgacagtgtcaaaaacggce
tgtcatcctaaccattttaacagcaacataacaggctaagacgtaccggacacctaataa
aactacgcttcgttgacatatatcaagttcaattgtagcacgttaacagtttgatgaaat
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catcgtagctaaatgctagctttcatcacaaatttgcaatattccaactagttacgtaag
ccaactaataaatgcgatgaatccaaagaacaggatctattttaaattaaattatcctaa
ataaacagcaggataacgatgttctgttaacataaacagcaatagtacagatacgcaata
gtgtagcgtcttttacgaaatcaaaaatgctttttcagtgatatccgttaaaattttgta
aatttgcgaagcgtaatatgcttacaaacgccagctaatttcctgtaaattagtcaaaaa
gagtaatgaaatgcgtgtaacaatcgttcttgtcgctceccgecagagcggaaaatatcgyg
cgcagccgcccgggctatgaagaccatgggatttactgacctgegtattgtcgacageca
ggcgcacctagagcccgctacccgttgggtcgcacatggatctggagatattattgataa
tattgaggttttccacacccttgccgacgecgectccacgatgtggattttaccgtagegac
gacagcccgcagccgggcaaaatttcattactacgcttcgececcgectgaactggtteectt
attacaggaaaaatcacgctggatgcgtcatgccgcgctggtttttggeccgtgaggattce
cggtctgaccaacgacgagctggcgctggcggatgtattgaccggecgtgeccgatggcgge
ggattacccttcgctcaatctgggtcaggcggtcatggtgtattgctatcaattagcagg
tttaatgcaacagaccccggaatccgttgatattgctgatgaatcgcagttacaggegtt
acgcgcgcgccttttacgectgctaaccactctggaggcggecgatgaccacaaattaac
cgactggctacaacagcgaatcggcctgctgggacagcgagatacggcaatgttgcaccyg
tttggtccatgatattgaaaaaaaactaacaaaataacgtgttgtaatttttaaaataat
a

In this case you've given tail an argument in two parts. In this case the —n says that you want
to specify the number of lines to show and the 25 bit tells it how many. Unlike earlier when
we merged arguments like 1s -1ha together, it's not a good idea to merge multiple two part
arguments together because otherwise it is ambiguous which value goes with which argument.

-n is such a common argument for tail and head that it even has a shorthand: -n 25 and -25
mean the same thing.

3.3 Saving time
Saving time while typing may not seem important, but the longer that you spend in front of a
computer, the happier you will be if you can reduce the time you spend at the keyboard.

¢ Pressing the up/down arrows will let you scroll through previous commands entered.

¢ If you highlight some text, middle clicking on the mouse will paste it on the command line.

¢ Tab completion doesn’t just work on filenames, it also works on commands. Try it by typing
fin and pressing tab...

fin
Although tab completion works on commands and filenames, unfortunately it rarely works on
options or other arguments.

3.4 Getting help man

To obtain further information on any of the Unix commands introduced in this course you can use
the man command. For example, to get a full description and examples of how to use the tail
command type the following command in a terminal window.

man tail
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There are several other useful commands that can be used to manipulate and summarise informa-
tion inside files and we will introduce some of these next, cat, sort, we and unigq.

3.5 Writing to files

So far we’ve been running commands and outputting the results into the terminal. That’s obvi-
ously useful but what if you want to save the results to another file?

Type this:

head -1 Styphi.gff > first_Styphi_line.txt

(no output)

It may look like nothing has happened. This is because the > character has redirected the output of
the head command. Instead of writing to the standard output (your terminal) it sent the output into
the file first_Styphi_line.txt. Note that tab completion works for Styphi.gff because it
exists but doesn’t work for first_Styphi_line.txt because it doesn’t exist yet.

3.6 cat

cat is another way of reading files, but unlike less it just throws the entire contents of the file
onto your standard output. Try iton first_Styphi_line.txt

cat first_Styphi_line.txt

##gff-version 3

We don’tneed first_Styphi_line.txt any more so delete it by typing

rm first_Styphi_line.txt

(no output)

The cat command can also be given the names of multiple files, one after the other and it will
just output the contents of all files. The order in which the files are displayed is determined by the
order in which they appear in the command line. You can use this concept and the > symbol to
join files together into a single file.

Having looked at the beginning and end of the Styphi.gff file you should notice that in the
GFF file the annotation comes first, then the DNA sequence at the end. If you had two separate
files containing the annotation and the DNA sequence, it is possible to concatenate or join the two
together to make a single file like the Styphi.gff file you have just looked at.

For example, we have two separate files, Styphi.noseq.gff and Styphi. fa, that contain the
annotation and DNA sequence, respectively for the Salmonella typhi CT18 genome. To join to-
gether these files type:
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cat Styphi.noseq.gff Styphi.fa > Styphi.concatenated.gff

(no output)

The files Styphi.noseq.gff and Styphi . fa will be joined together and written to a file called
Styphi.concatenated.gff.

The > symbol in the command line directs the output of the cat program to the designated file
Styphi.concatenated.gff. Use the command 1s to check for the presence of this file.

1s

files.ipynb Styphi.concatenated.gff Styphi.gff
Pfalciparum.bed Styphi.fa Styphi.noseq.gff

3.7 wc - counting

The command wc counts lines, words or characters.

There are two ways you could use it:

wc -1 Styphi.gff

88961 Styphi.gff

or
cat Styphi.gff | wc -1

88961

Both give a similar answer. In the first example you tell wc the file that you want it to review
(Styphi.gff)and pass the -1 option to say that you're only interested in the number of lines.

In the second example you use the | symbol which is also known as the pipe symbol. This pipes
the output of cat Styphi.gff into the input of wec -1. This means that you can also use the
same wc tool to count other things. For example to count the number of files that are listed by 1s

type:

ls | wc -1

You can connect as many commands as you want. For example, type:

ls | grep ".gff" | wc -1

What does this command do? You will learn more about the grep command later in this course.
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3.8 sort - sorting values

The sort lets you sort the contents of the input. When you sort the input, lines with identical
content end up next to each other in the output. This is useful as the output can then be fed to the
unigcommand (see below) to count the number of unique lines in the input.

To sort the contents of a BED file type:

sort Pfalciparum.bed

Now type:

sort Pfalciparum.bed | head
01 104936 105441 PFAO115w 1
01 107429 108580 PFA0120c -1
01 110984 116033 EBRAL181 -1
01 11513 12397 RNAzID:13 1
01 119275 121483 FIKK1 -1
01 124752 125719 PFA0135w 1
01 126553 128375 PFA0140c -1
01 129194 131074 PFA0145¢c -1
01 132320 133858 PFA0150c -1
01 134587 139491 PFA0155¢c -1

sort Pfalciparum.bed | tail
14 979397 979586 RNAzID:2132 1
14 981211 982551 PF14TR004 1
14 981536 981592 RNAzID:2134 -1
14 982830 982889 RNAzID:2136 -1
14 983283 984503 PF14_0232 -1
14 985307 987697 PF14_0233 -1
14 987657 987729 RNAzID:2137 1
14 989162 992872 PF14_0234 1
14 993594 994242 PF14_0235 1
14 995103 1000448 PF14_0236 -1

To sort the contents of a BED file on position, type the following command.
sort -k 2 -n Pfalciparum.bed

The sort command can sort by multiple columns e.g. 1st column and then 2nd column by speci-
fying successive -k parameters in the command. Type the following commands:

sort -k 2 -n Pfalciparum.bed | head
06 653 1432 PFF0005c -1
14 1394 5344 PF14_0001 1
14 2215 5392 PF14TROO1 1
06 3503 12835 VAR 1
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09 6841 7670 RNAzID:4487 1
14 7113 7207 RNAzID:1975 1
14 7209 8539 RIF =l

11 8419 9249 RNAzID:585 1
03 8435 8527 RNAzID:2735 -1
14 8936 9033 RNAzID:1976 1

sort -k 2 —n Pfalciparum.bed | tail

14 3272513 3273783 RIF 1

14 3274613 3274669 RNAzID:2440 -1
14 3276165 3277436 RIF 1

14 3279435 3280597 RIF 1

14 3282002 3282056 RNAzID:2456 1
14 3282664 3283687 PF14_0771 1

14 3285383 3285466 RNAzID:2463 -1
14 3285835 3286938 RIF 1

14 3289946 3290002 RNAzID:2468 1
14 3290888 3291436 PF14_0773 1

Why not have a look at the manual for sort to see what these options do? Remember that you
can type / followed by a search phrase, n to find the next search hit, N to find the previous search
hit and g to exit.

man sort

3.9 uniq - finding unique values

The unig command extracts unique lines from the input. It is usually used in combination with
sort to count unique values in the input.

To get the list of chromosomes in the Pfalciparum bed file type:

awk '{ print $1 }' Pfalciparum.bed | sort | uniqg

01
02
03
04
05
06
07
08
09
10
11
12
13
14
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How many chromosomes are there? You will learn more about the awk command later in this
course.

Warning: unigq is really stupid; it can only spot that two lines are the same if they are right next
to one another. You therefore almost always want to sort your input data before using unig.

Do you understand how this command is working? Why not try building it up piece by piece to
see what it does?

awk '{ print $1 }' Pfalciparum.bed | less
awk '{ print $1 }' Pfalciparum.bed | sort | less
awk '{ print $1 }' Pfalciparum.bed | sort | unig | less

3.10 Exercises

Open up a new terminal window, navigate to the files directory in the Unix directory and
complete the following exercise:

1. Use the head command to extract the first 500 lines of the file Styphi.gff and store the
output in a new file called Styphi.500.gff.

2. Use the we command to count the number of lines in the Pfalciparum.bed file.

3. Use the sort command to sort the file Pfalciparum.bed on chromosome and then gene
position.

4. Use the unig command to count the number of features per chromosome in the
Pfalciparum.bed file. Hint: use the man command to look at the options for the uniq
command. Or peruse the wc or grep manuals. There’s more than one way to do it!
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4 Searching inside files with grep

A common task is to extract information from large files. This can be achieved using the Unix
command grep, which stands for “Globally search for a Regular Expression and Print”. The
meaning of this acronym will become clear later, when we discuss Regular Expressions. First, we
will consider simpler examples.

Before we start, change into the Unix/grep directory and double check that the following com-
mands gives you a similar output:

pwd
1s

/home /manager/course_data/Modulel_Unix/Notebooks/Unix/grep
answers.md grep.ipynb regex_example.txt
exercises.fasta list_example.l sequences.fasta
gene_expression.bed list_example.2
gene_expression_sneaky.bed list_example.3

4.1 Simple pattern matching

We will use a small example file (in “BED” format), which contains the expression levels of some
genes. This is a column-based file, with a tab character between each column. There can be more
than 10 columns, but only the first three are required to be a valid file. The file format is described
in full here: http://genome.ucsc.edu/FAQ/FAQformat#formatl. We will use the first 5
columns:

1. Sequence name

2. start position (starting from 0, not 1)

3. end position (starting from 0, not 1)

4. feature name

5. score (which is used to store the gene expression level in our examples).

Here is the contents of the first example BED file used in this course:

cat gene_expression.bed

chrl 10 100 genel 10 +
chrl 350 500 gene2 1000 -
chr2 20 35 gene3 0 +

chr2 110 200 Gene4d 4 =
chr3 1000 2000 geneb5 100 +

chrl0 1 100 gene6 11 -
chrX 60 90 Gene’7 2 +
chry 80 120 GENES8 42 =

In reality, such a file could contain 100,000s of lines, so that it is not practical to read manually.
Suppose we are interested in all the genes from chromosome 2. We can find all these lines using

grep:
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grep chr2 gene_expression.bed

chr2 20 35 gene3 0 +
chr2 110 200 Gened 4 =

This has shown us all the lines that contain the string “chr2”.

We can use a pipe to then just extract the genes that are on the positive strand, using grep a second

time:
grep chr2 gene_expression.bed | grep +
chr2 20 35 gene3 0 +

However, since grep is reporting a match to a string anywhere on a line, such simple searches can
have undesired consequences. For example, consider the result of doing a similar search for all
the genes in chromosome 1:

grep chrl gene_expression.bed
chrl 10 100 genel 10 +
chrl 350 500 gene2 1000 -
chrl0 1 100 gene6 11 =

Oops! We found genes in chromosome 10, because “chrl” is a substring of “chr10”.

Or consider the following file, where the genes have unpredictable names (which is not unusual
for bioinformatics data).

cat gene_expression_sneaky.bed

chrl 10 100 genel 10 +
chrl 350 500 gene2 1000 -
chrl 350 500 sneaky-gene3 1000 +
chr2 20 35 gened 0 +
chr2 110 200 geneb5 4 =
chr3 1000 2000 gene6 100 +

chr8 20 100 chrll.genel 1000 -
chrl0 1 100 gene’7 11 =
chrll 20 100 sneaky-gene8 1000 +

Now we try to find genes on chromosome 1 that are on the negative strand. We put the minus
sign in quotes, to stop Unix interpreting this as an option to grep, as opposed to the string we are
searching for:

grep chrl gene_expression_sneaky.bed | grep '-'
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chrl 350 500 gene2 1000 -
chrl 350 500 sneaky—-gene3 1000 +

chr8 20 100 chrll.genel 1000 -
chrl0 1 100 gene’7 11 =
chrll 20 100 sneaky—-gene8 1000 +

The extra lines are found by grep because of matches in columns we were not expecting to match.
Remember, grep is reporting these lines because they each contain the strings “chrl” and “-”
somewhere.

We need a way to make searching with grep more specific.

4.2 Regular expressions

Regular expressions provide the solution to the above problems. They are a way of defining more
specific patterns to search for.

4.2.1 Matching the start and end of lines

First, we can specify that a match must be at the start of a line using the symbol “~”, which means
“start of line”. Without the ~, we find any match to “chr1”:

grep chrl gene_expression_sneaky.bed

chrl 10 100 genel 10 +
chrl 350 500 gene2 1000 -
chrl 350 500 sneaky—-gene3 1000 +

chr8 20 100 chrll.genel 1000 -
chrl0 1 100 gene’ 11 =
chrll 20 100 sneaky-gene8 1000 +

However, notice the effect of searching for “chr1 instead. Note that we put the regular expression
in quotes, to avoid Unix errors. Not using quotes may or may not give an error, but it is safest to
use quotes for anything but the simplest of searches.

grep '“chrl' gene_expression_sneaky.bed

chrl 10 100 genel 10 +
chrl 350 500 gene2 1000 -
chrl 350 500 sneaky—-gene3 1000 +
chrl0 1 100 gene’7 11 =
chrll 20 100 sneaky—-gene8 1000 +

Good! We have removed the match to the badly-named gene “chrll.genel”, which is on chro-
mosome 8. Now we want to avoid matching chromosomes 10 and 11. This can be done by also
looking for a “tab” character, which is represented by writing \t. For technical reasons, which
are beyond the scope of this course, we must also put a dollar sign before the quotes to make any
search involving a tab character work.
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grep $'”chrl\t' gene_expression_sneaky.bed

chrl 10 100 genel 10 +
chrl 350 500 gene2 1000 -
chrl 350 500 sneaky-gene3 1000 +

To find the genes on the negative strand, all that remains is to match a minus sign at the end of the
line (so that we do not find “sneaky-gene3”). We can do this using the dollar “$”, which means
“end of line”.

grep $'~chrl\t' gene_expression_sneaky.bed | grep '\-§'

chrl 350 500 gene2 1000 -

4.2.2 Wildcards and alphabets

Another special character in regular expressions is the dot: “.”. This stands for any single charac-
ter. For example, this finds all matches to chromosomes 1-9, and chromosomes X and Y:

grep $'”chr.\t' gene_expression.bed

chrl 10 100 genel 10 +
chrl 350 500 gene2 1000 -
chr2 20 35 gene3 0 +
chr2 110 200 Gene4d 4 =
chr3 1000 2000 geneb5 100 +
chrX 60 90 Gene’l 2 +
chry 80 120 GENE8 42 =

In fact, the earlier command that found all genes on chromosome 1 that are on the negative strand,
could be found with a single call to grep instead of two calls piped together. To do this, we need
a regular expression that finds lines that:

e start with chrl, then a tab character
¢ end with a minus
* have arbitrary characters between.

The asterisk “*” has a special meaning: it says to match any number (including zero) of whatever
character is before the *. For example, the regular expression ‘AC*G” will match AG, ACG, ACCG,
etc. The simpler, improved command is:

grep $'”chrl\t.x-$' gene_expression_sneaky.bed

chrl 350 500 gene2 1000 -

As well as matching any character using a dot, we can define any list of characters to match, using
square brackets. For example, [12X] means match a 1, 2, or an X. This can be used to find all genes
from chromosomes 1, 2 and X:
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grep $'~chr[12X]\t' gene_expression.bed

chrl 10 100 genel 10 +
chrl 350 500 gene2 1000 -
chr2 20 35 gene3 0 +
chr2 110 200 Gene4d 4 =
chrX 60 90 Gene’7 2 +

Or just the autosomes may be of interest. To do this we introduce two new features:

* Ranges can be given in square brackets, for example [1-5] will match 1, 2, 3, 4 or 5.

¢ The plus sign “+” has a special meaning that is similar to “*”. Instead of any number of
matches (including zero), it looks for at least one match. To avoid simply matching a plus
sign, it must be preceded by a backslash: “\+”. For example, the regular expression ‘AC\+G’
will match ACG, ACCG, ACCCG etc (but will not match AG).

Warning: Adding a backslash is often called escaping (e.g. escape the plus symbol). Depending on
the software you're using (and the options you give it), you may need to escape the symbol to
indicate that you want its special regex meaning (e.g. multiple copies of the last character please)
or its literal meaning (e.g. give me a ‘+’ symbol please). If your command isn’t working as you
expect, try playing with these options and always test your regular expression before assuming it
gave you the right answer.

The command to find the autosomes is:

grep $'~chr[0-9]1\+\t' gene_expression.bed

chrl 10 100 genel 10 +
chrl 350 500 gene2 1000 -
chr2 20 35 gene3 0 +

chr2 110 200 Gene4 4 =
chr3 1000 2000 geneb5 100
chrl0 1 100 gene6 11

+

4.3 Other grep options

The Unix command grep and regular expressions are extremely powerful and we have only
scratched the surface of what they can do. Take a look at the manual (by typing man grep)
to get an idea. A few particularly useful options are discussed below.

4.3.1 Counting matches

A common use-case is counting matches within files. Instead of output each matching line, the
option “~c” tells grep to report the number of lines that matched. For example, the number of
genes in the autosomes in the above example can be found by simply adding -c to the command.

23



4 Searching inside files with grep 4.3 Other grep options

grep -c $'"chr[0-9]\+\t' gene_expression.bed

4.3.2 Case sensitivity

By default, grep is case-sensitive. It can be useful to ignore the distinction between upper and
lower case using the option “~i”. Suppose we have a file of sequences, and want to find the
sequences that contain the string ACGT. It is not unusual to come across files that have a mix of

upper and lower case nucleotides. Consider this FASTA file:

cat sequences.fasta

>sequencel
aACGTaaacaca
>sequence?
TacgtAAAAA
>sequence3
AAAAAAAA
>sequencei4
agcACgtAA

A simple search for ACGT will not return all the results:

grep ACGT sequences.fasta
aACGTaaacaca

However, making the search case-insensitive solves the problem.

grep —i ACGT sequences.fasta

aACGTaaacaca
TacgtAAAAA
agcACgtAA

4.3.3 Searching in more than one file

So far, we have restricted to searches in one file, but grep can be given a list of files in which to
search. As an example, we are given three files called 1ist_example.l, list_example.2,and
list_example. 3. They are simple lists of genes, for illustrative purposes. For example, the first
file looks like this:
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cat list_example.l

genel
gene?2
gene3
gene4d
geneb

Which files contain “genel”?

L IAN

genel$' list_example.l list_example.2

grep

list_example.l:genel

genel only appears in the file 1ist_example. 1. The output format of grep has now changed,
because it was given a list of files. The format is:

¢ filename:line_that_matches
ie, the name of the file has been added to the start of each matching line.

For convenience, there’s also a way of specifying all of the list examples:
echo list_example.x*

list_example.l list_example.2 list_example.3

grep '“genel$' list_example.x*
list_example.l:genel
How about gene42?

grep '“gene4d2$' list_example.x

list_example.2:gene4d?2
list_example.3:gene4d?2
list_example.3:gene4d?2

gene42 appears once in 1ist_example.2 and twicein 1ist_example. 3.

4.3.4 Inverting matches

By default, grep reports all lines that do match the regular expression. Sometimes it is useful
to filter a file, by reporting lines that do not match the regular expression. Using the option “~v”
makes grep “invert” the output. For example, we could exclude genes from autosomes in the
BED file from earlier.
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grep -v $'%chr[0-9]\+\t' gene_expression.bed

chrX 60 90 Gene7 2 +
chry 80 120 GENES8 42 =

4.4 Replacing matches to regular expressions

Finally, we show how to replace every match to a regular expression with something else, using
the command “sed”. The general form of this is:

sed 's/regular expression/new string/' input_file

This will output a new version of the input file, with each match to the regular expression replaced
with “new string”. For example:

sed 's/“chr/chromosome/' gene_expression.bed
chromosomel 10 100 genel 10 +
chromosomel 350 500 gene?2 1000 -
chromosome2 20 35 gene3 0 +

chromosome2 110 200 Gene4d 4 =
chromosome3 1000 2000 gene5 100 +

chromosomel0 1 100 gene6 11 =
chromosomeX 60 90 Gene7 2 +
chromosomeY 80 120 GENES8 42 =

4.5 Exercises

The following exercises all use the FASTA file exercises. fasta. Before starting the exercises,
open a new terminal and navigate to the grep/ directory, which contains exercises. fasta.

Use grep to find the answers. Hint: some questions require you to use grep twice, and possibly
some other Unix commands.

1. Make a grep command that outputs just the lines with the sequence names.

How many sequences are in the file?

Do any sequence names have spaces in them? What are their names?

Make a grep command that outputs just the lines with the sequences, not the names.

How many sequences contain unknown bases (an “n” or “N”)?

Are there any sequences that contain non-nucleotides (something other than A, C, G, T or

N)?

7. How many sequences contain the 5" cut site GCWGC (where W can be an A or T) for the
restriction enzyme Acel?

8. Are there any sequences that have the same name? You do not need to find the actual re-
peated names, just whether any names are repeated. (Hint: it may be easier to first discover
how many unique names there are).

NS I R
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5 File processing with AWK

AWK is a programming language named after the initials of its three inventors: Alfred Aho, Peter
Weinberger, and Brian Kernighan. AWK is incredibly powerful at processing files, particularly
column-based files, which are commonplace in Bioinformatics. For example, BED, GFF, and SAM
files.

Although long programs, put into a separate file, can be written using AWK, we will use it directly
on the command line. Effectively, these are very short AWK programs, often called “one-liners”.

Before we start, change into the Unix/awk directory and double check that the following com-
mands gives you a similar output:

pwd

1s

/home/manager/course_data/Modulel_Unix/Notebooks/Unix/awk
answers.md awk.ipynb exercises.bed genes.gff

5.1 Extracting columns from files

awk reads a file line-by-line, splitting each line into columns. This makes it easy to do simple
things like extract a column from a file. We will use the following GFF file for our examples.

cat genes.gff

chrl sourcel gene 100 300 0.5 + 0 name=genel; product=unknown

chrl source2 gene 1000 1100 0.9 = 0 name=rech; product=RecA protein

chrl source5 repeat 10000 14000 1 + . name=ALU

chr2 source2 gene 10000 1200 0.95 + 0

chr2 sourcel gene 50 900 0.4 = 0 name=gene?2; product=gene?2
— protein

chr3 sourcel gene 200 210 0.8 . 0 name=gene3

chr4 source3 repeat 300 400 1 + name=ALU

chrl0 source2 repeat 60 70 0.78 + name=LINE1l

chrl0 source2 repeat 150 166 0.84 + name=LINE2

chrX sourcel gene 123 456 0.6 + 0 name=gene4; product=unknown

The columns in the GFF file are separated by tabs and have the following meanings:

1. Sequence name

Source - the name of the program that made the feature
Feature - the type of feature, for example gene or CDS
Start position

Stop position

Score

Strand (+ or -)

Frame (0, 1, or 2)

© NN WD
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9. Optional extra information, in the form keyl=valuel;key2=value2;...

The score, strand, and frame can be set to . if it is not relevant for that feature. The final column
9 may or may not be present and could contain any number of key, value pairs.

We can use awk to just print the first column of the file. awk calls the columns $1, $2, ... etc, and
the complete line is called $0.

awk -F"\t" '{print $1}' genes.gff

chrl
chrl
chrl
chr2
chr2
chr3
chr4
chrl0
chrl0
chrX

A little explanation is needed.

¢ The option ~F"\t " was needed to tell awk that the columns are separated by tabs (more on
this later).

¢ For each line of the file, awk does what is inside the curly brackets. In this case, we simply
print the first column.

The repeated chromosome names are not nice. It is more likely to want to know just the unique
names, which can be found by piping into the Unix command sort.

awk -F"\t" '{print $1}' genes.gff | sort -u

chrl
chrl0
chr2
chr3
chr4
chrX

5.2 Filtering the input file

Similarly to grep, awk can be used to filter out lines of a file. However, since awk is column-based,
it makes it easy to filter based on properties of any columns of interest. The filtering criteria can
be added before the braces. For example, the following extracts just chromosome 1 from the file.

awk —-F"\t" 'S$Sl=="chrl" {print $0}' genes.gff

28



5 File processing with AWK 5.2 Filtering the input file

chrl sourcel gene 100 300 0.5 + 0 name=genel; product=unknown
chrl source2 gene 1000 1100 0.9 = 0 name=rechA; product=RecA protein
chrl source5 repeat 10000 14000 1 + . name=ALU

There are two important things to note from the above command:

1. $1=="chrl" means that column 1 must be exactly equal to “chr1”. This means that “chr10”
is not found.

2. The “{print $0}” part only happens when the first column is equal to “chrl”, otherwise
awk does nothing (the line gets ignored).

Awk commands are made up of two parts, a pattern (e.g. $1=="chr1") and an action (e.g. print
$0) which is contained in curly braces. The pattern defines which lines the action is applied to.

In fact, the action (the part in curly braces) can be omitted in this example. awk assumes that you
want to print the whole line, unless it is told otherwise. This gives a simple method of filtering
based on columns.

awk -F"\t" 'S$Sl=="chrl"' genes.gff
chrl sourcel gene 100 300 0.5 + 0 name=genel; product=unknown
chrl source2 gene 1000 1100 0.9 = 0 name=rechA; product=RecA protein

chrl source5 repeat 10000 14000 1 + . name=ALU

You might remember using another of awk’s defaults in a previous exercise. In that example we
supplied an action but no pattern. In this case, awk assumes that you want to apply the action to
every line in the file. For example:

awk -F"\t" '{print $1}' genes.gff

chrl
chrl
chrl
chr2
chr2
chr3
chr4
chrl0
chrl0
chrX

Multiple patterns can be combined using “&&” to mean “and”. For example, to find just the genes
from chromosome 1:

awk —-F"\t" 'S$Sl=="chrl" && $3=="gene"' genes.gff

chrl sourcel gene 100 300

.5 + 0 name=genel; product=unknown
chrl source2 gene 1000 1100 9

= 0 name=rechA;product=RecA protein

The entire line need not be printed (remember, if not specified, awk assumes a print $0). Sup-
pose we want only the sources of the genes on chromosome 1:
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awk -F"\t" 'Sl=="chrl" && $3=="gene" {print $2}' genes.gff | sort -u

sourcel
source?2

Similarly to using “&&” for “and”, there is “| | ” to mean “or”. To find features that are repeats or
made by the tool “source2”:

-F"\t" '$2=="source2" || $3=="repeat"' genes.gff
chrl source2 gene 1000 1100 0.9 = 0 name=rech; product=RecA protein
chrl sourceb5 repeat 10000 14000 1 5 name=ALU
chr2 source2 gene 10000 1200 0.95 0
chr4 source3 repeat 300 400 1 name=ALU

chrl0 source2 repeat 60 70 0.78
chrl0 source2 repeat 150 166 0.84

name=LINE1
name=LINE2

+ o+ o+ o+ o+

So far, we have only used strings for the filtering. Numbers can also be used. We could ask awk
to return all the genes on chromosome 1 that start before position 1100:

awk —-F"\t" 'Sl=="chrl" && $3=="gene" && $4 < 1100' genes.gff

chrl sourcel gene 100 300 0.5 + 0 name=genel; product=unknown
chrl source2 gene 1000 1100 0.9 - 0 name=rechA; product=RecA protein

Instead of looking for exact matches to strings, regular expressions can be used. The symbol “~" is
used instead of “==". For example, to find all the autosomes, we need to use a regular expression
for matches to the first column. The regular expression is written between forward slashes.

-F"\t" '$1 ~ /~chr[0-9]+$/' genes.gff

chrl sourcel gene 100 300 0.5 + 0 name=genel; product=unknown
chrl source2 gene 1000 1100 0.9 = 0 name=rechA; product=RecA protein
chrl source5 repeat 10000 14000 1 + . name=ALU
chr2 source2 gene 10000 1200 0.95 + 0
chr2 sourcel gene 50 900 0.4 = 0 name=gene?2;product=gene?2
<~ protein
chr3 sourcel gene 200 210 0.8 . 0 name=gene3
chr4 source3 repeat 300 400 1 + . name=ALU
chrl0 source2 repeat 60 70 0.78 + . name=LINE1
chrl0 source2 repeat 150 166 0.84 + . name=LINE2

Like with grep, matches can be inverted. grep has the option —v, but with awk we use “!~" to
mean “does not match”. This inverts the previous example:

awk —-F"\t" 'S$1 !~ /~chr[0-9]+$/' genes.gff
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chrX sourcel gene 123 456 0.6 + 0 name=gene4; product=unknown

If we do not specify a column, awk looks for a match anywhere in the whole line (it assumes we
wrote $0 ~ /regex/). So, in some sense, awk can be used as a replacement for grep:

awk '/repeat/' genes.gff

name=ALU
name=ALU
name=LINE1
name=LINE2

chrl source5 repeat 10000 14000 1
chr4 source3 repeat 300 400 1

chrl0 source2 repeat 60 70 0.78
chrl0 source2 repeat 150 166 0.84

+ + + +

(the -F"\t" was omitted because the match is to the whole line, so how the columns are separated
is not relevant.)

grep repeat genes.gff

chrl source5 repeat 10000 14000 1
chr4 source3 repeat 300 400 1

chrl0 source2 repeat 60 70 0.78
chrl0 source2 repeat 150 166 0.84

name=ALU
name=ALU
name=LINE1
name=LINE2

+ + + o+

However, with awk we can easily pull out information from the matching lines. Suppose we want
to know which chromosomes have repeats. It is easy with awk.

awk -F"\t" '/repeat/ {print $1}' genes.gff | sort -u

chrl
chrl0
chrd

5.3 Sanity checking files

Never, ever trust the contents of Bioinformatics files (even if you made them!). We now have
enough skills to do some basic sanity checking of a GFF file. For example, to check that every
gene has been assigned a strand:

awk -F"\t" '$3=="gene" && ! ($7 == "+" genes.gff

chr3 sourcel gene 200 210 0.8 . 0 name=gene3

Something went wrong when this file was made: gene3 has an unknown strand.

Do the start and end coordinates of all the features make sense?
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awk -F"\t" '$5 < $4' genes.gff
chr2 source2 gene 10000 1200 0.95 + 0

According to the file, this gene starts at position 10000 and ends at position 1200, which does not
make sense. Also, it has no name (the final optional column is empty). We could check if there are
any other genes with no name. One way to do this is to use the special variable “NF”, which is the
number of columns (fields) in the current line. Since the final column is optional, each line might
have 8 or 9 columns. We need to write a command that will check:

¢ If the feature is a gene, and if it is:
¢ check if the number of columns is less than 9. When there are 9 columns, check if there is a
name defined.

awk -F"\t" '$3=="gene" && (NF<9 || SNF !~/name/)' genes.gff

chr2 source2 gene 10000 1200 0.95 + 0

Note the distinction between NF (the number of columns) and “$SNF” (the contents of the final
column).

As promised earlier, we now consider the relevance of the option “~F"\t"”, to tell awk that the
columns in the input file are separated with tab characters. If we forgot to use this option, then
awk will use its default behaviour, which is to separate on any whitespace (which usually means
tabs and/or spaces). However, consider the final column of the file - it can contain whitespace,
which means that messy things happen. Suppose we try to extract the optional extra final column
of the file, when it is present. Compare the effect of running awk with and without “~F"\t"”.

awk -F"\t" 'NEF>8 {print SNF}' genes.gff

name=genel; product=unknown
name=rechA; product=RecA protein
name=ALU

name=gene?2; product=gene2 protein
name=gene3

name=ALU

name=LINE1l

name=LINE2

name=gene4; product=unknown

awk 'NF>8 {print SNF}' genes.gff

name=genel; product=unknown
protein

name=ALU

protein

name=gene3

name=ALU
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name=LINE1
name=LINE2
name=gene4; product=unknown

One more sanity check: each line should have 8 or 9 columns (remembering to use ~-F"\t"!)
awk —-F"\t" 'NF<8 || NF>9' genes.gff
(no output)

There was no output, which means that every line does indeed have 8 or 9 columns.

5.4 Changing the output

In addition to filtering, awk can be used to change the output.

Every value in a column could be changed to something else, for example suppose we want to
change the source column (column number 2) to something else.

awk —-F"\t" '{$2="new_source"; print $0}' genes.gff

chrl new_source gene 100 300 0.5 + 0 name=genel;product=unknown

chrl new_source gene 1000 1100 0.9 - 0 name=recA;product=RecA protein
chrl new_source repeat 10000 14000 1 + . name=ALU

chr2 new_source gene 10000 1200 0.95 + O

chr2 new_source gene 50 900 0.4 - 0 name=gene2;product=gene2 protein
chr3 new_source gene 200 210 0.8 . 0 name=gene3

chr4 new_source repeat 300 400 1 + . name=ALU

chrl0 new_source repeat 60 70 0.78 + . name=LINE1l

chrl0 new_source repeat 150 166 0.84 + . name=LINE2

chrX new_source gene 123 456 0.6 + 0 name=gened;product=unknown

This is close, but look carefully at the output. What happened? The output is not tab-separated,
but is instead separated with spaces. To restore the tabs, we need to use another special variable
called “0Fs” (Output Field Separator), and change it before awk does any processing of the input
file. This can be achieved by adding “BEGIN{OFS="\t"}”, as in the next example. Before awk
reads any lines of the file it runs the BEGIN block of code, which in this case changes OFS to be a
tab character.

awk —F"\t" 'BEGIN{OFS="\t"} {$2="new_source"; print $0}' genes.gff

chrl new_source gene 100 300 0.5 + 0 name=genel; product=
— unknown

chrl new_source gene 1000 1100 0.9 = 0 name=rech; product=RecA
— protein

chrl new_source repeat 10000 14000 1 + . name=ALU

chr2 new_source gene 10000 1200 0.95 + 0

chr2 new_source gene 50 900 0.4 = 0 name=gene?2; product=gene?2

<~ protein
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chr3 new_source gene 200 210 0.8 . 0 name=gene3

chr4 new_source repeat 300 400 1 + name=ALU

chrl0 new_source repeat 60 70 0.78 + name=LINE1l

chrl0 new_source repeat 150 166 0.84 + name=LINE2

chrX new_source gene 123 456 0.6 + 0 name=gened; product=

— unknown

5.5 Processing the data

More in-depth processing is possible. For example, we could print the length of each repeat (and
then sort the results numerically)

awk —-F"\t" 'S$3=="repeat" {print $5 - $4 + 1}' genes.gff | sort -n

11
17
101
4001

Perhaps we would like to know the total length of the repeats. We need to use a variable to add
up the total lengths and print the final total. In the same way that awk has a BEGIN block, it can
also be given an END block that is only run when awk has finished reading all lines of the input
file.

awk —F"\t" 'BEGIN{sum=0} $3=="repeat" \

{sum = sum + $5 - $4 + 1} \
END{print sum}' genes.gff

4130

The total repeat length was stored in a variable called sum. The previous awk command can be
broken down into three parts:

1. The BEGIN{sum=0} sets sum to zero before any lines of the file are read.

2. awk reads each line of the file. Each time a repeat is found, the length of that repeat is added
to sum.

3. Once all lines of the file have been read, awk runs the END block: END{print sum}. This
prints the value of sum.

In fact, the command can be shortened a little. Adding a number to a variable is so common, that
there is a shorthand way to write it. Instead of

sum = sum + $5 - $4 + 1
we can use
sum += $5 - $4 + 1

to get the same result.
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awk —-F"\t" 'BEGIN{sum=0} \

$3=="repeat" {sum += $5 - $4 + 1} \
END{print sum}' genes.gff

4130

Maybe we would like to know the mean score of the genes. We need to calculate the total score,
and divide this by the number of genes. To keep track of the number of genes, we use a variable
called count. Each time a new gene is found, 1 must be added to count. This could be done by
writing

count = count + 1
but instead we will use the shorthand

count++

awk —-F"\t" 'BEGIN{sum=0; count=0} \

$3=="gene" {sum += $6; count++} \
END{print sum/count}' genes.gff

0.691667

Finally, awk has a default behaviour that means we do not even need the BEGIN block. It can be
completely omitted in this example because we are setting sum and count to zero. The first time
awk sees a variable being used, it will set it to zero by default. For example, when awk reads the
tirst line of the file, the piece of code

count++

tells awk to add 1 to count. However, if awk has not encountered the variable count before, it
assumes it is zero (as if we had written BEGIN{count=0}), then adds 1 to it. The result is that
count is equal to 1. Similar comments apply to the variable sum.

awk —-F"\t" '$3=="gene" {sum += $6; count++} \

END{print sum/count}' genes.gff

0.691667

If this confuses you, then be explicit and use the BEGIN block of code. The result is the same.

5.6 Exercises
The following exercises all use the BED file exercises.bed. Before starting the exercises, open
a new terminal and navigate to the awk/ directory, which contains exercises.bed.

Use awk to find the answers to the following questions about the file exercises.bed. Many
questions will require using pipes (eg “awk ... | sort -u” for question 1).
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What are the names of the contigs in the file?

How many contigs are there?

How many features are on the positive strand?

How many features are on the negative strand?

How many genes are there?

How many genes have no strand assigned to them (ie the final column is not there)?
Are any gene names repeated? (Hint: you do not need to find their names, just a yes or no
answer. Consider the number of unique gene names.)

What is the total score of the repeats?

How many features are in contig-1?

10. How many repeats are in contig-1?

11. What is the mean score of the repeats in contig-1?

NG W

o >
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6 BASH scripts

So far, we have run single commands in a terminal. However, it is useful to be able to run multiple
commands that process some data and produce output. These commands can be put into a sepa-
rate file (ie a script), and then run on the input data. This has the advantage of reproducibility, so
that the same analysis can be run on many input data sets.

6.1 First script

It is traditional when learning a new language (in this case BASH), to write a simple script that
says “Hello World!”. We will do this now.

First, open a terminal and make a new directory in your home called scripts, by typing

cd
mkdir ~/scripts

Next open a text editor, which you will use to write the script. What text editors are available will
depend on your system. For example, gedit in Linux. Do not try to use a word processor, such as
Word! If you don’t already have a favorite, try gedit by running the following command:

gedit &
Type this into the text editor:
echo Hello World!

and save this to a file called hello.sh in your new scripts directory. This script will print
Hello World! to the screen when we run it. First, in your terminal, check that the script is
saved in the correct place.

cd scripts

ls hello.sh

hello.sh

If everything is OK, then next try to run the script. For now, we need to tell Unix that this is a bash
script, and where it is:

bash hello.sh

Hello World!

6.2 Setting up a scripts directory

It would be nice if all our scripts could simply be run from anywhere in the filesystem, with-
out having to tell Unix where the script is, or that it is a BASH script. This is how the built-in
commands work, such as cd or 1s.

To tell Unix that the script is a BASH script, make this the first line of the script:
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#!/usr/bin/env bash

and remember to save the script again. This special line at the start of the file tells Unix that the file
is a bash script, so that it expects bash commands throughout the file. There is one more change
to be made to the file to tell Unix that it is a program to be run (it is “executable”). This is done
with the command chmod. Type this into the terminal to make the file executable:

chmod +x hello.sh

(no output)

Now, the script can be run, but we must still tell Unix where the script is in the filesystem. In this
case, it is in the current working directory, which is called “. /”.

./hello.sh

Hello World!

The final thing to do is change our setup so that Unix can find the script without us having to
explicitly say where it is. Whenever a command is typed into Unix, it has a list of directories that
it searches through to look for the command. We need to add the new scripts directory to that list
of directories. Try typing

echo S$PATH

It returns a list of directories, which are all the places Unix will look for a command. Before we
add the scripts directory to this list, check what happens if we try to run the script without telling
Unix where it is:

hello.sh
bash: hello.sh: command not found

Unix did not find it! The command to run to add the scripts directory to $PATH is:

export PATH=S$SPATH:~/scripts/
(no output)

If you want this change to be permanent, ie so that Unix finds your scripts after you restart or
logout and login again, add that line to the end of a file called ~/ .bashrc. If you are using a Mac,
then the file should instead be ~/ .bash_profile. If the file does not already exist, then create it
and put that line into it.

Now the script works, no matter where we are in the filesystem. Unix will check the scripts
directory and find the file he11lo. sh. You can be anywhere in your filesystem, and simply running

hello.sh

will always work. Try it now.
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hello.sh

Hello World!

In general, when making a new script, you can now copy and edit an existing script, or make a
new one like this:

cd ~/scripts
touch my_script.sh
chmod +x my_script.sh

and then open my_script . sh in a text editor.

6.3 Getting options from the terminal and printing a help message

Usually, we would like a script to read in options from the user, such as the name of an input file.
This would mean a script can be run like this:

my_script.sh input_file

Inside the script, the parameters provided by the user are given the names $1, $2, $3 etc (do not
confuse these with column names used by awk!). Here is a simple example that expects the user
to provide a filename and a number. The script simply prints the filename to the screen, and then
the first few lines of the file (the number of lines is determined by the number given by the user).

cat options_example.sh

#!/usr/bin/env bash

echo filename is: $1
echo

echo First $2 lines of file $1 are:
head —-n $2 $1

options_example.sh test_file 2

filename is: test_file

First 2 lines of file test_file are:
test file line 1
test file line 2

The options have been used by the script, but the script itself is not very readable. It is better to
use names instead of $1 and $2. Here is an improved version of the script that does exactly the
same as the previous script, but is more readable.
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cat options_example.2.sh

#!/usr/bin/env bash
filename=$1
number_of_lines=$2

echo filename is: $filename
echo

echo First S$number_of_ lines lines of file $filename are:
head -n $number_of_lines $filename

6.4 Checking options from the user
The previous scripts will have strange behaviour if the input is not as expected by the script. Many
things could go wrong. For example:

¢ The wrong number of options are given by the user
¢ The input file does not exist.

Try running the script with different options and see what happens.

A convention with scripts is that it should output a help message if it is not run correctly. This
shows anyone how the script should be run (including you!) without having to look at the code
inside the script.

A basic check for this script would be to verify that two options were supplied, and if not then
print a help message. The code looks like this:

if [ $# -ne 2 ]

then
echo "usage: options_example.3.sh filename number_of_lines"
echo
echo "Prints the filename, and the given first number of lines of the file'
exit
fi

You can copy this code into the start of any of your scripts, and easily modify it to work for that
script. A little explanation:

* A special variable $# has been used, which is the number of options that were given by the
user.

* The whole block of code has the form “if [ $# -ne 2 ] then .... fi”. This only
runs the code between the then and £1i, if $# (the number of options) is not 2.

¢ The line exit simply makes the script end, so that no more code is run.

options_example.3.sh

usage: options_example.3.sh filename number_of_lines

Prints the filename, and the given first number of lines of the file
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Another check is that the input file really does exist. If it does not exist, then there is no point in

trying to run any more code. This can be checked with another if ... then ... fi block of
code:

if [ ! —f $filename ]

then

echo "File 'S$Sfilename' not found! Cannot continue"
exit
fi

Putting this all together, the script now looks like this:

cat options_example.3.sh

#!/usr/bin/env bash
set —eu

# check that the correct number of options was given.

# If not, then write a message explaining how to use the
# script, and then exit.

if [ $# -ne 2 ]

then
echo "usage: options_example.3.sh filename number_of_lines"
echo
echo "Prints the filename, and the given first number of lines of the file"
exit
fi

# Use sensibly named variables
filename=5$1
number_of_lines=$2

# check if the input file exists

if [ ! —f $filename ]

then
echo "File 'Sfilename' not found! Cannot continue"
exit

fi

# If we are still here, then the input file was found
echo filename is: $filename
echo

echo First Snumber of lines lines of file S$filename are:
head —n S$number_of_ lines S$filename

Two new features have also been introduced in this file:

1. The second lineis “set —eu”. Without this line, if any line produces an error, the script will
carry on regardless to the end of the script. Using the —e option, an error anywhere in the
file will result in the script stopping at the line that produced the error, instead of continuing.
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In general, it is best that the script stops at any error. The —u creates an error if you try to use
a variable which doesn’t exist. This helps to stop typos doing bad things to your analysis.

2. There are several lines starting with a hash #. These lines are “comment lines” that are not
run. They are used to document the code, containing explanations of what is happening. It
is good practice to comment your scripts!

The above script provides a template for writing your own scripts. The general method is:

1. Tell Unix that this is a BASH script, and to stop at the first error.

2. Check if the user ran the script correctly. If not, output a message telling the user how to run
the script.

Check the input looks OK (in this case, that the input file exists).

4. Process the input.

©

6.5 Using variables to store output from commands

It can be useful to run a command and put the results into a variable. Recall that we stored the
input from the user in sensibly named variables:

filename=s$1

The part after the equals sign could actually be any command that returns some output. For
example, running this in Unix

wc -1 filename | awk '{print $1}'

returns the number of lines. In case you are wondering why the command includes | awk
"{print $1}"', check what happens with and without the pipe to awk:

wc —1 options_example.3.sh

31 options_example.3.sh

wc —1 options_example.3.sh | awk '{print $1}'

31
With a small change, this can be stored in a variable and then used later.

filename=options_example.3.sh

line_count=$ (wc -1 $filename | awk '{print S$1}")
echo There are $line_count lines in the file $filename

There are 31 lines in the file options_example.3.sh
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6.6 Repeating analysis with loops

It is common in Bioinformatics to run the same analysis on many files. Suppose we had a script
that ran one type of analysis, and wanted to repeat the same analysis on 100 different files. It
would be tedious, and error-prone, to write the same command 100 times. Instead we can use a
loop. As an example, we will just run the Unix command wc on each file but instead, in reality this
would be a script that runs in-depth analysis. We can run wc on each of the files in the directory
loop_files/ with the following command.

for filename in loop_files/*; do wc $filename; done

8 28 loop_files/file.1l
20 70 loop_files/file.2
24 84 loop_files/file.3
4 14 loop_files/file.4
0 0 loop_files/file.5

O = o U1 N

6.7 Exercises

1. Write a script that gets a filename from the user. If the file exists, it prints a nice human-
readable message telling the user how many lines are in the file.

2. Use a loop to run the script from Exercise 1 on the files in the directory loop_files/.

3. Write a script that takes a GFF filename as input. Make the script produce a sum-
mary of various properties of the file. There is an example input file provided called
bash_scripts/exercise_3.gff. Use your imagination! You could have a look back
at the awk section of the course for inspiration. Here are some ideas you may wish to try:

¢ Does the file exist?
¢ How many records (ie lines) are in the file?
* How many genes are in the file?

Is the file badly formatted in any way (eg wrong number of columns, do the coordinates

look like numbers)?
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7 UNIX Quick Reference Guide

7.1 Looking at files and moving them around

pwd # Tell me which directory I'm in
ls # What else is in this directory
1s .. # What is in the directory above me
ls foo/bar/ # What is inside the bar directory which is inside
# the foo/ directory
ls —-lah foo/ # Give the the details (-1) of all files and folders (-a)
# using human readable file sizes (-h)
cd ../.. # Move up two directories
cd ../foo/bar # Move up one directory and down into the
# foo/bar/ subdirectories
cp -r foo/ baz/ # Copy the foo/ directory into the baz/ directory
mv baz/foo .. # Move the foo directory into the parent directory

rm -r ../foo # remove the directory called foo/ from the parent directory

find foo/ -name "x.gff" # find all the files with a gff extension
# in the directory foo/

7.2 Looking in files

less bar.bed # scroll through bar.bed

grep chrom bar.bed | less -S # Only look at lines in bar.bed which have
# 'chrom' and don't wrap lines (-9)

head -20 bar.bed # show me the first 20 lines of bar.bed

tail -20 bar.bed # show me the last 20 lines

cat bar.bed # show me all of the lines (bad for big files)

wc -1 bar.bed # how many lines are there

sort -k 2 -n bar.bed # sort by the second column in numerical order

awk '{print $1}' bar.bed | sort | unig # show the unique entries in the

# first column

7.3 Grep

grep foo bar.bed # show me the lines in bar.bed with 'foo' in them
grep foo baz/+ # show me all examples of foo in the files immediately
# within baz/
grep -r foo baz/ # show me all examples of foo in baz/ and every
# subdirectory within it
grep '"“foo' bar.bed # show me all of the lines begining with foo
grep 'foo$' bar.bed # show me all of the lines ending in foo

grep -i '“lacgt]$' bar.bed # show me all of the lines which only have the
# characters a,c,g and t (ignoring their case)

grep -v foo bar.bed # don't show me any files with foo in them

7.4 Awk

awk '{print $1}' bar.bed # Jjust the first column
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awk '$4 ~ /~foo/' bar.bed # just rows where the 4th column starts with foo
awk '$4 == "foo" {print $1}' bar.bed # the first column of rows where
# the 4th column is foo

awk —-F"\t" '{print SNF}' bar.bed # ignore spaces and print the last column
awk —-F"\t" '{print $(NF-1)}' bar.bed # print the penultimate column
awk '{sum+=$2} END {print sum}' bar.bed # print the sum of the second column
awk '/"~foo/ {sum+=$2; count+=1} END {print sum/count}' bar.bed

# ... print the average of the second value of lines starting with foo

7.5 Piping, redirection and more advanced queries

grep -hv "“#' bar/+.gff | awk -F"\t" '{print $1}' | sort -u
# grep => -h: don't print file names

# -v: don't give me matching files

# '"“#': get rid of the header rows

# 'bar/*.gff': only look in the gff files in bar/
# awk => print the first column

# sort => -u: give me unique values

awk 'NR%10 == 0' bar.bed | head -20

# awk => NR: 1is the row number

# NR%10: is the modulo (remander) of dividing my 10
# awk 1s therefore giving you every 10th line

# head => only show the first 20

awk '"{1=($3-$2+1)}; (1<300 && $2>200000 && $3<250000)' exercises.bed

Gives:

contig-2 201156 201359 gene-67 24.7 -

contig-4 245705 245932 gene-163 24.8 +

Finds all of the lines with features less than 300 bases long which start
after base 200,000 and end before base 250,000

Note that this appears to have the action before the pattern. This is
because we need to calculate the length of each feature before we use it
for filtering. If they were the other way around, you'd get the line
immediatly after the one you want:

awk ' (1<300 && $2>200000 && $3<250000) {1=($3-%52+1); print $0}' exercises.bed
# Gives:

# contig-2 201156 201359 gene-67 24.7 -

# contig-2 242625 243449 gene-68 46.5 +

S e SR S S S S 3 3

7.6 A script

#!/usr/bin/env bash

set —e # stop running the script if there are errors
set -u # stop running the script if it uses an unknown variable
set -x # print every line before you run it (useful for debugging but annoying)

if [ $# -ne 2 ]
then
echo "You must provide two files"
exit 1 # exit the programme (and number > 0 reports that this is a failure)
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fi

file_one=$1
file two=$2

if [ ! —f $file_one ]

then
echo "The first file couldn't be found"
exit 2

fi

if [ ! —f $file_two ]

then
echo "The second file couldn't be found”
exit 2

fi

# Get the lines which aren't headers,
# take the first column and return the unique values

number_of_contigs_in_one=$ (awk '$1 !~ /*#/ {print $1}' S$file_one | sort -u | wc -1)
number_of_contigs_in_two=$ (awk '/"["#]/ {print $1}' S$file_two | sort -u | wc -1)
if [ S$number_of_contigs_in_one —-gt S$number_of_contigs_in_two ]
then
echo "The first file had more unigque contigs than the second"
exit
elif [ Snumber_of_contigs_in_one -1t $number_of_contigs_in_two ]
then
echo "The second file had more unigque contigs"
exit
else
echo "The two files had the same number of contigs"
exit
fi
7.7 Pro tips

¢ Use tab completion - it will save you time!

¢ Always have a quick look at files with 1ess or head to double check their format

* Watch out for data in headers and that you don’t accidentally grep some if you don’t want
them

e Watch out for spaces, especially if you're using awk; if in doubt, use -F"\t"

* Regular expressions are wierd, build them up slowly bit by bit

¢ If you did something smart but can’t remember what it was, try typing history and it
might have a record

®* man the_name_of_a_command often gives you help

¢ Google is normally better at giving examples (prioritise stackoverflow.com results, they’re
normally good)
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7.8 Build commands slowly

If you wanted me to calculate the sum of all of the scores for genes on contig-1 in a bed file, I'd
probably run each of the following commands before moving onto the next:

head -20 bar.bed # check which column is which and if there are any headers

head -20 bar.bed | awk '{print $5}' # have a look at the scores

awk '{print $1}' bar.bed | sort -u | less # check the contigs don't look wierd

awk '{print $4}' bar.bed | sort -u | less # check the genes don't look wierd

awk '$4 ~ /gene-/' bar.bed | head -20 # check that I can spot genes

awk '($1 == "contig-1" && $4 ~ /gene-/)' bar.bed | head -20 # check I can find
# genes on contig-1

# check my algorithm works on a subset of the data

head -20 bar.bed | awk '($1 == "contig-1" && $4 ~ /gene-/) {sum+=$5}; END {print sum}'
# apply the algorithm to all of the data
awk '($1 == "contig-1" && $4 ~ /gene-/) {sum+=$5}; END {print sum}' bar.bed

7.9 Which tool should | use?

You should probably use awk if:

¢ your data has columns
¢ you need to do simple maths

You should probable use grep if:

* you're looking for files which contain some specific text (e.g. grep -r foo bar/: look in
all the files in bar/ for any with the word ‘foo’)

You should use find if:

¢ you know something about a file (like it’s name or creation date) but not where it is
¢ you want a list of all the files in a subdirectory and its subdirectories etc.

You should write a script if:

¢ your code doesn'’t fit on one line

¢ it’s doing something you might want to do again in 3 months

* you want someone else to be able to do it without asking loads of questions
* you're doing something sensitive (e.g. deleting loads of files)

¢ you're doing something lots of times

You should probably use less or head:

¢ always, you should always use less or head to check intermediary steps in your analysis
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petr.danecek@sanger.ac.uk

wellcome trust
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Data Formats

FASTQ Sequencing
. . . Instrument
¢ Unaligned read sequences with base qualities
SAM/BAM FASTQ l
¢ Unaligned or aligned reads Sequence
. Alignment
¢ Text and binary formats
CRAM
e Better compression than BAM Variant
Calling

BAM l
VCF/BCF
: ; VCF l
¢ Flexible variant call format
¢ Arbitrary types of sequence variation

¢ SNPs, indels, structural variations

Specifications maintained by the Global Alliance for Genomics and Health



FASTQ

e Simple format for raw unaligned sequencing reads
¢ Extension to the FASTA file format
¢ Sequence and an associated per base quality score

GERRO07731.740 IL16_2979:6:1:9:1419/1
AAAAAAAAAGATGTCATCAGCACATCAGAAAAGAAGGCAACTTTAAAACTTTTC
+

BBABBBABABAABABABBABBBAAA>GBOBBAAG4AAA> . >BAAQTT9 : AAACA

¢ Quality encoded in ASCII characters with decimal codes 33-126
e ASCII code of “A” is 65, the corresponding quality is Q= 65 — 33 = 32
e Phred quality score: P = 10~ ®@/10
perl -e ’printf "%d\n",ord("A")-33;’
¢ Beware: multiple quality scores were in use!
¢ Sanger, Solexa, lllumina 1.3+

¢ Paired-end sequencing produces two FASTQ files

SAM / BAM

SAM (Sequence Alignment/Map) format

Unified format for storing read alignments to a reference genome
Developed by the 1000 Genomes Project group (2009)

One record (a single DNA fragment alignment) per line describing alignment
between fragment and reference
11 fixed columns + optional key:type:value tuples

Reference
Chrl ] sequence

DNA sequence

N Nt

40M 5D 30M 21 28M

!

Ref-name Position CIGAR string  Orientation

Note that BAM can contain

e unmapped reads
e multiple alignments of the same read
 supplementary (chimeric) reads



SAM

SAM fields
1 QNAME Query NAME of the read or the read pair
2 FLAG Bitwise FLAG (pairing, strand, mate strand, etc.)
3 RNAME Reference sequence NAME
4 POS 1-Based leftmost POSition of clipped alignment
5 MAPQ MAPping Quality (Phred-scaled)
6 CIGAR Extended CIGAR string (operations: MIDNSHPX=)
7 MRNM Mate Reference NaMe ('=" if same as RNAME)
8 MPOS 1-Based leftmost Mate POSition
9 ISIZE Inferred Insert SIZE
10 SEQ Query SEQuence on the same strand as the reference
11 QUAL Query QUALity (ASCII-33=Phred base quality)

12- OTHER Optional fields

$ samtools view -h file.bam | less

@HD VN:1.0 GO:none SO:coordinate

@SQ SN:1 LN:249250621 UR:hs37d5.fa.gz AS:NCBI37 M5:1b22b98cdeb4a9304cb5d48026a85128 SP:Human
@SQ SN:2 LN:243199373 UR:hs37d5.fa.gz AS:NCBI37 M5:a0d9851da00400dec1098a9255ac712e SP:Human
©ORG ID:1 PL:ILLUMINA PU:13350_1 LB:13350_1 SM:13350_1 CN:SC

@PG ID:bwa PN:bwa VN:0.7.10-r806 CL:bwa mem hs37d5.fa.gz 13350_1_1.fq 13350_1_1.fq

1:2203:10256:56986 97 1 9998 0 106M45S = 10335 0\
CCATAACCCTAACCCTAACCCTAACCATAGCCCTAACCCTAACCCTAACCCTAACCCTL. . .JCAAACCCACCCCCAAACCCAAAACCTCACCAC \
FFFFFJJJJJJJIFIJIIFIAJIIII-JIAAAIFIIFFIJF<FJJFFJJJIFJIIJFF[. . .]<---F---—- A7-J-<J-A--TTAF---J7-- \
MD:Z:1G24C2A76 PG:Z:MarkDuplicates RG:Z:1 NM:i:3 MQ:i:0 AS:i:94 XS:i:94

CIGAR string

Compact representation of sequence alignment
M alignment match or mismatch

sequence match

sequence mismatch

insertion to the reference

deletion from the reference

soft clipping (clipped sequences present in SEQ)

hard clipping (clipped sequences NOT present in SEQ)

skipped region from the reference

padding (silent deletion from padded reference)

TZTWVO X

Examples:

Ref:  ACGTACGTACGTACGT
Read: ACGT----ACGTACGA
Cigar: 4M 4D 8M

Ref: ACGT----ACGTACGT
Read: ACGTACGTACGTACGT
Cigar: 4M 41 8M

Ref: ACTCAGTG--GT
Read: ACGCA-TGCAGTtagacgt
Cigar: 5M 1D 2M 2I 2M 7S



Flags

Hex Dec Flag Description

0x1 1 PAIRED paired-end (or multiple-segment) sequencing technology
0x2 2 PROPER_PAIR each segment properly aligned according to the aligner
0x4 4 UNMAP segment unmapped

0x8 8 MUNMAP next segment in the template unmapped

0x10 16 REVERSE SEQ is reverse complemented

0x20 32 MREVERSE SEQ of the next segment in the template is reversed
0x40 64 READ1 the first segment in the template

0x80 128 READ2 the last segment in the template

0x100 256 SECONDARY secondary alignment

0x200 512 QCFAIL not passing quality controls

0x400 1024 DUP PCR or optical duplicate

0x800 2048 SUPPLEMENTARY supplementary alignment

Bit operations made easy

e python

0x1 | 0x2 | 0x20 | 0x80 .. 163

bin(163) .. 10100011

¢ samtools flags
0xa3 163 PAIRED,PROPER_PAIR,MREVERSE,READ2

Optional tags

Each lane has a unique RG tag that contains meta-data for the lane

RG tags

e ID: SRR/ERR number

¢ PL: Sequencing platform

e PU: Run name

e LB: Library name

¢ PIl: Insert fragment size
e SM: Individual

¢ CN: Sequencing center

Sample A Sample B
Library A A ]\
prep DN DN N
Machine run
<< @ e <
() () (V) (9} ()
Lane/Plex 3 75 3 & =
€ € E E £
© (© © (© ©
(%] v unu un (%]
BAM BAM BAM
Library
merge BAM BAM

ooy

Duplicates BAM BAM

removal
N ¥

Sample
merge BAM

Sample_C

A4

Machine run

[+a )

Sample
Sample
Sample C



BAM (Binary Alignment/Map) format

Binary version of SAM
Developed for fast processing and random access

* BGZF (Block GZIP) compression for indexing

Key features

Can store alignments from most mappers

Supports multiple sequencing technologies

Supports indexing for quick retrieval /viewing

Compact size (e.g. 112Gbp lllumina = 116GB disk space)

Reads can be grouped into logical groups e.g. lanes, libraries, samples
Widely supported by variant calling packages and viewers

BAM files are too large

e ~1.5-2 bytes per base pair

Increases in disk capacity are being far outstripped by sequencing technologies

Growth of DNA Sequencing

12Zbp

W Recorded growth
B Double every 7 months (Historical growth rate)
© Double every 12 months (lllumina Estimate)
W Double every 18 months (Moore's Law)

1e+09

1Ebp

1e+06

1Pbp
Worldwide Annual Sequencing Capacity

Cumulative Number of Human Genomes
1e+03

1Tbp

1e+00

2000 2005 2010 2015 2020 2025

Yi
Zachary D. Stephens, et al, Big Data: AstronomicaTror Genomical? DOI: 10.1371/journal.pbio.1002195



Reference based Compression

BAM files are too large
e ~1.5-2 bytes per base pair

Increases in disk caEacity are being far outstripped by sequencing technologies
BAM stores all of the data

¢ Every read base
¢ Every base quality
¢ Using a single conventional compression technique for all types of data

Reference sequence: ACGTACGTACGTACGTACGTACGTACGTACGTAC

read 1: ACGTACGTACGTACGTACGTGC

read 2: TACGTACGCACGTACGTGCGTA

read 3: CGTACGCACGTACGTACGTACG

read 4: TACGTACGTACGTGCGTACGTA

read 5: CGCACGTACGTACGTACGTACG
read 6: TACGTGCGTACGTACGTAC

Reference based Compression

BAM files are too large
e ~1.5-2 bytes per base pair

Increases in disk caﬁacity are being far outstripped by sequencing technologies
BAM stores all of the data

¢ Every read base
¢ Every base quality
¢ Using a single conventional compression technique for all types of data

Reference sequence: ACGTACGTACGTACGTACGTACGTACGTACGTAC

read 1: e G.

read 2: ..., Coviiiiiiin

read 3: ..., Coviii i

read 4: e G....... s

read 5: T
read 6: ... P



Three important concepts

¢ Reference based compression

¢ Controlled loss of quality information

¢ Different compression methods to suit the type of data, e.g. base qualities
vs. metadata vs. extra tags

In lossless mode: 60% of BAM size
Archives and sequencing centers moving from BAM to CRAM

¢ Support for CRAM added to Samtools/HTSIlib in 2014
e Soon to be available in Picard/GATK

__—

B
T

T T .

Chr, Pos, Len, ;
Flags, MapQ, .. Bases Quality Names, ...

File format for storing variation data

¢ Tab-delimited text, parsable by standard UNIX commands

¢ Flexible and user-extensible
e Compressed with BGZF (bgzip), indexed with TBI or CSI (tabix)

( ##fileformat=VCFv4.0 Mandatory header lines
##fileDate=20100707

##source=VCFtools

##reference=NCBI36
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Alle

Optional header lines (meta-data

~ about the annotations in the VCF body)

VCF header
A
#
#*
m
§
b=
/]
A
L)
o
1
(2}
=1
I 4
c
3
o
m
]
il
-
=
~<
o
5]
Il
w
(ad
=
i
=]
(=]
o
m
w
(2]
=
!
©
~+
[ad
o
=]
n
(2
]
3
o
~+
~<
©
m

##FORMAT=<ID=DP,Number=1, Type=Integer,Description="R
##ALT=<ID=DEL ,Description="Deletion">

##INFO=<ID=SVTYPE,Number=1,Type=String,Descriptigs#="Type of structural variant">

##INFO=<ID=END,Number=1, Type=Integer,Description="End position of the variant"> —
\ #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1 SAMP Referguce allaies (GT=0)
> 1 I ACG_ A,AT . PASS . GT:DP 1/2:13 0/0729
k] { 1 2 rsl T,CT, PASS H2; AA=T GT:6Q 0)1:100 2/2J0
o 1 5 . A G 8 ASS B GT:GQ 10:77  1/1:
1 100 <DEL> Pi SVTYPE=DEL;END=300 GT:GQ:DP /1:12:3 0/0:20 Alternate alleles (GT>0 is
an index to the ALT column)
Deletion SNP Insertion Other event Phased data (G and C above

Large SV are on the same chromosome)



VCF / BCF

VCFs can be very big

e compressed VCF with 3781 samples, human data:

e 54 GB for chromosome 1
¢ 680 GB whole genome

VCFs can be slow to parse

e text conversion is slow
e main bottleneck: FORMAT fields

##fileformat=VCFv4.0
##fileDate=20100707

##source=VCFtools

##ALT=<ID=DEL ,Description="Deletion">
##INFO=<ID=END,Number=1, Type=Integer,Description="End position of the variant">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1l SAMPLE2

PASS AC=67;AN=5400;DP=2809 GT:PL:DP:GQ 1/1:

1 3 A G
1 4 AT
i3 cT
1 6 A G
17 AT

BCF

(L) 7
PASS AC=15;AN=6800;DP=6056 GT:PL:DP:GQ 0/0:0,9,7
PASS AC=20;AN=6701;DP=5234 GT:PL:DP:GQ 1/0:255,0,
PASS AC=67;AN=5400;DP=2809 GT:PL:DP:GQ 1/1:0,9,7

0,9,7.

PASS AC=15;AN=6800;DP=6056 GT:PL:DP:GQ 0/0:

¢ binary representation of VCF

e fields rearranged for fast access

#CHROM POS ID REF ALT QUAL FILTER INFO
G

gVCF

PASS

G . PASS

FORMAT SAMPLE1
AC=67;AN=540 GT:PL:DP:GQ 1/1:0,9,73:26:22 0/0:0,9,73:13:31

i

3:26:22 0/60:0,9,73:13:31 0/0:0,9,73:48:99 1/0:255,0,75:32:15 1/0:255,0,75:32:15

,73:13:31 1/0:255,0,75:32:15 0/0:0,2,80:14:90 1/1:0,9,73:26:22 0/0:0,9,73:13:31

75:32:15 0/0:0,2,170:14:90  1/1:0,9,73:13:31 0/0:0,6,50:13:80 0/0:0,2,80:14:90

5 3:26:22 0/6:0,9,73:13:31 0/0:0,9,73:48:99 1/60:255,0,75:32:15 1/0:255,0,75:32:15

3:13:31 1/0:255,0,75:32:15 0/0:0,2,80:14:90 1/1:0,9,73:26:22 0/6:0,9,73:13:31

SAMPLE2 SAMPLE3

LN 14 »

SAMPLE4 SAMPLE5

0/0:0,9,73:48:99 1/60:255,0,75:32:15 1/0:255,0,75:32:15

A 4 a K

AC=67;AN=540 GT:1/1:0/0:0/0:1/6:1/6 PL:0,9,73:0,9,73:0,9,73:255,0,75:255,0,75 DP:26:13:48:32:32 6Q:22:31:99:15:15

Often it is not enough not know variant sites only

e was a site dropped because of a reference call or because of missing data?
¢ we need evidence for both variant and non-variant positions in the genome

gVCF

¢ blocks of reference-only sites can be represented in a single record using the

INFO/END tag

e symbolic alleles <*> for incremental calling

* raw,

“callable” gVCF

* calculate genotype likelihoods only once (an expensive step)

¢ then call incrementally as more samples come in

#CHROM POS
19 9902
19 9916
19 9923
19 9949
19 9950
19 9959
19 9960

ooOoNoOoONo

<k>
<k>
<k>
A,<*k>
<*k> .
T,<*> .
<k>

ID REF ALT QUAL FILTER

/

Symbolic "unobserved" allele
Represents any other possible alternate allele

INFO FORMAT Sample

END=9915;MinDP=0  PL:
END=9922;MinDP=5  PL:

END=9948;MinDP=10 PL:
DP=28 PL:
END=9958;MinDP=28 PL:
DP=34 PL:

END=9969;MinDP=34 PL:

A block of 10 sites with
at least 34 reference reads

DP 0,0,0:0

DP 0,15,137:5

DP 0,30,214:10

DP 0,60,255,78,255,255:27
DP 0,84,255:28

bP 0,82,255,99,255,255:34

DP

0,102,255:34

\

Genotype likelihoods
for CC, C*, **



Anatomy of BCF Anatomy of Tomahawk

I N
I N
GT RLE bi-allelic

I N b

e ———— TGZF
I N
I N
I I

Meta#1 (fixed-width)

Meta#2 (complex) J

Type-specific
compression INFO/FORMAT

New TWK format by Marcus Klarqvist (under development)

¢ BCEF still too slow for querying hundreds of thousands and millions of samples

¢ bigger but 100x faster for certain operations on GTs

Region in LD Random region




Global Alliance for Genomics and Health

International coalition dedicated to improving human health
Mission

¢ establish a common framework to enable sharing of genomic and clinical data

Working groups

¢ clinical
\>; ‘4.1_ H
* regulatory and ethics ii % Global AIIllance
* security VA for Genomics & Health
e data

Data working group

* beacon project .. test the willingness of international sites to share genetic data

e BRCA chaIIenge .. advance understanding of the genetic basis of breast and other cancers

¢ matchmaker exchange .. locate data on rare phenotypes or genotypes

e reference variation .. describe how genomes differ so researchers can assemble and interpret them
. benchmarking .. develop variant calling benchmark toolkits for germline, cancer, and transcripts

¢ file formats .. CRAM, SAM/BAM, VCF/BCF

File formats

* http://samtools.github.io/hts-specs/

Quality Control

Biases in sequencing

¢ Base calling accuracy
¢ Read cycle vs. base content

¢ GC vs. depth

¢ Indel ratio
Biases in mapping

Genotype checking

e Sample swaps

¢ Contaminations



Sequencing by synthesis: dephasing

e growing sequences in a cluster gradually desynchronize
e error rate increases with read length

Calculate the average quality at each position across all reads

20 ' Quality py Cycle'

351

Average Quality
N
S

10
st
% 20 0 60 80 100 120
Cycle
Quality Probability of error Call Accuracy
10 (Q10) 1in 10 90%
20 (Q20) 1in 100 99%
30 (Q30) 1 in 1000 99.9%
40 (Q40) 1 in 10000 99.99%
Phasing noise ¢ Signal Decay 5 Mixed Cluster M
I T} ACACACACACAC...

EN

Intcngity

=

°

Cross-talk 2 T fluophore accumulation 7

i -

L9

84 L Is
1 i
g
- $

i g g
&
! ' ' T t; I:) z:: 3:; u; saI
- oy i 13 s000 10000 15000 Cycle number

Base-calling for next-generation sequencing platforms, doi: 10.1093/bib/bbq077



Base quality

50 T T T T T T T T T 50 T T T . lh y y '1'
25-75th percentile #5-75Eh porcent 1o
Median Hean
Mean ——
40 1
30 .
2
=
:
20 4
10 .
O L 1 1 1 1 1 Il 1 1 e L 1 1 1 L 1 L 1 Il
0 10 20 30 40 50 60 70 80 90100 © 10 20 30 40 50 60 70 80 90 100

Cycle Cycle (fud reads)

Mismatches per cycle

Mismatches in aligned reads (requires reference sequence)

¢ detect cycle-specific errors
¢ base qualities are informative!

6864243 6918_142

'Base Quality>30 mmmm 290 [Tase Quality>ss mmmm
38>=Q>15 = 36>=0>15 ==
1,6e+86 [ 15>=Q === 15>=Q =

1,8e+06

1,4e+06 -

1,2e+06 -

1e+06 -

8600000 -

Nunber of nismatches
Nunber of nismatches

600000 -

400000 -

200000

]
] 20 48 68 80 168 [:] 20 48 68 88 108

Read Cycle Read Cycle



Normalized Frequency

Base content [%]

108

GC

and AT-rich regions are more difficult to amplify

compare the GC content against the expected distribution (reference sequence)

11072_1#4 bam.bamcheck

Reference -
1 382 First fragments 1
Last fragments ———
08 |
06 4
0.4 |
02 g
0
0 20 40 60 80 100
GC Content [%]
Was the adapter sequence trimmed?
9353_6#32.ban.bancheck
c —
6 —
T—
£
I €
@
<
8
i 2
©
fis}
o 1 2 m 4 5 e @ o s 1w

Read Cycle

0.8

0.6

0.4

0.2

100

80

60

40

20

12177 _1.bam.bamcheck

A fragments
ast fragments

" Reference -

20 40 60 80
GC Content [%]

9706_6#1.bam.bamcheck

100

1T

0 10 20 30 40 50 60 70

Read Cycle

80



Nunber of pairs

Paired-end

12000

16008

9353_6430.ban.bancheck
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Check the identity against a known set of variants
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Practical exercises: File formats and QC

An online version of this document can be found here https://tinyurl.com/ybyq3rk3. Please feel free to add
comments if anything is unclear or incorrect. The answers to the exercises can be found at the end of this
document.

Exercise 1: SAM header line

SAM/BAM format is the accepted standard format for storing NGS sequencing reads, base qualities,
associated meta-data and alignments of the data to a reference genome. If no reference genome is
available, the data can also be stored unaligned.

Download the SAM/BAM file specification document from http://samtools.qgithub.io/hts-specs
(direct link).

From reading page 4 of the SAM specification, look at the following line from the header of the BAM file:
@RG ID:ERR003612 PL:ILLUMINA LB:glk-sc-NA20538-T0S-1 PI:2000 DS:SRP000540 SM:NA20538

1.1 What does RG stand for?
1.2 What is the sequencing platform/technology used to produced the reads?

1.3 What is the lane ID?

(In sequencing terminology, a "lane" is the basic independent run of a high-throughput sequencing
machine. Reads from one lane are identified by the same read group ID and the information about
lanes can be found in the header in lines starting with @RG.)

1.4 What is the expected fragment insert size?

Exercise 2: SAM header and samtools

Samtools comprises a set of programs for interacting with SAM/BAM files. Type samtools with no
parameters to display the list of available commands implemented in the program. Then type samtools
view to display a detailed usage page.

Now use the samtools view command to print the header of the BAM file:

samtools view -H NA20538.bam | less -S
The -S option makes less display long lines without wrapping them. (You can toggle between the wrapping
and non-wrapping mode by pressing -S at any time.)

2.1 What version of the human assembly was used to perform the alignments? (Look for the
genome assembly identifier AS.)

2.2 How many lanes are in this BAM file? Remember that each lane is identified by a unique read
group ID. Use the commands grep to parse the BAM header, looking for lines starting with @RG, and

wc -1 to count them.

2.3 What programs were used to create this BAM file? Look up the meaning of the @PG lines.


https://tinyurl.com/ybyq3rk3
http://samtools.github.io/hts-specs
http://samtools.github.io/hts-specs
http://samtools.github.io/hts-specs/SAMv1.pdf

2.4 What version of bwa was used to align the reads?

Exercise 3: Alignment formats conversion

You can use samtools to convert between SAM<->BAM and to extract regions of a BAM file. On the
command line type

samtools view NA20538.bam | less -S
As explained above, the -S switch causes that long lines are truncated rather than wrapped, which makes
the output more readable. Alternatively, the UNIX command cut can be used to extract only the columns of
interest. (For example, the command cut -f1,4 prints only the first and the fourth columns of the input.)

3.1 What is the name of the first read? Look up the QNAME field at page 5 of the SAM specification.
Note that although the specification makes a distinction between a "query template" (the physical
sequenced molecule) and a "read" (the actual sequence obtained by the experiment), both are often
used interchangeably.

3.2 What position does the alignment of the read start at?
3.3 What is the mapping quality of the read?

We will convert a yeast BAM file to CRAM. In the data directory, there is a BAM file called yeast.bam that
was created from S. cerevisiae lllumina sequencing data.

3.4 Can you convert the BAM file to a CRAM file called yeast.cram using the samtools view
command? First run the command without arguments to view the list of available options. For this
exercise we will need -C, -T and -o. Note that the reference genome is stored in the file
Saccharomyces_cerevisiae.EF4.68.dna.toplevel.fa. Name the output file yeast.cram.

Since CRAM files use reference based compression, we expect the CRAM file to be smaller than the BAM
file. What is the size of the CRAM file?

3.5 Is your CRAM file smaller than the original BAM file?

Exercise 4: VCF/BCF and bcftools

VCF/BCF format is the accepted standard format for storing variant calls with supporting data. The official
specification is available from http://samtools.github.io/hts-specs.

Bcftools comprises a set of programs for interacting with VCF/BCF files. You can use bcftools to convert
between VCF<->BCF and to view or extract records from a region. Type bcftools without arguments to
see the list of available commnads. Then add name of any of the commands (for example, type bcftools
view) to see the list of available options.

bcftools

bcftools view

Using the bcftools view command, print the header of the BCF file
bcftools view -h 1kg.bcf | less
and answer the following questions:


http://samtools.github.io/hts-specs
http://samtools.github.io/hts-specs

4.1 What version of the human assembly the coordinates refer to?

4.2 Can you convert the file called 1kg.bcf to a compressed VCF file called 1kg.vcf.gz using the
bcftools view command? You will need the --output-file and --output-type options.

Similarly to BAM, the VCF/BCF format supports random access and can quickly retrieve records from any
genomic region. For this, the file must be indexed.
4.3 Index the BCF, then use the bcftools view command to extract records from a region by
adding the option --regions 20:24042765-24043073

Now we are able to extract complete records from any position or region. Can we extract individual fields as
well? The versatile bcftools query command can be used to do that. Combined with standard UNIX
commands, it gives a powerful tool for quick querying of VCFs. Try to answer the following questions with

the help of the manual page.
4.4 How many samples are in the BCF? (Hint: check the -1 option.)

4.5 What is the genotype of the samples HG00107 and HG00108 at the position 20:240194727
Use the bcftools query command with the following options:
--regions 20:24019472 to extract the VCF record at this position
--samples HGO0107,HG00108 to extract the two samples
--format '%POS[ %GT]\n' to output the genotypes, printing first the position and then the
genotypes separated by a space (the square brackets loop over samples)

4.6 How many positions there are with more than 10 alternate alleles? First check the VCF
specification and the VCF header (bcftools view -h). You will find that this information is
encoded by the INFO/AC tag. Then extract all records with the INFO/AC value bigger than 10 using
the --include 'AC>10' option and wc -1 to count the lines.

4.7 List positions where the sample HG00107 has a non-reference genotype and the read depth is
bigger than 10. Similarly as above, use the bcftools query command with the following options:
--samples HGO0107 to extract the sample
--include 'FORMAT/DP>10 & FORMAT/GT="alt"' to match positions with read depth
bigger than 10 and with genotype containing an alternate allele. The ampersand symbol &
requires that both conditions must be true in the same sample
--format '%POS[ %GT %DP]\n' to output position, the genotype, and the read depth.
Pipe the output into head to display only the first few lines.

Exercise 5: Generate QC stats

We will generate QC stats for two lanes of lllumina paired-end sequencing data from yeast. We will use the
bwa mapper to align the data to the Saccromyces cerevisiae genome
(ftp://ftp.ensembl.org/pub/current_fasta/saccharomyces_cerevisiae/dna) and samtools stats to generate the
stats.

5.1 Read pairs are usually stored in two separate FASTQ files so that n-th read in the first file and

the n-th read in the second file constitute a read pair. Can you devise a quick sanity check that

reads in these two files really form pairs? The files must have the same number of lines and the

naming of the reads usually suggests if they form a pair. The location of the files is
60A_Sc_DBVPG6044/1lanel1/s_7_1.fastq


http://samtools.github.io/bcftools/bcftools.html#query
http://samtools.github.io/bcftools/bcftools.html#query

60A_Sc_DBVPG6044/1lanel1/s_7_2.fastq
First check whether the read names are suggestive of a pair. For example, the reads in the first file
can have the suffix /1 and the reads in the second file should have the suffix /2. Then check
whether there is the same number of reads in both files.

Run the . /align. sh script to create the mappings. The script is very short, take a look inside using the
command less ./align.sh. The script contains several commands, some are combined together using
pipes. UNIX pipes is a very powerful and elegant concept which allows us to feed the output of one
command into the next command and avoid writing intermediate files.

The script will produce the BAM file 1ane1.sorted.bam. Generate the stats including only primary

alignments using the command
samtools stats -F SECONDARY lanel.sorted.bam > lanel.sorted.bam.bchk

Look at the output and answer the following questions:
5.2 What is the total number of raw sequence reads?

5.3 How many reads were mapped?
5.4 How many read pairs were mapped to a different chromosome?
5.5 What is the insert size mean and standard deviation?

Next we will create some QC plots from the output of the stats command using the command
plot-bamstats which is of the samtools package:

plot-bamstats -p lanel-plots/ lanel.sorted.bam.bchk
In your web browser open the generated html file to view the graphs

firefox lanel-plots/*.html

5.6 How many reads have zero mapping quality (MQ)?

5.7 Check the "Quality per cycle" graph. Which of the first fragments or second fragments are higher
base quality on average?

Answers to exercises:

1.1 Read Group

1.2 lllumina, see the PL field

1.3 ERR003612, see the ID field
1.4 2kbp, see the PI field

2.1 NCBI build v37
2.2 The command is
samtools view -H NA20538.bam | grep "@RG | wc -1
2.3 Use the command
samtools view -H NA20538.bam | grep "@PG | less -S
Usually the alignments are processed with multiple programs. The @PG lines in this BAM file suggest
that the reads were aligned using bwa, then GATK was used to recalibrate qualities and realign
indels.
2.4 Find VN field of the @PG line.



3.1 The name of the first read is ERR003814.1408899, use for example a command like this
samtools view NA20538.bam | head -1 | cut -f1

3.2 Chromosome 1, position 19999970
samtools view NA20538.bam | head -1 | cut -f3,4

3.3 Q23
samtools view NA20538.bam | head -1 | cut -f5

3.4 Use the command
samtools view -C -T Saccharomyces_cerevisiae.EF4.68.dna.toplevel.fa
-0 yeast.cram yeast.bam

3.5 Use the command
ls -1h yeast.bam yeast.cram

4.1 Lookup the ##reference line
4.2 Use the command
bcftools view -0 z -o 1kg.vcf.gz 1kg.bcf
4.3 Use the following commands:
bcftools index 1kg.bcf
bcftools view -H -r 20:24042765-24043073 1kg.bcf | less -S
4.4 Use bcftools query -1 1kg.bcf to get list of samples and wc -1 to count the lines
bcftools query -1 1kg.bcf | wc -1
4.5 The complete command is
bcftools query -r 20:24019472 -s HGOO107,HGO0108 -f '%POS [ %GT]\n' 1kg.bcf
4.6 The command can look like this:
bcftools query -i 'AC>10' -f '%POS\n' 1kg.bcf | wc -1
4.7 The complete command is
bcftools query -s HGO0107 -i 'FORMAT/DP>10 & FORMAT/GT="alt"' -f '%POS [
%GT %DPI\n' 1kg.bcf | head

5.1 You can use the following commands
head 60A_Sc_DBVPG6044/lanel1/s_7_1.fastq | grep ~@
head 60A_Sc_DBVPG6044/lanel1/s_7_2.fastq | grep @
wc -1 60A_Sc_DBVPG6044/1lanel/*.fastq
5.2 Look inside the file and locate the field "raw total sequences". To extract the information quickly
from multiple files, commands similar to the following can be used:
grep ASN lane*.sorted.bam.bchk | awk -F'\t' '$2=="raw total sequences:
5.3 Locate the field "reads mapped" or use the command
grep ASN lane*.sorted.bam.bchk | awk -F'\t' '$2=="reads mapped:"'
5.4 Locate the field "pairs on different chromosomes" or use the command
grep ASN lane*.sorted.bam.bchk | awk -F'\t' '$2=="pairs on different
chromosomes: "'
5.5 Locate the "insert size" fields



Thomas Keane (material by Vivek lyer, Adams Group, WTSI) The most important first step in understanding next-generation sequencing data
Team Leader, EMBL-EBI is the initial alignment or assembly that determines whether an experiment has
@drtkeane succeeded and provides a first glimpse into the results.

Flicek & Birney, 2009. Nature Methods

In the footsteps of Anthony Doran

Sequence alignment in NGS is:

* Process of determining the most likely source of the observed DNA sequencing
read within the reference genome sequence.

Principles and approaches to sequence alignment have not changed much since 80’s
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Sequence alignment in NGS is:

* Process of determining the most likely source of the observed DNA sequencing
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Local alignment: Smith-Waterman algorithm (1981)
Algorithm for generating the optimal pairwise alignment between two sequences

Optimal alignment: the alignment which exhibits the most correspondences and
the least differences, i.e. the alignment with the highest mapping score

Time consuming to carry out for every read - impractical
« Aligner will use it to refine a quick approximate placement
« Variant caller might use it to correctly re-align reads with insertions/deletions

We will now get a feel for this

Local alignment: Smith-Waterman algorithm (1981)

We get a feel for this by aligning things by eye, then doing it using S-W:

QUERY SEQUENCES:
ATG

REFERENCE SEQUENCE:
ATCG

ALIGNMENT:
AT-G

ATCG

Local alignment: Smith-Waterman algorithm (1981)

We get a feel for this by aligning things by eye, then doing it using S-W:

QUERY SEQUENCES:
ATG

REFERENCE SEQUENCE:

ATCG

ALIGNMENT:
A-TG
|11

ATCG

QUERY SEQUENCES:
ACCG

REFERENCE SEQUENCE:

ATCG

ALIGNMENT:
ACTG

ATCG

AN

A

C

R

N

QUERY SEQUENCES:
ACCG

REFERENCE SEQUENCE:
ATCG

ALIGNMENT:
ACTG

ATCG

Local alignment: Smith-Waterman algorithm (1981)

Algorithm for generating the optimal pairwise alignment
between two sequences:

A C T G
Score every cell in matrix from top to bottom.
Scoring is “cumulative” from previous cell:
) 0 0 0 0
Each cell has three possible scores:
Entry from diagonal (match or mismatch)
Entry from left (gap open)
Entry from above (gap open R e e R
ry (gap open) . \=0 Calo il
Accumulate this score to previous cell, based on
match/mismatch/gap -1,0,-1 |-1,-1,2 |1,-1,-1 10,-1,-1
Match: +1 =0 =2 ‘:1 =0
Mismatch: -1 | )
Gap Open: -1 11,1 [-1,1-1 |0,0,1 [-1,-1,2
- 3 possible scores based on 3 previous cells =1= = =1 =
Put “top” cumulative score in current cell.

If top score is negative, replace with 0

Record the source of top score (which cell you entered from )
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Local alignment: Smith-Waterman algorithm (1981)

Algorithm for generating the optimal pairwise alignment
between two sequences:

TRACEBACK:

Start at highest score (2) and trace back to source until
you get to 0 score.

WRITE OUT ALIGNMENT:

SsI1 A C T G
s2 A C - G

At each point of S1/S2: either a character or -
Entry from sides = gap

Entry from diagonal = match or mismatch

2,11

A c T G
0 0 0 0 0
.
0 \(1,-1,1 011 |-1,-1-1 |-2-1-1
=1 = =1=0 |=-1=0
0 1,01 |-1-12 |1,-2-1 l0,-1,-2
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NGS read alignment

NGS: Nucleotide based alignment (also known as read mapping)

Number of 150bp reads in an 40x coverage lllumina X10 genome sequence?

800x106

These all have to be aligned against a mammalian genome (3Gbp)

Two primary approaches:
* Hash-based alignment
+ Suffix/prefix trees
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Local alignment: Smith-Waterman algorithm (1981)

Algorithm for generating the optimal pairwise alignment between two sequences

Optimal alignment: the alignment which exhibits the most correspondences and
the least differences, i.e. the alignment with the highest mapping score

Time consuming to carry out for every read
« Only applied to a small subset of the reads that don’t have an exact match
« Important for correctly aligning reads with insertions/deletions

We will now get a feel for this (done!)

Further concepts:

Local alignment: Any segment of one sequence can align to an arbitrary position in
the other sequence. Segments of query align to segments of target.

Global alignment: Alignment of two complete sequences. If sequences are very
dissimilar in size then there will be lots of gaps.

Hash table alignment

Note: K-mer is a short fixed sequence of nucleotides

First thing: “wrap up” the reference genome to bring it to the reads — build a kmer hash

Scan the reference genome:

Build a profile (index) of all possible k-mers of length n
and the locations in the reference genome they occur:

Hash table will be several Gbytes in size for human genome

sequence

Tmers

ATGGAAGTCGCGGAATC

ATGGAAG
TGGAAGT

SYsanger
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Start with the reference
genome

Kmer hash Reference Genome

sequence.

from.

Build a data structure (hash)
allows rapid lookup by kmer

Each kmer entry in the hash
stores the genome
location(s) the kmer came

Sequencing reads

read
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Note: K-mer is a short fixed sequence of nucleotides

First thing: “wrap up” the reference genome to bring it to the reads — build a kmer hash
Scan the reference genome:
Build a profile (index) of all possible k-mers of length n
and the locations in the reference genome they occur:
Hash table will be several Gbytes in size for human genome

Next: For each sequence read:
Split the read into k-mers of length n
Lookup the locations in the reference via the index hash table (you made above)

Your hash table stores genomic locations => Pick region on the genome with most k-mer hits
Perform Smith-Waterman alignment to fully align the read to the region
Output the alignment of each read onto the reference in BAM (or equivalent) format.

Hash of the reads: MAQ, ELAND, ZOOM and SHRiMP
Smaller but more variable memory requirements

Hash the reference: SOAP, BFAST and MOSAIK
Advantage: constant memory cost
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Hash table alignment

Note: K-mer is a short fixed sequence of nucleotides

First thing: “wrap up” the reference genome to bring it to the reads — build a kmer hash
Scan the reference genome:

Build a profile (index) of all possible k-mers of length n

and the locations in the reference genome they occur:

Hash table will be several Gbytes in size for human genome

Next: For each sequence read:

Split the read into k-mers of length n

Lookup the locations in the reference via the index (seed phase)

Pick region on the genome with most k-mer hits

Perform Smith-Waterman alignment to fully align the read to the region

Output the alignment of each read onto the reference in BAM (or equivalent) format.

Hash of the reads: MAQ, ELAND, ZOOM and SHRiMP
Smaller but more variable memory requirements

Hash the reference: SOAP, BFAST and MOSAIK
Advantage: constant memory cost
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Suffix/Prefix tree based aligners

For fast string matching: A suffix trie, or simply a trie, is a data structure that
stores all the suffixes of a string, enabling fast string matching. To establish the

link between a trie and an FM-index, a data structure based on Genome
Burrows-Wheeler Transform (BWT) //
pd Trie based on genome
pd slightl\/compacted)
gaaccgacee "
Suftix tree for sequence CT / \ga . ‘
Build a suffix-trie for the genome: . , / \ ha ~‘i
- a different structure to bring the genome to the query Gl & [ ;/f; B 0 &
\.

- But the memory requirements are huge

More terms: BW transform, FM-index ...

- Methods of reducing memory & time footprint
Examples: BWA, bowtie2, MUMMer

Figure 2
Suffix tree for the sequence gaaccgacct. Square nodes are leaves
and represent complete suffixes. They are labeled by the starting
position of the suffix. Circular nodes represent repeated sequences
and are labeled by the length of that sequence. In this example the
longest repeated sequence is acc occurring at positions 3 and 7.
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Wrapping up the genome and bringing it to your reads

Kmer hash:
Summarises (folds up) content of genome and brings it close to the reads

wee® L GENOME

89" Kmer-hash

Reads

N
&@;\\\ Suffix trie
Pty Suffix

tree
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Mapping qualities

What if there are several possible places in the genome to align your sequencing read?

Genomes contain many different types of repeated sequences
* Transposable elements (40-50% of vertebrate genomes)
* Low complexity sequence
« Reference errors and gaps
* Plenty of closely paralogous genes!

The aligner will issue a MAPPING QUALITY to each alignment

Mapping quality is a measure of how confident the aligner is that the read is corresponds
to this location in the reference genome

Typically represented as a phred score (log scale)

QO = read placed with identical score elsewhere

Q10=1in 10 incorrect

Q20 =1in 100 incorrect

Paired-end sequencing is useful - if one end maps inside a repetitive elements and one
outside in unique sequence: the the aligner will use this

- Hence prefer paired-end sequencin wellcome trust
sanger

institute



Unspliced:

No —+

intron-size

Aligner choice — some considerations

Iog 10 (Index + align) time (5)

log10 (Index + align) time (5)

wellcome trust

sanger

institute

Human

. BLAST @ Indextime
2 a Align time

@ Dynamic programming
® Inital indexing

= Nextgen indexing

STAR
?

Human

o sw 1 million SE
75bp reads

Novoalign

awa @ san

FASTA ®
Mag @)oY (B Bowtie
1970 1980 1990 2000 2010
Published year o
Yeast

Muir et al. Genome Biology (2016)
DOI 10.1186/s13059-016-0917-0

Some alignment options (there are lots more)

d gaps

Spliced:

Allow for |

big gaps
inside
reads, are
aware of
gene-struc
ture

Aligner Gapped SE Input format Output Trimming? BS-s Note
alignment and/or format eq
PE
Yes SE,PE FASTQ SAM No No Seed + extend:
FASTA Local alignment
Bowdi AL SE-RE—FASTQ SAM. AL Mi L -3
FASTA
Bowtie2 Yes SE,PE FASTQ SAM Yes No Seed + extend:
FASTA Local alignment
gseq
TopHat Yes SE,PE FASTQ SAM Yes No Uses bowtie or
FASTA bowtie2 as base
gseq aligner
STAR Yes SE,PE FASTQ SAM Yes No Fastest and
FASTA most accurate

for RNAseq

Align times
are dropping
exponentially
by year
(roughly
Moore’s law)
Yeast is
quicker than

" human.
Dynamic
programming
(NW) is slow
cf hashing
(BLAT) is slow
compared to
suffix trie
(BWA)

Don’t use
old tech

Spliced
aligns
(RNASeq)

Independently
performs spliced
aligns (no
preprocessing)

Aligner choice — some considerations

In the event that you have a choice of aligner to use

Read manual, publication, vignette, etc

Sometimes, defaults may not be
appropriate for your study

Does an aligner/mapper support:

my platform (lllumina, PacBio etc)?

my sequence type (DNA, RNA, etc)?

paired end reads?

my read lengths (e.g. PACBio are long 10’s of

thousands)
Consider speed, and memory requirements and your

resources
Does it allow for mismatches (SNPs)? (Configurable)
Support for gapped alignments? (Yes)

How does it handle multi-mapping reads? (Configurable)
Does it allow spliced alignment (RNA seq)? (Purpose
build aligners for this)

wellcome trust

Blsan

nstitute

1og 10 (Index + align) time (5)

10g10 (Index + align) time (5)

Human

Human

1 million SE
75bp reads

Novoalign

STAR

@

er

1970

1980 1990 2000 2010

Published year i

Yeast

Muir et al. Genome Biology (2016)
DOI 10.1186/s13059-016-0917-0

Alignments — scaling up

Question: IF: 50Mbp bwa mem =5 CPU minutes.
AND: 150 Gbp per HiSegX10 lane — 1 human genome sequenced at 45x

THEN: How long will it take to align your X10 human genome sequencing?

wellcome trust

Ksan

institute

er

Align times
are dropping
exponentially
by year
(roughly
Moore’s law)
Yeast is

quicker than

human.
Dynamic
programming
(NW) is slow
cf hashing
(BLAT) is slow
compared to
suffix trie
(BWA)



Alignments — scaling up

Question: IF: 50Mbp bwa mem =5 CPU minutes.
AND: 150 Gbp per HiSegX10 lane — 1 human genome sequenced at 45x

THEN: How long will it take to align your X10 human genome sequencing?

How many lots of 50Mb in 150Gb ?
150Gb / 50Mb = (150 x 1079) / (50 x 10"6) = 3 x 103 lots

Each lot takes 5 minutes => total time is 5 x 3 x 103 CPU minutes
15000 CPU minutes = 250 hours ~ 10 days ouch.

a wellcome trust
institute g

Alignments — scaling up

Question: IF: 50Mb bwa mem =5 CPU minutes.
AND: 150 Gbp per HiSegX10 lane — 1 human genome sequenced at 45x

THEN: How long will it take to align your human genome sequencing?

How many lots of 50Mb in 100Gb ?
150Gb / 50Mb = (150 x 1079) / (50 x 10”6) = 3 x 10"3

Each lot takes 5 minutes => total time is 5 x 3 x 103 CPU minutes
15000 CPU minutes = 250 hours ~ 10 days ouch.

Compute Cluster with N nodes: Time of problem is reduced by N.

E.qg. if you have dedicated 200 notes, the time for alignment drops to ~ 1.25 hrs
- Which is ok for a single sample.

- If you have 1000 samples, you need more nodes + better optimisation.

- At WTSI, alignment is more much more efficient (dedicated resources)

E wellcome trust
institute g

Alignments — scaling up

This is why we like compute clusters!
AS ALWAYS: The strategy is to:
Chop up the problem into small pieces and
Solve each piece in parallel, with N computers working at same time
Put the pieces back together after. e TeN
RESULT: Time of problem is reduced by N. Sz Full file.fastq

AGCNTNCTCA

EsnESE

e2.fastq D PieceN.fastq |

3 93 “

+ | Piece1.bam D | PieceN.bam |
Full File.BAM \ i ¢ /

wellcome trust
g Sa ge Full File. BAM

nstitute

Full file.fastq | S

sswsscsweem

AGCNTNCTCA

essues e

N Computers

Overview

Intro

Methods / Aligners
Alignment Outputs
Alignment Viewers

NGS Workflows, QC and BAM Improvement

Elsanger



Pre-alignment file formats

Data generation

FASTQ / Read ID

BAM stores all of the data

>

>

CRAM: Important concepts

>
>

Read sequence

®IL16_4408:3:5:17860:13258 Read ID
CTGGCTCACATACAGGCCAGTATAAAGCGTCTCCTTT.

+ — Qualities
@IL16_4408:3:14:13276:1210
GTAG! \TAT CCTTAG G 'CCTAA
.
DCCF>

@IL16_4408:3:83:5210:21157
CAGGAACTCCAGT' TAGTTCATCCTTGC

a wellcome trust
institute g

The same 4 line format for paired
reads (PE sequencing)

@IL16_4408:3:5:17860:13258
CAGTTTTTTCAGAGCAGTAGCCATTAGGCACAATGTGATT
N
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAFFBFFFF
@IL16_4408:3:14:13276:1210
AGTCAACAGATGTCCTTTGAGCTTAAGAATTCAGCAGAAG
+
FFFFFFFFFFFFFFFFFFFDFFFFFFFFFFFFFFFFFDCE
@IL16_4408:3:83:5210:21157

GGGC! 'GTGTCCCCTCCTGCCACTGAAGACCATGCTAT

Reference based compression

Every read base read 1
. read 2

Every base quality read 3
read 4

Using a single conventional
compression technique for all
types of data

read 5

Reference based compression
Controlled loss of quality

information
read 1
Different compression methods read 2
to suit the type of data, e.g. base “’"‘:i
rea
qualities vs. meta-data vs. extra read s

tags

a wellcome trust
institute g

Reference sequence TG AGCTCTAAGTACCCGCGGTCTGTCCG

kcesflclciccs

Read start position l Read end position

Reference sequence e Ac cficiaacfacccacacfcicfccs

Post-alignment file formats

SAM (Sequence Alignment/Map) format
* Single unified format for storing read alignments to a reference genome
* Developed by the 1000 Genomes group in 2009

BAM (Binary Alignment/Map) format
* Binary equivalent of SAM
» Developed for fast processing/indexing

*  Block GZIP compression for random access of regions

Key features
* Can store alignments from most aligners
* Supports multiple sequencing technologies
*  Supports indexing for quick retrieval/viewing
* Compact size (e.g. 112Gbp Illumina = 116Gbytes disk space)
¢ Reads can be grouped into logical groups e.g. lanes, libraries, samples
*  Widely support by variant calling software packages

Specification maintained by the Global Alliance for Genomics and Health
Global Alliance
for Genomics & Health

CRAM format

* BAM files are too large
¢ ~1.5-2 bytes per base pair

* Increases in disk capacity are being far
outstripped by sequencing technologies

CRAM:
¢ Widely seen as the sequencing format of
the future

¢ Many popular tools now support CRAM
¢ Samtools, Picard, Bedtools (in the future)

l /— Closer to here now
BAM

- — WFile size (GB)
CRAM 8 bins
SAM CRAM lossless CRAM no quality scores

Elsanger



SAM fields

Col Field Type Regexp/ Brief description

1 QNAME String [!-7A-"1{1,254} Query template NAME
2 FLAG Int [0,2'%-1] bitwise FLAG
3 RNAME  String \#|[!1-O+-<>="1[1-"]x Reference sequence NAME
4 POS Int 0,2%"-1] 1-based leftmost mapping POSition
5 MAPQ Imt [0,2%-1] MAPping Quality
6 CIGAR  String \»|([0-9]+[MIDNSHPX=])+ CIGAR string
7 RNEXT  String \=|=| [!-()+-<>-"]1[!-"]¢ Ref. name of the mate/next read
8 PNEXT Int 0,2*-1) Position of the mate/next read
9 TLEN Int [-2%41,2%-1] observed Template LENgth

10 SEQ String  \*| [A-Za-z=.]+ segment SEQuence

11 QUAL String  [1-"]+ ASCII of Phred-scaled base QUALity+33

CIGAR string Operations include

Cigar has been traditionally
used as a compact way to | - insertion
represent a sequence D - deletion

alignment: to go “FROM one

M - match or mismatch

E.g.Read: ACGCA-TGCAGTtagacgt
Ref: ACTCAGTG--GT
Cigar: 5M 1D 2M 2I 2M 78

S - soft clip (ignore these bases)

string TO another you perform H - hard clip (ignore and remove these bases)

these operations”.

Insert size > length(read 1 + read 2)

I— paper == insert

Read 1 Adapter ~ Read 1 Read 2 Adapter
% —_ i3
3 5
Read 2
Inner distance
Insert size
Fragment length
A

B Adapter

Insert size < length(read 1 + read 2)

C—// nsert

Read 1
Read 1 Adapter Read 2 Adapter_
= — "

g — = 5
Read 2
B

Insert size < length(read 1);
Insert size < length(read 2)

|74 wellcome trust

)
institute

Read 1 Adapter Read 1 Read 2 Adapter
5 = 3
3 5
-—
Read 2

Turner, 2014. PMID:24523726

er

Both
reads get
the same
“name”

lsanger

institute

Insert size > length(read 1 + read 2)

NN Adapter

Read 1 Adapter
s

Read 1

/3 Insert

Read 2 Adapter

3

5

-
Inner distance

Read 2

Insert size

Fragment length

A

Insert size < length(read 1 + read 2)

[ Adapter

| — TP

Read 1
Read 1 Adapter Read 2 Adapter _
= [ — 3
B —_—
Read 2
B

Insert size < length(read 1);
Insert size < length(read 2)

[l e ome st

S1sanger

Read 1 Adapter Read 1

5
‘8

Read 2 Adapter
3

—

Read 2

Turner, 2014. PMID:24523726



NOW WE RESUME OUR NORMAL PROGRAMMING

wellcome trust

sanger

institute

SAM/BAM/CRAM format in practice

HX8_24050:5:1217:22455 83 7 60 118M1I32M =

QNAME:

FLAG

RNAME

POS

MAPQ

CIGAR

RNEXT, PNEXT

RNEXT

PNEXT

TLEN: can we work this out from the POS and PNEXT?
SEQ:

QUAL:

MC: how does the mate match?

MD: Does the mate have a mismatch?

NM: This read: what is the edit distance?

AS: what the current alignment score?

XS: what is the align score of the next-best-hit?

TG. .

FJ.

. MC:Z:151M MD:Z:150 NM:i:1 AS:i:143 XS:i:0

SAM/BAM/CRAM format in practice

HX8_Z 3: 0:9449 83 7 4189207 0 151M = 4188954 -404 GTTG <JJJ MC:Z:151M MD:Z:151 NM:1i:0 AS:i:151 XS:i:151
HX8 24050:5:2103:20770:9449 163 7 4188954 0 151M = 4189207 404 TTGG AAFF MC:Z:151M MD:Z:151 NM:1:0 AS:1:151 XS:i:151
HX8 24050:3:2212:32319:38772 99 7 4188947 0 151M = 4189300 436 ATGG AAAF MC:Z:68S83M MD:Z:151 NM:i:0 AS:i:151
XS:1:151

H¥8 24050:3:2212:32319:38772 147 7 4189300 0 68S83M = 4188947 -436 ACAG --7- MC:Z:151M MD:Z:5C10T4T61 NM:i:3 AS:1:68
GNAME: read id

- matches fastq SEQuence

FLAG: QUALIty (alignment doesn’t use them, but

> samtools flags 83: PAIRED, PROPER_PAIR, REVERSE, READ1 variant callers will)

> samtools flags 163: PAIRED, PROPER_PAIR, MREVERSE, READ2

RNAME, POS — chromosome & base pair position ALIGNMENT TAGS:

MAPQ mapping quality http://www.samformat.info/sam-format-alignment-tags
CIGAR M?S? I1?D?

MC:mate cigar

RNEXT, PNEXT - paired read chr & position MD:string for mismatching positions
RNEXT “=“ means same as first read NM:Edit distance to the reference (no clipping)
PNEXT: read2 aligns 5’ of read1. AS:Aligner’s Alignment score
TLEN: insert size XS:suboptimal alignment score (ahal!!)
Overview
Intro

Methods / Aligners
Alignment Outputs
Alignment Viewers

NGS Workflows, QC and BAM Improvement

SYsanger
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Three viewers, in order of sophistication

Viewer 1: samtools

Context:

You have a mouse.

You extracted DNA from mouse kidney and performed paired-end Whole-Genome Sequencing.

Core sequencing facility (and/or an informatician and / or you) produces the alignments and summary stats.

They do variant calling! You find some variants you like, or some differentially expressed genes.
YOU HAVE TO LOOK AT YOUR ALIGNMENTS.

You will need:

Genome file (ie the reference)

Genome file: GRCm38.fa. Remember, there’s always a reference back there ...
Gene annotations.

Alignment file: MySample.bam

Moral

... You need to have a look at it. You cannot just trust a spreadsheet of variants given to you by someone else.

‘wellcome trust

sanger

institute

Viewer 1: samtools

You could just use samtools view at the command line.

- This shows you the bam header: chromosomes/contigs, read-groups, programs which have acted
- This shows you each read id and CIGAR string, as well as mate structure (as we saw before)

$ samtools view —H MySample.bam

@HD VN:1.5 SO:coordinate
@SQ SN:1 LN:195471971 AS:GRCm38
@SQ  SN:10 LN:130694993 AS:GRCm38

@SQ SN:X LN:171031299 AS:GRCm38
@SQ SN:Y LN:91744698  AS:GRCm38

@RG 1D:332872
@RG 1D:332873

PLILLUMINA  SM:MD5638a DS:WGS_ILLUMINA_short PU:24050_1
PLILLUMINA  SM:MD5638a DS:WGS_ILLUMINA_short PU:24050_2

@PG ID:basecalling_0 PN:Unknown  PP:SCS_O
@PG ID:bambi_0  PN:bambi
@PG ID:bamadapterfind_0 ...
@PG ID:bwa_0 PN:bwa CL:/software/solexa/pkg/bwa/ ...

DS:Basecalling Package VN:Unknown
CL:/software/solexa/pkg/bambi/0.9.11/bin/bambi i2b ....

HX8_24050:4:2105:31456:16147 99 1 300000040 20M1I104M26S = 300030145 ...

sanger

You could just use samtools at the command line.
- This shows you the bam header.
- This shows you each read id and CIGAR string, as well as mate structure.

- But otherwise it’s a pretty poor way of visualizing anything.
- No feel for relationship of pairs or how multiple reads show the same signal
The whole point of short-read sequencing is to infer variation etc from PILEUP — the cooperative action of lots

of reads together, all having the same variation at the same point
Samtools doesn’t cut it.

HX8_24050:5:2103:20770:9449 83 7 4189207 0 151M = 4188954 -404 GTTG <JJJ MC:Z:151M MD:Z:151 NM:1i:0 AS:1:151 XS:i:151
;X8724[‘,‘3(}:5:210112077():"}449 163 7 4188954 0 151M = 4189207 404 TTGG AAFF MC:Z:151M MD:Z:151 NM:i:0 AS:i:151 XS:1i:151
HX8 24050:3:2212:32319:38772 99 7 4188947 0 151M = 4189300 436 ATGG AAAF MC:Z:68S83M MD:Z:151 NM:i:0 AS:i:151
XS:1:151

‘1’£X872’105U:3:22;2:52319:38772 147 7 4189300 0 83M = 4188947 -436 ACAG --7- MC:Z:15IM MD:Z:5CI0T4T61 NM:1:3 AS:1:68

XS:i:75

Blsanger

Option 3: Integrative Genomics Viewer (IGV)

Mouse (mm10) ) [an

G ft « » PHE X QP

D = =
=
\ Reference genome Genome coordinates -
. ; . - Zoom in/out
L L P O T T T S L !

=

Refseq genes A L y

PTF WO T TR TRIPON WY PO

= T T TRermrorecen

Elsanger



Integrative Genomics Viewer (IGV) Integrative Genomics Viewer (IGV)

Mouse (mm10) 3 (A D) G ft « » @ME =R = E2] Mouse (mm10) 3] (an : G ft « » W =P = 2]
Mouse (mi0___3)
o
: eference genome .
_ Zoom in/out g ~ Zoom in/out
. T S S S N T S S R A | S S T O S S N SO RO !

C57BL_6NLbam Coverage CS7BL 6Ny bam Coverage

cs78L_6NLbam cs78L_eNubam

Coverage track

Alignments view Sample track Alignments view

4—,gr1ple track

Rafseq genes | iabe i I = " ‘L I e Refseq genas. e A I - I ' I e
* Annotated genes k
pn I l TFemorscon ey T T TRerwroracem
wellcome trust < wellcome trust
Klsanger sanger

654 bp

— s o - - [
o] [E Coverage track p=!. i ! i L i

~

;C Integrative Genomics Viewer (IGV) Integrative Genomics Viewer (IGV)
overage track

Alignments

o Reference
el Genome
= e —
E Er E v .3
Siemerare : n
. L ]
i P — Gene samtools view shows this output: blue-out

annotations ————————ee e e

1405 )122: 30411 ;65986 TR
4050 3:2122: 3041 3

6EQ8E
6598¢

samtools view shows this output:6lue-outlined read is the first fine

CTGATGGCTAn

HX8_24050:3 122:30411:86
HX8_2 2122:30411:6




Integrative Genomics Viewer (IGV) Integrative Genomics Viewer (IGV)

Coverage track |

5538 _7_8000000 marctap | |0

Sequence = [[FTCTATCTTACT ARCAAAAACATGCARACT AAATCAGGAACT GOAAATCECETGTTCATTTTAAGATAGAAGTGATGTAAARACATTGOCTGCTGAACT CTTTTGCAGGAGTTATAAATGAAAGGACACAGAAAAGGGCAATGGCT CAG TGOGTARAATACT

Moz _macoue GRET39 33
gt

samtools view shows th

s output: red-outlined read is the 5’ read

GTAT(HX8 2112:29315:29173 g 60 8M735 = 87484452 84
Notice the CIGAR string is 78M 73S — softclipped means that the alignment STOPs at bp 78, but the rest of the read is NOT

trimmed. Result is that EVERY BASE PAIR of the read will mismatch ref => bases are coloured!

Integrative Genomics Viewer (IGV) Viewing reads as pairs
800 IV
— bt Mouse (mm10) 3] [chr 4| chr1:20,731,612-20,740,635 Go Bt « » @O 2 Bz
: : But wait! There’s more
3 —
i
samtools view will actually show e e T - S T e
— three lines in the file with the : : : = - —
same read name. b e, Ot et  eane et b
B =B - - B—a - D=
We have examined the left read o smmm
(softclipped) and the right read Ehus me Em n s ’;
(perfectly aligned). N e Wy e
The middle read alignment is the -
‘right half’ of the left read. It is _ ° o
hard-clipped and marked as o
secondary’ — see flags B
i e .
racks loaded [Frzrsss T [Fisvorsem

SYsanger
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Mouse (mm10) +) [chr11

Two samples

» @O X P

4] |chr11:74,967,325-75,012.415  |Go T} <

g &

outa e
e n
i
3
H

000k
I

C57BL_6NLbam Coverage }

‘SPRET_Elbam Coverage

SPRET_Ei5am

.:I:\u\hh.n o
I

el gl 0Bt A m;nmu]\ Ol e D o
1

Refseq genes

wellcome trust
Blsanger
Overview
Intro
Methods / Aligners
Alignment Outputs

Alignment Viewers

NGS Workflows, QC and BAM Improvement
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Option 2: samtools tview

If you were stuck on a desert island, this would do the job: and you can try it for fun during the practical!
samtools tview md5638.markdup.bam ../../ref/GRCm38.68.dna.toplevel.fa

There might be
10’s, 100’s or
thousands of
samples.

This needs a
coordinated
workflow:

Alignment is just
one part

Sample

Library
merge

Freeze

BAM
Improvement

Alignment
(bwa, smalt,
C

A typical NGS workflow

e

BAM BAM BAM

------

Y

B s

BAM -E!AM

AM
...... Fastq

Sample/Platform

Library

%
ﬁl. L : L

Elsanger

wellcome trust
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Typically in a o

production merge

workflow:

One sample e

spread over merge

multiple seq Freeze

libraries.

One library BAM
Improvement

spread over

multiple seq Alignment
(bwa, smalt,

runs (lanes) bowtie etc)

Typically in a SE MO

production merge

workflow:

One sample e

spread over merge

multiple seq Freeze

libraries.

One library BAM
Improvement

spread over

multiple seq Alignment
(bwa, smalt,

runs (lanes) o e

- Mitigation of batch (run/instrument) effects
- Split library over multiple lanes
- Increasing sequencing depth (more libraries)

A typical NGS workflow

A8z Nag7465

BAM BAM BAM

------ e )

o

Sample/Platform

R S

———

H wellcome trust
institute g

Data production workflow

NAssas2

o

f

——

a wellcome trust
institute g

Sample/Platform

Typically in a
production
workflow:

One sample
spread over
multiple seq
libraries.

One library
spread over
multiple seq
runs (lanes)

Sample
merge

Library
merge
Freeze

BAM
Improvement

Alignment
(bwa, smalt,
bowtie etc)

Typicallyina
production
workflow:

One sample
spread over
multiple seq
libraries.

One library

spread over
multiple seq
runs (lanes)

Sample
merge

Alignment
(bwa, smalt,
bowtie etc)

Data production workflow

NA3B2 NABT465

BAM BAM BAM

——— _J\___+ ___________
4 ) ) )
BAM BAM | e

\_ ) o) (o] EE

Sample/Platform

Library

ﬁgf’: :

v\eHLome \vus
\ {
wnsn uie

Data production workflow

e

w ] (e ] -oooe (e ] « This step is the alignment of FASTQ

- you’ve done this in previous talk

Sample/Platform

------

B s

o

R
ﬁm: 7
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Normalized Frequency

samtools stats my_aligned_reads.bam > my_aligned_reads.stats.txt
plot-bamstats my_aligned_reads.stats.txt

0.8

0.6

0.4

0.2

Already covered by the QC lecture: several useful metrics to assess the

quality of your data and alignments produced:

« Mapping rates — should be > 90%

« Duplicate marked rates — some want 5%, I see anectdotally around 15%

* GC content vs read depth — which does need mapping (why?). ~ Flat.

« Fragment size distribution. Depends on read length and insert size.

« Indels by cycle. No weird spikes.

12177_1.bam.bamcheck

Reference -

Arsd fragments
ast fragments

20 40 60 80
GC Content [%]

08

0.6

04

Normalized Frequency

0.2

wellcome tr

< sanyci

11072_1#4.bam.bamcheck

Reference
382 First fragments
Last fragments

20 40 60 80 100

GC Content [%]

Mapped depth

And now, a quiz!

ol oo s
Ysanger
institute
GELG00000000030.strip
GC Content [%]
30 40 50
38
10-90th percentile
36 25-75th percentile
Median
34
GELGO0000000027.strip
GC Content [%]
30 40 50
64
10-90th percentile
63 | 25-75th percentile
Median
62 |
18 . . 61
0 10 20 30 40 50 60 70 80 90 100 < :
Percentile of mapped sequence ordered by GC content g
T 59
I
g ss
=
57
56
55
54 .
0 10 20 30 40 50 60 70 80 90 100
ol oo s Percentile of mapped sequence ordered by GC content
S

sanger
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Number of pairs

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
()

12355_5#62.bam.bamcheck

100

200 300 400 500 600
Insert Size

QUIZ IS OVER

|74 wellcome trust

Sy sanger
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Number of pairs

160000
140000
120000
100000
80000
60000
40000
20000
[

11072_1#2 bam.bamcheck

[}

100 200 300 400 500
Insert Size

600

30000

8012_2455. ban. bancheck

15008

Indel count

10000

5000

Typically in a
production
workflow:

One sample
spread over
multiple seq
libraries.

One library

spread over
multiple seq
runs (lanes)

R
- mwm it et
I
- ™
7955_4#42.ban. bancheck e e = e @ Mzm o 2 e e e
Insertions (fud)
Tt
/ wellcome trust
20 30 ‘n._,. !:.,-. 60 70 80 9% 100 anger
institute
p
Sample Sample/Platform
merge
.
s
Library BAM BAM BAM .
merge \ L|brary
Freeze =
e i e ettt Tk dteieteiettel
s (GATK BAM IMPROVEMENT
BAM
Improvement = = = == = =|= = 4 = = = = =|= = =} = — 4 — = — — — — — — — | POST-ALIGN QC
Alignment ’ - This step is the alignment of FASTQ
(bwa, smalt, ’ . .
bowtoete) | (Fasm ] (e 1ol oeeees - We've discussed this at length

\__ [Festa] [Fose]
1

5 -

/ wellcome trust
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THIS IS NOW DEPRECATED (even by GATK!).
1 will mention it briefly because you may see it in different contexts.

FIRST - align each separate FASTQ: library x lane
PROBLEM: read aligners act on each read individually.

IF the read had an indel,
THEN the aligner might get it right.

BAM improvement

Input: BAM OR - if the indel happened near the edge of a read — it may get alignment yw6hg and miss the indel.
mmmwgmm_ Pa rt Of THEN the read would have lots of MISMATCHES instead of a single indet”

Process 2: Base quality recalibration "

Output: BAM GATK Best

. ”
Merge independent lanes BAMS in same library tolger;ﬁe(r:tlce

Process 3: library - level mark-duplication

NA12878, chr1:1,510,530-1,510,589 NA12878, chr1:1,510,530-1,510,589

M.A. DePristyﬁr,Nature Genetics 2011 ‘ M.A. DePrist}o?ﬁ',Nature Genetics 2011

1528782535 s28782535
| psasrearen ¢ INDEL Real algorithm | rszs7eaten rooTaBoTs rsodsTrdes 526786974
il Rl T I 200 (T 1 avesmes (¥, SNROVETNNATEE 5] T
e = FOR indel sites and a BAM file e - ) = -

1. “. .GTTTGTTTATIT..” | . .

I

At each site, mod e indel k

These reads mis-aligned. | i
3. These SNPs are false\ =

del or no indel?

ignment minimises ALL the observed mismatches?

1. “.GTTTGTTTATTT.. | ..
These reads mis-aligned. |
3. These SNPs are false\

N

4 dRasad 2

R ——*~ Result: Group alignment for all the reads (not one-by-one)
Before Indel Realign

Before Indel Realign

After Indel Realign

| Result: New BAM file produced with read cigar lines modified where indels
i have been introduced by the realignment process

sells DRINRRRRARE

HiSeq data, raw BWA alignments

RRUIR RRARARRRRRE

HiSeq data, raw BWA alignments HiSeq data, after MSA|
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BAM Improvement - Indel Realignment BAM Improvement - Base Quality Score Recalibration

Each base call has an associated base call quality
« What is the chance that the base call is incorrect?
o lllumina evidence: intensity values + cycle
« Phred values (log scale)
o Q10 =1in 10 chance of base call incorrect
o Q20 =1in 100 chance of base call incorrect
« Accurate base qualities essential measure in variant calling

THIS IS NOW DEPRECATED (even by GATK!).

Reads are getting longer and aligners are getting bet
problem is going away.

Local realignment now automaticall rformed by variant callers

Rule of thumb: Anything less than Q20 is not useful data
(downstream) ANYWAY.
BUT:

it from their "best practice” docs. The base quality scores produced by a sequencer can be influenced by systematic
technical error:

They can vary with sequence context, position in read etc.
Therefore the quality score can be off
Therefore variant calling can be influenced.

So GATK have remoy

BQSR: adjusts the quality of each base to adjust for these systematic errors

CANG o PR https://www.ncbi.nim.nih.gov/pmc/arti
aﬁﬂnger S sanger cles/PMC3409179/
Base quality recalibration Base quality recalibration effects

The idea of recalibration:
* Use the alignment of your reads to a human reference
* Remove all known variants dbSNP+1000G etc SNP sites Residual Error by Machine Cycle Residual Error by Dinucleotide
« Assume all other mismatches in your data are sequencing errors
Now you can infer the mean observed (“empirical”) error rate for these bins:
- Position of base in read (1 => length of read) sz ) reee i ez fssrom
- Dinucleotide Sequence Context: AA, AT ..., CA, CT ... ) N -
«  Empirical quality = number of mismatches / total number in bin. : . ;
Compare empirical rate to reported sequencer base quality in each of
these categories.
+ Derive an adjustment for each category, to be applied to each reported
base quality value I I —— . .

|
el - Feparted Qualty

G s o s m e B Y M s oa o oea G T Ta M A oA ca e oo TA To

Dinic [

e.g. Sequencer reports Q25 base calls for a “T” in context “AT"

«  After alignment - it may be that "T” in context “AT” actually mismatches the L orgnapas | after oAk recairation .. Ongnaipata | Afer GATK Recliraton

reference at a 1in 100 rate, so are actually Q20
« Adjustment: for every T in “AT” — subtract 5 from BQ. (30=>25, 21=> 16 etc)

sanger

institute

NOTE: requires a reference gen and a catalog of variable sites X PP
Blsanger N
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Library duplicates

All second-gen sequencing platforms are NOT single molecule sequencing
« PCR amplification step in library preparation
* Can result in duplicate DNA fragments in the final library prep.
« PCR-free protocols do exist — require larger volumes of input DNA

Problem: can result in false SNP calls
« Duplicates manifest themselves as high read depth support

Solution:
« Align reads to the reference genome

« Identify read-pairs where the outer ends map to the same position on the
genome and remove all but 1 copy

> Samtools: samtools rmdup
> Picard/GATK: MarkDuplicates
Generally low number of duplicates in good libraries (<5%). But | see ~15%

Klsanger

Overview

If you are an consumer
then you should have a
grasp of this

Intro

Methods / Aligners

Alignment Outputs

Alignment Viewers

Alignment summary statistics and QC — BRIEF REVISION

An informatics group
should have control of
this, but you should be
aware that it’s being
— done.

After alignment: BAM file improvement before variant calling

Elsanger



WTAC Next Generation Sequencing Bioinformatics Course

Read Alignment Practical Exercises

Introduction
We will first “hand-run” a Smith Waterman (local) alignment between two sequences.

We will then align whole-genome sequencing from a mouse zygote which was subject to
CRISPR-induced mutagenesis. We will find the resulting engineered alleles, and track down
some other alleles in this mouse. This section will be “cued”.

We will then align sequences to a yeast genome, this time with less prompting!

Required Data

For this lab, some pre-prepared datasets have been installed on the Virtual Machine (VM) for
you. Double-click the “Module 3 Read Alignment” icon on your desktop to open a terminal
window. This window should open in the Read Alignment module directory containing all of
the materials needed to complete this practical.

In this directory, two are two exercise directories (Exercise2 and Exercise4) which contain
the various data used throughout the practical. There is also a directory titled ‘ref which
contains the reference genome (FASTA format) of M. musculus and S. Cerevisiae which will
be used in Exercises 2 and 4.



Exercise 1: Do a Smith-Waterman alignment
1.1: Here are the rules and an example of aligning “CTGAG” vs “TAG".

Scoring:

Match score: +1
Mismatch score: -1
Gap penalty: -1

Starting cells: fill in first row & first column with “0”s.

Rules for cell scoring:
For any given cell, you can enter from the left side, top or diagonally.
If you entered from top or side:
Score in cell = score in prior cell + gap penalty = score in prior cell - 1
If you entered diagonally:
Score in cell = score in prior cell + 1 if sequences match
OR
score in prior cell -1 if sequences mismatch
Choose the highest of these scores! And remember which entry cell generated the highest
score!
If score in cell is negative, replace score with 0!

Rules for traceback:
Start with highest scoring cell, and trace back to cell of entry (ie did the high score arise when
you enter your current cell diagonally or from the sides).

Writing out alignment.
If cell is entered diagonally, write out match or mismatch.

If cell is entered from sides, then write out a gap in the appropriate sequence.

Example of scoring:

C T G A G
0 0 0 0 0 0
C 0 1 -1 | -1 -1 -1 -1 -1 -1 -1 -1




Now choose the highest score in the matrix and trace-back, choosing the cell which
resulted in the highest score.

C T G A G

0 0 0 0 0 0
C 0 [ N N N =
-1 1 o 0\ -1 0 -1 0 -1 0
G 0 L 0o -1 t -1 -1 N -1
-1 0 |-z 0 -1 1\ 0 0 -1 0
A 0 -t e Lot 0 2 -t -t -t

Alignment: If a cell was entered diagonally, write a match/mismatch between two
sequences. If it was entered horizontally / vertically, enter a gap in one sequence or
the other:

CTGAG
Cc - GA -

1.2: Repeat with these two sequences: “CTGAG” and “TAG”
CTGAG

And
TAG




- T -AG

C T G A G
0 0 0 0 0 0
T 0
A 0
G 0
Solution:
C T G A G
0 0 0 0 0 0
T 0 -1 -1 \ -1 -1 -1 -1 -1 -1 -1
-1 0 |-1 1 0 0 -1 0 -1 0
-1 N ] 0 0 -1 1 -1 -1 -1
-1 0 |-1 0 -1 0 -1 1 0 0
G 0 -1 R -1 1 -1 -1 0 N\ 2 -1
-1 0 |-1 0 -1 1 0 0 -1 2
CTGAG




Exercise 2: BWA Alignment / inspection of mouse variation

We will use the BWA aligner to align one small region of illumina sequencing data to the Mus
Musculus genome. You will align genomic sequence (from Whole-Genome Sequencing) from
a mouse embryo which has been mutagenised while the one-cell stage using CRISPR-Cas9
and a gRNA targeting an exon of the Tyr gene. The successful mutation of the gene will delete
one or both alleles. A bi-allelic null Tyr mouse will be albino, but otherwise healthy.

2.1: View the the reference genome

Goto the ‘ref directory that contains the fasta files of the reference genomes:
~/course_data/Module3_ReadAlignment/ref

Fasta files (.fa) are used to store raw sequencing information before aligning data. The mouse
genome file is here: GRCm38.68.dna.toplevel.fa

View the file with less:
$ less GRCm38.68.dna.toplevel.fa

Question: What is the length of chromosome 1 of the mouse genome? (Look at the fasta
header for chromosome 1)

Question: Can you quickly check if there other sequences in the assembly other than the
‘standard’ chromosomes? (Try grep '>' GRCm38.68.dna.toplevel.fa)

Similar to a BAM file, to allow fast retrieval of data, and index file is often required. In this
case we have already created both the fasta index for the genome:

GRCm38.68.dna.toplevel.fa.fai - allows rapid sequence retrieval with samtools
GRCm38.68.dna.toplevel.fa.amb ... GRCm38.68.dna.toplevel.fa.sa - created by bwa: suffix
trees, bwt transform etc etc.

2.2: Align the paired fastq files with bwa

Goto the ‘~/course_data/Module3_ReadAlignment/Exercise2 /fastq/’ directory. We will align
the fastq files to the mouse reference genome using bwa.

Use the 'bwa mem ' command to align the fastq files. Bwa outputs sam files by default, so
you will have to pipe the result into a sam file.

bwa mem ~/course data/Module3 ReadAlignment/ref/GRCm38.68.dna.toplevel.fa
md5638a_7 87000000 R1.fastqg md5638a 7 87000000 _R2.fastg > md5638.sam

2.3: Convert a SAM file to a BAM file



Now we need to convert the SAM file (‘md5638.sam’) from the previous step into a BAM file.
Convert the SAM file into a BAM file called ‘md5638.bam’ using samtools.

Hint: to do this conversion use ‘samtools view’. What options are required to input a SAM file
and output a BAM file?

samtools view -O BAM -o md5638.bam md5638.sam
How much space is saved by using a bam file instead of sam?
2.4: Sort and index the BAM file

The BAM files produced by BWA are sorted by read name (same order as the original fastq
files). However, most viewing and variant calling software required the BAM files to be
sorted by reference co-ordinate position and indexed for rapid retrieval:

Therefore, use ‘samtools sort’ to produce a new BAM file (‘md5638.sorted.bam’) that is
sorted by position.

Finally, can you index the sorted BAM file using ‘samtools-1.5 index’ command?

Note: indexing a BAM file is also a good way to check that the BAM file has not been
truncated (e.g. your disk becomes full when writing the BAM file). At the end of every BAM
file, a special end of file (EOF) marker is written. The Samtools index command will first
check for this and produce an error message if it is not found.

samtools sort -T temp -0 bam -o md5638.sorted.bam md5638.bam

samtools index md5638.sorted.bam

2.5: Unix pipes to combine the commands together

To produce the sorted BAM file in 2.1-2.3 we had to carry out several separate commands
and produce intermediate files. The Unix pipe command allows you to feed the output of one
command into the next command.

Combine all of these commands together using unix pipes, and do all of this data
processing together and avoid writing intermediate files.

bwa mem ~/course data/Module3 ReadAlignment/ref/GRCm38.68.dna.toplevel.fa
md5638a_7 87000000 R1.fastqg md5638a 7 87000000 _R2.fastg | samtools view -O BAM
- | samtools sort -T temp -O bam -o md5638.sorted.bam -



2.5: Mark PCR Duplicates

We will use a program called ‘MarkDuplicates’ that is part of Picard tools
(http://picard.sourceforge.net) to remove PCR duplicates that may have been introduced
during the library construction stage. To find the options for ‘MarkDuplicates’ - type:
picard-tools MarkDuplicates

Now run MarkDuplicates using the ‘I=" option to specify the input BAM file and the ‘0=’
option to specify the output file (e.g. md5638.markdup.bam). You will also need to specify
the duplication metrics output file using ‘M= (e.g. md5638.markdup.metrics).

Don’t forget to index your final bam file using ‘samtools index’.

From looking at the output metrics file - how many reads were marked as duplicates? What
was the percent duplication?

picard-tools MarkDuplicates I= md5638.sorted.bam O=md5638.markdup.bam
M=md5638.metrics. txt

Generate an index for the bam file using samtools.

samtools index md5638.markdup.bam

2.5: Generate QC Stats

Use samtools to collect some statistics about the alignments in the BAM file from the last
step. To run the 'stats' command - type:

samtools stats md5638.markdup.bam > md5638.markdup.stats
Then look at the output and answer the following questions:
What is the total number of reads?

What proportion of the reads were mapped?

How many reads were paired correctly/properly?

How many reads mapped to a different chromosome?

What is the insert size mean and standard deviation?

Next we will create some QC plots from the output of the stats command. Make sure you have
saved the output of the stats command to a file (e.g. lanel.stats.txt). We will use the
'plot-bamstats’ command that is part of Samtools:



plot-bamstats -p md5639 plot md5638.markdup.stats

Now in your web browser open the file called md5639 plot.html to view the QC information.
How many reads have zero mapping quality?

Do any of the graphs look odd to you?

Which of the first fragments or second fragments are higher base quality on average? Note:
Look at the first of the 'Quality per cycle' graphs.

2.6: BAM Visualisation

Congratulations! You made it to the Good Bit! I find actually seeing the seeing sequence
variation - natural or engineered - and pondering its relation to biological effects quite
compelling. I hope you do too!

IGV (http://www.broadinstitute.org/igv/) is a very useful visualisation tool for looking at
the alignments of reads onto a reference genome from BAM files.

In the ‘fastq’ directory, you can start IGV by typing:
igv.sh

Here’s a great IGV tutorial and refresher:
https://github.com/sanger-pathogens/pathogen-informatics
training/blob/master/Notebooks/IGV/IGV.pdf
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https://github.com/sanger-pathogens/pathogen-informatics

2.6.1 Load the reference genome, on the top menu bar find the genomes dropdown
(top-left) and select “mouse mm10”. This is a synonym for GRCm38, which is the current
mouse assembly.

If - for whatever reason, this fails - you can load the genome from a file (Genomes=>Load
From File using the genome in the “ref” directory:

GRCm38.68.dna.toplevel.fa

and load gene annotations from file File=>Load from file using this file:
Mus_musculus.GRCm38.93.chr.sorted.gtf

2.6.2 Load your BAM file, on the top menu bar goto ‘File -> Load from File...” and select the
md5638 .markdup.bam file that you created in the previous step.

2.6.3 Set up basic view preferences, using:

Popup preferences - use the little “speech bubble” button on the top icon list to set popups
on click only

Track preferences (Command-click on the track at left). Sort alignments by insert size.
Colour alignments by insert size.

View preferences (View menu item): View=>preferences=>Alignments. Show soft-clipped
bases. This colour highlighting emphasises soft-clips on the read itself.

2.6.4 Inspect an interesting region of the mouse Tyr locus.

Go to chromosome 7, positions 87,483,625-87,484,330 using the navigation bar across the
top. Take in the glorious view of a genome pileup. Stop and smell the roses! Click on stuff!
Scroll around, zoom in and out a bit!

2.6.5 Questions about the pileup and visible variation:

Go back to chromosome 7:87,483,625-87,484,330. What is the (rough) coverage across this
region?

There are three mutant variants (two small and one larger) in this region: Can you spot them,
state what the evidence is for them, and work out their allele fraction? Can you venture a
guess as to what happened here? Why are these mutations present? Why might they be
subclonal?

Hints:
1. Look around 87,483,960 for an insertion. How large is it? How many reads does it

occur in?
2. Look around 87,483,960 for a deletion. How large is it? How many reads does it occur



in?

3. Zoom out slightly and watch the coverage track between 87,483,700 - 87,484,200.
Once you've spotted the large change look at reference sequence the edges of the
mutation to hazard a guess as to its mechanism.

What mutations can you see? There is a 1bp insertion (at “T”) with VAF ~0.3 at position
7:87,483,965. There is a 28bp deletion with VAF ~0.15 starting at 7:87,483,960. There is a
338bp deletion with a VAF of about 0.25 starting at position 7:87,483,831. Why are they
there? The CRISPR-Cas9 has acted on the zygote at this locus to create
Non-Homologous-End-Join-based damage around 87,483,960: that resulted in a subclonal 1bp
insertion and a 28bp deletion. Microhomology-induced-end-joining resulted in the 338bp
deletion (can you see the “TTT” motif on the 5’ end of the deletion, and just inside the 3’ end of
the deletion? You are watching the zygote DNA-repair machinery panicking and grabbing at
straws). Why are these alleles subclonal? Because the action of the CRISPR-Cas9 occurred
both at the single-cell and the two-cell stage.

2.6.6 Looking for natural SNV’s and Indels
At each of the following genomic locations, write down the variant, its allele fraction, and

whether you can find it in the Mouse Genomes Search facility:
(https://www.sanger.ac.uk/sanger/Mouse SnpViewer/)

Locationl. 7:87258490
Location2. 7:87834414
Location3. 7:87251720
Location4. 7:87303315
Location5. 7:87392116
Location6: 7:87428859

Answer:

1. Hom SNV/no,

2. Hom SNV/no,

3. Hom 2bp and Hom 4bp deletion/sort of: The MGP shows a 4p deletion only, and this is one
region which may have benefited from indel-realignment! Note excess repeats in the area
surrounding.

4. Hom single bp deletion/yes.

5. Hom single bp insertion/yes.

6. Hom (?) 2b deletion/yes.


https://www.sanger.ac.uk/sanger/Mouse_SnpViewer/

Exercise 4: BWA Alignment / lane merging / inspection with YEAST

We will use the BWA aligner to align 2 lanes of illumina sequencing data to the Saccromyces
cerevisiae genome
(ftp://ftp.ensembl.org/pub/current fasta/saccharomyces cerevisiae/dna/).

4.1: Index the reference genome with bwa

Goto the ‘ref directory that contains the fasta files of the reference genome. Fasta files (.fa)
are used to store raw sequencing information before aligning data. Similar to a BAM file, to
allow fast retrieval of data, and index file is often required. You can use the ‘bwa index’
command to create a reference genome index that bwa can use.

Do you see any new files? How many?:

Note: Generally, when a tool creates an index for a file, the index will have almost the same
name as the original but include a new ending. For example, do you see a file ending in .bwt?:

4.2: Align the lane fastq files with bwa

Goto the ‘Exercise4/60A_Sc_DBVPG6044 /libraryl/lanel/’ directory and we will align the
fastq files using bwa.

When aligning data, we often want include additional information of relevance to a project in
the header of a file. Next create a lane SAM file called ‘lanel.sam’ with the following SAM
header (Hint: type ‘bwa mem’ and look for the “Input/output options” section of the printed

help page):

"@RG\tID:lanel\tSM:60A Sc DBVPG6044'

Use the 'bwa mem' command to align the fastq files and use the appropriate option to include
the about header information. Don't forget to use the -M option (mark shorter split hits as
secondary).

Hint: This will create a SAM so needs to be output to a file called lanel.sam (> lanel.sam).

4.3: Convert a SAM file to a BAM file

Now we need to convert the SAM file (‘lanel.sam’) from the previous step into a BAM file.
Convert the SAM file into a BAM file called ‘lanel.bam’ using samtools.

Hint: to do this conversion use ‘samtools view’. What options are required to input a SAM file
and output a BAM file?


ftp://ftp.ensembl.org/pub/current_fasta/saccharomyces_cerevisiae/dna/

4.4: Sort and index the BAM file

The BAM files produced by BWA are sorted by read name (same order as the original fastq
files). However, most variant calling software required the BAM files to be sorted by
reference co-ordinate position to allow rapid retrieval of data. Therefore, use ‘samtools sort’
to produce a new BAM file (‘lanel.sorted.bam’) that is sorted by position.

Look at the first line of the header of the BAM file, is it coordinate sorted?:
Finally, can you index the sorted BAM file using ‘samtools index’ command?

Note: indexing a BAM file is also a good way to check that the BAM file has not been
truncated (e.g. your disk becomes full when writing the BAM file). At the end of every BAM
file, a special end of file (EOF) marker is written. The Samtools index command will first
check for this and produce an error message if it is not found.

4.5: Unix pipes to combine the commands together

To produce the sorted BAM file in 2.1-2.3 we had to carry out several separate commands
and produce intermediate files. The Unix pipe command allows you to feed the output of one
command into the next command.

So using Unix pipes, we can combine all of these commands together and do all of this data
processing together and avoid writing intermediate files.

bwa mem -M -R 'Q@RG\tID:lanel\tSM:60A Sc DBVPG6044'
../../../../ref/Saccharomyces cerevisiae.EF4.68.dna.toplevel.fa s 7 1.fastqg
s 7 2.fastq | samtools view -bS - | samtools sort -T temp -O bam -o
lanel.sorted.bam -

4.6: Generate QC Stats

We will use samtools to collect some statistics about the alignments in the BAM file from the
last step (remember to output this to a stats file, e.g. a file ending in .stats.txt). To run the
'stats' command - type:

samtools stats lanel.sorted.bam

Then look at the output and answer the following questions (Hint look for rows beginning
with SN):

What is the total number of reads?

What proportion of the reads were mapped?



How many reads were paired correctly/properly?
How many reads mapped to a different chromosome?

What is the insert size mean and standard deviation?

Next we will create some QC plots from the output of the stats command. Make sure you have
saved the output of the stats command to a file (e.g. lanel.stats.txt). We will use the
'plot-bamstats' command that is part of Samtools:

plot-bamstats -p plot lanel.stats.txt

(Aside: If you have problems running plot-bamstats, you can download the results from
here: http:/ /tinyurl.com/h37d8bx).

Now in your web browser open the file called plots.html to view the QC information.
How many reads have zero mapping quality?

Which of the first fragments or second fragments are higher base quality on average? Note:
Look at the 'Quality per cycle' graphs.

4.7: Align Lane 2

There is a second lane in the ‘library1’ directory called ‘lane2’. We want to also align this lane
also to produce a BAM file.

Goto the ‘Exercise4/60A_Sc_DBVPG6044/libraryl/lane2’ directory. Now repeat exercise 2
using the fastq files in the lane2 directory to produce a sorted BAM file. Note: This time when
you use the ‘bwa mem' command use the following header option to specify lane2 as the read
group ID:

"@RG\tID:lane2\tSM:60A Sc DBVPG6044'

4.8: Merge the lane BAMS

Go to the ‘60A_Sc_DBVPG6044 /library1’ directory. Use ‘Is’ to get a listing of the files and
directories contained in this directory.

You will notice that there are two directories called lanel’ and ‘lane2’. There were two
sequencing lanes produced from this sequencing library. In order to mark library PCR
duplicates, we need to merge the two lane BAM files together to produce a single BAM file.

We will use the picard tool called ‘MergeSamFiles’ (http://picard.sourceforge.net) to merge
the lane BAM files. Picard-tools is a collection of commands (with their own options) for



interacting with BAM files. Look at the list of commands available for Picard-tools by running
‘picard-tools’. To find the options for ‘MergeSamFiles’ command, type:

picard-tools MergeSamFiles

Now use the ‘I=" option to specify both the input BAM files and the ‘O=" option to specify the
output file (e.g. library1l.bam). Note: Multiple input files can be specified using ‘1=’

4.6: Mark PCR Duplicates
We will use a program called ‘MarkDuplicates’ that is part of Picard tools

(http://picard.sourceforge.net) to remove PCR duplicates that may have been introduced
during the library construction stage. To find the options for ‘MarkDuplicates’ - type:

picard-tools MarkDuplicates

Now use the ‘I=" option to specify the input BAM file and the ‘O=" option to specify the output
file (e.g. libraryl.markdup.bam). You will also need to specify the duplication metrics output
file using ‘M=’ (e.g. libraryl.markdup.metrics).

Don’t forget to index your final bam file using ‘samtools index’.

From looking at the output metrics file - how many reads were marked as duplicates? What
was the percent duplication?

4.9: BAM Visualisation

IGV (http://www.broadinstitute.org/igv/) is a very useful visualisation tool for looking at
the alignments of reads onto a reference genome from BAM files.

In the ‘library1’ directory, you can start IGV by typing:

Igv.sh &

To load the reference genome, on the top menu bar goto ‘Genomes -> Load Genome From
File..” and select the reference genome in the ‘ref’ directory.

Next to load your BAM file, on the top menu bar goto ‘File -> Load from File..." and select the
library BAM file that you created in the previous step.

Now goto Chromosome IV and position 764,293 using the navigation bar across the top.
What is the reference base at this position?

Do the reads agree with the reference base?



What about the adjacent position (IV:764,292)? What is the reference base at this position?
[s it supported by the reads?

Now goto Chromosome IV and position 766,588 using the navigation bar across the top.
What sort of mutation are the alignments indicating might be present?
Now goto Chromosome IV and position 770,137 using the navigation bar across the top.

What sort of mutation are the alignments indicating might be present? Is there anything in
the flanking sequence of the reference genome that might make you suspicious about this
mutation?

Software URLs

Name URL

Burrows-Wheeler Aligner (BWA) | http://bio-bwa.sourceforge.net/
http://github.com/lh3/bwa

Samtools http://www.htslib.org

Picard Tools https://broadinstitute.github.io/picard/

IGV http://software.broadinstitute.org/software/igv/
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Variant types

SNPs/SNVs ... Single Nucleotide Polymorphism/Variation

ACGTTTAGCAT
ACGTTCAGCAT

MNPs ... Multi-Nucleotide Polymorphism

ACGTCCAGCAT
ACGTTTAGCAT

Indels ... short insertions and deletions

ACGTTTAGCA-TT
ACGTT-AGCAGTT

SVs ... Structural Variation

[ a > 8 >E®
[ A >EED
[ A > SECI»TeD
[ A >{a D
[ A >EED[ B >
[Aa > 8 > 8>

Some terminology

The goal is to determine the genotype at each position in the genome

Genotype
¢ in the broad sense ... genetic makeup of an organism
¢ in the narrow sense ... the combination of alleles at a position

Reference and alternate alleles - R and A

Diploid organism

¢ two chromosomal copies, three possible genotypes

¢ RR .. homozygous reference genotype
¢ RA .. heterozygous
¢ AA .. homozygous alternate

Reference genome: AGACTTGGCCCCCTCCCCATTCAAGGTCTTC
. AGACTTGGCCCCATCCCCATTCCAGGTCTTC
Sequenced genome: AGACTTGGCTCCCTCCCCATTCCAGGTCTTC
c/C AIC c/C
R R AR AA
VCF notation ... 0/0 1/0 1/1
Alternate allele dosage ... 0 1 2

/52
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Germline vs somatic mutation

Germline mutation

¢ heritable variation in the germ cells

Somatic mutation

¢ variation in non-germline tissue, tumors. . .

Germline variant calling

e expect the following fractions of alternate alleles in the pileup:
0.0 for RR genotype (plus sequencing errors)
1.0 for AA (plus sequencing errors)
0.5 for RA (random variation of binomial sampling)

Somatic

¢ any fraction of alt AF possible - subclonal variation, admixture of normal cells in
tumor sample

AGACTTGGCTCCCTCCCCATTC
AGACTTGGCTCCCTCCCCATTCCA
AGACTAGGCCCCCACCCCATTCCAGG
i ACTTGGCCCCCTCCCCATTCAAGGTC
Aligned reads TTGGCTCCCTCCCCATTCCAGGTCTT
GCTCCCACCCAATTCCAGGTCTTC
\\\\ CCCTCCCCATTCCAGGTCTTC
TCCCCATTCCAGGTCCTC
Reference seq AGACTTGGCCCCCTCCCCATTCAAGGTCTTC
Naive variant calling
Use fixed allele frequency threshold to determine the genotype
AGACTTGGCTCCCTCCCCATTC
AGACTTGGCTCCCTCCCCATTCCA
DU 4 s
i ACTTGGCTCCCT ATTCCAGGT
Aligned reads TTGGCTCCCTCCCCATTCCAGGTCTT
GCCCCCACCCAATTCAAGGTCTTC
CCCACCCCATTCCAGGTCTTC
TCCCCATTCCAGGTCCTC
Reference seq AGACTTGGCCCCCTCCCCATTCAAGGTCTTC
. R:3344545562777588878888276655343
Allelic counts A:0000010004000300010000500000100
Predicted dosage  0000000001000100000000100000100
alt AF genotype
[0,0.2) RR .. homozygous reference

[0.2,0.8] RA .. herezogyous
(0.8,1] AA .. homozygous variant




Naive variant calling

Use fixed allele frequency threshold to determine the genotype

AGACTTGGCTCCCTCCCCATTC
Low base quality —> AGACTTGGCTCCCTCCCCATTCCA
AGACTAGGCCCCCACCCCATTCAAGG
ACTTGGCTCCCTCCCCATTCCAGGTC
TTGGCTCCCTCCCCATTCCAGGTCTT
GCCCCCACCCAATTCAAGGTCTTC
CCCACCCCATTCCAGGTCTTC
TCCCCATTCCAGGTCCTC
Reference seq AGACTTGGCCCCCTCCCCATTCAAGGTCTTC
. R:2344525662767587878888276655333
Allelic counts A:0000010004000300010000500000000
Predicted dosage 0000010001000100000000100000000
2 ‘ Quality py Cycle '
1) Filter base calls by quality 35*2
e.g. ignore bases Q<20 30}
Phred quality score %25’
Q = —10 loglo Perr %20
Quality Error probability Accuracy 515"
10 (Q10)  1in 10 90% ol
20 (Q20)  1in 100 99%
30 (Q30) 1 in 1000 99.9% sl
40 (Q40) 1 in 10000 99.99%
00 2‘0 4‘0 6‘0 8‘0 160 120
Cycle
Naive variant calling
Use fixed allele frequency threshold to determine the genotype
AGACTTGGCTCCCTCCCCATTC
Low base quality —> AGACTTGGCTCCCTCCCCATTCCA
AGACTAGGCCCCCACCCCATTCAAGG
/ ACTTGGCTCCCTCCCCATTCCAGGTC
. n TTGGCTCCCTCCCCATTCCAGGTCTT
Low mapping quality — GCCCCCACCCAATTCAAGGTCTTC
CCCACCCCATTCCAGGTCTTC
TCCCCATTCCAGGTCCTC
Reference S€q AGACTTGGCCCCCTCCCCATTCAAGGTCTTC
. R:1233424440545565666666054444233
Allelic counts A:0000000004000100010000500000000
Predicted dosage 0000000002000000000000200000000
. ) alt AF genotype
1) Filter base calls by quality
. b 5 [0,0.2) RR .. homozygous reference
e.g. ignore bases Q<20 [0.2,0.8] RA .. herezogyous
(0.8,1] AA .. homozygous variant

2) Filter reads with low mapping quality

Problems:

¢ undercalls hets in low-coverage data
¢ throws away information due to hard quality thresholds
e gives no measure of confidence
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Real life calling models

More sophisticated models apply a statistical framework

P(D|G) P(G)
P(D)

Normalization

P(G|D) =

to determine:
1. the most likely genotype g € {RR,RA, AA} given the observed data D

g = argmax P(G|D)
G

2. and the genotype quality zg
Q=-10 log, [1-P(G|D)]
Q = —10log4[1 — P(G|D)] |
o 15}
10t
5,
0 ! ! !
0.0 02 04 06 08 10

HG|D)

Important terms you may encounter

Genotype likelihoods

¢ which of the three genotypes RR, RA, AA is the data most consistent with?
¢ calculated from the alignments, the basis for calling

e takes into account:

¢ base calling errors

®* mapping errors

e statistical fluctuations of random sampling

* local indel realignment (base alignment quality, BAQ)

e how likely it is to encounter a variant base in the genome?
e some assumptions are made

¢ allele frequencies are in Hardy-Weinberg equilibrium
P(RA) = 2f(1 = f), P(RR) = (1 — ), P(AA) = f?

¢ can take into account genetic diversity in a population

P(D|G) P(G)
P(D)

P(G|D) =

11 /52
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Variant calling example

Inputs

 alignment file
* reference sequence

Outputs
¢ VCF or BCF file

Example
bcftools mpileup -f ref.fa aln.bam | bcftools call -mv

Tips
bcftools mpileup
- increase/decrease the required number (-m) and the fraction (-F) of supporting reads for indel calling
- the -Q option controls the minimum required base quality (30)
- BAQ realignment is applied by default and can be disabled with -B
- streaming the uncompressed binary BCF (-0u) is much faster than the default text VCF

bcftools call

- decrease/increase the prior probability (-P) to decrease/increase sensitivity

General advice

¢ take time to understand the options
¢ play with the parameters, see how the calls change

13 /52

Factors to consider in calling

Many calls are not real, a filtering step is necessary

False calls can have many causes

e contamination
¢ PCR errors
® sequencing errors
¢ homopolymer runs
* mapping errors

* repetitive sequence
e structural variation

¢ alignment errors

e false SNPs in proximity of indels
¢ ambiguous indel alignment

14 /52



Large parts of the genome are still inaccessible

e the Genome in a Bottle high-confidence regions:

e cover 89% of the reference genome
® are short intervals scattered across the genome

Uncallable positions
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Genomic coordinate le8

Q: Why is the sequencing depth thousandfold the average in some regions?
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Q: RNA-seq (top) and DNA data (bottom) from the same sample has been mapped
onto the reference genome. Can you explain the novel SNVs?
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Q: Is this a valid call?
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[0-43)
T e T e T T e e T T e e e e e

S (T Y

CAGCCTGCCCGTGAGCTTCAGGCCCAGCATGACCATCCGGGCCACCCAGAAGAAGAGGATGTCATGACCGGTCTCCAGCAGTGTCCCGGGGTAGAACACACTCAGGTCTTCT|

Display soft-clipped bases...

W Too many soft-clipped reads in a region suggest mapping errors, beware!
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RNA-seq
Replicate 1

RNA-seq
Replicate 2

nl

h

DNA

H
.‘|

ﬂ

c ¢ A CAGACTGGECTCT ACTTCATCCTGGCCT GGT ACATCATGTCCG
i

Eno2

Q: Can you explain what happened here?
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con e
RNA- a

seq
Replicate 1

. Nothing obviously
RNA-seq | ¢ wrong, but the

= — variant is not
'+ 4— reproducible

DNA P

ﬁg" Mind the biological variability. If possible, validate and replicate.

34/52

Pairwise alignemnt artefacts can lead to false SNPs

e multiple sequence alignment is better, but very expensive

* instead: base alignment quality (BAQ) to lower quality of misaligned bases

aggttttataaaac----aaataa
//// ggttttataaaac----aaataatt
Aligned reads ttataaaacaaataattaagtctaca
caaat----aattaagtctacagagcaac
\\\\ aat----aattaagtctacagagcaact
t----aattaagtctacagagcaacta
Reference seq aggttttataaaac----aattaagtctacagagcaacta

Q: How many SNPs are real?
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W Change the view IGV to inspect possible biases. Here the reads were
squished and grouped by read strand to confirm two clean unbiased
calls.

39/52

ﬁg“‘ Change the view IGV to inspect possible biases. Here the reads were
colord by read strand to confirm another two clean unbiased calls.
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Q: Is this call real? There are many reads with MQ=O0.

ﬁg“‘ Sorting the reads by MQ reveals the variant is also supported by many
high-quality reads.
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Random
Transitions vs transversions ratio, known as ts/tv
e transitions are 2-3x more likely than transversions
NH, o)
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Indel calling challenges

The sequencing error rate is elevated in microsatellites
Low reproducibility across callers

e 37.1% agreement between HapCaller, SOAPindel and Scalpel
Narzisi et al. (2014) Nat Methods, 11(10):1033

Reads with indels are more difficult to map and align

¢ the aligner can prefer multiple mismatches rather than a gap
¢ indel representation can be ambiguous

i

ACATATTAAAAGTTACTAAGTTTTTAAGTTGTCTTTAATTCAGACATTAGATTTCTTCTCTTAGATTTCTTCTCTTAACTGCTTAATAAATTTATAAAGCAATACTTTCTCAAATACTTTIGTTACC

CTTTAATTCAGACATTAGATTTCTTCTC
CTTTAATTCAGACATTAGATTTCTTCTCTTA

CTTTAATTCAGACA TTAGATTTCTTCTCTTAACTGCTT
CTTTAATTCAGACATTAGATTTCTTC TA TTAACTGCTT
CTTTAATTCAGACATTAGATTTCTTCTC TTAACTGCTT

Future of variant calling

Current approaches

¢ rely heavily on the supplied alignment, but aligners see one read at a time
¢ largely site based, do not examine local haplotype and linked sites

Local de novo assembly based variant callers

e call SNPs, indels, MNPs and small SV simultaneously
¢ can remove alignment artefacts
¢ eg GATK haplotype caller, Scalpel, Octopus

Variation graphs

¢ align to a graph rather than a linear sequence

a — b

Homozygous

v
ca [

s RN,

[

[}

.

Repeat
c Repeat

Polymorphic site

Igbal et al. (2012) Nat Gen 44(2):226
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Single vs multi-sample and gVCF calling

VCF files can be very big, therefore we often store only variant sites!

¢ however, variant-only VCFs are difficult to compare - was a site dropped because of

a reference call or because of low coverage?

¢ we need evidence for both variant and non-variant positions in the genome

gVCF

¢ represents blocks of reference-only calls in a single record using the END tag

¢ symbolic allele in raw “callable” gVVCFs allows to calculate genotype likelihoods
only once (an expensive step), then do calling repeatedly as more samples come in

#CHROM POS ID REF ALT QUAL FILTER INFO

FORMAT Sample

19 9902 G <*> . . END=9915;MinDP=0  PL:DP ©0,0,0:0

19 9916 . C <*> . . END=9922;MinDP=5  PL:DP 0,15,137:5

19 9923 . G <*> . . END=9948;MinDP=10 PL:DP ©0,30,214:10

19 9949 . G A, <*> . : DP=28 PL:DP ©0,60,255,78,255,255:27
19 9950 . C <*> . . END=9958;MinDP=28 PL:DP 0,84,255:28

19 9959 . G T,<*> . : DP=34 PL:DP ©,82,255,99,255,255:34
19 9960 . C <*> o . END=9969;MinDP=34 PL:DP 0,102,255:34

/

Symbolic "unobserved" allele
Represents any other possible alternate allele

A block of 10 sites with
at least 34 reference reads

\

Genotype likelihoods
for CC, C*, **

! Annotated VCF with 3,781 samples, variant sites only, UK10k project . .. 680GB

Functional annotation

VCF can store arbitrary INFO tags (per site) and FORMAT tags (per sample)

* describe genomic context of the variant (e.g. coding, intronic, UTR)
e predict functional consequence (e.g. synonymous, missense, start lost)

Several tools for annotating a VCF, only few are haplotype-aware

BCFtools/csq

VEP Haplosaurus http://github.com/willmclaren /ensembl-vep

http://github.com/samtools/bcftools

A) B)
qullqllqllqlﬂq FEIFEI*IﬂIFEIFEI*IHHIHIFHIFIIHIMIFEIFIEH
CGTICAGICGGICTGICTG TCATCCTCCICCTICCCICCTICCTICCTICTGICAGITTTICAT
v v v
[CGTICAGITAGICTGICTG] fC-TFCcCTC-[---[CCCICCTICCT[CCTICTG[CAG[TTT[CAT]
W
X TGG X mc--clcrccccredcccTcc[TccTCT6CAGTTTCAT
A
X CAG X ECATCCTC----CCCCCTCCTCCTCTGCAGTTTCAT
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Practical exercises: Variant calling

An online version of this document can be found here https://tinyurl.com/yb5ak2xb. Please feel free to add
comments if anything is unclear or incorrect. The answers to the exercises can be found at the end of this
document.

Exercise 1: Making sense of the input data

We will need the aligned sequences in SAM, BAM or CRAM format and the reference genome in fasta
format. To list the files in the current directory, type

ls -1h
The listing shows two mouse data fragments, strains A/J and NZO, and the chromosome 19 of the mouse
reference genome.

Before variant callling, it is important to check the data we'll be working with. Using the command below, get

some statistics from the bams
samtools stats -r GRCm38_68.19.fa A_J.bam > A_J.stats
samtools stats -r GRCm38_68.19.fa NZO.bam > NZO.stats
plot-bamstats -r GRCm38_68.19.fa.gc -p A_J.graphs/ A_J.stats
plot-bamstats -r GRCm38_68.19.fa.gc -p NZO.graphs/ NZO.stats

1.1 Open the plots A_J.graphs/index.html and NZ0.graphs/index.html in your firefox browser
(e.g., firefox A_J.graphs/index.html). What is the percentage of mapped reads in both
strains? Check the insert size, GC content, per-base sequence content and quality per cycle
graphs. Do all look reasonable?

Exercise 2: Generating pileup

The command samtools mpileup prints the read bases that align to each position in the reference
genome. On the command line, try this

samtools mpileup -f GRCm38_68.19.fa A_J.bam | less -S
Each line corresponds to a position on the genome. The columns are: chromosome, position, reference
base, read depth, read bases (dot . and comma , indicate match on the forward and on the reverse strand;
ACGTN and acgtn a mismatch on the forward and the reverse strand) and the final column is the base
qualities encoded into characters. The caret symbol A marks the start of a read, the dollar sign $ the end of
a read, deleted bases are represented by asterisk *.

2.1 What is the read depth at position 100019947 (Rather than scrolling to the position, use the
substring searching capabilities of less: press /, then type 10001994 followed by enter to find the
position.)

2.2 What is the reference and the alternate base at the position? How many reference and how
many non-reference bases there are?

This output can be used for a simple consensus calling. One rarely needs this type of output. Instead, for a
more sophisticated variant calling method, go to the next section.

Exercise 3: Generating genotype likelihoods and calling variants


https://tinyurl.com/yb5ak2xb

The bcftools mpileup command can be used to generate genotype likelihoods. (Beware: the command
mpileup is present in both samtools and bcftools, but in both they do different things. While samtools
mpileup produces the text pileup output from the previous exercise, bcftools mpileup generates a VCF
with genotype likelihoods.)

Run the following command (when done, press q to quit the viewing mode):

bcftools mpileup -f GRCm38_68.19.fa A_J.bam | less -S
This generates an intermediate output which contains genotype likelihoods and other raw information
necessary for variant calling. This output is usually streamed directly to the caller like this

bcftools mpileup -f GRCm38_68.19.fa A_J.bam | bcftools call -m | less -S

3.1 The output above contains both variant and non-variant positions. Check the Input/output
options section of the bcftools call usage page and see if there is an option to print out only
variant sites.

The INFO and FORMAT fields of each entry tells us something about the data at the position in the genome. It
consists of a set of key-value pairs with the tags being explained in the header of the VCF file (see the
##INFO and ##FORMAT lines in the header).

Let mpileup output more information. For example, we can ask it to add the FORMAT/AD tag which informs
about the number of high-quality reads that support alleles listed in REF and ALT columns. The list of all
available tags can be printed with the command

bcftools mpileup -a ?

Now let's run the variant calling again, this time adding the -a AD option. We will also add the -0u option so
that it streams a binary uncompressed BCF into call. This is to avoid the unnecessary CPU overhead of
formatting the internal binary format to plain text VCF only to be immediately formatted back to the internal
binary format again

bcftools mpileup -a AD -f GRCm38_68.19.fa A_J.bam -Ou | bcftools call -mv -o
out.vcf

Examine the VCF file output using the unix command less
less -S out.vcf

3.2 What is the reference and the alternate base at the position 100019947

3.3 What is the total read depth at the position 100019947 Note that this number may be different
from the values we obtained earlier, because some low quality reads or bases might have been
filtered.

3.4 What is the number of high-quality reads supporting the SNP call at position 100019947 How
many reads support the reference allele and how many support the alternate allele? Look up the AD
tag in the FORMAT column: the first value gives the number of reference reads and the second
gives the number of non-reference reads.

3.5 What sort of event is at position 100036497

Exercise 4: Variant filtering

In the series of commands we will learn how to extract information from VCFs and how to filter the raw
calls. We will use the bcftools commands again. Most of the commands accept the -i, --include and



-e, --exclude options (http://samtools.github.io/bcftools/bcftools.html#expressions) which will come
handy when filtering using fixed thresholds. We will estimate the quality of the callset by calculating the ratio
of transitions and transverions (http://en.wikipedia.org/wiki/Transversion).

When drafting commands, it is best to build them gradually. This prevents errors and allows to verify that
they work as expected. Let's start with printing a simple list of positions from the VCF using the bcftools
query command (http://samtools.github.io/bcftools/beftools.html#query) and pipe through the head
command to limit the printed output to the first few lines:

bcftools query --format 'POS=%P0OS\n' out.vcf | head

As you could see, the command expanded the formatting expression POS=%P0S\n in the following way: for
each VCF record the string POS= was copied verbatim, the string %P0S was replaced by the VCF coordinate
stored in the POS column, and then the newline character \n ended each line. (Without the newline
character, positions from the entire VCF would be printed on a single line.)

Now add the reference and the alternate allele to the output. They are stored in the REF and ALT column in
the VCF, and let's separate them by a comma:
bcftools query -f'%P0OS %REF,%ALT\n' out.vcf | head

In the next step add also the quality (%QUAL), genotype (%GT) and sequencing depth (%AD) to the output.
Note that FORMAT tags must be enclosed within square brackets [ . . .] to iterate over all samples in the
VCF. (Check the Extracting per-sample tags section in the manual
http://samtools.github.io/bcftools/howtos/query.html for a more detailed explanation why the square

brackets are needed.)
bcftools query -f'%P0OS %QUAL [%GT %AD] %REF %ALT\n' out.vcf | head

Now we are able to quickly extract important information from the VCFs. Now let's filter rows with QUAL
smaller than 30 by adding the filtering expression --exclude 'QUAL<30' or --include 'QUAL>=30" like
this:

bcftools query -f'%P0OS %QUAL [%GT %AD] %REF %ALT\n' -i'QUAL>=30' out.vcf | head

Now compare the result with the output from the previous command, were the low-quality lines removed? In
the next step limit the output to SNPs and ignore indels by adding the type="snp" condition to the filtering
expression. Because both conditions must be valid at the same type, we request the AND logic using the
&& operator:
bcftools query -f'%P0OS %QUAL [%GT %AD] %REF %ALT\n' -i'QUAL>=30 && type="snp"'
out.vcf | head

4.1 Can you print SNPs with QUAL bigger than 30 and require at least 25 alternate reads in the AD
tag?

Remember, the first value of the AD tag is the number of reference reads, the second is the number
of alternate reads, therefore you will need to query the second value of the AD tag. The first value
can be queried as AD[0] and the second as AD[ 1] (the allele indexes are zero-based). Thus add to
the expression the condition AD[1] >= 25.

Now we are able to filter our callset. In order to evaluate the quality, we will use bcftools stats to
calculate the ratio of transitions vs transversions. We start by checking first what is the ts/tv of the raw
unfiltered callset. The stats command produces a text output, we extract the field of interest as follows:

bcftools stats out.vcf | less

bcftools stats out.vcf | grep TSTV

bcftools stats out.vcf | grep TSTV | cut -f5


http://samtools.github.io/bcftools/bcftools.html#expressions
http://en.wikipedia.org/wiki/Transversion
http://samtools.github.io/bcftools/bcftools.html#query
http://samtools.github.io/bcftools/howtos/query.html

4.2 Calculate ts/tv of the set filtered as above by adding -i 'QUAL>=30 && AD[*:1]>=25" to the
bcftools stats command. (Here the asterisk followed by a colon tells the program to apply the
filtering to all samples. At least one sample must pass in order for a site to pass.) After applying the
filter, you should observe an increased ts/tv value.

4.3 Can you do the reverse and find out the ts/tv of the removed sites? Use the -e option instead
of -i. The ts/tv of the removed low-quality sites should be lower.

4.4 The test data come from an inbred homozygous mouse, therefore any heterozygous genotypes
are most likely mapping and alignment artefacts. Can you find out what is the ts/tv of the
heterozyous SNPs? Do you expect higher or lower ts/tv? Use the filtering expression -i
'GT="het"' to select sites with heterozygous genotypes.

Another useful command is bcftools filter which allows to "soft filter" the VCF: instead of removing
sites, it can annotate the FILTER column to indicate sites which fail. Apply the above filters to produce a
final callset, adding also the --SnpGap and the --IndelGap option to filter variants in close proximity to
indels:
bcftools filter -s LowQual -i'QUAL>=30 && AD[*:1]>=25"' -g8 -G10 out.vcf -o
out.flt.vcf

Exercise 5: Variant normalization
The same indel variant can be represented in different ways. For example, consider the following 2bp

deletion. Although the resulting sequence does not change, the deletion can be placed at two different
positions within the short repeat:

12345
TTCTC
POS=1 T--TC
POS=3 TTC--

In order to be able to compare indels between two datasets, we left-align such variants.

5.1 Use the bcftools norm command to normalize the filtered callset. Note that you will need to
provide the --fasta-ref option. Check in the output how many indels were realigned.

Exercise 6: Multi-sample variant calling

In many types of experiments we want to sequence multiple samples and compare their genetic variation.
The single-sample variant callling we have done so far has the disadvantage of not providing information

about reference genotypes. Because only variant sites are stored, we are not able to distinguish between
records missing due to reference genotypes versus records missing due to lack of coverage.

6.1 Type 1s *bam to check that there are two BAM files in the directory. Can you modify the calling
command from Exercise 3 to use both BAM files? Write the output to a BCF file called multi.bcf

and index the file afterwards.

6.2 Apply the same filters as before and write the output to a BCF file called multi.filt.bcf, then
index the file.

6.3 What is the ts/tv of the raw calls and of the filtered set?



6.4 What is the ts/tv of the removed sites?

Exercise 7: Data visualization

It is often useful to visually inspect a SNP or indel of interest in order to assess the quality of the SNP call
and interpret the genomic context of the SNP. We can use the IGV tool to view some of the SNPs positions

from the VCEF file. On the command line, type:

sh bin/IGV_2.3.32/igv.sh
Set the reference genomes to be mouse (mm10/GRCm38) by clicking on the Genomes then Load Genomes
from Server buttons and select mm10. On the file menu down the left, select Load from File and select

the BAM file A_J.bam

In the top bar, enter the position chr19:10,001,874-10,002,017 to view the SNP bases at position
10001946.

7.1 How many forward aligned reads support the SNP call? How many forward aligned reads
support the SNP? How many reverse reads support the SNP? Note: hover the mouse pointer over
the coverage bar at the top to get this information.

7.2 Was this SNP called also by bcftools? Did it pass the filters?

7.3 In the top bar, enter the position 'chr19:10072443' to view the SNP at position 10072443. Was
the SNP also called by bcftools? Did it pass the filters? Does this look like a real SNP? Wh?

Exercise 8: Functional consequences

There are several popular programs available for predicting functional consequences. Here we will use the
lighweight bcftools csq command. It is haplotype-aware and can correctly predict consequences for
frame-restoring and other compound variants such as MNPs. On input it requires a VCF, the fasta
reference file and a GFF file with the gene model. Because our data is not phased, we will provide the

- -phase option (which does not actually phase the data, but tells the program to make an assumption
about the phase):

bcftools view -i 'FILTER="PASS"' multi.filt.bcf | bcftools csq -p m -f
GRCm38_68.19.fa -g Mus_musculus.part.gff3.gz -Ob -0 multi.filt.annot.bcf

bcftools index multi.filt.annot.bcf

8.1 The bcftools csq command annotated the VCF with a new INFO tag BCSQ. Use the bcftools
query -f '"%BCSQ\n' command to extract the consequence at position 19:10088937. What is the
functionaal annotation at this site? What is the amino acid change?

Answers to exercises:

1.1 You will find there is a consistent GC bias. However, in our case this is OK because the stats
was produced from a small BAM fragment only, with a locally different GC content.

2.1 66 reads



2.2 The reference allele is A and the alternate allele is G. The upper/lower case letters indicate the
forward/reverse orientation of the read.

3.1 Add the -v option to the command:
bcftools mpileup -f GRCm38_68.19.fa A_J.bam | bcftools call -mv | less -S
3.2 Look up the REF and ALT columns: the reference base is A, the alternate allele is G.
3.3 Look up the tag DP in the INFO column: there were 69 raw reads at the position.
3.4 There are 0 reference and 66 alternate high-quality reads.
3.5 Five bases TGTGG were inserted after the T at position 10003649

4.1 The complete command is
bcftools query -f'%POS %QUAL [%GT %AD] %REF %ALT\n' -i'QUAL>=30 &%
type="snp" && AD[1]>=25"' out.vcf | head
4.2 The complete command is
bcftools stats -i'QUAL>=30 && AD[*:1]>=25"' out.vcf | grep TSTV | cut -f5
4.3 The complete command is
bcftools stats -e'QUAL>=30 && AD[*:1]>=25"' out.vcf | grep TSTV | cut -f5
4.4 The complete command is
bcftools stats -i 'GT="het"' out.vcf | grep TSTV | cut -f5

5.1 The complete command is
bcftools norm -f GRCm38_68.19.fa out.flt.vcf -o out.flt.norm.vcf

6.1 Use the commands
bcftools mpileup -a AD -f GRCm38_68.19.fa *.bam -Ou | bcftools call -mv -0b
-0 multi.bcf
bcftools index multi.bcf
6.2 Use the commands
bcftools filter -s LowQual -i'QUAL>=30 && AD[*:1]>=25"' -g8 -G10 multi.bcf
-Ob -o multi.filt.bcf
bcftools index multi.filt.bcf
6.3 Use the commands
bcftools stats multi.filt.bcf | grep TSTV | cut -f5
bcftools stats -i 'FILTER="PASS"' multi.filt.bcf | grep TSTV | cut -f5
6.4 Use the command
bcftools stats -e 'FILTER="PASS"' multi.filt.bcf | grep TSTV | cut -f5

7.1 75 reads total, 39 on the forward and 36 on the reverse strand.
7.2 Use the command
bcftools view -H -r 19:10001946 multi.filt.bcf
7.3 It is an alignment artefact, the aligner prefered two SNPs instead of a long deletion. The call was
removed by filtering only because we excluded calls in close proximity of indels:
bcftools view -H -r 19:10072443 multi.filt.bcf

8.1 The C>T mutation changes the amino acid at position 163 in the protein sequence, from valin to
isoleucin.



Public data archives for NGS data
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Purpose of data archives

» For archiving and distribution of data generated by NGS
experiments

»  Submit your own data that you want to publish

» Finding data sets that might be relevant to your own research

» Retrieve data sets from publication

» Many different data archives for different data types
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Which data archive?
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Data sharing across archives
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Global data archives

Primary DDBJ Sequence .
Sequence Data Read Archive (DRA) European Nucleotlde
Archive
ENA;
Annotated DDBY (ENA)
Sequences
o European Variation
fagaton - Archive (EVA)
Structural _ Genomic Variants
Variation Archive (DGVa)
Expression IDIDI2Y) @it ArrayExpress
P! Archive (DOR) YEXp
Japanese Genome-  European Genome-
Restricted phenome Archive phenome Archive
(JGA) (EGA)
Samples BioSample BioSample
Studies BioProject BioProject

Sequence Read
Archive (SRA)

GenBank
dbSNP

dbVar

Gene Expression
Omnibus (GEO)

dbGAP

BioSample

BioProject
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European Nucleotide Archive (ENA)

» For data from experiments based on nucleotide sequencing
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Feature annotation —
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‘ Experiment

ENA data model

7/——4} Data
‘ Run
7{ Study

‘ Submission

Analysis
{ Sample
EGA

Dataset
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Study ERP/PRJE
Sample ERS/SAME

Experiment ERX
Read ERR
Analysis ERZ

Annotated LN
Sequence CWSE

ENA accessions

e | Accession

Description

Information about the sequencing study
Information about the samples sequenced
Information about sequencing experiment

including platform used and library information

Raw data files containing sequence data
(CRAM, BAM, Fastq)

Secondary analysis results computed from the
primary sequencing reads (BAM, EMBL)
Assembled and annotated sequence, one
number for each sequence e.g.
CWSE01000001-CWSE01000051
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Study ERP/PRJE
Sample ERS/SAME

Experiment ERX
Read ERR
Analysis ERZ

Annotated LN
Sequence CWSE

ENA accessions

L

Information about the sequencing study
Information about the samples sequenced
Information about sequencing experiment
including platform used and library information

Raw data files containing sequence data
(CRAM, BAM, Fastq)

Secondary analysis results computed from the
primary sequencing reads (BAM, EMBL)
Assembled and annotated sequence, one

number for each sequence e.g.
CWSE01000001-CWSE01000051
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DDBJ data model

BioProject BioSample

BioProject PRID [B'\oSamp\e SAMD]

Sequence Read Archive

Experiment DRX

Run DRR

5‘ Sequence data file (fastq, BAM)

Red color: Prefix of accession numbers
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ENA data submission
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Browsing ENA

» Let's browse at
»  http://www.ebi.ac.uk/ena
» PRJEB6352
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European Variation Archive (EVA)

» For genetic variation data from all species

» Data submission
» Same infrastructure as ENA

» Consists of VCF file(s) and metadata that describes
sample(s), experiment (s), and analysis that produced the
variants

» Accessions are ERZ

» NCBI equivalent is dbSNP

WT NGS Bioinformatics

Blsanger
LS

1/11/18

Browsing EVA

» Let’s browse at

» http://www.ebi.ac.uk/eva/?Study%20Browser&browserType=sgv
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Array Express

» For functional genomics data from array and sequencing
based experiments (RNA-Seq, CHiP-Seq)

» raw e.g. Affymetrix CEL files, fastq files
» processed e.g. aligned bam, txt files of read counts

» Data submission is via ‘Annotare’ web interface

» NCBI equivalent is GEO
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Browsing ArrayExpress

» Let’s browse at
» https://www.ebi.ac.uk/arrayexpress/browse.html
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European Genome-phenome Archive (EGA)

» For personally identifiable genetic and phenotypic data

» Individuals whose consent agreements authorise that
data is release for specific research use only

Raw unalgned reads

SEQUENCE Augned BAM reads
N vor
Raw fies
ARRAY BASED _intensiy fles
| Anaysisfles

PHENOTYPES > Al formats supported
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EGA data model

i —
Experiments \ Study
Sampes \
Dataset \
Runs / T Analysis
[ Policy '
Read l Aligned BAM/vcf/
Data phenotype Data
DAC
May register prior to upload
Register post upload ONLY
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EGA accessions

N

Study EGAS Information about the sequencing study

Sample EGAN Information about the samples sequenced

Experiment EGAX Information about sequencing experiment
including platform used and library information

Run EGAR Raw data files containing sequence data
(CRAM, BAM, Fastq)

Analysis EGAZ Analysis data files associated with study and
sample : BAM, VCF, array and phenotype data

Dataset EGAD Collection of runs/analysis data files to be
subject to controlled access

Policy EGAP Contains the data access agreement (DAA)

DAC EGAC Information about the data access committee
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GA accessions

Study EGAS Information about the sequencing study

Sample EGAN Information about the samples sequenced

Experiment EGAX Information about sequencing experiment
including platform used and library information

Run EGAR Raw data files containing sequence data
(CRAM, BAM, Fastq)

Analysis EGAZ Analysis data files associated with study and
sample : BAM, VCF, array and phenotype data

Dataset EGAD Collection of runs/analysis data files to be
subject to controlled access

Policy EGAP Contains the data access agreement (DAA)

DAC EGAC Information about the data access committee

WT NGS Bioinformatics

Elsanger
L2 S

»  Strict protocols govern how information is managed, stored
and distributed

SECURED

INBOXES

@ suomitter

PUBLIC Request I. Requestor
WEBSITE =
Data Access . Data Access
Management Comittee (DAC)
. Browse Anonymous
i (@2
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Breakdown of EGA studies (2014)
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Projects and BioSamples

[ Umbrella BioProject ]
Genome Transcriptome Epigenome
BioProject BioProject BioProject
data data data data data data
BioSample 1 — BioSample 2
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Sample database

» Stores descriptive information about biological samples
used to generate experimental data
» e.g. cell line, blood sample, environmental isolate

»  species, phenotypic information e.g. disease state, clinical info on
individual

» Can link up data from different archives for same sample

» Accessions always begin with SAM
» Nextis E, N or D, for EBI, NCBI or DDBJ respectively
» Nextis A ora G, for a sample or a group of samples
»  Finally is a numeric component
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»  Deposited by several research groups
»  Deposited into several archival databases

Can be created for

»  Genome sequencing and assembly

»  Transcriptome sequencing and expression
»  Targeted locus sequencing

»  Variation detection

Accessions always begin with PRJ
» Nextis E, N or D for EBI, NCBI and DDBJ respectively
»  Finally is a numeric component

BioProject database

» Organises samples & data produced by projects

WT NGS Bioinformatics
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WTSI data sharing policy

Aim to provide rapid and open access to data produced

Immediate release

» Register sequencing studies in BioProject database

» Register samples in BioSample database
Within 90 days

»  Primary sequence data (CRAM) in ENA/EGA
At publication

»  Secondary analysis in other archives

»  VCF, expression data, annotated sequences
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»

EBI Training
»  https://www.ebi.ac.uk/training/online/course-list

NCBI Handbook
» http://www.ncbi.nlm.nih.gov/books/NBK143764/

DDBJ Training
»  http:/trace.ddbj.nig.ac.jp/index_e.html

NAR Journal
»  http:/nar.oxfordjournals.org/

Useful resources
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Structural variation detection

and interpretation

Thomas Keane,

EVA, EGA, ENA archive infrastructure team,
EMBL-EBI

W @drtkeane

E: tk2@ebi.ac.uk

Genomic structural variation

> Any form of rearrangement of chromosome structure
o Contribute to genetic diversity and evolution, new gene formation, gene function, phenotypic diversity,

rare variants of large effect

> Frequent causes of disease
o Referred to as genomic disorders

o Mendelian diseases or complex traits such as behaviors

o E.g.increase in gene dosage due to increase in copy number

> Several type or categories of structural variation
o Insertions, deletions, copy number changes, inversions, translocations

o Complex events contain combinations of these in close proximity

> Breakpoint: as a pair of bases that are adjacent in an experimentally sequenced
‘sample’ genome but not in the reference genome

> Many experimental techniques to detect SVs
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SVs and human disease

Table 1 Copy-number variations and neurogenetic disorders (expanded from References 49 and 50)

Syndrome [ omm Locus. [ | Gene(s) [ Reference
Neurodevelopmental
WBS del(7)a11.23 194050 7q11.23 del [CGS incl. ELN 1
dup()a11.23 l60s757 ldup 52
AS 105830 15q11-q12 Imat del, pat UPD15 UBE3A 53
PWS 176270 lpat del, mat UPD15 ces =
dup(i5) 608636 15q11-q13 ldup cGs /55
dic(15) idic(15)(q13) rip l56
MDLS [247200 17p133 ldel CGS incl. LIST 57
SMS 182290 17p112 del CGS incl. RAIT l58
PTLS [610883 ldup RAIT 59
NF1 162200 179112 del (CGS incl. NF1 [0
del(17)a21.31 610423 1702131 del l61-63
DGSIVCFS 188400 [22q11:2 ldel [CGS incl. TBX7, COMT =
192430
dup(22)q11 2 [608363 ldup ces l65
del(22)a13 l606232 229133 ldel |SHANK3/PROSAP2 les
RTT 312750 [Xq28 del MECP2 l67
Rett-like syndrome 300260 ldup. trip MECP2 les
PMD 312080 [Xq22.2 ldup, del PLP1 les
PD 168601 [éa21 [dup. trip [SNCA [0
SMA [253300 5913 ldel, gene conv [SMN1, SN2 i
ADLD 169500 50232 ldup LMNB1 A
CMT1A 118220 17p12 ldup PMP22 73.74
HNPP 162500 del
AD 104300 21021 ldup AP 75
Abbreviations: AD, Alzheimer disease; ADLD, autosomal dominant leukodystrophy; AS, Angeiman syndrome; CGS, contiguous gene deletion/duplication syndrome; CMT1A, Charcot-Marie-Tooth type 1 disease;

del, deletion: dup(7)q11.23, reciprocal duplication of the WBS region; dup, duplication: gene cony, gene conversion: HNPP, hereditary neuropathy with liabilty to pressure paisies; MDLS, Miller-Dieker syndrome:
NF1, neurofioromatosis type 1: PD, Parkinson disease; PMD, Pelizaeus-Merzbacher syndrome; PWS, Prader-Wili syndrome; RTT, Rett syndrome; SMA, spinal muscular atrophy; trp, triplication; UPD, uniparental

disomy; WBS, Williams-Beuren syndrome.

Stankiewicz and Lupski (2010) Ann. Rev. Med.

Methods for detecting SVs

>  Chromosome banding: chromosomes are prepared from dividing cells, stained, and viewed with a microscope.
Large deletions, duplications, and translocations are detected if the banding pattern or chromosome structure is
altered.

>  Fluorescence in situ hybridization (FISH): fluorescent-labeled DNA probes hybridize to metaphase or
interphase cells to visualize a locus on a chromosome and determine copy number. FISH can determine the
location of chromosomal segments identified by microarray, NGS, and WGS.

> Microarray: array comparative genome hybridisation (array CGH) detects copy-number differences between
abnormal and reference genomes. SNP arrays detect changes in copy-number and allelic ratios. CNV location
and SV organization are not determined by microarray methods.

>  Whole-genome sequencing (WGS): Breakpoints of CNV and copy-neutral SV are detectable by paired-end
reads that have discordant mappings to the reference genome.

> Mate-pair sequencing: whereas standard NGS methods sequence the ends of 300-500 bp DNA fragments,
mate-pair or jumping libraries sequence the ends of DNA fragments that are several kb in length. These
large-fragment mate-pair libraries increase the likelihood of detecting SV that has breakpoints within
interspersed repeats.

> Third generation sequencing: sequencing long molecules of DNA (several kbp) and subsequent alignment to

a reference genome to detect SVs

Weckselblatt and Rudd (2015) Trends in Genetics
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Chr10:21,100,000-21,700,000

LT R —r Y Hisgb Bagiid, 22:5M

Probe set: 5 fosmid clones, each in colour or colour combination

CY5 3kb DIG 63kb 62kb DNP 6kb +DIG

5'Ref  gap Raetle gap gap | Raetld gap

WI1-867J22 Wi1-1159)21 WI1-1794K5 ‘WI1-604D1 Wi1-2493M24
22,109,346-22,148,348 22,151,219-22,191,07 22,254,376-22,294,08 22,355,639-22,39288 22,398,509-22,442,811

39,002 bp 4 7 1 44,302bp
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SV types

(A) Normal chromosomes (C) Interchromosomal SV
( e Ve e 9 e Balanced translocation
( | — ? 3
( Dl E -
( | ——— ——

(8) Intrachromosomal SV
Unbalanced translocation

l Inversion ? (l\ ( CA I B 1
A A - ( | S v—— — |
Terminal deletion
f 0
( Ca | s G e
Interstitial deletion
( [ T —
( | —v——
Interstitial duplication )
( LN N N S S —

(A) Two nonhomologous chromosomes shown in blue and pink. Segments are labeled with letters
A-E. Black arches indicate structural variation (SV) breakpoint junctions. (B) Intrachromosomal
rearrangements include inversions, interstitial and terminal deletions, and interstitial duplications. (C)
Simple translocations between two different chromosome ends. Balanced translocations do not result
in copy-number variation (CNV), but unbalanced translocations have partial monosomy (segment E)
and partial trisomy (segments B,C).

Weckselblatt and Rudd (2015) Trends in Genetics
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SV types and NGS paired-end sequencing
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Retrotransposition NGS and non-reference retrotransposition events

(A) Retrotransposon
Transposons are segments of DNA that can move
within the genome Alu (=300 bp) SVA (-2 kb)

> A minimal ‘genome’ - ability to replicate and a

4

change location e . A B .
> Relics of ancient viral infections Reference Exlsung TEin genome
L1 (-6 kb) HERV (10 kb) A ) -
' ) e N e TR
Dominate landscape of mammalian genomes VR o s ove Few) s [ o B ) ~ ~

> 38-45% of rodent and primate genomes
> Genome size proportional to number of TEs

C TE or viral Database

— — —

(B) DNA transposon
Class 1 (RNA intermediate) and 2 (DNA

intermediate) MARINER (-1 kb)

) PSRN ) G onomics Inform. 2012 Dec; 10(4):226-233

B
Potent genetic mutagens Reference
> Disrupt expression of genes e
> Genome reorganisation and evolution A
> Transduction of flanking sequence Coverage |~ — -

J

Species specific families

> Human: Alu, L1, SVA

> Mouse: SINE, LINE, ERV
Many other families in other species

wercome
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Sources of evidence 1: Read pairs Sources of evidence 1: Read pairs

Several types of structural variations (SVs) Several types of structural variations (SVs)

> Large Insertions/deletions 75bp <T5bp > Large Insertions/deletions 75bpy < 15bp

> Inversions > Inversions

> Translocations 300bp > Translocations 300bp

Read pair information used to detect these events o000 1 e bambmhec; Read pair information used to detect these events o000 R rezben bamez;

> Paired end sequencing of either end of DNA %% :ZzW\g — > Paired end sequencing of either end of DNA %% j‘tw’ﬂ’g —
fragment £ 140000 { Ome\i fragment £ 140000 /Othe\ P—

> Observe deviations from the expected 5 2o \ > Observe deviations from the expected R \
fragment size sg 0000 \ fragment size g 50000 [ \

> Presence/absence of read pairs 2 60000 \ > Presence/absence of read pairs 2 60000 / \

o s S yE—
0 ] 100 200 300 . 400 500 600 0 0 100 200 300 400 500 600

Insert Size Insert Size

200bp

ADVANCED COURSES AND.
SCIENTIFIC CONF ERENCES

WELLCoME | oo counses anp. weLLcome
oenome SCUNTIFIC CONFERENCES SENoME
‘Campus ‘campus




Fragment Size QC Fragment size again

Number of pairs

DBA_1).bam.stats DBA_2).bam .stats
200000 E30010462 bamybamdheds 11072_1#2 bambamcheck — — — . Ao
Al pdds —— 60000 e Inward ——— 3.5e+06 / \ Inward ———
180000 rd —— 6665 A“L}p@%ég dex08 0 outward —— / outward ———
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100000 80000 \ g okt £ 150406
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60000 500000 ‘ / \
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Fragment size again Sources of evidence 2: Split reads

> A split-read alignment is a single DNA fragment that spans a breakpoint and
therefore does not contiguously align to the reference genome
> Errors in the sequencing and alignment processes creates some ambiguity in the

DBA/1J DBA/2J . . . . . .
5or0s ‘ 2606 - exact location of the breakpoint associated with a split-read alignment
pairs —— ’
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DBA/1J fragment size distribution has larger range (~450bp) vs. DBA/2J (~250bp) conbum
ek ol
< CEhele
SV caller only considers read pairs discordant if they fall outside of the extremes of the
fragment size distribution 5
> Observed in DBA/1J that we had lower sensitivity to call SVs in the 300-500bp range
compared to DBA/2J — T T T T L T T e e A LA L L T T S B I TR T T T

Right click - view mismatch bases

ADVANCED COURSES AND View - preferences - alignments - show soft clipped bases
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Sources of evidence 3: Read depth
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Fig. 1. (A) Plot of sequencing depth across a one megabase region of A/J chromosome 17 clearly
shows both a region of 3-fold increased copy number (30.6—-31.1 Mb) and a region of decreased copy
number (at 31.3 Mb). The solid black line above the depth plot indicates the called copy number gain
and the solid black line below the plot indicates the called copy number loss. (B) Plot of the
heterozygous SNP rate for the same region showing the high number of apparent heterozygous SNPs
associated with the copy number gain.

Simpson et al. (2009) Bioinformatics
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Read pairs + split reads + depth: Lumpy

> Any number of alignment A
signals can be integrated into  source Files { Sample Known Variants
a single discovery process
o Read pairs, split-reads, depth, Paired-End Split-Read CNV
Aligner Aligner Predictor
user supplied evidence l l l

> Distinct modules that map

signals from each alignment nput { > |
ewdenc‘:_e type to the (,:Ommon Breakpoint Read-Pair Split-Read Generic Generic
probability interval pair. Evidence Module Module Module Module

> Evidence from the different Breakpoints { =" A0 AN N

alignment signals is mapped

to breakpoint intervals, Cluster
overlapping intervals are Predicted{

i Breakpoint
clustered and the probabilities Regions A%

are integrated

Layer et al. (2014) Genome Biology
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Read pairs: Breakdancer

> |dentifies deletions, insertions,
inversions and intrachromosomal
and interchromosomal
translocations

Input: BAM file

Algorithm:

o Analyse a subset of reads from each

Vv

sequencing library (determine mean
and standard deviation of fragment
size)

o Walk along each chromosome to
identify all of the anomalous read pairs
(a). Identify interconnected clusters.

o Assign anomalous clusters into
categories (b)

> Output
o Text with one SV event per line
o Filter by: minimum number of reads,

quality score, type of SV

a

Mapping Detection

'

{0 Geniome; (ii) Search for
Paired-end| ] o| widetallyof
reads Mappiig anomalous || anomalous
read pairs regions

(iv) Structural
Structural (v) Compute variation position, (iii) Identify
: confidence  [«— type, size and [«— interconnected
variants
scores number of anomalous clusters
mapped read pairs
..... *...* .....’.. ...’*. ween ...‘..... .”..

Deletion Insertion Inversion translocation translocation

Figure 1 | Overview of BreakDancer algorithm. (a) The workflow.

(b) Anomalous read pairs recognized by BreakDancerMax. A pair of arrows
represents the location and the orientation of a read pair. A dotted line
represents a chromosome in the analyzed genome. A solid line represents
a chromosome in the reference genome.

Chen et al. (2009) Nature methods
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Lumpy: multi-signal and multi-sample workflows

Source Files { Sample 1 Sample 2 Sample 3
Paired-End Paired-End Paired-End
Aligner Aligner Aligner

l

! }

— - — — - —
Input{ _.¢,_ _.¢,_ _.¢,_

Breakpoint Read-Pair Read-Pair Read-Pair

Evidence Module Module Module

|

Breakpoints { —_—= =

Breakpoint

Predicted {
Regions

Voo

F

Cluster

X=F

Layer et al. (2014) Genome Biology
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VCF for SVs

##f1lefornat=VCFud.1

##f11eDates20100501

##roference=1000GenomesPilot-NCBI36
##assembly=ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/sv/breakpoint assemblies.fasta
##INFO=<ID=BKPTID, Number= . , Type=String,Description="ID of the assembled alternate allele in the assembly file">
##TNFO=<ID=CTEND ,Number=2, Type=Integer Description="Confidence interval around END for imprecise variants'>
##INFO=<ID=CIPOS ,Number=2, Type=Integer Description="Confidence interval around POS for imprecise variants">
##TNFO=<ID=END, Number=1,Type=Integer ,Description="End position of the variant described in this record">
##INFO=<ID=HOMLEN, Number= . , Type=Integer,Description="Length of base pair identical micro-homology at event breakpoints">
##INFO=<ID=HOMSEQ, Number= . , Type=String,Description="Sequence of base pair identical micro-homology at event breakpoints">
##INFO=<ID=SVLEN Number=. , Type=Integer Description="Difference in length betueen REF and ALT alleles">
##INFO=<ID=SVTYPE, Number=1, Type=String,Description="Type of structural variant">
##ALT=<ID=DEL , Description="Deletion">

##ALT=<ID=DEL:ME:ALU, Description="Deletion of ALU element">

##ALT=<ID=DEL:ME:L1,Description="Deletion of L1 element">

##ALT=<ID=DUP, Description="Duplication">

##ALT=<ID=DUP : TANDEM , Description="Tanden Duplication">

##ALT=<ID=INS, Description="Insertion of novel sequence">

##ALT=<ID=INS:ME:ALU, Description="Tnsertion of ALU element">

##ALT=<ID=INS:ME:L1,Description="Insertion of L1 element">

##ALT=<ID=INV,Description="Inversion">

##ALT=<ID=CNV, Description="Copy number variable region">

##FORMAT=<ID=GT, Number=1, Type=String,Description="Genotype">

#4FORMAT=<ID=GQ, Number=1, Type=Float Description="Genotype quality">

#4FORMAT=<ID=CN, Number=1, Type=Integer ,Description="Copy number genotype for imprecise events">
##FORMAT=<ID=CNQ, Nunber=1, Type=Float Descnpcian-"copy number genotype quality for imprecise events">

#CHROM POS m REF QUAL FILTER INFO

1 2827694 rs2376870 CGTGGATGCGGGGAC c . PASS  SVTYPE=DEL;END=2827708;HOMLEN=1;HOMSEQ=G; SVLEN=-14

2 321682 . T <DEL> 6  PASS  SVTYPE=DEL;END=321887; SVLEN=-205; CIP0S=-56,20; CIEND=-10,62

2 14477084 . c <DEL:ME:ALU> 12 PASS  SVTYPE=DEL;END=14477381;SVLEN=-297;CIPOS=-22,18;CIEND=-12,32

3 9425916 . c <INS:ME:L1> 23 PASS  SVTYPE=INS;END=9425916;SVLEN=6027;CIPOS=-16,22

3 12665100 . A <DUP> 14 PASS  SVTYPE=DUP;END=12686200;SVLEN=21100;CIPOS=-500,500; CIEND=-500,500
a 18665128 . T <DUP:TANDEM> 11 PASS  SVTYPE=DUP;END=18666204; SVLEN=76;CIP0S=-10,10; CIEND=-10,10

FORMAT NA00001

GT:
GT:GQ
GT:GQ
GT:
GT:GQ:CN:CNQ
:GQ:CN:CNQ ./.:0

GT

] 1/1

)
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VCF for SVs

##f1lefornat=VCFvd. 1

##£11eDate=20100501

##reference=1000GenomesPilot-NCBI36
##assembly=ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/sv/breakpoint assemblies.fasta
##INFO=<ID=BKPTID, Nunber=. , Type=String Description="ID of the assembled alternate allele in the assembly file">
##TNFO=<ID=CTEND ,Number=2, Type=Integer Description="Confidence interval around END for imprecise variants">
##INFO=<ID=CIPOS ,Number=2, Type=Integer Description="Confidence interval around POS for imprecise variants">
##INFO=<ID=END, Number=1,Type=Integer Description="End position of the variant described in this record">
##TNFO=<ID=HOMLEN, Number= . , Type=Integer,Description="Length of base pair identical micro-homology at event breakpoints">
##TNFO=<ID=HOMSEQ, Number= . , Type=String,Description="Sequence of base pair identical micro-homology at event breakpoints">
##INFO=<ID=SVLEN Nunber=. , Type=Integer Description="Difference in length betueen REF and ALT alleles">
##INFO=<ID=SVTYPE, Number=1,Type=String,Description="Type of structural variant">

##ALT=<ID=DEL, Description="Deletion">

#8ALT=<ID=DEL:ME:ALU,Description="Deletion of ALU element">

##ALT=<ID=DEL:ME:L1,Description="Deletion of L1 element">

##ALT=<ID=DUP, Description="Duplication">

##ALT=<ID=DUP : TANDEM , Description="Tanden Duplication">

##ALT=<ID=INS,Description="Insertion of novel sequence">

##ALT=<ID=INS:ME:ALU,Description="Insertion of ALU element">

#2ALT=<ID=INS:ME:L1,Description="Insertion of L1 element">

##ALT=<ID=INV,Description="Tnversion">

##ALT=<ID=CNV, Description="Copy number variable region">

#4FORMAT=<ID=GT, Number=1, Type=String,Description="Genotype">

#4FORMAT=<ID=GQ, Number=1, Type=Float ,Description="Genotype quality">

#4FORMAT=<ID=CN, Number=1, Type=Integer ,Description="Copy number genotype for imprecise events">
#4FORMAT=<ID=CNQ ,Nunber=1, Type=Float , Duscriptiun- Copy number genotype quality for imprecise events">

#CHROM POS m REF QUAL FILTER INFO

1 2827694 rs2376870 CGTGGATGCGGGGAC c . PASS  SVTYPE=DEL;END=2827708;HOMLEN=1;HOMSEQ=G;SVLEN=-14

2 321682 . T <DEL> 6  PASS  SVTYPE=DEL;END=321887; SVLEN=-205; CIP0S=-56,20; CIEND=-10,62

2 14477084 c <DEL:ME:ALU> 12 PASS  SVTYPE=DEL;END=14477381;SVLEN=-297;CIPOS=-22,18;CIEND=-12,32

3 9425916 . c <m5-n£‘u> 23 PASS  SVTYPE=INS;END=9425916;SVLEN=6027;CIP0S=-16,22

3 12665100 A PASS  SVTYPE=DUP;END=12686200; SVLEN=21100; CIPOS=-500,500; CIEND=-500,500
a 18665128 . T <nm= TANDEM> u PASS  SVTYPE=DUP;END=18665204; SVLEN=76; CIP0S=-10,10; CIEND=-10,10

FORMAT NA00001
GT:GQ 1/1:13.9
GT:GQ 0/

GT:GQ 0/

GT:GQ 1/1
GT:GQ:CN:CNQ ./.:0:3:16.2
GT:GQ:CN:CNQ ./.

8.3

VCF for SVs

##filefornat=VCFvd.1

#8£11eDate=20100501

##reference=1000GenomesPilot-NCBI36
##assembly=ftp://ftp-trace.nchi.nih.gov/1000genomes/ftp/release/sv/breakpoint _assemblies.fasta

##INFO=<ID=BKPTID, Number=. , Type=String,Description="ID of the assembled alternate allele in the assembly file">
#4INFO=<ID=CIEND,Number=2, Type=Integer Description="Confidence interval around END for imprecise variants">
#4INFO=<ID=CIPOS,Number=2, Type=Integer Description="Confidence interval around POS for imprecise variants'>
#4INFO=<IDEND , Number=1,Type=Integer Description="End position of the variant described in this record">
#4INFO=<ID=HOMLEN, Nunber= . , Type=Integer,Description="Length of base pair identical micro-homology at event breakpoints">
#4INFO=<ID=HOMSEQ, Nunber=. , Type=String Description="Sequence of base pair identical micro-homology at event breakpoints">
##INFO=<ID=SVLEN Number=. ,Type=Integer Description="Difference in length betueen REF and ALT alleles">

#4INFO=<ID=SVTYPE, Nunber=1,Type=String Description="Type of structural variant"> \

##ALT=<ID=DEL, Description="Deletion">
##ALT=<ID=DEL:ME:ALU, Description="Deletion of ALU element">
##ALT=<ID=DEL:ME:L1,Description="Deletion of L1 element">
##ALT=<ID=DUP, Description="Duplication">

##ALT=<ID=DUP: TANDEM, Description="Tanden Duplication">
##ALT=<ID=INS,Description="Insertion of novel sequence">
##ALT=<ID=INS:ME:ALU, Description="Insertion of ALU element">
##ALT=<ID=INS:ME:L1,Description="Insertion of L1 element">
##ALT=<ID=INV,Description="Inversion">

##ALT=<ID=CNV, Description="Copy number variable region">
#4FORMAT=<ID=GT, Number=1, Type=String,Description="Genotype">
#4FORMAT=<ID=GQ, Number=1, Type=Float ,Description="Genotype quality">
#4FORMAT=<ID=CN, Number=1, Type=Integer,Description="Copy number genotype for imprecise events">
#4FORMAT=<ID=CNQ, Number=1 Type-ﬁoa: Descripnon-“copy number genotype quality for imprecise events">

#CHROM POS m QUAL FILTER INFO

1 2827694 rs2376870 ccmmmcccccnc c . Pass (OMLEN=1; HOMSEQ=G; SVLEN=-14

2 321682 . T <DEL> 6  PASS  SUTYPE=DEL;END=321887;SVLEN=-205;CIP0S=-56,20; CIEND=-10,62

2 14477084 . c DEL:ME:ALU> 12 PASS  SVTYPE-DEL;END=14477381;SVLEN=-297 ;CIPOS=-22, 18; CIEND=-12,32

3 9425916 . c <INS:ME:L1> 23  PASS m Em)-sqzssl VLF_N-G(JZ7 CIPOS=-16,22

3 12665100 . A <DUP> 14 Pass ND= 21100; ,500
4 18665128 . T <DUP:TANDEM> 11 PASS SVTYPE-DUP E“D-lESSE‘ZOA vaEN-7s CIPOS=-10,10; CTEND=-10, 10

FORMAT NA00001
GT:GQ 1/1:13.9
GT:GQ 0/1:12
GT:GQ 0/1:12
GT:GQ 1/1:15

GT:GQ:CN:CNQ ./.
GT:GQ:CN:CNQ ./.
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VCF for SVs

##filefornat=VCFvd.1

##ileDate=20100501

##reference=1000GenomesPilot-NCBI36
##assembly=ftp://ftp-trace.nchi.nih.gov/1000genomes/ftp/release/sv/breakpoint _assemblies.fasta
##INFO=<ID=BKPTID, Number=. , Type=String,Description="ID of the assembled alternate allele in the assembly file">
##INFO=<ID=CIEND,Number=2, Type=Integer Description="Confidence interval around END for imprecise variants">
##INFO=<ID=CIPOS,Number=2, Type=Integer Description="Confidence interval around POS for imprecise variants">
##INFO=<ID=END , Number=1,Type=Integer Description="End position of the variant described in this record">
#4INFO=<ID=HOMLEN, Iiumber- Typg-lntegsr Description="Length of base pair identical micro-homology at event breakpoints">
#8INFO=<ID=HOMSEQ g,Descripti eq of base pair identical micro-homology at event breakpoints">
um;u-(m-svx_!-:n,mlumbu Typa-lnt,eger Description="Difference in length betueen REF and ALT alleles">
##INFO=<ID=SVTYPE, Number=1, Type=String Description="Type of structural variant">

##ALT=<ID=DEL, Description="Deletion">

##ALT=<ID=DEL:ME:ALU,Description="Deletion of ALU element">

##ALT=<ID=DEL:ME:L1,Description="Deletion of L1 element">

##ALT=<ID=DUP, Description="Duplication">

##ALT=<ID=DUP: TANDEM, Description="Tanden Duplication">

##ALT=<ID=INS,Description="Tnsertion of novel sequence">

##ALT=<ID=INS:ME:ALU,Description="Insertion of ALU element">

##ALT=<ID=INS:ME:L1,Description="Insertion of L1 element">

##ALT=<ID=INV,Description="Tnversion">

##ALT=<ID=CNV, Description="Copy number variable region">
#4FORMAT=<ID=GT, Number=1, Type=String,Description="Genotype">

#4FORMAT=<ID=GQ, Number=1, Type=Float ,Description="Genotype quality">

#4FORMAT=<ID=CN, Number=1, Type=Integer,Description="Copy number genotype for imprecise events">
#4FORMAT=<ID=CNQ, Number=1, Type=Float Dascriptiun-“cupy number genotype quality for imprecise events">

#CHROM POS m REF QUAL FILTER INFO

1 2827694 rs2376870 CGTGGATGCGGGGAC c . PASS  SVTYPE=DEL;END=2827708;HOMLEN=1;HOMSEQ=G; SVLEN=-14

2 321682 . T <DEL> 6  PASS  SVTYPEDEL;END=321887;SVLEN=-205;CIP0S=-56,20; CIEND=-10,62

2 14477084 . c <DEL:ME:ALU> 12  PASS  SVTYPE=DEL;END=14477381;SVLEN=-297;CIPOS=-22,18;CIEND=-12,32

3 9425916 c <INS:ME:L1> 23 PASS  SUTYPE=INS;END=9425916;SVLEN=6027;CIPOS=-16,22

3 12665100 A <DUP> 14 PASS  SVTYPE=DUP;END=1 EN=21100; ,500
4 18665128 . T <DUP:TANDEM> 11  PASS  SVTYPE-DUP;END=18665204; SVLEN=76; CIPOS=~10, 10; CIEND=-10, 10

> What does the CIEND info tag describe?

FORMAT NA00001
GT:GQ 1/1:13.9
GT:GQ 0/1:12
GT:GQ o/1:

GT:GQ 1/1:
GT:GQ:CN:CNQ ./.:
GT:GQ:CN:CNQ ./.

> How many different types of insertions can be described from the ALT tags?
> The first and second entries are both deletions, but what is the difference between

them?
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##f1lefornat=VCFud.1
##f11eDates20100501
##roference=1000GenomesPilot-NCBI36
##assembly=ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/sv/breakpoint assemblies.fasta
##INFO=<ID=BKPTID, Number= . , Type=String,Description="ID of the assembled alternate allele in the assembly file">
##TNFO=<ID=CTEND ,Number=2, Type=Integer Description="Confidence interval around END for imprecise variants'>
##INFO=<ID=CIPOS ,Number=2, Type=Integer Description="Confidence interval around POS for imprecise variants">
##TNFO=<ID=END, Number=1,Type=Integer ,Description="End position of the variant described in this record">
##INFO=<ID=HOMLEN, Number= . , Type=Integer,Description="Length of base pair identical micro-homology at event breakpoints">
##INFO=<ID=HOMSEQ, Number= . , Type=String,Description="Sequence of base pair identical micro-homology at event breakpoints">
##TNFO=<ID=SVLEN Number=. , Type=Integer Description="Difference in length betueen REF and ALT alleles">
##INFO=<ID=SVTYPE, Number=1, Type=String,Description="Type of structural variant">
##ALT=<ID=DEL , Description="Deletion">
##ALT=<ID=DEL LU, Description="Deletion of ALU element">
##ALT=<ID=DE! 1,Description="Deletion of L1 element">
##ALT=<ID=DUP, Description="Duplication">
##ALT=<ID=DUP : TANDEM , Description="Tanden Duplication">
##ALT=<ID=INS,Description="Insertion of novel sequence">
##ALT=<ID=IN; LU,Description="Insertion of ALU element">
##ALT=<ID=IN; 1,Description="Insertion of L1 element">
##ALT=<ID=INV,Description="Inversion">
##ALT=<ID=CNV, Description="Copy number variable region">
##FORMAT=<ID=GT, Number=1, Type=String,Description="Genotype">
#4FORMAT=<ID=GQ, Number=1, Type=Float Description="Genotype quality">
#4FORMAT=<ID=CN, Number=1, Type=Integer ,Description="Copy number genotype for imprecise events">
##FORMAT=<ID=CNQ, Number=1, Type=Float ,Description="Copy number genotype quality for imprecise events">

REF ALT

#CHROM POS QUAL FILTER INFO NA00001
1 2827694 rs2376870 CGTGGATGCGGGGAC C . PASS  SVTYPE=DEL;END=2827708;HOMLEN=1;HOMSEQ=G; SVLEN=-14 1/1:13.9
2 321682 . T <DEL> 6  PASS  SVTYPE=DEL;END=321887;SVLEN=-205; CIP0S=-56,20; CIEND=-10,62 0/1:12
2 14477084 . c <DEL:ME:ALU> 12 PASS  SVTYPE=DEL;END=14477381;SVLEN=-297;CIPOS=-22,18;CIEND=-12,32

3 9425916 . c <INS:ME:L1> 23 PASS  SVTYPE=INS;END=9425916;SVLEN=6027;CIPOS=-16,22

3 12665100 . A <DUP> 14 PASS  SVTYPE=DUP;END=12686200;SVLEN=21100;CIPOS=-500,500; CIEND=-500,500

a 18665128 . T <DUP:TANDEM> 11 PASS  SVTYPE=DUP;END=18666204; SVLEN=76;CIP0S=-10,10; CIEND=-10,10

> Can you write out the VCF entry for a Alu insertion at chromosome 7, position
125467, of length 258bp, and a breakpoint confidence interval of +/20bp with one
sample that is heterozygous for the insertion and has genotype quality of 40?
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IGV - Deletion

File Genomes View Tracks Regions Tools GenomeSpace Help
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SV Visualisation

> Structural variation visualisation can be more challenging than SNPs and indels

> Inspect several hundred base pairs or multiple kbp

> Analyse complicated read pair patterns to determine type of SV and sources of error
> Look for soft clipped bases for breakpoint accuracy

> Many NGS visualisation software packages exist

> |GV from Broad institute is a popular and easy to use visualisation software
o Requires BAM file and fasta file of the reference genome

o Viewing settings need to be tailored for the type of SV being visualised (see notes below

each screenshot)

SCIENTIFIC CONFERENCES

weLLcome
GENOME

IGV - Repeat element deletion

File Genomes View Tracks Regions Tools GenomeSpace Help
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IGV - Insertion

File Genomes View Tracks Regions Tools GenomeSpace Help
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IGV - Insertion (zoomed)
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IGV - mouse over or click on a red read

C3H_HelJ.bam

Left alignment Right alignment

Read name = HS4_07512:4:2201:4712:44023#7 Read name = HS4_07512:4:2201:4712:44023#7
Sample = C3H_He]

Read group = 7512 4#7 > Platforms: Oxford nanopore and Pacific Biosciences

chr2:157,700,909

SVs and long read sequencing

> Single molecule sequencing of large DNA fragments

@ PACBIO"

chr2:157,700,909

Location

Alignment start = 157,700,856 (+) Alignment start = 157,702,198 (+) .
Cigar = 100M Cigar = 23577M > Read lengths 10-20Kbp routinely
Mapped = yes Mapped = yes

Mapping quality = 56
Secondary = no =
Supplementary = no
Duplicate = no
Failed QC = no

Mapping quality = 46
Secondary = no
Supplementary = no
Duplicate = no
Failed QC = no
Base=T

Base phred quality = 38
~~~~~~~~~~~~~~~~~~~~~~ Mate start = chr2:157700855 (+)
Mate is mapped = yes Insert size = -1343 > Some new challenges

Mate start = chr2:157702197 (+) Second in pair o
Insert size = 1343 == Pair orientation = F1F2 - Reads are error prone, 5-20% error
- Challenging to align the reads correctly

Longer than most common transposable element repeats

> What does it mean for SV detection? Span both breakpoints with single read

Mate is mapped = yes

First in pair

— Pair orientation = F1F2

RG = 7512_4#7

MD = 32T87 NM=1

RG = 7512_4#7 MQ =46
NM=1 AS=72
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CT = 1F100M1242T2F23S77M
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Alignment challenges
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Inversion
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Complex SVs Complex SV Examples

Reference allele Alternative allele H5
[ el s | —[ 1 [s ] del-71bp_inv-325_del-645 [11110000]
ool [ 1] | = | L+l ] 1st del - chr5:148,925,178-148,925,248 bp
I S

inv - ch5:148,925,249-148,925,573 bp
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tandemDup [T [ 2[5 ] —»[ 1 [ 2215 ] Test [ 1 ] [ 5 ] —

(@)

copy number gain
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Tandem duplication of 2181 bp [00010110]
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Pattern relative to the reference: . Del. Ins. Invl:l copy number gain
Figure 3. Architecture of structural variants. (a) Simple SVs: deletion (Del), insertion (Ins), inversion (Inv), tandem duplication (tandem Dup) and
other types of copy number gains. Linked gain is a small copy number gain at close proximity to its copy. Inverted linked gain (not drawn) is
similar to a linked gain but the copy is inverted. Del+Nml+Del is two deletions separated by a normal copy of small size. (b) Complex SVs:
deletion co-occurring with insertion (Del+Ins), inversion with flanking deletions (Del(s)+Inv), inversion with insertion (Inv+Ins), deletion within a
copy number gain (Del in gain) and inversion within a copy number gain (Inv in gain). Yalcin et al. (2012) Genome Biology

C57BL/6J
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Yalcin et al. (2012) Genome Biology
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Computer exercises

1. Trivia questions about a VCF output file from the Lumpy SV caller.
a.  http://www.genomebiology.com/2014/15/6/R84

2. Use the Breakdancer software package to call structural variants on a yeast sample
that was paired-end sequenced on the illumina Hiseq.

3. Use the Lumpy software package to call structural variants on a yeast sample that
was paired-end sequenced on the illumina Hiseq.

4. Call SVs using the Sniffles caller on a yeast sample that was sequenced on the
Pacbio platform.

5. Introduction to BEDtools for doing regional comparisons over genomic co-ordinates.




WTAC NGS Bioinformatics Course
Module 5: Structural variant calling
Wednesday 10th October, 2018

Open a terminal and go to the Module 5 directory.
Exercise 1: VCF for SVs
On the terminal, cd to the 'exercise1’ directory.

There is a VCF file called ERR1015121.vcf that was produced using the Lumpy SV calling
software. You can read the VCF file by using the less command:

less ERR1015121.vcf

What does the CIPOS format tag indicate?

What does the PE tag indicate?

What tag is used to describe an inversion event?

What tag is used to describe a duplication event?

How many deletions were called in total? (Hint: DEL is the info field for a deletion. The -c

option of the grep command can be used to return a count of matches.)

e What type of event is predicted at IV:4371487 What is the length of the SV? How many
paired-end reads and split-reads support this SV variant call?

e What is the total number of SV calls predicted on the IV chromosome?

Exercise 2: Breakdancer
On the terminal, cd to the 'exercise2' directory.

In this exercise, we will use the Breakdancer software package to call structural variants on a
yeast sample that was paired-end sequenced on the illumina HiSeq 2000.

2.1 Breakdancer first needs to examine the BAM file to get information on the fragment
size distribution for each sequencing library contained in the BAM file.

The breakdancer.config file has information about the sequencing library fragment size
distribution. Use the 'cat' command to print the contents of the "oreakdancer.configd' file.

e What is the mean and standard deviation of the fragment size?
2.2 Now we will run the breakdancer SV caller. Run the command:

breakdancer max breakdancer.config > ERR1015121.breakdancer.out



The output from Breakdancer is a simple text format with one line per SV event (NOT VCF
format). Breakdancer calls four different types of structural variants: deletions (DEL), insertions
(INS), inversions (INV), intra chromosomal translocations (ITX), and inter chromosomal
translocations (CTX).

e What type of SV event is predicted at position 111:83065? What is the size of this SV?
What is the score of this SV?
e What type of SV event is predicted at position 11:2587667?

2.3 Next you will convert the output of breakdancer into a standard format call BED, that is
accepted by many other tools and genome browsers. The BED format is explained here:
https://genome.ucsc.edu/FAQ/FAQformat.html#format1

Can you create a BED file for the deletions that were predicted by breakdancer in 2.2 using
standard unix commands. Here are some hints:

1. Extract all the deletions from the breakdancer.out file (Hint: use grep)

2. We want to print columns: 1, 2, 5, 7, and 9 to correspond to create a BED file with
columns: chromosome, start, end, name, and score. (Hint: use awk to do this, e.g. awk
{print $1"\t"$2}")

3. Print the resulting bed output into a file called: breakdancer.dels.bed

2.4 Can you open the IGV genome browser and inspect the SV event at 11:258766. To do this,
type:

igv.sh &

First, you need to open the genome (click on the leftmost dropdown box at the top, and find 'S.
cerevisiae EF3 r62' and select it). Then use the File menu to open your BAM file (File - Load
from file, and select ERR1015121.bam). Next load the BED file for the deletion calls that you
created in 2.3 (File - Load from file, and select 'breakdancer.dels.bed').

In the location text box, type: 11:257766-259766:
e Can you see the structural variant? (Hint: you may need to zoom out a little to see the
full structural variant).
e Can you see any evidence to supports this SV call?
e Can you estimate the size of the SV?

The VCF in the exercise 1 directory was produced by another structural variant caller on the
same sample as this exercise. Can you load this VCF into IGV also (File - Load from file, and
select ERR1015121.vcf in the exercise 1 directory) and answer the following questions:



e Was the deletion at 11:258766 also called by the other structural variant software?

e Can you navigate to 11:508,064-511,8407 Is there a SV deletion called in this region by
either SV caller? Is there any read support for a SV deletion in this region? If so, how
many read pairs could support the deletion call (Hint: change the IGV view to 'squished'
and 'View as pairs' to see any inconsistently aligned read pairs).

Exercise 3: Lumpy structural variant caller

In this exercise, we will use the Lumpy software package to call structural variants on a yeast
sample that was paired-end sequenced on the lllumina Hiseq 2000.

Lumpy is designed to take BAM files that have been aligned with BWA-mem.

3.1 On the terminal, cd to the 'exercise3' folder and check that there is a BAM file called
ERR1015069.bam and index file in the directory (hint: Is -I).

3.2 The first step for running Lumpy is to extract the read pairs that are discordantly mapped
(i.e. pairs that are not mapped within the expected fragment size distribution). We will use
Samtools to extract these reads:

samtools view -bh -F 1294 ERR1015069.bam | samtools sort -O bam -T
ERR1015069.temp -o ERR1015069.discordants.bam

Can you index the bam file? (Hint: use samtools index)

e What does the -F option in 'samtools view' do?
Which BAM flags does 1294 indicate? (Hint: in your web browser, visit
https://broadinstitute.github.io/picard/explain-flags.html and enter 1294 to find out)

3.3 Next we will use Lumpy to extract the reads that are only split mapped (i.e. split read
alignments). This is all one single command:

samtools view -h ERR1015069.bam | extractSplitReads BwaMem -i stdin | samtools
view -b - | samtools sort -0 bam -T ERR1015069.temp -o ERR1015069.splitters.bam

e Can you index the bam file? (Hint: use samtools index)

3.4 We will now do the structural variant calling with lumpy, providing it with the original BAM file
and the two BAM files we prepared in 3.2 and 3.3.

lumpyexpress -B ERR1015069.bam -S ERR1015069.splitters.bam -D
ERR1015069.discordants.bam -o ERR1015069.vcft

e What type of SV event occurs at position 1V:383993? What is the length of the SV
event?



e What type of SV event occurs at position XV:43018? What is the length of the SV event?
Exercise 4: Sniffles - long read SV caller

Sniffles is a SV caller that is designed for long reads (Pacbio or Oxford Nanopore). It is very
important that the reads are first aligned with an aligner suitable for long reads. NGMLR is a
long-read mapper designed to align PacBio or Oxford Nanopore (standard and ultra-long) to a
reference genome with a focus on reads that span structural variations.

We will use data from a Saccharomyces cerevisiae strain (YPS128) that was sequenced at the
Wellcome Trust Sanger Institute and deposited in the ENA (Project: PRJIEB7245, sample:
SAMEA2757770, analysis: ERZ448241).

4.1 On the terminal, cd to the ‘exercise3’ directory.

The sequencing reads are contained in a fastq file:
YPS128.filtered subreads.l10x.fastg.gz

The reference genome is in the ref directory in a fasta file:
Saccharomyces cerevisiae.R64-1-1.dna.toplevel.fa

e Can you align the reads with NGMLR and send the output to a SAM file called
YPS128.10x.filtered subreads.sam? You can find the usage of ngmlr by typing:

ngmlr

Note: the -t parameter to use multiple threads in parallel (this will increase the speed of the
alignment by using more than one CPU core - for these machines, | suggest using 6).

e Can you convert the output to BAM format (samtools view -b)
Sort the BAM file (samtools sort) and produce a sorted BAM file called:
YPS128.10x.filtered subreads.sorted.bam

e Finally, use samtools to index the sorted BAM file (samtools index).

4.2 We will now use the BAM file to do structural variant calling with Sniffles.
Sniffles takes the BAM file as input and outputs VCF. Using the default parameters, can you call
SVs with Sniffles and output the results into a VCF file called yps128.10x.vcf. To find the

usage for Sniffles, type:

sniffles



You don’t need to change any of the default parameters, but you will need to work out how to
provide the input BAM file and specify the output VCF file. The documentation on sniffles is
here: https://github.com/fritzsedlazeck/Sniffles/wiki/Parameter

4.3 IGV inspection

What sort of SV was called at on chromosome ‘Mito’ at position 292957

What is the length of the SV?

How many reads are supporting the SV?

From a visual inspection of the SV in IGV, can you determine how accurate is the
breakpoint of the called SV compared to what you see in IGV?

Optional exercise 5: Bedtools
On the terminal, cd to the 'exercise5' directory.

Bedtools is an extremely useful tool for doing regional comparisons over genomic co-ordinates.
It has many commands for doing region based comparisons with BAM, VCF, GFF, BED file
formats. To see the list of commands available, on the command line type:

bedtools

In this directory, there are two VCF files and the yeast genome annotation in GFF3 format
(Saccharomyces_cerevisiae.R64-1-1.82.genes.gff3).

5.1 For instance, we can quickly find out how many of the SVs intersect with annotated regions
of the genome by using the 'bedtools intersect' command. For the intersect command, the
-a and -b parameters are used to denote the input files.

e Using the 'bedtools intersect', can you determine how many SVs in
ERR1015069.dels.vcf overlap with an annotated region of the yeast genome? (hint: use
the unix command wc to count the number of lines in the output, and note the -u
parameter in bedtools intersect).

e How many SVs do not overlap with a gene? (hint: note the -v parameter to bedtools
intersect)

5.2 The default is to report overlaps between features in A and B so long as at least one base
pair of overlap exists. However, the -t option allows you to specify what fraction of each feature
in A should be overlapped by a feature in B before it is reported.

e Can you be more strict and require 50% of overlap between the SV and the genes?
e How many SVs overlap with this more strict definition?


https://github.com/fritzsedlazeck/Sniffles/wiki/Parameter

5.3 You can use bedtools to find the closest feature to a SV using the 'bedtools closest'
command.

e What is the closest gene to the structural variant at IV:3842207

5.4 We can use the 'bedtools intersect' command to determine how many SVs overlap
between two VCF files.
e Can you determine how many SVs have a 50% reciprocal overlap between the two files:
ERR1015069.dels.vcf ERR1015121.dels.vcf (Hint: first find the option for reciprocal
overlap by typing: bedtools intersect -h)

References:
LUMPY:: a probabilistic framework for structural variant discovery
http://www.genomebiology.com/2014/15/6/R84

BreakDancer: an algorithm for high-resolution mapping of genomic structural variation
http://www.nature.com/nmeth/journal/v6/n9/abs/nmeth.1363.html

NGMLR: https://github.com/philres/ngmir

Sniffles: https://github.com/fritzsedlazeck/Sniffles/wiki

More information can be found in this paper: Accurate detection of complex structural variations
using single molecule sequencing

https://www.biorxiv.org/content/early/2017/07/28/169557

BEDTools: a flexible suite of utilities for comparing genomic features
http://bioinformatics.oxfordjournals.org/content/26/6/841.long

URLs

Lumpy-SV: https://github.com/arg5x/lumpy-sv

Breakdancer: http://gmt.genome.wustl.edu/packages/breakdancer/
Bedtools: https://github.com/arg5x/bedtools

Documentation
Calling SVs with Lumpy: https://github.com/arg5x/lumpy-sv#lumpy-traditional-usage
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Applications of ChlIP-seq

* ChIP-seq is one of the most commonly used
approaches for identifying gene regulatory
regions

* Two common types:

1. Transcription factors
2. Histone modifications

ChlP-seq for transcription factors
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Histone mark cheat sheet

m Candidate State Interpretation

H3K9me2,3 - Silenced genes

H3K27me3 Inactive/poised promoter, Downregulation of
polycomb repressed nearby genes

H3K36me3 Transcriptional transition ~ Actively transcribed gene

bodies.

H4K20mel Transcriptional transition  Transcriptional activation

H3K4me1l,2,3 Strong enhancer Promoter of active genes

H3K27ac Active promoter/strong  Active transcription
enhancer

H3K9ac Active promoter Switch from transcription

initiation to elongation.
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EPIGENETIC JARGON CHEAT - SHEET

Promoter DNA Sequence (100-1kb), initial secure binding site for:
RNA Pol complex
Transfacs
Adjacent regulated gene, defined relative to TSS.
Poised: simultaneous activation/repressive histone mods.

DNA Seq (50-1.5kb), bound by transfacs (activator / repressor)
Can act on gene up to 1Mb away: DNA folding brings it close to
promoter.

Enhancer: Bound by activator, which interacts with complex
initiating transcription.

Silencer: bound by repressor, which interferes with GTF assembly.

Enhancer/Silencer

Insulator DNA, 300-2kb, Block enhancers from acting on promoters:
positioned between enhancer and promoter, form chromatin-loop
domains.

Polycomb-repressed  Polycomb — group proteins actively remodel chromatin to silence
genes.

The histone code

Then: go back and ask what
fraction of classified regions
contain peaks of a given type.

Ernst et a/ 2011
b

@
g
8
®
<
T
£
2
£
&)

Chramatin mark nheanatinn franianc (04)

First: create these categories by
applying HMM classifying
stretches of genome to
combined peak data:

9 cell lines x 9 chromatin marks.
Apply functional interpretation
after categories are created.

T
£ Candidate
£ state annotation

Strong enhancer
Strong enhancer

Weak/poised enhancer
Weak/poised enhancer

|Weak transcribed |

Heterochrom; low signal
Repetitive/CNV
Repetitive/CNV

Histone mark cheat sheet

m Candidate State Interpretation

H3K9me2,3 - Silenced genes

H3K27me3 Inactive/poised promoter, Downregulation of
polycomb repressed nearby genes

H3K36me3 Transcriptional transition ~ Actively transcribed gene

bodies.

H4K20mel Transcriptional transition  Transcriptional activation

H3K4mel,2,3 Strong enhancer Promoter of active genes

H3K27ac Active promoter/strong  Active transcription
enhancer

H3K9ac Active promoter Switch from transcription

initiation to elongation.

ChlP-seq experimental considerations

* Antibody quality: 60% of antibodies not high

enou

gh quality

* Numbers of cells: 2-3M recommended, more
for TFs (5-10M)

e Crosslinking time: ~10 mins

* Shearing
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Shearing
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Aim for fragments in 150-400bp range

Efficiency varies by cell type

Optimise by varying number of shearing cycles

Run input samples on Bioanalyser to check efficiency

ChlIP-seq technical issues

1. Signal / noise: Does my antibody work?
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Basic analysis of ChIP-seq

1. Read alignment
2. Visualisation
3. Peak calling
— Peak annotation (mapping peaks to genes etc)
— Motif analysis
4. Differential binding
— Case / control
— Naive / stimulated

Visualisation in a genome browser

e Convert mapped reads to “signal” —e.g. read
depth at each bp or in windows

* BAM files to e.g. wig, bedgraph
* |GV, ensembl, UCSC
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1 Introduction

ChIP-Seq is the combination of chromatin immunoprecipitation (ChIP) assays with high-
throughput sequencing (Seq) and can be used to identify DNA binding sites for transcription
factors and other proteins. The goal of this hands-on session is to perform the basic steps of the
analysis of ChIP-Seq data, as well as some downstream analysis. Throughout this practical we
will try to identify potential transcription factor binding sites of PAX5 in human lymphoblastoid
cells.

1.1 Learning outcomes

By the end of this tutorial you can expect to be able to:

¢ generate an unspliced alignment by aligning raw sequencing data to the human genome
using Bowtie2

* manipulate the SAM output in order to visualise the alignment in IGV

¢ based on the aligned reads, find immuno-enriched areas using the peak caller MACS2

¢ perform functional annotation and motif analysis on the predicted binding regions

1.2 Tutorial sections

This tutorial comprises the following sections:

—_

Introducing the tutorial dataset

Aligning the PAX5 sample to the genome
Manipulating SAM output

Visualising alignments in IGV

Aligning the control sample to the genome
Identifying enriched areas using MACS
File formats

Inspecting genomic regions using bedtools
Motif analysis

O RPN

1.3 Authors

This tutorial was converted into a Jupyter notebook by Victoria Offord based on materials devel-
oped by Angela Goncalves, Myrto Kostadima, Steven Wilder and Maria Xenophontos.
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1 Introduction 1.4 Running the commands from this tutorial

1.4 Running the commands from this tutorial

You can run the commands in this tutorial either directly from the Jupyter notebook (if using
Jupyter), or by typing the commands in your terminal window.

e
]
| Q‘

1s -1

1.4.1 Running commands in the terminal

You can also follow this tutorial by typing all the commands you see into a terminal window. This
is similar to the "Command Prompt" window on MS Windows systems, which allows the user to
type DOS commands to manage files.

To get started, select the cell below with the mouse and then either press control and enter or
choose Cell -> Run in the menu at the top of the page.

echo cd $PWD

Open a new terminal on your computer and type the command that was output by the previous
cell followed by the enter key. The command will look similar to this:

cd /home/manager/pathogen-informatics-training/Notebooks/ChIP-Seq/

Now you can follow the instructions in the tutorial from here.
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1.5 Prerequisites

This tutorial assumes that you have the following software or packages and their dependencies
installed on your computer. The software or packages used in this tutorial may be updated from
time to time so, we have also given you the version which was used when writing the tutorial.

Version
Package Link for download/installation instructions tested
bedtools http:/ /bedtools.readthedocs.io/en/latest/content/in- 2.25.0
stallation.html
Bowtie2 http:/ /bowtie-bio.sourceforge.net/bowtie2 2.2.6
IGV http:/ /software.broadinstitute.org/software/igv 2.3.8
MACS2 https:/ /github.com/taoliu/MACS 2.1.0.20150420
meme http:/ /meme-suite.org/tools/meme 4.10.0
samtools https:/ /github.com/samtools/samtools 1.6
tomtom http://web.mit.edu/meme_v4.11.4/share/doc/tom- 4.10.0
tom.html
UCSC tools http:/ /hgdownload.cse.ucsc.edu/admin/ex- NA

e/linux.x86_64

1.6 Let’s get started!

To get started with the tutorial, head to the first section: introducing the tutorial dataset.

The answers to all questions in the tutorial can be found in answers.ipynb.
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2 Introducing the tutorial dataset

2 Introducing the tutorial dataset

The data we will use for this practical comes from the ENCODE (Encyclopedia of DNA Elements)
Consortium, a big international collaboration aimed at building a comprehensive catalogue of
functional elements in the human genome. As part of this project, many human tissues and cell
lines were studied using high-throughput sequencing technologies.

In this tutorial, we will work on datasets from, GM12878, a lymphoblastoid cell line produced
from the blood of a female donor of European ancestry. Specifically, we will look at binding data
for the transcription factor PAX5. PAXS5 is a known regulator of B-cell differentiation. Aberrant
expression of PAXS5 is linked to lymphoblastoid leukaemia. If there is time, we will also look at
ChIP-seq data for Polymerase II and the histone modification H3K36me3.

The fastq file that we will align is called PAX5.fastq. This file is based on PAX5 ChIP-Seq data
produced by the Myers lab in the context of the ENCODE project. We will align these reads to the
human genome.

The tutorial files can be found in the data directory. Let’s go there now!

Move into the directory containing the tutorial data files.

cd data

Check to see if the tutorial files are there.

III!EIHIEEEHl!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

If the previous 1s command didn’t return anything, download and uncompress the tutorial
files.

wget ftp://ftp.sanger.ac.uk/pub/project/pathogens/workshops/chipseq_data.tar.gz
tar -xf chipseq_data.tar.gz
mv chipseq_data/* .

Take a look at one of the FASTQ files.

head PAX5.fastq

2.1 What’s next?

For a quick recap of what the tutorial covers and the software you will need, head back to the
introduction.

Otherwise, let’s get started with aligning the PAX5 sample to the genome.
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3 Aligning the PAX5 sample to the genome

3 Aligning the PAX5 sample to the genome

There are a number of competing tools for short read alignment, each with its own set of strengths,
weaknesses, and caveats. Here we will use Bowtie2, a widely used ultrafast, memory efficient
short read aligner.

Bowtie2 has a number of parameters in order to perform the alignment. To view them all type:

bowtie2 -help

Bowtie2 uses indexed genome for the alignment in order to keep its memory footprint small. Be-
cause of time constraints we will build the index only for one chromosome of the human genome.
For this we need the chromosome sequence in fasta format. This is stored in a file named HS19. fa,
under the subdirectory genome.

If you are not in there already, change into the data directory.

cd data

We will be storing our indexed genome in a folder called bowtie_index.

Check if the bowtie_index folder already exists.

1s bowtie_index

If it doesn’t exist already, create the folder bowtie_index.

mkdir bowtie_index

Then, index the chromosome using the command:

bowtie2-build genome/HS19.fa bowtie_index/hs19

Be patient, building the index may take 5-10 minutes!

This command will output 6 files that constitute the index. These files that have the prefix hs19
and are stored in the bowtie_index directory.

To check the files have been successfully created type:

1s -1 bowtie_index

Now that the genome is indexed we can move on to the actual alignment. In the following com-
mand the first argument (-k) instructs Bowtie2 to report only uniquely mapped reads. The fol-
lowing argument (-x) specifies the basename of the index for the genome to be searched; in our
case is hs19. Then there is the name of the FASTQ file and the last argument (-S) that ensures that
the output is in SAM format.
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3 Aligning the PAX5 sample to the genome 3.1 Questions

Align the PAXS5 reads using Bowtie2:

bowtie2 -k 1 -x bowtie_index/hs19 PAX5.fastq -S PAX5.sam

The above command outputs the alignments in SAM format and stores them in the file PAX5. sam.

In general before you run Bowtie2, you have to know which FASTQ format you have. The avail-
able FASTQ formats in Bowtie2 are:

--phred33 input quals are Phred+33 (default)
--phred64 input quals are Phred+64
--int-quals input quals are specified as space-delimited integers

See http://en.wikipedia.org/wiki/FASTQ_format to find more detailed information about the
different quality encodings.

The PAX5. fastq file we are working on uses encoding Phred+33 (the default). Bowtie2 will take
2-3 minutes to align the file. This is fast compared to other aligners that sacrifice some speed to
obtain higher sensitivity.

Look at the file in the SAM format by typing:

head -n 10 PAX5.sam ‘

You can find more information on the SAM format by looking at https://samtools.github.io/
hts-specs/SAMv1.pdf.

3.1 Questions

Q1. How can you distinguish between the header of the SAM format and the actual align-
ments?
Hint: look at section 1.3 in the documentation (https://samtools.github.io/hts-specs/SAMuv1.pdf).

Q2. What information does the header provide you with?
Hint: use the documentation to work out what the header tags mean

Q3. Which chromosome are the reads mapped to?

3.2 What’s next?

For a quick recap of what the tutorial covers head back to the introduction.
If you want a reintroduction to the tutorial dataset, head back to introducing the tutorial dataset.

Otherwise, let’s continue on to manipulating SAM output.
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4 Manipulating SAM output

4 Manipulating SAM output

SAM files are rather big and when dealing with a high volume of HTS data, storage space can
become an issue. Using samtools we can convert SAM files to BAM files (their binary equivalent
tiles that are not human readable) that occupy much less space.

To convert your SAM file to a BAM file, you have to instruct samtools that the input is in SAM
format (-S), the output should be in BAM format (-b) and that you want the output to be stored
in the file specified by the -o option.

If you are not in there already, change into the data directory.

cd data

Convert SAM to BAM using samtools and store the output in the file PAX5. bam:

samtools view -bSo PAX5.bam PAX5.sam

4.1 What’s next?

For a quick recap of what the tutorial covers head back to the introduction.

If you want a reintroduction to the tutorial dataset, head back to aligning the PAX5 sample to the
genome.

Otherwise, let’s continue on to visualising alignments in IGV.
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5 Visualising alignments in IGV

It is often instructive to look at your data in a genome browser. Here, we use IGV, a stand-alone
browser, which has the advantage of being installed locally and providing fast access. Please check
their website (http://www.broadinstitute.org/igv) for all the formats that IGV can display.

Web-based genome browsers, like Ensembl or the UCSC browser, are slower, but provide more
functionality. They do not only allow for more polished and flexible visualisation, but also provide
easy access to a wealth of annotations and external data sources. This makes it straightforward to
relate your data with information about repeat regions, known genes, epigenetic features or areas
of cross-species conservation, to name just a few. As such, they are useful tools for exploratory
analysis.

Visualisation will allow you to get a "feel" for the data, as well as detecting abnormalities and
problems. Also, exploring the data in such a way may give you ideas for further analyses. For our
visualization purposes we will use the BAM and bigWig formats.

When uploading a BAM file into the genome browser, the browser will look for the index of the
BAM file in the same folder where the BAM files is. The index file should have the same name as
the BAM file and the suffix .bai. Finally, to create the index of a BAM file you need to make sure
that the file is sorted according to chromosomal coordinates.

If you are not in there already, change into the data directory.

cd data

Sort alignments according to chromosome position and store the result in the file with the prefix
PAX5.sorted:

samtools sort -T PAX5.temp.bam -o PAX5.sorted.bam PAX5.bam
Index the sorted file.
samtools index PAX5.sorted.bam

The indexing will create a file called PAX5.sorted.bam.bai. Note that you don’t have to specify
the name of the index file when running samtools index.

Another way to visualise the alignments is to convert the BAM file into a bigWig file. The bigWig
format is for display of dense, continuous data and the data will be displayed as a graph. The
resulting bigWig files are in an indexed binary format.

The BAM to bigWig conversion takes place in two steps. First, we convert the BAM file into a
bedgraph, called PAX5.bedgraph, using the tool genomeCoverageBed from bedtools.

To find the structure of the command and the mandatory arguments type:

genomeCoverageBed

OO ‘
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5 Visualising alignments in IGV

Apart from the BAM file, we also need to provide the size of the chromosomes for the organ-
ism of interest in order to generate the bedgraph file. These have to be stored in a tab-delimited
file. When using the UCSC Genome Browser, Ensembl, or Galaxy, you typically indicate which
species or genome build you are working with. The way you do this for bedtools is to create a
"genome" file, which simply lists the names of the chromosomes (or scaffolds, etc.) and their size
(in basepairs).

To obtain chromosome lengths for the human genome, type:

fetchChromSizes hgl9 > genome/hgl9.all.chrom.sizes

We next want to remove any chromosome length information for the patched chromosomes,
which are accessioned scaffold sequences that represent assembly updates. That way we will
only keep the information of the current assembly.

Remove this information using awk:

awk '$1 !~ /[_.]1/' genome/hgl9.all.chrom.sizes > genome/hgl9.chrom.sizes

Now generate the bedgraph file, called PAX5.bedgraph, by typing:

genomeCoverageBed -bg -ibam PAX5.sorted.bam \

-g genome/hgl9.chrom.sizes > PAX5.bedgraph

We then need to convert the bedgraph into a binary graph, called PAX5.bw, using the tool
bedGraphToBigWig from the UCSC tools.

To convert the bedgraph type:

bedGraphToBigWig PAX5.bedgraph genome/hgl9.chrom.sizes PAX5.bw

Now we will load the data into the IGV browser for visualisation.

To launch IGV :

On the top left of your screen choose "Human hg19" from the drop down menu. Then in order
to load the desired files go to "File —> Load from File".

On the pop up window navigate to the tutorial folder and select the file PAX5.sorted.bam.
Repeat these steps in order to load PAX5.bw as well.

Select "chr1" from the drop down menu on the top left.

Right click on the name of PAX5.bw and choose "Maximum" under the "Windowing Function".

Right click again and select "Autoscale".




5 Visualising alignments in IGV 5.1 Questions

5.1 Questions

Q1. Look for gene NASP in the search box. Can you see a PAX5 binding site near the NASP
gene?
Hint: use the "+" button on the top right zoom in more to see the details of the alignment

Q2. What is the main difference between the visualisation of BAM and bigWig files?

5.2 What’s next?

You can head back to manipulating SAM output or continue on to aligning the control sample
to the genome.
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6 Aligning the control sample to the genome

6 Aligning the control sample to the genome

In the ChIP-Seq folder you will find another .fastq file called Control.fastq.

If you are not in there already, change into the data directory.

cd data

Use the head command to look at this file:

head Control.fastq

Use the information on the FASTQ Wikipedia page (http://en.wikipedia.org/wiki/FASTQ_
format) to determine the quality encoding this FASTQ file is using. Then, adapting your com-
mands to the quality encoding where needed, follow the steps you used to align the PAX5
sample to the genome and manipulate the SAM file in order to align the control reads to the
human genome.

6.1 What’s next?

You can head back to visualising alignments in IGV or continue on to identifying enriched areas
using MACS.
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7 Finding enriched areas using MACS

MACS?2 stands for model-based analysis of ChIP-Seq. It was designed for identifying transcrip-
tion factor binding sites. MACS2 captures the influence of genome complexity to evaluate the sig-
nificance of enriched ChIP regions, and improves the spatial resolution of binding sites through
combining the information of both sequencing tag position and orientation. MACS2 can be easily
used for ChIP-Seq data alone, or with a control sample to increase specificity.

If you are not in there already, change into the data directory.

cd data

Consult the MACS2 help file to see the options and parameters:

macs2 -help

macs2 callpeak -help

The input for MACS2 can be in ELAND, BED, SAM, BAM or BOWTIE formats (you just have to
set the --format flag).

Options that you will have to use include:

-t to indicate the input ChIP file
-c to indicate the name of the control file

--format the tag file format
(if this option is not set MACS automatically detects which format the file is)

--name to set the name of the output files

--gsize to set the mappable genome size
(with the read length we have, 70% of the genome is a fair estimation)

-—-call-summits to detect all subpeaks in each enriched region and return their summits

--pvalue the P-value cutoff for peak detection.
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7 Finding enriched areas using MACS 7.1 What's next?

Now run macs using the following command:

macs2 callpeak -t PAX5.sorted.bam -c Control.sorted.bam \

—-format BAM -name PAX5 -gsize 138000000 -pvalue 1le-3 \
—-call-summits

MACS?2 generates its peak files in a file format called .narrowPeak file. This is a BED format
describing genomic locations. Many types of genomic data can be represented as (sets of) genomic
regions. In the following section we will look into the BED format in more detail, and we will
perform simple operations on genomic interval data.

7.1 What’s next?

You can head back to aligning the control sample to the genome or continue on to file formats.
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8 File Formats

8.1 BED files

Over the years a set of commonly used file formats for genomic intervals have emerged. Most
of these file formats are tabular where each row consists of an interval and columns have a pre-
defined meaning, describing chromosomes, locations, scores, etc. The UCSC web browser has an
informative list of these at http://genome.ucsc.edu/FAQ/FAQformat.html.

The BED format is the simplest file format of these. A minimal bed file has at least three columns
denoting chromosome, start and end of an interval. The following example denotes three inter-
vals, two on chromosome chrl and one on chr2.

chromosome start end

chrl 50 100
chrl 500 1000
chr2 600 800

BED files follow the UCSC Genome Browser’s convention of making the start position 0-based
and the end position 1-based. In other words, you should interpret the "start" column as being
1 base pair higher than what is represented in the file. For example, the following BED feature
represents a single base on chromosome 1; namely, the 1st base.

chromosome start end description

chrl 0 1 I-am-the-first-position-on-chrom-1

Using the bed format documentation found at http://genome.ucsc.edu/FAQ/FAQformat . html#
format1 answer the following questions.

8.1.1 Questions

Q1. The simplest bed file contains just three columns (chromosome, start, end) and is often
called BED3 format. What extra columns does BED6 contain?

Hint: look for information about columns 4 to 6 in the documentation http: // genome. ucsc. edu/FAQ/
FAQformat. html# formatl

Q2. In the above examples, what are the lengths of the intervals?

Q3. Can you output a BED6 format with a transcript called “loc1”, transcribed on the forward
strand and having three exons of length 100 starting at positions 1000, 2000 and 3000?
Hint: you will need one line per exon

14
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8 File Formats 8.3 GTF files

8.2 narrowPeak files

The narrowPeak format is a BED6+4 format used to describe and visualise called peaks. Previ-
ously, we have used MACS2 to call peaks on the PAX5 ChIP-seq data set.

If you are not in there already, change into the data directory.

cd data

View the first 10 lines in PAX5_peaks .narrowPeak using the head command:

head -10 PAX5_peaks.narrowPeak

NarrowPeak files can also be uploaded to IGV or other genome browsers.

Try uploading the peak file generated by MACS2 to IGV.

8.2.1 Questions

Q4. What additional information is given in the narrowPeak file, beside the location of the
peaks?
Hint: See http: // genome. ucsc. edu/FAQ/FAQformat. html# format12 for details

Q5. Does the first peak that was called look convincing to you?

8.3 GTF files

A second popular format is the GTF format. Each row in a GTF formatted file denotes a genomic
interval. The GTF format documentation can be found at http://mblab.wustl.edu/GTF2.html.

The three intervals from above might be:

seqid source type start stop score strand phase attributes

chrl gene exon 51 100 . + 0 gene_id "001";transcript_id "001.1";
chrl gene exon 501 1000 . + 2 gene_id "001";transcript_id "001.1";
chr2 repeat exon 601 800 . +

The 9th column permits intervals to be grouped and linked in a hierarchical fashion. This format
is thus popular to describe gene models. Note how the first two intervals are linked through a
common transcript_id and gene_id.

The aim of the GENCODE project is to annotate all evidence-based genes and gene features in the
entire human genome at a high accuracy. Annotation of the GENCODE gene set is carried out
using a mix of manual annotation, experimental analysis and computational biology methods.
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8 File Formats 8.4 What's next?

The GENCODE v18 geneset is available in the genome folder.
Look at the first 10 lines of the GENCODE annotation file:

head -n 10 genome/gencode.v18.annotation.gtf

8.3.1 Questions

Q6. In the small example table above, why have the coordinates changed from the BED de-
scription?

8.4 What’s next?

You can head back to identifying enriched areas using MACS or continue on to inspecting ge-
nomic regions using bedtools.
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9 Inspecting genomic regions using bedtools

9 Inspecting genomic regions using bedtools

In this section we perform simple functions, such as overlaps, on the most common file type used
for describing genomic regions, the BED file. We will examine the results of the ChIP-Seq peak
calling you have performed on the transcription factor PAX5 and perform simple operations on
these files, using the bedtools suite of programs. You will then annotate the MACS2 peaks with
respect to genomic annotations. Finally, we will select the most significantly enriched peaks, and
extract the genomic sequence flanking their summits, the point of highest enrichment.

If you are not in there already, change into the data directory.

The bedtools package permits complex, interval-based manipulation of BED and GTF files. They
are also very fast. The general invocation of bedtools is bedtools <COMMAND>.

To get an overview of the available commands, simply call bedtools without any command or
options in the terminal window.

To get help for a command, type bedtools <COMMAND>. Extensive documentation and examples
are available at https://bedtools.readthedocs.org/en/latest/. We will now use bedtools to
calculate simple coverage statistics of the peak calls over the genome (keep in mind that only
peaks on Chromosome 1 are in the file).

To bring up the help page for the bedtools genomecov command, type:

bedtools genomecov

Calculate the genome coverage of the PAX5 peaks:

bedtools genomecov -i PAX5_peaks.narrowPeak -g genome/hgl9.chrom.sizes

In order to biologically interpret the results of ChIP-Seq experiments, it is useful to look at the
genes and other annotated elements that are located in proximity to the identified enriched re-
gions. We will now use bedtools to identify how many PAX5 peaks overlap GENCODE genes.

First we use awk to filter out only the genes from the GTF file:

awk '$3=="gene"' genome/gencode.v18.annotation.gtf \

> genome/gencode.v18.annotation.genes.gtf

Next, count the total number of PAX5 peaks:

wc -1 PAX5_peaks.narrowPeak
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9 Inspecting genomic regions using bedtools 9.1 Questions

Then use bedtools to find the number overlapping GENCODE genes:

bedtools intersect -a PAX5_peaks.narrowPeak \

-b genome/gencode.v18.annotation.genes.gtf | wc -1

You can use the bedtools closest command to find the closest gene to each peak.

bedtools closest -a PAX5_peaks.narrowPeak \
-b genome/gencode.v18.annotation.genes.gtf | head

Transcription factor binding near to the transcript start sites (TSS) of genes is known to drive
gene expression or repression, so it is of interest to know which TSS regions are bound by PAXS5.
To determine this, we will first create a BED file of the GENCODE TSS using the GTF.

You can use this awk command to create the TSS BED file:

awk 'BEGIN {FS=0FS="\t"} { if ($7=="+"){tss=$4-1} else { tss = $5 } \
print $1,tss, tss+l, ".", ".", $7, $9}' \
genome/gencode.v18.annotation.genes.gtf > genome/gencode.tss.bed

Now use the bedtools closest command again to find the closest TSS to each peak:

sortBed -i genome/gencode.tss.bed > genome/gencode.tss.sorted.bed
bedtools closest -a PAX5_peaks.narrowPeak \
-b genome/gencode.tss.sorted.bed > PAX5_closestTSS.txt

Use head to inspect the results:

head PAX5_closestTSS.txt

You have now matched up all the PAX5 transcription factor peaks to their nearest gene transcrip-
tion start site.

9.1 Questions
Q1. Looking at the output of the bedtools genomecov we ran, what percentage of chromosome
1 do the peaks of PAX5 cover?

Q2. Looking at the output from bedtools intersect, what proportion of PAX5 peaks overlap
genes?

Q3. Looking at PAX5_closestTSS.txt, which gene was found to be closest to MACS peak 2?

9.2 What’s next?

You can head back to file formats or continue on to motif analysis.
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10 Motif analysis

10 Motif analysis

It is often interesting to find out whether we can associate the identified binding sites with a se-
quence pattern or motif. To do so, we will identify the summit regions of the strongest PAX5
binding sites, retrieve the sequences associated with these regions, and use MEME for motif anal-
ysis.

Since many peak-finding tools merge overlapping areas of enrichment, the resulting peaks tend
to be much wider than the actual binding sites. The summit and its vicinity are the best estimate
for the true protein binding site, and so it is here where we look for repeated sequence patterns,
called motifs, to which the transcription factor may preferentially bind.

Sub-dividing the enriched areas by accurately partitioning enriched loci into a finer-resolution set
of individual binding sites, and fetching sequences from the summit region where binding motifs
are most likely to appear enhances the quality of the motif analysis. Sub-peak summit sequences
have already been called by MACS2 with the --call-summits option.

De novo motif finding programs take as input a set of sequences in which to search for repeated
short sequences. Since motif discovery is computationally heavy, we will restrict our search for the
Oct4 motif to the genome regions around the summits of the 300 most significant PAX5 subpeaks
on Chromosome 1.

If you are not in there already, change into the data directory.

cd data

Sort the PAXS5 peaks by the height of the summit (the maximum number of overlapping reads).

sort -k5 -nr PAX5 summits.bed > PAX5 summits.sorted.bed

Using the sorted file, select the top 300 peaks and create a BED file for the regions of 60 base
pairs centred around the peak summit.

awk 'BEGIN{FS=0FS="\t"}; NR < 301 { print $1, $2-30, $3+29 }' \

PAX5_summits.sorted.bed > PAX5_top300_summits.bed

The human genome sequence is available in FASTA format in the bowtie_index directory.

Use bedtools to extract the sequences around the PAX5 peak summits in FASTA format, which
we save in a file named PAX5_top300_summits.fa.

bedtools getfasta -fi genome/HS19.fa \

-bed PAX5_top300_summits.bed -fo PAX5_top300_summits.fa
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10 Motif analysis 10.1 Analyse the results from MEME

We are now ready to perform de novo motif discovery, for which we will use the tool MEME.

Open a web bowser, go to the MEME website at http://meme-suite.org/, and choose the
"MEME" tool.

Fill in the necessary details, such as:

¢ the sub-peaks fasta file PAX5_top300_summits.fa (will need uploading), or just paste in
the sequences.

¢ the number of motifs we expect to find (1 per sequence)

¢ the width of the desired motif (between 6 to 20) in the "Advanced" options

¢ the maximum number of motifs to find (3 by default).

For PAX5 one classical motif is known.
Start Search.

Your MEME analysis will now be queued and will run on a server in the US. The results page
will refresh automatically and once the tool has finished running there will be a link to the results.
Depending on how busy the servers are your analysis may take a longer or shorter time to run.

You can check the load of the server here:

http://meme-suite.org/opal2/dashboard?command=statistics

10.1 Analyse the results from MEME
We would like to know if this motif is similar to any other known motif. We will use the results
from TOMTOM for this.

On either the results from the web MEME run or the local run please follow the link “MEME
html output”. Scroll down until you see the first motif logo.

Click under the option Submit/Download and choose the TOMTOM button to compare to
known motifs in motif databases, and on the new page choose to compare your motif to those
in the JASPAR CORE and UniPROBE Mouse database.

10.2 Running MEME locally

If you want to speed things up you may want to run MEME on your own machine. You can try to
do this as well if you wish, or skip the following bonus exercise and go to the next section.

To bring up the help page for the local installation of MEME, type:

Run MEME locally, setting the output directory with the option -o (e.g. -0 meme_out).

meme PAX5_top300_summits.fa -o meme_out -dna -nmotifs 1 -minw 6 -maxw 20
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10 Motif analysis 10.3 Questions

Once MEME has finished running look in this directory for the file meme.html and open it in a
web browser. You can do this by either copying the path to the file to the address bar in Firefox
or double click on the .html file.

Alternatively, you can run the following command to automatically open the HTML file in
Firefox:

firefox meme out/meme.html

Scroll down until you see the first motif logo.

We would like to know if this motif is similar to any other known motif. We will use TOMTOM
and a set of known motif databases stored in motif_databases for this.

To compare your newly found motifs to the motif databases JASPAR CORE and UniPROBE
Mouse you can run:

tomtom -o tomtom_out meme out/meme.html \

motif_databases/JASPAR/JASPAR_CORE_2016_vertebrates.meme \
motif_databases/MOUSE/uniprobe_mouse.meme

Once again, once TOMTOM has finished running look in tomtom_out for the file tomtom.html.

Open tomtom.html in a web browser.

firefox tomtom_out/tomtom.html

10.3 Questions

Q1. Which motif was found to be the most similar to your motif?

10.4 Congratulations, you have reached the end of this tutorial!

We hope you've enjoyed our ChIP-Seq tutorial. You can find the answers to all of the questions in
this tutorial in answers.ipynb. You can revisit inspecting genomic regions using bedtools or, go
back to the beginning.
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Differential Expression
using RNA-Seq

Overview

e RNA-seq background

e Mapping to the genome (HISAT2 and IGV)

e Mapping to the transcriptome and counting reads (Kallisto)

o Read count normalisation

o Differential expression and QC (Sleuth)

o  What to do with a gene list

o The exercise

What is the transcriptome?

“The complete set of transcripts in a cell
and their quantity

for a specific developmental stage or condition”

Wang et al. (2009)
Nature Reviews Genetics
(PubMed: 19015660)
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RNA Sequencing

Wang et al. (2009)
Nature Reviews Genetics
(PubMed: 19015660)

Experimental design

o Successful RNA-Seq studies start with a good study design
o Considerations for generating data to answer your biological question
include:
o library type
o sequencing depth
o number of replicates

o avoiding biases

Experimental design - library preparation

e Total RNA = mRNA + rRNA +tRNA + regulatory RNAs...

e Ribosomal RNA can represent > 90% total RNA

e Can enrich for the 1-2% mRNA or deplete rRNA
o enrichment typically needs good RIN and high RNA proportion
o some samples (e.g. tissue biopsies) may not be suitable
o bacterial mRNA not polyadenylated -> ribosomal depletion

e Be aware of protocol being used (e.g. some will remove small RNAs)

Experimental design - library type

e Stranded vs unstranded
o strand-specific protocols better for detangling antisense or
overlapping transcripts
e Single or paired end
o paired end better for de novo transcript discovery or isoform
expression analysis

o <55% reads will span 2 or more exons




Experimental design - replicates

Biological replicates

biologically distinct samples

same type of organism treated or grown in the same condition
understand biological variation (e.g. variation between individuals)
relevant biological replicates are required

Technical replicates

repeated measurements of the same sample

understand the variation in equipment or protocols

technical replicates are not generally required, but try to arrange samples on
plates to minimise potential problems

Experimental design - sequencing depth / replicates
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RNA-seq differential expression studies: more sequence or
more replication?
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What do we need to know?

Which genes/transcripts do our reads belong to? mapping
How many reads align to a specific gene/transcript? quantification

Do different sample groups express genes/transcripts differently? DGE
analysis

No universal pipeline to cover every analysis!!!




[ Sequence reads J

Genome alignment
HISAT2, STAR, GSNAP...

Transcript identification
and counting
featureCounts, htseq_count...

Differential expression
EdgeR, DESeq2, limma-voom

' N
Pseudoalignment to
transcriptome
(counting comes for free)
Kallisto, Sailfish, Salmon...

. /

Differential expression
Sleuth

Mapping RNA-seq reads to the genome (HISAT2)

e Mapping to the genome is great for determining whether your
RNA-seq data is of high quality and exploring the structure of genes
of interest

e Eukaryotic genes have introns, which are not present in mature
mRNA so special mapping algorithms are required (splice-aware)

e HISAT?2 is only one such algorithm, but is accurate, fast and easy to
use

Splice aware alignment

a mmmEEReads
Exon
® Intron
............. | 2M_gt_15
--- I 2M_1_7
............. -

b 62.4% (M)

3.1% (gt_2M)
4.2% (2M_1_7)
5.1% (2M_8_15)

25.1% (2M_gt_15)
Kim ef al. (2015)
Nature Methods
(PubMed: 25751142)

Visualisation: Integrative Genomics Viewer (IGV)
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Mapping to the transcriptome and counting reads
(Kallisto)

e Multiple splice forms per gene introduce ambiguity into the mapping

e Mapping to the spliced transcript sequences allows this ambiguity to be taken
into account and allows transcript-specific read counts

e Itis also faster because there is less target sequence
e Recent improvements in algorithms (pseudoalignment) make this even faster
o doesn’t care where in each transcript reads map to, just which of the transcripts they map to

e Counting comes for free

Mapping to the transcriptome and counting reads
(Kallisto)

Transcript sequence FASTA tile

Genome sequence FASTA file
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Kallisto has two steps:

1. Building an index from the spliced transcript sequences
2. Quantify reads against the index

Kallisto cannot be used to identify novel transcripts

Mapping to the transcriptome and counting reads
(Kallisto)
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Bray et al. (2016)
Nature Biotechnology
(PubMed: 27043002)

Normalisation
e Runs with more depth will have more reads mapping to each gene
(sequencing depth bias)
e Longer genes will have more reads mapping to them (gene length bias)

e Most methods will normalise for sequencing depth and gene length




Normalisation methods

RPKM

Adapted from StatQuest (http://statquest.org)

Gene Replicate 1 Counts Replicate 2 Counts Replicate 3 Counts
B
. _— A (2,000 b 10 12 30
e RPKM - reads per kilobase per million EAG ases)
g B (4,000 bases) 20 25 60
e FPKM - fragments per kilobase per million
R ¢ (1,000 bases) 5 8 15
e TPM - transcripts per million E D (10,000 bases) 0 0 )
Gene (bases) Replicate 1 RPKM Replicate 2 RPKM Replicate 3 RPKM
Some of these methods have problems with highly expressed genes, so it’s better A | A(2,000 bases) 143 133 142
to use more complicated normalisation procedures (DESeq2 rlog, Sleuth) F
T B (4,000 bases) 1.43 1.39 1.42
E
R | C (1,000 bases) 1.43 178 1.42
D (10,000 bases) 0 0 0.009
FPKM (fragments per kilobase million) RPKM vs TPM
RPKM TPM
e RPKM for paired reads
Gene R1 R2 R3 Gene R1 R2 R3
e takes into account that two reads can map to one fragment (and so it A 143 | 133 | 142 A 333 | 296 | 3326
doesn’t count this fragment twice) B 143 | 139 | 142 B 333 | 309 | 3326
c 1.43 1.78 1.42 c 3.33 3.95 3.326
Singleend INNEEEN | N 4000 © 0 0 0.009 © 0 0 0.02
Total 429 45 4.25 Total 10 10 10

Paredend HINEEEN N BN 4=

Easier to see the proportion of each gene within a sample as sum of TPMs same across samples

Adapted from StatQuest (http://statquest.org)




Determining differential expression (Sleuth)

e We don’'t normally have enough replicates to do traditional tests of
significance for RNA-seq data

e Most methods look for outliers in the relationship between average
abundance and fold change

e Assume most genes are not differentially expressed

QC with Sleuth

ads, number of boostraps performos

sample reads_mapped reade proc rac_mapped baotatrps
um o266 s0000 otus 10 wr
e 0330 300000 ozrat 100 wr
| seer wors sommco ois 10 B
serz s somo00 orezs 0 s

e 286637 s00000 07 100 sop

Principal component analysis (PCA)

e Use to look at variation and strong
patterns within data

e Identifies uncorrelated variables or
principal components (PC) \

e Tries to explain the maximum i
amount of variance with the !
smallest number of principal
components . B

Why QC our data?

B

ey




What to do next with your gene list

When you have a list of differentially expressed genes, things start to get difficult.
What to do:
1. Have a hypothesis already? Test it.

2. GO term/pathway analysis (GSEA, TopGO, InnateDB, Ingenuity Pathway
Analysis etc.)

3. Work through list, Google, read papers

4. Opverlay datasets on essentiality, populations, mutations, Pfam domains,
chromosomal location, expression, proteome...

Then make a hypothesis about what genes are interesting and why. Can you
test/explore this further bioinformatically? Design the next wet lab experiment

P

c_q/(_-&

24 6 B 1012141618
Days post-infection

The exercise
e Plasmodium chabaudi

e rodent malaria parasite
o exhibits many characteristics associated with the
pathogenesis of human infection
serial blood passage (SBP)
o direct injection from mouse to mouse
o results in severe disease
e infection with parasites via mosquitoes (MT)
o develop lower parasitaemia (presence of parasites in
the blood)
o mild, chronic disease

IS THE TRANSCRIPTOME OF MOSQUITO
TRANSMITTED PARASITE DIFFERENT FROM ONE
WHICH HAS NOT PASSED THROUGH A MOSQUITO?




1 RNA-Seq expression analysis

1 RNA-Seq expression analysis

1.1

Introduction

RNA sequencing (RNA-Seq) is a high-throughput method used to profile the transcriptome,
quantify gene expression and discover novel RNA molecules. This tutorial uses RNA sequencing
of malaria parasites to walk you through transcriptome visualisation, performing simple quality
control checks and will show you how to profile transcriptomic differences by identifying differ-
entially expressed genes.

For an introduction to RNA-Seq principles and best practices see:

1.2

A survey of best practices for RNA-Seq data analysis

Ana Conesa, Pedro Madrigal, Sonia Tarazona, David Gomez-Cabrero, Alejandra
Cervera, Andrew McPherson, Micha Wojciech Szczeniak, Daniel J. Gaffney, Laura L.
Elo, Xuegong Zhang and Ali Mortazavi

Genome Biol. 2016 Jan 26,17:13 doi:10.1186/s13059-016-0881-8

Learning outcomes

By the end of this tutorial you can expect to be able to:

¢ Align RNA-Seq reads to a reference genome and a transcriptome

* Visualise transcription data using standard tools

¢ Perform QC of NGS transcriptomic data

¢ Quantify the expression values of your transcripts using standard tools

1.3

Tutorial sections

This tutorial comprises the following sections:

1.

NN

1.4

Introducing the tutorial dataset

Mapping RNA-Seq reads to the genome with HISAT2
Visualising transcriptomes with IGV

Transcript quantification with Kallisto

Identifying differentially expressed genes with Sleuth
Interpreting the results

Key aspects of differential expression analysis

Authors

This tutorial was written by Victoria Offord based on materials from Adam Reid.
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dataset-intro.ipynb
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1 RNA-Seq expression analysis 1.5 Running the commands from this tutorial

1.5 Running the commands from this tutorial

You can run the commands in this tutorial either directly from the Jupyter notebook (if using
Jupyter), or by typing the commands in your terminal window.

1.5.1 Running commands on Jupyter

If you are using Jupyter, command cells (like the one below) can be run by selecting the cell and
clicking Cell -> Run from the menu above or using Ctrl Enter to run the command. Let’s give this a
try by printing our working directory using the pwd command and listing the files within it. Run
the commands in the two cells below.

1s -1

e
=
‘ Q.

1.5.2 Running commands in the terminal

You can also follow this tutorial by typing all the commands you see into a terminal window. This
is similar to the "Command Prompt" window on MS Windows systems, which allows the user to
type DOS commands to manage files.

To get started, select the cell below with the mouse and then either press control and enter or
choose Cell -> Run in the menu at the top of the page.

echo cd $PWD

Open a new terminal on your computer and type the command that was output by the previous
cell followed by the enter key. The command will look similar to this:

cd /home/manager/pathogen-informatics-training/Notebooks/RNA-Seq/

Now you can follow the instructions in the tutorial from here.




1 RNA-Seq expression analysis 1.7 Let's get started!

1.6 Prerequisites

This tutorial assumes that you have the following software or packages and their dependencies
installed on your computer. The software or packages used in this tutorial may be updated from
time to time so, we have also given you the version which was used when writing the tutorial.

Version
Package Link for download/installation instructions tested
HISAT?2 https:/ /ccb.jhu.edu/software /hisat2 /index.shtml 204
samtools https:/ /github.com/samtools/samtools 1.9
IGV https:/ /software.broadinstitute.org/software/igv/ 2.3.81
kallisto https:/ /pachterlab.github.io/kallisto/download 0.43.0
R https:/ /www.r-project.org/ 3.22
sleuth https:/ /pachterlab.github.io/sleuth/download 0.30.0
bedtools http:/ /bedtools.readthedocs.io/en/latest/content/in- 2.25.0

stallation.html

1.7 Let's get started!

To get started with the tutorial, head to the first section: introducing the tutorial dataset.

The answers to all questions in the tutorial can be found in answers.ipynb.



dataset-intro.ipynb
answers.ipynb

2 Introducing the tutorial dataset

2 Introducing the tutorial dataset

Working through this tutorial, you will investigate the effect of vector transmission on gene ex-
pression of the malaria parasite. The dataset you will be using for this tutorial and Figure 1 have
been taken from the following publication:

Vector transmission regulates immune control of Plasmodium virulence

Philip J. Spence, William Jarra, Prisca Lévy, Adam ]. Reid, Lia Chappell, Thibaut Bru-
gat, Mandy Sanders, Matthew Berriman and Jean Langhorne

Nature. 2013 Jun 13; 498(7453): 228-231 doi:10.1038/nature12231
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Figure 1. Serial blood passage increases virulence of malaria parasites.

2.1 s the transcriptome of a mosquito-transmitted parasite different from one which
has not passed through a mosquito?

The key reason for asking this question is that parasites which are transmitted by mosquito (MT)
are less virulent (severe /harmful) than those which are serially blood passaged (SBP) in the labo-
ratory. Figure 1A shows the malaria life cycle, the red part highlighting the mosquito stage. Figure
1B shows the difference in virulence, measured by blood parasitemia (presence of parasites in the
blood), between mosquito-transmitted and serially blood passaged parasites.

Figure 1C shows that increasing numbers of blood passage post mosquito transmission results in
increasing virulence, back to around 20% parasitemia. Subsequent mosquito transmission of high
virulence parasites render them low virulence again.

We hypothesise that parasites which have been through the mosquito are somehow better able
to control the mosquito immune system than those which have not. This control of the immune



https://www.nature.com/articles/nature12231

2 Introducing the tutorial dataset 2.2 Exercise 1

system would result in lower parasitemia because this is advantageous for the parasite. Too high
a parasitemia is bad for the mouse and therefore bad for the parasite.

2.2 Exercise 1

In this tutorial, you will be analysing five RNA samples, each of which has been sequenced on an
[Nlumina HiSeq sequencing machine. There are two conditions: serially blood-passaged parasites
(SBP) and mosquito transmitted parasites (MT). One with three biological replicates (SBP), one
with two biological replicates (MT).

Sample name Experimental condition Replicate number
MT1 mosquito transmitted parasites 1
MT2 mosquito transmitted parasites 2
SBP1 serially blood-passaged parasites 1
SBP2 serially blood-passaged parasites 2
SBP3 serially blood-passaged parasites 3

The tutorial files can be found in the data directory. Let’s go there now!

Move into the directory containing the tutorial data files.

cd data

Check to see if the tutorial FASTQ files are there.

If the previous 1s command didn’t return anything, download and uncompress the tutorial
FASTQ files.

wget ftp://ftp.sanger.ac.uk/pub/project/pathogens/workshops/RNASeq_fq.tar.gz
tar —-xf RNASeq fq.tar.gz

mv RNASeq_tutorial_fastqs/* .
gunzip *.fastq.gz

The FASTQ files contain the raw sequence reads for each sample. There will typically be four lines
per read:

1. Header

2. Sequence

3. Separator (usually a +")
4. Encoded quality value




2 Introducing the tutorial dataset 2.3  Questions

Take a look at one of the FASTQ files.

head MT1_1.fastq

You can find out more about the FASTQ format at https://en.wikipedia.org/wiki/FASTQ_

format.

2.3 Questions
2.3.1 Q1: Why is there more than one FASTQ file per sample?

Hint: think about why there is a MT1_1.fastq and a MT1_2.fastq

2.3.2 Q2: How many reads were generated for the MT1 sample?

Hint: we want the total number of reads from both files (MT1_1.fastq and MT1_2.fastq) so perhaps think
about the FASTQ format and the number of lines for each read or whether there’s anything you can use in
the FASTQ header to search and count...

2.4 What’s next?

For a quick recap of what the tutorial covers and the software you will need, head back to the
Introduction.

Otherwise, let’s get started with mapping RNA-Seq reads to the genome using HISAT?2.
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3 Mapping RNA-Seq reads to the genome using HISAT?2

3 Mapping RNA-Seq reads to the genome using HISAT?2

3.1 Introduction

For this exercise, we have reduced the number of reads in each sample to around 2.5 million to
reduce the mapping time. However, this will be sufficient to detect most differentially expressed
genes.

The objectives of this part of the tutorial are:

* use HISAT? to build an index from the reference genome
¢ use HISAT2 to map RNA-Seq reads to the reference genome

3.1.1 Mapping RNA-Seq reads to a genome

By this stage, you should have already performed a standard NGS quality control check on your
reads to see whether there were any issues with the sample preparation or sequencing. For more
information, see our NGS Data formats and QC tutorial.

Next, we map our RNA-Seq reads to a reference genome to get context. This allows you to visually
inspect your RNA-Seq data, identify contamination, novel exons and splice sites as well as giving
you an overall feel for your transcriptome.

HISAT2 To map the RNA-Seq reads from our five samples to the reference genome, we will be
using HISAT?, a fast and sensitive splice-aware aligner. HISAT2 compresses the genome using an
indexing scheme based on the Burrows-Wheeler transform (BWT) and Ferragina-Manzini (FM) in-
dex to reduce the amount of space needed to store the genome. This also makes the genome quick
to search, using a whole-genome FM index to anchor each alignment and then tens of thousands
local FM indexes for very rapid extensions of these alignments.

For more information, and to find the original version of Figure 2, please see the HISAT paper:

HISAT: a fast spliced aligner with low memory requirements
Daehwan Kim, Ben Langmead and Steven L Salzberg
Nat Methods. 2015 Apr;12(4):357-60. doi:10.1038/nmeth.3317

HISAT?2 is a splice-aware aligner which means it takes into account that when a read is mapped it
may be split across multiple exons with (sometimes large) intronic gaps between aligned regions.
As you can see in Figure 2, HISAT2 splits read alignments into five classes based on the number
of exons the read alignment is split across and the length of the anchor (longest continuously
mapped portion of a split read):

o Aligns to a single exon (M)

Alignment split across 2 exons with long anchors over 15bp (2M_gt_15)

Alignment split across 2 exons with intermediate anchors between 8bp and 15bp (2M_8_15)
Alignment split across 2 exons with short anchors less than 7bp (2M_1_7)

o Alignment split across more than 2 exons (gt_2M)

HISAT?2 used the global index to place the longest continuously mapped portion of a read (anchor).
This information is then used to identify the relevant local index. In most cases, HISAT2 will only
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3 Mapping RNA-Seq reads to the genome using HISAT2 3.2 Exercise 2

need to use a single local index to place the remaining portion of the read without having to search
the rest of the genome.

For the human genome, HISAT2 will build a single global index and 48,000 local FM indexes.
Each of the local indexes represents a 64kb genomic region. The majority of human introns are
significantly shorter than 64kb, so >90% of human introns fall into a single local index. Moreover,
each of the local indexes overlaps its neighbour by ~1kb which means that it also has the ability
to detect reads spanning multiple indexes.

a msmmE Reads b 62.4% (M)
Exon
® Intron

M ettt == oM gt 15
[ /— I
o7 e3 3.1% (gt_2M)
SN, R v B Foeeeeeeee — 2N _1_7 4.2% (2M_1.7)
S —— PR = 5.1% (2M_8_15)

25.1% (2M_gt_15)

Figure 2. Read types and their relative proportions from 20 million simulated 100-bp reads

There are five HISAT2 RNA-seq read mapping categories: (i) M, exonic read; (ii) 2M_gt_15, junc-
tion reads with long, >15-bp anchors in both exons; (iii) 2M_8_15, junction reads with intermedi-
ate, 8- to 15-bp anchors; (iv) 2M_1_7, junction reads with short, 1- to 7-bp, anchors; and (v) gt_2M,
junction reads spanning more than two exons (Figure 2A). Exoninc reads span only a single exon
and represent over 60% of the read mappings in the 20 million 100-bp simulated read dataset.

3.2 Exercise 2

Be patient, each of the following steps will take a couple of minutes!

Make sure you are in the data directory with the tutorial files.

cd data

Look at the usage instructions for hisat2-build.

hisat2-build -h

This not only tells us the version of HISAT2 we’re using (essential for publication methods):
HISAT2 version 2.0.4 by Daehwan Kim
But, that we also need to give histat2-build two pieces of information:

Usage: hisat2-build [options]* <reference_in> <ht2_index_base>
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These are:

® <reference_in>
location of our reference sequence file (PccAS_v3_genome.fa)

® <ht2_index_base>
what we want to call our HISAT?2 index files (PccAS_v3_hisat2.idx)

Build a HISAT2 index for our Plasmodium chabaudi chabaudi AS (P. chabaudi) reference
genome using hisat2-build.

hisat2-build PccAS_v3_genome.fa PccAS_v3_hisat2.idx

You can see the generated index files using:

1s PccAS_v3_hisat2.idx*

Look at the usage for hisat2.

Here we can see that hisat2 needs several bits of information so that it can do the mapping:
hisat2 [options]* -x <ht2-idx> {-1 <m1> -2 <m2> | -U <r>} [-S <sam>]

® -x <ht2-idx>
the prefix that we chose for our index files with hisat2-build (PccAS_v3_hisat2.idx)

e {-1 <ml1> -2 <m2> | -U <r>}
the left (-1) and right (-2) read files for the sample (MT1_1.fastq and MT1_2.fastq respec-
tively

e [-S <sam>]
the name of the file we want to write the output alignment to (MT1.sam) as, by default,
hisat2 will print the results to the terminal (stdout)

We will also be adding one more piece of information, the maximum intron length (default 500,000
bases). For this analysis, we want to set the maximum intron length to 10,000. We can do this by
adding the option --max-intronlen 10000.

Map the reads for the MT1 sample using HISAT2.

hisat2 -max-intronlen 10000 -x PccAS_v3_hisat2.idx \

-1 MT1_1.fastq -2 MT1_2.fastq -S MT1l.sam

HISAT? has written the alignment in SAM format. This is a format which allows humans to look
at our alignments. However, we need to convert the SAM file to its binary version, a BAM file.
We do this for several reasons. Mainly we do it because most downstream programs require our
alignments to be in BAM format and not SAM format. However, we also do it because the BAM
file is smaller and so takes up less (very precious!) storage space. For more information, see the
format guide: http://samtools.github.io/hts-specs/SAMv1.pdf.
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3 Mapping RNA-Seq reads to the genome using HISAT2 3.3 Questions

Convert the SAM file to a BAM file.

samtools view -b -o MT1.bam MT1.sam

We now need to sort the BAM file ready for indexing. When we aligned our reads with HISAT2,
the alignments were produced in the same order as the sequences in our FASTQ files. To index
the BAM file we need the alignments to be ordered by their respective positions in the reference
genome. We can do this using samtools sort which will sort the alignments by their co-ordinates
for each chromosome.

Sort the BAM file.

samtools sort -o MT1_sorted.bam MT1.bam

Next, we need to index our BAM file. This makes searching the alignments much more efficient.
It allows programs like IGV (which we will be using to visualise the alignment) to quickly get
the alignments that overlap the genomic regions you're looking at. We can do this with samtools
index which will generate an index file with the extension .bai.

Index the BAM file so that it can be read efficiently by IGV.

samtools index MT1_sorted.bam

Now repeat this process of mapping, converting (SAM to BAM), sorting and indexing with the
reads from the MT2 sample.

Hopefully, the sorted and indexed BAM files have already been generated for you. Let’s check.

1s SBP*bam*

If this doesn’t return .bam and .bai files for your three SBP samples, run these commands.

chmod +x map_SBP_samples.sh

./map_SBP_samples.sh

These commands run a bash script which will do the mapping, converting, sorting and indexing
for all of the SBP samples. There’s a great introduction to bash scripting and loops as part of our
Unix tutorial.

If you have time at the end of the tutorial, feel free to take a look at the script and a breakdown of
what it does in Running commands on multiple samples. Bash scripts and loops are a useful way
of automating an analysis and running the same commands for multiple samples. Imagine if you
had 50 samples and not 5!

3.3 Questions
3.3.1 Q1: How many index files were generated when you ran hisat2-build?

Hint: look for the files with the . ht2 extension
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3 Mapping RNA-Seq reads to the genome using HISAT?2 3.4 What's next?

3.3.2 Q2: What was the overall alignment rate for each of the MT samples (MT1 and MT2)
to the reference genome?

Hint: look at the the output from the hisat2 commands

3.3.3 Q3: How many MT1 and MT2 reads were not aligned to the reference genome?

Hint: look at the the output from the hisat2 commands, you're looking for reads (not read pairs) which
have aligned 0 times (remember that one read from a pair may map even if the other doesn’t)

3.4 What’s next?

For a quick recap of what the tutorial covers head back to the introduction.
If you want a reintroduction to the tutorial dataset, head back to introducing the tutorial dataset.

Otherwise, let’s continue on to visualising transcriptomes with IGV.
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4 Visualising transcriptomes with IGV

4 Visualising transcriptomes with IGV

4.1 Introduction

Integrative Genome Viewer (IGV) allows us to visualise genomic datasets. We have a quick start
guide here which contains the information you need to complete Section 4.2. The IGV user guide
contains more information on all of the IGV features and functions: http://software.broadinsti-
tute.org/software/igv/UserGuide.

The objectives of this part of the tutorial are:

* load a reference genome into IGV and navigate the genome
¢ load an annotation file into IGV and explore gene structure
¢ load read alignments into IGV and inspect read alignments

4.2 Exercise 3

First, we will use samtools to create an index for the P. chabaudi reference genome, which IGV will
use to traverse the genome. This index file will have the extension .fai and should always be in
the same directory as the reference genome.

Make sure you are in the data directory with the tutorial files.

cd data

Index the genome fasta file (required by IGV).

samtools faidx PccAS_v3_genome.fa

Start IGV.

igv.sh

This will open the IGV main window. Now, we need to tell IGV which genome we want to use.
IGV has many pre-loaded genomes available, but P. chabaudi is not one of them. This means we
will need to load our genome from a file.

Load your reference genome into IGV. Go to "Genomes -> Load Genome from File...". Select "Pc-
cAS_v3_genome.fa" and click "Open". For more information, see Loading a reference genome
in our quick start guide.
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4 Visualising transcriptomes with IGV 4.2 Exercise 3

We not only want to see where our reads have mapped, but what genes they have mapped to. For
this, we have an annotation file in GFF3 format. This contains a list of features, their co-ordinates
and orientations which correspond to our reference genome.

##gff-version 3

##sequence-region PccAS_01_v3 1745 580742
##sequence-region PccAS_02_v3 825 578413

PccAS_01_v3 DEFAULT gene 1745 3349

+ ID=PCHAS_0100100
PccAS_01_v3 DEFAULT mRNA 1745 3349 + . ID=PCHAS_0100100.1;Parent=PCHAS_0100100
PccAS_01_v3 DEFAULT CDS 1745 1845 + 0 ID=PCHAS_0100100.1:exon:1;...
PccAS_01_v3 DEFAULT CDS 2047 2317 + 1 ID=PCHAS_0100100.1:exon:2;...

Example from PccAS_v3 GFF3
Load your annotation file into IGV. Go to ""'File -> Load from File...". Select "PccAS_v3.gff3"
and click "Open". For more information, see Loading gene annotations in our quick start guide.

This will load a new track called "PccAS_v3.gff3". The track is currently shown as a density plot.
You will need to zoom in to see individual genes.

Search for the gene PCHAS_0505200 by typing "PCHAS_0505200" in the search box to zoom in
and centre the view on PCHAS_0505200.

IGV - PCHAS_0505200

To get a clearer view of the gene structure, right click on the annotation track and click "Ex-
panded".

some

- mEe =

IGV - PCHAS_0505200 expanded

In the annotation track, genes are presented as blue boxes and lines. These boxes represent exons,
while the lines represent intronic regions. Arrows indicate the direction (or strand) of transcription
for each of the genes. Now we have our genome and its annotated features, we just need the read
alignments for our five samples.
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4 Visualising transcriptomes with IGV 4.2 Exercise 3

Load your alignment file for the MT1 sample into IGV. Go to '"""File -> Load from File...". Select
"MT1_sorted.bam" and click "Open". For more information, see Loading alignment files in our
quick start guide.

Note: BAM files and their corresponding index files must be in the same directory for IGV to load them
properly.
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IGV - MT1 read alignment

This will load a new track called "MT1_sorted.bam" which contains the read alignments for the
MT1 sample. We can change how we visualise our data by altering the view options. By default,
IGV will display reads individually so they are compactly arranged. If you were to hover over a
read in the default view, you will only get the details for that read. However, if we change our
view so that the reads are visualised as pairs, the read pairs will be joined together by line and
when we hover over either of the reads, we will get information about both of the reads in that
pair.

To view our reads as pairs, right click on the MT1_sorted.bam alignment track and click "View
as pairs".
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IGV - paired view
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4 Visualising transcriptomes with IGV 4.2 Exercise 3

To condense the alignment, right click on the MT1_sorted.bam alignment track and click
"Squished".

eoe i 16V
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1 1
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IGV - squished view

For more information on sorting, grouping and visualising read alignments, see the IGV user
guide.

Load the remaining sorted BAM files for the MT2 sample and the three SBP samples.
Using the search box in the toolbar, go to PCHAS_1409500. For more information, see Jump to

gene or locus in our quick start guide.

PccAS_v3_genome.fa [  PccAs_14.v3 [ |PCHAS 1409500 Go Ft « » @[ = 2 |
PCHAS_1409500
H PCHAS_1409500.1

PCHAS_1409500.1:exon:12588
PCHAS_1409500.1:exon:12589
PCHAS_1409500.1:exon:12590

IGV - search PCHAS 1409500

The first thing to look at is the coverage range for this viewing window on the left-hand side. The
three SBP samples have 2-3 times more reads mapping to this gene than the two MT samples.
While at first glance it may seem like this gene may be differentially expressed between the two
conditions, remember that some samples may have been sequenced to a greater depth than others.

So, if a sample has been sequenced to a greater depth we would expect more reads to map in
general.

MT1_sorted bam Coverage

MT2_sorted bam Coverage

SBP1_sorted bam Coverage

SBP2_sorted bam Coverage

SBP3_sorted bam Coverage

PecAS_va gits

PCHAS_1409500

IGV - coverage PCHAS_1409500
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4 Visualising transcriptomes with |GV 4.3  Questions

From the gene annotation at the bottom we can also see that there are three annotated exon/CDS
features for this gene. However, the coverage plot suggests there may be a fourth unannotated
exon which, given the direction of the gene, could suggest a 5" untranslated region (UTR). Note
the clean drop off of the coveraged at around position 377,070.

4.3 Questions
4.3.1 Q1: How many CDS features are there in "PCHAS_1402500"7?

Hint: Look at Jump to gene or locus in our quick start guide.

4.3.2 Q2: Does the RNA-seq mapping agree with the gene model in blue?

Hint: Look at the coverage track and split read alignments.

4.3.3 Q3: Do you think this gene is differentially expressed and is looking at the coverage
plots alone a reliable way to assess differential expression?

Hint: Look at the coverage similarities/differences between the MT and SBP samples.

4.4 What’s next?

You can head back to mapping RNA-Seq reads to the genome using HISAT2 or continue on to
transcript quantification with Kallisto.
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5 Transcript quantification with Kallisto

5 Transcript quantification with Kallisto

5.1 Introduction

After visually inspecting the genome alignment, the next step in a typical RNA-Seq analysis is to
estimate transcript abundance. To do this, reads are assigned to the transcripts they came from.
These assignments are then used to quantify gene or transcript abundance (expression level).

For this tutorial, we are using Kallisto to assign reads to a set of transcript sequences and quantify
transcript abundance. Kallisto does not assemble transcripts and cannot identify novel isoforms.
So, when a reference transcriptome isn’t available, the transcripts will need to be assembled de novo
from the reads. However, for this tutorial, we already have a reference transcriptome available.

The objectives of this part of the tutorial are:

¢ use Kallisto to index a transcriptome
¢ use Kallisto to estimate transcript abundance

5.1.1 Quantifying transcripts with Kallisto

Many of the existing methods used for estimating transcript abundance are alignment-based.
This means they rely on mapping reads onto the reference genome. The gene expression levels
are then calculated by counting the number of reads overlapping the transcripts. However, read
alignment is a computationally and time intensive process. So, in this tutorial, we will be running
Kallisto which uses a fast, alignment-free method for transcript quantification.

Near-optimal probabilistic RNA-seq quantification
Nicolas L Bray, Harold Pimentel, P4ll Melsted and Lior Pachter
Nat Biotechnol. 2016 May;34(5):525-7. doi: 10.1038/nbt.3519

Kallisto uses a process called pseudoalignment to make it efficient. Rather than looking at where
the reads map, Kallisto uses the compatibility between the reads and transcripts to estimate tran-
script abundance. Thus, most transcript quantification with Kallisto can be done on a simple
laptop (Figure 3).
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Figure 3. Performance of kallisto and other methods

Figure 3. Performance of kallisto and other methods

(a) Accuracy of kallisto, Cufflinks, Sailfish, EMSAR, eXpress and RSEM on 20 RSEM simulations of 30
million 75-bp paired-end reads. (b) Total running time in minutes for processing the 20 simulated data sets
of 30 million paired-end reads described in a. Please see the Kallisto publication for original figure and more
information.
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5 Transcript quantification with Kallisto 5.2 Exercise 4

Step 1: building a Kallisto index As with alignment-based methods, Kallisto needs an index.
To generate the index, Kallisto first builds a transcriptome de Bruijn Graph (T-BDG) from all of
the k-mers (short sequences of k nucleotides) that it finds in the transcriptome. Each node in the
graph corresponds to a k-mer and each transcript is represented by its path through the graph.
Using these paths, each k-mer is assigned a k-compatibility class. Some k-mers will be redundant
i.e. shared by the same transcripts. These are skipped to make the index compact and quicker to
search. A great worked example of this process can be found here.

The command kallisto index can be used to build a Kallisto index from transcript sequences.

kallisto index

Here we can see the version of Kallisto that we're using (useful for publication methods) and
the information that we’ll need to give kallisto index. The only information we need to give
kallisto index is the location of our transcript sequences (PccAS_v3_transcripts.fa). However,
it’s useful to have a meaningful filename for the resulting index. We can add this by using the
option -i which expects a value, our index prefix (PccAS_v3_kallisto).

Step 2: estimating transcript abundance With this Kallisto index, you can use kallisto quant
to estimate transcript abundances. You will need to run this command separately for each sample.

kallisto quant

We can see that kallisto quant needs us to tell it where our sample read are. Although we don’t
have to, it’s usually a good idea to keep the results of each quantification in a different directory.
This is because the output filename are always the same (e.g. abundances.tsv). If we ran a second
analysis, these could get overwritten. To use a different output directory, we can use the -o option.
We will also be using the -b option for bootstrapping.

Bootstrapping Not all reads will be assigned unambiguously i.e. to a single transcript. This
means that there will be "noise" in our abundance estimates where reads can be assigned to multi-
ple transcripts. Because Kallisto is so quick, it has time to quantify the uncertainty in its abundance
estimates using random resampling and replacement. This process is called bootstrapping and
indicates how reliable the expression estimates are from the observed pseudoalignment. The boot-
strap values can be used downstream to distinguish the technical variability from the biological
variability in your experiment.

5.2 Exercise 4
Make sure you are in the data directory with the tutorial files.

cd data
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5 Transcript quantification with Kallisto 5.2  Exercise 4

Build an index called PccAS_v3_kallisto from transcript sequences in PccAS_v3_transcripts.fa.

kallisto index -i PccAS_v3_kallisto PccAS_v3_transcripts.fa

Quantify the transcript expression levels for the MT1 sample with 100 bootstrap samples and
calling the output directory MT1.

kallisto quant -i PccAS_v3_kallisto -o MT1 -b 100 MT1_1.fastq MT1_2.fastq

You'll find your Kallisto results in a new output directory which we called MT1. Let’s take a look.

Running kallisto quant generated three output files in our MT1 folder:

Note:

abundance.h5
HDEF5 binary file containing run info, abundance esimates, bootstrap estimates, and tran-
script length information length.

abundance.tsv
Plain text file containing abundance estimates (doesn’t contain bootstrap estimates).

run_info.json
JSON file containing information about the run.

when the number of bootstrap values (-b) is very high, Kallisto will generate a large amount of data.

To help, it outputs bootstrap results in HDF5 format (abundance.h5). This file can be read directly by sleuth.

In the MT1/abundance.tsv file we have the abundance estimates for each gene for the MT1 sam-
ple. Let’s take a quick look.

head MT1/abundance.tsv

In MT1/abundance.tsv there are five columns which give us information about the transcript
abundances for our MT1 sample.

target_id
Unique transcript identifier.

length
Number of bases found in exons.

eff_length
Effective length. Uses fragment length distribution to determine the effective number of po-
sitions that can be sampled on each transcript.

est_counts
Estimated counts*. This may not always be an integer as reads which map to multiple tran-
scripts are fractionally assigned to each of the corresponding transcripts.

tpm
Transcripts per million. Normalised value accounting for length and sequence depth bias.
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5 Transcript quantification with Kallisto 5.3 Questions

In the last column we have our normalised abundance value for each gene. These are our tran-
scripts per million or TPM. If you have time at the end of this tutorial, see our normalisation guide
which covers common normalisation methods and has a bonus exercise.

To get the result for a specific gene, we can use grep.

grep PCHAS_0100100 MT1/abundance.tsv

If we wanted to get the TPM value for a particular gene, we can use awk.

awk -F"\t" '$1=="PCHAS_0100100" {print $5}' MT1/abundance.tsv

Use kallisto quant four more times, for the MT2 sample and the three SBP samples.

5.3 Questions
5.3.1 Q1: What k-mer length was used to build the Kallisto index?

Hint: look at the terminal output from kallisto index

5.3.2 Q2: How many transcript sequences are there in PccAS_v3_transcripts.fa?

Hint: you can use grep or look at the terminal output from kallisto quant or in the run_info.json files

5.3.3 Q3: What is the transcripts per million (TPM) value for PCHAS_1402500 in each of
the samples?

Hint: use grep to look at the abundance.tsv files

5.3.4 Q4: Do you think PCHAS_1402500 is differentially expressed?

5.4 What’s next?

You can head back to visualising transcriptomes with IGV or continue on to identifying differ-
entially expressed genes with sleuth.
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6 Identifying differentially expressed genes with Sleuth

6 Identifying differentially expressed genes with Sleuth

6.1 Introduction

In the previous sections we have quantified our transcript abundance and looked at why counts
are normalised. In this section you will be using sleuth to do some simple quality checks and get
a first look at the results.

The objectives of this part of the tutorial are:

¢ use sleuth to perform quality control checks
¢ use sleuth to identify differentially expressed (DE) transcripts
¢ use sleuth to investigate DE transcripts

6.1.1 Differential expression analysis (DEA)

Differential expression analysis tries to identify genes whose expression levels differ between ex-
perimental conditions. We don’t normally have enough replicates to do traditional tests of signif-
icance for RNA-Seq data. So, most methods look for outliers in the relationship between average
abundance and fold change and assume most genes are not differentially expressed.

Rather than just using a fold change threshold to determine which genes are differentially ex-
pressed, DEAs use a variety of statistical tests for significance. These tests give us a p-value which
is an estimate of how often your observations would occur by chance.

However, we perform these comparisons for each one of the thousands of genes/transcripts in
our dataset. A p-value of 0.01 estimates a probability of 1% for seeing our observation just by
chance. In an experiment like ours with 5,000 genes we would expect 5 genes to be significantly
differentially expressed by chance (i.e. even if there were no difference between our conditions).
Instead of using a p-value we can use a q-value which accounts for the multiple testing and adjusts
the p-value accordingly.

6.1.2 sleuth

sleuth is a companion tool for Kallisto. Unlike most other tools, sleuth can utilize the technical
variation information generated by Kallisto so that you can look at both the technical and biolog-
ical variation in your dataset.

For the DEA, sleuth essentially tests two models, one which assumes that the abundances are
equal between the two conditions (reduced) and one that does not (full). To identify DE transcripts
it identifies those with a significantly better fit to the “full” model. For more information on sleuth
and how it works, see Lior Pachter’s blog post A sleuth for RNA-Seq.

sleuth is written in the R statistical programming language, as is almost all RNA-Seq analysis
software. Helpfully, it produces a web page that allows interactive graphical analysis of the data.
However, we strongly recommend learning R for anyone doing a significant amount of RNA-seq
analysis. It is nowhere near as hard to get started with as full-blown programming languages such
as Perl or Python!
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6.2 Exercise 5

For this tutorial, we’ve provided a series of R commands as an R script that will get sleuth running.

Make sure you are in the data directory with the tutorial files.

cd data

6.2.1 Running sleuth

The commands we need to run sleuth are in the file sleuth.R. There’s a great overview of the
commands and what they do by the developers of sleuth here. Using R is not as hard as it seems,
most of this script was copied from the manual!

Open sleuth.R and have a quick look at the commands.

cat sleuth.R

You may also want to have a look at hiseq_info.txt which is where we define which condition
each sample is associated with.

cat hiseq_info.txt

You can run scripts containing R commands using Rscript followed by the script name. Run
sleuth.R.

Rscript sleuth.R

You won't see any output from this script in the notebook, just a * next to the command input
([*]) to let you know it’s running.

If you were to run the script directly on the command line, sleuth will return a link which you can
follow (http://127.0.0.1:42427). This will take you to a web page where you can navigate and
explore the sleuth results.

** Click the link below or type the URL your a web browser (e.g. chrome or firefox) to open the
sleuth results.**

http://127.0.0.1:42427

You should now see a page with the heading "sleuth live". If not, just give the script a little longer
and then refresh the page.
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6.2.2 Using sleuth to quality check (QC) transcript quanification

Quality control checks are absolutely vital at every step of the experimental process. We can use
sleuth to perform simple quality checks (QC) on our dataset.

At the top of the page, sleuth provides several tabs which we can use to determine whether the
data is of good quality and whether we should trust the results we get.

First, lets take a look at a summary of our dataset.
In the web page that has been launched, click on "Summaries -> processed data".

Notice that the number of reads mapping differs quite a bit between MT and SBP samples? This
is why we QC our data. In the MT samples >95% of the reads mapped to the genome, but only
15-30% are assigned to the transcriptome compared to >75% for the SBP samples. This suggests
that there may be some residual ribosomal RNA left over from the RNA preparation. It’s not a
problem as we have enough reads and replicates for our analysis.

processed data

Nam

mber of mapped reads, number of boostraps performed by kallisto, and sample to covariate mappings.

sample reads_mapped reads_proc frac_mapped bootstraps_present bootstraps_used condition
MT1 168208 1250000 0.1346 100 100 mT
MT2 341149 1250000 02729 100 100 mr
s8P1 1017818 1250000 08143 100 100 sBP
s8P2 951731 1250000 0.7614 100 100 sBP

s8P3 966663 1250000 07733 100 100 sBP

Showing 1105 of 5 entres ; B

& Download Table

sleuth - processed data table

In some cases, we can identify samples which don’t agree with other replicates (outliers) and
samples which are related by experimental bias (batch effects). If we don’t have many replicates,
it’s hard to detect outliers and batch effects meaning our power to detect DE genes is reduced.

Principal component analysis (PCA) plots can be used to look at variation and strong patterns
within the dataset. Batch effects and outliers often stand out quite clearly in the PCA plot and
mean that you can account for them in any downstream analysis.

PC2

]

sleuth - PCA plot

Our samples form two condition-related clusters with the two MT samples (red) on the left and
the three SBP samples on the right (blue). If we look at the variance bar plot, we can see that the
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first principal component (PC1) accounts for >90% of the variation in our dataset. As the samples
are clearly clustered on the x-axis (PC1) this suggests that most of the variation in the dataset is
related to our experimental condition (Mt vs SBP).

variance explained

% of variance

principal components

sleuth - variance bar plot

6.2.3 Using sleuth to look at DE transcripts

We used the output from Kallisto to identify DE transcripts using sleuth. Let’s take a look and see
if we found any.

To see the results of the sleuth DEA, go to "analyses -> test table".

test table
Table of transcript names, gene names (1 supplied), sleuth parameter estimates, tests, and summary statstics.  What do the column names mean?
fit: beta: table type: 7
full - conditionSBP hd transcript table -
show| (10 J entries Search:
target_id description pval qual b se b mean_obs var_obs tech_var sigma_sq smooth_sigma_sq final_sigma_sq
PCHAS_0420800 hypothetical protein, 0.000000e+00 0.000000e+00 -4.533267 0.1049194 7.947168 61741517 0.0007167526 0.011281626 0.01249295 0.01249295
pseudogene
PCHAS_1100300 CIR protein 4.181559-84 8.724822¢-81 4173495 0.2147801 5.990678 5.2354177 0.0355216965 -0.022189493 0.01983491 0.01983491
PCHAS_0902400 histone H4, putative 1.055950e-74 1.468839%-71 -2.247036 0.1228781 6.659965 1.5283374 0.0015008966 0.016613673 0.01661793 0.01661793
PCHAS_0902500 histone H2B, putative 1.703942¢-60 1.777638e-57 -2.065962 0.1259195 6.467845 1.2869171 0.0015795677 0.007029692 0.01744730 0.01744730
PCHAS_0702100 fam-a protein 1.125871e-36 9.396522¢-34 -3.308070 0.2615178 4.014704 3.3445509 0.0242426628 0.057827230 0.03147513 0.05782723
PCHAS_0625000  lysophospholipase, 2.6406830-36 1.836595¢-33 -3.286645 0.2612108 3474759 3.2027774 0.0433405370  0.026214665 0.03853678 0.03853678
putative
PCHAS_0400300 CIR protein 4.151719e-24 2.475017e-21 -4.591849 0.4533829 2673322 6.4136774 0.1447773921 -0.027237379 0.10188982 0.10188982
PCHAS_0302100 CIR protein 2.7653320-22 1.4424670-19 -3.750792 0.3863285 2.832702 42285815 0.0980407750 -0.087309364 0.08105891 0.08105891
PCHAS_0401000 cconserved Plasmodium 6.327522e-22 2.933861e-19 -1.685394 0.1751228 4.690290 0.8650022 0.0101870055 0.006927637 0.02661458 0.02661458
cchabaudi protein,
unknown function
PCHAS_0109400 histone H3, putative 7.378663e-22 3.079116e-19 -2.268627 0.2361122 6.121534 1.5041743 0.0022506657 0.064648087 0.01912937 0.06464809

target_id

description

se_b

ar_obs

tech_var

sleuth - transcript table

sigma_sq

mooth_sigma_s

The important columns here are the q-value and the beta value (analagous to fold change). By
default, the table is sorted by the g-value. We can see that our top transcript is PCHAS_0420800, a
hypothetical protein/pseudogene. Now let’s take a closer look at that transcript.
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Go to "analyses -> transcript view". Enter "PCHAS_0420800" into the

Click "view".

transcript view

Boxplots of transcript abundances showing technical variation in each sample.

transcript: 7

PCHAS_0420800

view
PCHAS_0420800

colorby:  ?

condition

sleuth - transcript view

units: 7

est_counts

"transcript" search box.

On the left you have the abundances for the MT replicates and on the right, the SBP replicates. We
can see that this transcript is more highly expressed in the MT samples than in the SBP samples.
This is also reflected by the fold change in the test table (b = -4.5). The b value is negative as it
represents the fold change in SBP samples relative to those in the MT samples.

Finally, let’s take a look at the gene level.

To see the results of the sleuth DEA, go to "analyses -> test_table". Under "table type" select
"gene table". Click on the column header "gquval" in the table to sort the rows by ascending

q-value.

test table

Table of transcript names, gene names (if supplied), sleuth parameter estimates, tests, and summary statistics.  What do the column names mean?

fit:

full

Show 10 jenmos

description

hypothetical protein, pseudogene

CIR protein

histone H4, putative

histone H2B, putative

fam-a protein

lysophospholipase, putative

conserved Plasmodium chabaudi protein, unknown function
histone H3, putative

histone H2A, putative

haloacid dehalogenase-like hydrolase, putative

table type:  ?

target_id pval qual
- py— somoreco
PCHAS_1100300 4.181550e-84 8.724822¢-81
Powvs owzio P B
PCHAS_0902500 1.703942¢-60 1.777638e-57
PCHAS_0702100 1.125871e-36 9.396522e-34
PCHAS_0625000 2.640683e-36 1.836595¢-33
PCHAS_0109400 7.378663e-22 3.079116e-19
Povvs 160 ssmsser somsie
- - sarmrons
sleuth - gene table

groupby: 7

description

“ num_transcripts
3
180
1

1

Search:

all_target_ids
PCHAS_0420800
PCHAS_1100300
PCHAS_0902400
PCHAS_0902500
PCHAS_0702100
PCHAS_0625000
PCHAS_0401000
PCHAS_0109400
PCHAS_1116500

PCHAS_1041800

The transcripts have now been grouped by their descriptions. Let’s take a closer look at the CIR

proteins.
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Go to "analyses -> gene view". In the "gene" search box enter "CIR protein" (without the quotes).

gene view
Boxplots of atxndances of ranscrits mapping 10 8 gven gane, and ther technical variaton. This 8169 can take a whil, especialy wth many plots

gene: 7 colorby: 7 w7 gones from: 7

sleuth - gene view

Here we can see the individual CIR protein transcript abundances. @ We can see that
PCHAS_1100300 is more highly expressed in the SBP samples and PCHAS_0302100 is more highly
expressed in the MT samples.

6.3 Questions

6.3.1 Q1: Is our gene from earlier, PCHAS_1402500, significantly differentially expressed?

6.4 What’s next?

You can head back to transcript quantification with Kallisto or continue on to interpreting the
results.
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7 Interpreting the results

7.1 Introduction

The main objective of this part of the tutorial is to use simple Unix commands to get a list of
significantly differentially expressed genes. Using this gene list and the quantitative information
from our analysis we can then start to make biological inferences about our dataset.

Using the R script (sleuth.R), we printed out a file of results describing the differentially ex-
pressed genes in our dataset. This file is called kallisto.results.

The file contains several columns, of which the most important are:

¢ Column 1: target_id (gene id)

¢ Column 2: description (some more useful description of the gene than its id)

Column 3: pval (p value)

Column 4: qval (p value corrected for multiple hypothesis testing)

Column 5: b (fold change)

With a little Linux magic we can get the list of differentially expressed genes with only the columns
of interest as above.

7.2 Exercise 6

Make sure you are in the data directory with the tutorial files.

To get the genes which are most highly expressed in our SBP samples, we must first filter our
results. There are two columns we want to filter our data on: b (column 5) and qval (column 4).
These columns represent whether the gene is differentially expressed and whether that change is
significant.

The following command will get those genes which have an adjusted p value (qval) less than 0.01
and a positive fold change. These genes are more highly expressed in the SBP samples.

awk -F "\t" '$4 < 0.01 && $5 > 0' kallisto.results | cut -f1,2,3,4,5 | head

We used awk to filter the gene list and print only the lines which met our search criteria (qval >
0.01, b > 0). The option -F tells awk gvhat delimiter is used to separate the columns. In this case, it

was a tab or its regular expression "". We then use cut to only print out columns 1-5. You can also
do that within the awk command. Finally, we use head to get the first 10 lines of the output.
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Alternatively, we can look for the genes which are more highly expressed in the MT samples.

awk -F "\t" '$4 < 0.01 && $5 < O' kallisto.results | cut -f1,2,3,4,5 | head

It can be useful to have a quick look and compare gene lists. For example, whether a certain gene
product is seen more often in the genes most highly expressed in one condition or another. A
quick and dirty method would be to use the gene descriptions (or gene products).

You could extract the gene products (column 2) for genes which are more highly expressed in the
SBP samples using sort and then unigq.

awk -F "\t" '$4 < 0.01 && $5 < 0 {print $2}' kallisto.results | sort | uniq

We can count each time these unique gene products occur in the list using uniq -c.

awk -F "\t" '$4 < 0.01 && $5 < 0 {print $2}' kallisto.results | \
sort | uniq -c

And, if we wanted to make it a bit easier to see commonly found gene products we can sort this
again by the frequency count we got from the uniq command. The sort command will put these
in ascending numerical (-n) order.

awk -F "\t" '$4 < 0.01 && $5 < O {print $2}' kallisto.results | \
sort | uniq -c | sort -n

If you wanted to look for the frequency of a particular gene product you could also use grep.

awk -F "\t" '$4 < 0.01 && $5 < 0 {print $2}' kallisto.results | grep -c CIR

Or building on the earlier command:

awk -F "\t" '$4 < 0.01 && $5 < O {print $2}' kallisto.results | \

sort | uniq -c | grep CIR

If you want to read more about this work related to this data it is published:

Vector transmission regulates immune control of Plasmodium virulence

Philip J. Spence, William Jarra, Prisca Lévy, Adam J. Reid, Lia Chappell, Thibaut Bru-
gat, Mandy Sanders, Matthew Berriman and Jean Langhorne

Nature. 2013 Jun 13; 498(7453): 228-231 doi:10.1038/nature12231

7.3 Questions
7.3.1 Q1: How many genes are more highly expressed in the SBP samples?

Hint: try replacing head in the earlier command with another unix command to count the number of lines
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7.3.2 Q2: How many genes are more highly expressed in the MT samples?

Hint: try replacing head in the earlier command with another unix command to count the number of lines

7.3.3 Q3: Do you notice any particular genes that came up in the analysis?

Hint: look for gene products that are seen more often in genes more highly expressed in the SBP samples
than those more highly expressed in the MT samples

7.4 What’s next?

You can head back to identifying differentially expressed genes with Sleuth or continue on to
key aspects of differential expression analysis.
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8 Key aspects of differential expression analysis

8.1 Replicates and power

In order to accurately ascertain which genes are differentially expressed and by how much it is
necessary to use replicated data. As with all biological experiments doing it once is simply not
enough. There is no simple way to decide how many replicates to do, it is usually a compromise
of statistical power and cost. By determining how much variability there is in the sample prepa-
ration and sequencing reactions, we can better assess how highly genes are really expressed and
more accurately determine any differences. The key to this is performing biological rather than
technical replicates. This means, for instance, growing up three batches of parasites, treating them
all identically, extracting RNA from each and sequencing the three samples separately. Technical
replicates, whereby the same sample is sequenced three times do not account for the variability
that really exists in biological systems or the experimental error between batches of parasites and
RNA extractions.

Note: more replicates will help improve power for genes that are already detected at high levels, while deeper
sequencing will improve power to detect differential expression for genes which are expressed at low levels.

8.2 p-values vs. g-values

When asking whether a gene is differentially expressed we use statistical tests to assign a p-value.
If a gene has a p-value of 0.05, we say that there is only a 5% chance that it is not really differentially
expressed. However, if we are asking this question for every gene in the genome (~5500 genes for
Plasmodium), then we would expect to see p-values less than 0.05 for many genes even though
they are not really differentially expressed. Due to this statistical problem, we must correct the p-
values so that we are not tricked into accepting a large number of erroneous results. Q-values are
p-values which have been corrected for what is known as multiple hypothesis testing. Therefore,
it is a g-value of less than 0.05 that we should be looking for when asking whether a gene is
differentially expressed.

8.3 Alternative software

If you have a good quality genome and genome annotation such as for model organisms e.g.
human, mouse, Plasmodium; map to the transcriptome to determine transcript abundance. This is
even more relevant if you have variant transcripts per gene as you need a tool which will do its
best to determine which transcript is really expressed. As well as Kallisto (Bray et al. 2016; PMID:
27043002), there is eXpress (Roberts & Pachter, 2012; PMID: 23160280) which will do this.

Alternatively, you can map to the genome and then call abundance of genes, essentially ignoring
variant transcripts. This is more appropriate where you are less confident about the genome an-
notation and/or you don’t have variant transcripts because your organism rarely makes them or
they are simply not annotated. Tophat2 (Kim et al., 2013; PMID: 23618408), HISAT2 (Pertea et al.
2016; PMID: 27560171), STAR (Dobinet al., 2013; PMID: 23104886) and GSNAP (Wu & Nacu, 2010;
PMID: 20147302) are all splice-aware RNA-seq read mappers appropriate for this task. You then
need to use a tool which counts the reads overlapping each gene model. HTSeq (Anders et al.,
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8 Key aspects of differential expression analysis 8.4 What do | do with a gene list?

2015; PMID: 25260700) is a popular tool for this purpose. Cufflinks (Trapnell et al. 2012; PMID:
22383036) will count reads and determine differentially expressed genes.

There are a variety of programs for detecting differentially expressed genes from tables of RNA-
seq read counts. DESeq2 (Love et al., 2014; PMID: 25516281), EdgeR (Robinson et al., 2010; PMID:
19910308) and BaySeq (Hardcastle & Kelly, 2010; PMID: 20698981) are good examples.

8.4 What do | do with a gene list?

Differential expression analysis results are a list of genes which show differences between two
conditions. It can be daunting trying to determine what the results mean. On one hand, you may
find that that there are no real differences in your experiment. Is this due to biological reality
or noisy data? On the other hand, you may find several thousands of genes are differentially
expressed. What can you say about that?

Other than looking for genes you expect to be different or unchanged, one of the first things to do
is look at Gene Ontology (GO) term enrichment. There are many different algorithms for this,
but you could annotate your genes with functional terms from GO using for instance Blast2G0
(Conesa et al., 2005; PMID: 16081474) and then use TopGO (Alexa et al., 2005; PMID: 16606683) to
determine whether any particular sorts of genes occur more than expected in your differentially
expressed genes.

8.5 Congratulations, you have reached the end of this tutorial!

We hope you’ve enjoyed our RNA-Seq tutorial. You can find the answers to all of the questions in
this tutorial here. To revisit the previous section, click here. Or, to go back to the beginning click
here.
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9 Normalisation

9.1 Introduction

In the previous section, we looked at estimating transcript abundance with Kallisto. The abun-
dances are reported as transcripts per million (TPM), but what does TPM mean and how is it
calculated?

The objectives of this part of the tutorial are:

* understand why RNA-Seq normalisation metrics are used
* understand the difference between RPKM, FPKM and TPM
e calculate RPKM and TPM for a gene of interest

There are many useful websites, publications and blog posts which go into much more detail
about RNA-Seq normalisation methods. Here are just a couple (in no particular order):

¢ What the FPKM? A review of RNA-Seq expression units
¢ RPKM, FPKM and TPM, clearly explained

* A survey of best practices for RNA-seq data analysis

¢ The RNA-seq abundance zoo

9.2 Why do we use normalisation units instead of raw counts?
Raw reads counts are the number of reads originating from each transcript which can be affected
by several factors:

¢ sequencing depth (total number of reads)
The more we sequence a sample, the more reads we expect to be assigned.

¢ gene/transcript length
The longer the gene or transcript, the more reads we expect to be assigned to it.

SAMPLE X SAMPLE Y
GENE X GENE Y
_:—_ ——-'

Figure 4. Effect of sequencing depth and gene length on raw read counts

32


https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/
https://statquest.org/2015/07/09/rpkm-fpkm-and-tpm-clearly-explained/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728800/
http://robpatro.com/blog/?p=235

9 Normalisation 9.2 Why do we use normalisation units instead of raw counts?

Look at the top part of Figure 4. In which sample, X or Y, is the gene more highly expressed?

Neither, it’s the same in both. What we didn’t tell you was that the total number of reads generated
for sample A was twice the number than for sample B. That meant almost twice the number of
reads are assigned to the same gene in sample A than in sample B.

Look at the bottom part of Figure 4. Which gene, X or Y, has the greatest gene level expression?

Neither, they are both expressed at the same level. This time we didn’t tell you that gene X is twice
the length of gene Y. This meant that almost twice the number reads were assigned to gene X than
gene Y.

In the top part of Figure 4, the gene in sample X has twice the number of reads assigned to it
than the same gene in sample Y. What isn’t shown is that sample X had twice the number or total
reads than sample Y so we would expect more reads to be assigned in sample X. Thus, the gene
is expressed at roughly the same level in both samples. In the bottom part of Figure 4, gene X has
twice the number of reads assigned to it than gene Y. However, gene X is twice the length of gene
Y and so we expect more reads to be assigned to gene X. Again, the expression level is roughly the
same.

9.2.1 Reads per kilobase per million (RPKM)

Reads per kilobase (of exon) per million (reads mapped) or RPKM is a within sample normalisa-
tion method which takes into account sequencing depth and length biases.

To calculate RPKM, you first normalise by sequencing depth and then by gene/transcript length.

1. Get your per million scaling factor
Count up the total number of reads which have been assigned (mapped) in the sample.
Divide this number by 1,000,000 (1 million) to get your per million scaling factor (IN).

2. Normalise for sequencing depth
Divide the number of reads which have been assigned to the gene or transcript (C) by the
per million scaling factor you calculated in step 1. This will give you your reads per million
(RPM).

3. Get your per kilobase scaling factor
Divide the total length of the exons in your transcript or gene in base pairs by 1,000 (1 thou-
sand) to get your per kilobase scaling factor (L).

4. Normalise for length
Divide your RPM value from step 2 by your per kilobase scaling factor (length of the gene/-
transcript in kilobases) from step 3. This will give you your reads per kilobase per million
or RPKM.

This can be simplified into the following equation:

C
RPKM = N
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Where:

¢ Cis number of reads mapped to the transcript or gene
¢ L is the total exon length of the transcript or gene in kilobases
* N is the total number of reads mapped in millions

9.2.2 Fragments per kilobase per million (FPKM)

Fragments per kilobase per million or FPKM is essentially the same as RPKM except that:

¢ RPKM is designed for single-end RNA-Seq experiments

¢ FPKM is designed for paired-end RNA-Seq experiments

In a paired-end RNA-Seq experiment, two reads may be assigned to a single fragment (in any
orientation). Also, in some cases, only one of those reads will be assigned to a fragment (singleton).
The only difference between RPKM and FPKM is that FPKM takes into consideration that two
reads may be assigned to the same fragment.

9.2.3 Transcripts per million (TPM)

Calculating the transcripts per million or TPM is a similar process to RPKM and FPKM. The main
difference is that you will first normalise for length bias and then for sequencing depth bias. In a
nut shell, we are swapping the order of normalisations.

1.

Get your per kilobase scaling factor
Divide the total length of the exons in your transcript in base pairs by 1,000 (1 thousand) to
get your per kilobase scaling factor.

. Normalise for length

Divide the number of reads which have been assigned to the transcript by the per kilobase
scaling factor you calculated in step 1. This will give you your reads per kilobase (RPK).

Get the sum of all RPK values in your sample
Calculate the RPK value for all of the transcripts in your sample. Add all of these together
to get your total RPK value.

Get your per million scaling factor
Divide your total RPK value from step 3 by 1,000,000 (1 million) to get your per million scaling
factor.

Normalise for sequencing depth
Divide your RPK value calculated in step 2 by the per million scaling factor from step 4. You
now have your transcripts per millions value or TPM.
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9 Normalisation 9.3 Calculating RPKM and TPM values

9.3 Calculating RPKM and TPM values

To try and answer this, let’s look at a worked example. Here, we have three genes (A-C) and three
biological replicates (1-3).

Gene  Length  Replicate1l Replicate2 Replicate 3

A 2,000 bases 10 12 30
B 4,000 bases 20 25 60
C 1,000 bases 5 8 15

There are two things to notice in our dataset:
¢ Gene B has twice number reads mapped than gene A, possibly as it’s twice the length

* Replicate 3 has more reads mapped than any of the other replicates, regardless of which
gene we look at

9.3.1 Calculating RPKM

Step 1: get your per million scaling factor In the table below is the total number of reads which
mapped for each of the replicates. To get our per million scaling factor, we divide each of these
values by 1,000,000 (1 million).

Gene Replicate 1 Replicate 2 Replicate 3
Total reads mapped 3,500,000 4,500,000 10,600,000
Per million reads 3.5 45 10.6

Step 2: normalise for sequencing depth We now divide our read counts by the per million scaling
factor to get our reads per million (RPM).

Before:

Gene Replicatel Replicate2 Replicate 3

A 10 12 30
B 2 25 60
C 5 8 15
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9 Normalisation 9.3 Calculating RPKM and TPM values

After:

Gene Replicate 1 RPM Replicate 2 RPM  Replicate 3 RPM

A 2.857 2.667 2.830
B 5.714 5.556 5.660
C 1.429 1.778 1.415

Step 3: get your per kilobase scaling factor Here we have our gene length in base pairs. For
our per kilobase scaling factor we need to get our gene length in kilobases by dividing it by 1,000.

Gene Length (base pairs) Length (kilobases)

A 2,000 2
B 4,000 4
C 1,000 1

Step 4: normalise for length Finally, we divide our RPM values from step 2 by our per kilobase
scaling factor from step 3 to get our reads per kilobase per million (RPKM).

Before:
Gene Replicate 1 RPM Replicate 2 RPM  Replicate 3 RPM
A 2.857 2.667 2.830
B 5.714 5.556 5.660
C 1.429 1.778 1.415
After:

Gene Replicate 1 RPKM Replicate 2 RPKM Replicate 3 RPKM

A 1.43 1.33 1.42
B 1.43 1.39 1.42
C 1.43 1.78 1.42

Notice that even though replicate 3 had more reads assigned than the other samples and a greater
sequencing depth, its RPKM is quite similar. And, that although gene B had twice the number of
reads assigned than gene A, its RPKM is the same. This is because we have normalised by both
length and sequencing depth.
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9 Normalisation 9.3 Calculating RPKM and TPM values

9.3.2 Calculating TPM

Now we're going to calculate the TPM values for the same example data. As a reminder, here are
our three genes (A-C) and three biological replicates (1-3).

Gene  Length  Replicate1l Replicate2 Replicate 3

A 2,000 bases 10 12 30
B 4,000 bases 20 25 60
C 1,000 bases 5 8 15

Step 1: get your per kilobase scaling factor Again, our gene lengths are in base pairs. For our
per kilobase scaling factor we need to get our gene length in kilobases by dividing it by 1,000.

Gene Length (base pairs) Length (kilobases)

A 2,000 2
B 4,000 4
C 1,000 1

Step 2: normalise for length Now we divide the number of reads which have been assigned
to each gene by the per kilobase scaling factor we just calculated. This will give us our reads per
kilobase (RPK).

Before:
Gene Replicate1l Replicate2 Replicate 3
A 10 12 30
B 2 25 60
C 5 8 15
After:

Gene Replicate1l Replicate2 Replicate 3

A 5 6 15
B 5 6.25 15
C 5 8 15
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9 Normalisation 9.3 Calculating RPKM and TPM values

Step 3: get the sum of all RPK values in your sample Next, we sum the RPK values for each
of our replices. This will give use our total RPK value for each replicate. To make this example
scalable, we assume there are other genes so the total RPK is made up.

Gene Replicate 1 Replicate2 Replicate 3

A 5 6 15

B 5 6.25 15

C 5 8 15
Total RPK 150,000 202,500 352,500

Step 4: get your per million scaling factor Here, instead of dividing our total mapped reads
by 1,000,000 (1 million) to get our per million scaling factor, we divide our total RPK values by
1,000,000 (1 million).

Gene Replicate 1 Replicate 2 Replicate 3
Total RPK 150,000 202,500 352,500
Per million RPK 0.1500 0.2025 0.3525

Step 5: normalise for sequencing depth Finally, we divide our individual RPK values from step
2 by the per million scaling factor in step 4 to give us our TPM values.

Before:
Gene Replicatel Replicate2 Replicate 3
A 5 6 15
B 5 6.25 15
C 5 8 15
After:

Gene Replicatel Replicate2 Replicate 3

A 33.33 29.63 31.21
B 33.33 30.86 31.91
C 33.33 39.51 36.88
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9.4 Which normalisation unit should | use?

Well, there’s a lot of debate around this, so let’s look at our total normalised values for each repli-
cate.

9.4.1 RPKM

Gene Replicate 1 RPKM  Replicate 2 RPKM Replicate 3 RPKM

A 1.43 1.33 1.42
B 1.43 1.39 1.42
C 1.43 1.78 1.42
Total RPKM 4.29 4.50 4.25

9.42 TPM

Gene Replicate 1 Replicate2 Replicate 3

A 33.33 29.63 31.21

B 33.33 30.86 31.91

C 33.33 39.51 36.88
Total TPM 100 100 100

Notice that that total TPM value for each of the replicates is the same. This is not true for RPKM
and FPKM where the total values differ. With TPM, having the same total value for each replicate
makes it easier to compare the proportion of reads mapping to each gene across replicates (al-
though you shouldn’t really compare across experiments). With RPKM and FPKM, the differing
total values make it much harder to compare replicates.
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9 Normalisation 9.5 Questions

9.5 Questions

Below is the information for each of the five samples. You will need this information to answer
the questions. We have put all of commands used to get this information in the answers.

Sample Total mapped reads Transcriptlength Assigned reads Total RPK

MT1 2,353,750 3,697 2,541 293,431
MT2 2,292,271 3,709 3,392 675,190
SBP1 2,329,235 3,699 14,605 1,719,970
SBP2 2,187,718 3,696 17,302 1,429,540
SBP3 2,163,979 3,699 14,646 1,561,310

Note: wvalues have been rounded up to integers to make calculations easier. Assigned reads are the
est_count from Kallisto for PCHAS_1402500. Transcript lengths are the est_length from Kallisto for
PCHAS_1402500.

Q1: Using the abundance.tsv files generated by Kallisto and the information above, calculate
the RPKM for PCHAS_1402500 in each of our five samples.

Sample Per million scaling factor RPM Per kilobase scaling factor RPKM
MT1
MT2
SBP1
SBP2
SBP3

Q2: Using the abundance. tsv files generated by Kallisto and the information above, calculate
the TPM for PCHAS_1402500 in each of our five samples.
Hint: don't forget to get your per million scaling factor.

Sample Per kilobase scaling factor Reads per kilobase (RPK) TPM
MT1
MT2
SBP1
SBP2
SBP3
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9 Normalisation 9.6 What's next?

Q3: Do these match the TPM values from Kallisto?
Hint: look at the abundance. tsw files for each of your samples.

Q4: Do you think PCHAS_1402500 is differentially expressed between the MT and SBP sam-
ples?

9.6 What’s next?

You can head back to transcript quantification with Kallisto or continue on to Identifying dif-
ferentially expressed genes with Sleuth .

41


transcript-quantification.ipynb
sleuth-de.ipynb
sleuth-de.ipynb

10 Running commands on multiple samples

10 Running commands on multiple samples

Now, fair warning, you're going to wish we’d told you this earlier on. However, then you
wouldn’t have had the fun of running and updating each of the previous commands, growling at
typos and generally wishing that you’d gone for that cup of coffee before starting this tutorial.

Here we go....we can use a loop to run the same commands for multiple samples.

There’s a great introduction to bash scripting and loops as part of our Unix tutorial. But let’s take
a look at how we could have generated genome alignments for all of our samples using a single
loop.

First let’s go to our data directory.

Whenever you write a loop, it’s always a good idea to build it up slowly to check that it’s doing
what you think.

for r in *.fastq
do

echo $r
done

This loop looks for all (*) files which end with ".fastq". The for loop then executes a sequence
of commands for each file name that it finds. In the first iteration its "MT1_1.fastq", then
"MT1_2.fastq" and so on... In each iteration, we assigned each filename that it found to a vari-
able called "r".

for r in *.fastq

Then, to check we got what we expected, we printed what the variable "r" represented back to the
terminal. Because we want to use the variable ("r'") we created we need to use dollar ($) symbol.

echo $r

Now, if we left things as they are, we would be running the commands twice for each sample. This
is because we have two FASTQ files for each samplei.e. "_1.fastq" and "_2.fastq". Let’s change our
loop so that we only get the "_1.fastq" files.

for rl in *_1.fastq
do

echo $ri1
done

Great! Now, the only problem here is that we're going to want to use both the "_1.fastq" and
the "_2.fastq" files in our mapping. We can get around this by removing the "_1.fastq" from the
filename to give us our sample name.

sample=${r1/_1.fastq/}
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10 Running commands on multiple samples

This will replace the "_1.fastq" at the end of the filename we stored as "r1" with nothing.

We’ve added a little descriptive message so that when we run our loop we know which iteration
it’s on and what it’s doing. Let’s try adding our HISAT2 mapping command.

Note: we assume that the HISAT2 index has already been generated as that’s a command you'll only need
to run once.

for rl in *_1.fastq
do
sample=${r1/_1.fastq/}
echo "Processing sample: "$sample

echo "Mapping sample: "$sample

hisat2 -max-intronlen 10000 -x PccAS v3_hisat2.idx \

-1 $sample"_1.fastq" -2 $sample"_2.fastq" -S $sample".sam"
done

Notice that because we’re using a filename which starts with our variable, but ends with a set
phrase, we need to write the phrase in double quotes.

$sample"_1.fastq"

Now let’s add in our samtools commands.

for rl in *_1.fastq
do
sample=${r1/_1.fastq/}
echo "Processing sample: "$sample

echo "Mapping sample: "$sample
hisat2 -max-intronlen 10000 -x PccAS v3 hisat2.idx \
-1 $sample"_1.fastq" -2 $sample"_2.fastq" -S $sample".sam"

echo "Converting SAM to BAM: "$sample
samtools view -b -o $sample".bam" $sample".sam"

echo "Sorting BAM: "$sample
samtools sort -o $sample"_sorted.bam" $sample".bam"

echo "Indexing BAM: "$sample
samtools index $sample"_sorted.bam"

done

Finally, we don’t really want to keep intermediate SAM and unsorted BAM files if we don’t have
to. They just take up precious space. So, let’s make our samtools command a one-liner, passing
the stdout from one command to another.
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10 Running commands on multiple samples

for rl in *_1.fastq
do
sample=${r1/_1.fastq/}
echo "Processing sample: "$sample
hisat2 -max-intronlen 10000 -x PccAS_v3 hisat2.idx \

-1 $sample"_1.fastq" -2 $sample"_2.fastq" \
| samtools view -b - \
| samtools sort -o $sample"_sorted.bam" - \
&% samtools index $sample"_sorted.bam"

done

You could also have used this approach for transcript quantification with Kallisto, assuming you
had already generated the Kallisto index.

for rl in *_1.fastq
do
echo $ri1
sample=${r1/_1.fastq/}

echo "Quantifying transcripts for sample: "$sample
kallisto quant -i PccAS_v3_kallisto -o $sample -b 100 \
$sample' _1.fastq' $sample'_2.fastq'

done
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What is genome assembly?
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Long-range technologies

Table 1| Long-rang
Platform

PacBio SMRT
sequencing

Oxford Nanopore
sequencing

10X Genomics
Chromium

Hi-C-based analysis

BioNano Genomics
optical mapping

and ing platforms
General characteristics and costs

Single-molecule long reads averaging
~10kb with some approaching 100kb;
several fold more expensive than short
reads

Single-molecule long reads averaging
~10kb with some >1Mb; several fold
more expensive than short reads

Linked reads spanning ~100kb

derived from a collection of short-read
sequences; moderately more expensive
than short reads

Pairs of short reads (<100 bp)
formed from crosslinking chromatin
interactions; moderately more
expensive than short reads

Optical mapping of long DNA
molecules (~250kb or longer) labelled
with fluorescent probes; less expensive
than short reads

PacBio SMRT, Pacific Biosciences single-molecule real time.

Major applications

De novo genome assembly,
structural variant detection, gene
isoform resolution and epigenetic
modifications

De novo genome assembly,
structural variant detection, gene
isoform resolution and epigenetic
modifications

De novo genome assembly and
scaffolding, phasing, detection of large
structural variants (>10kb) and single-
cell gene expression

Genome scaffolding and phasing

Genome scaffolding and detection of
large structural variants (>10 kb)

Bioinformatics challenges

Raw reads have high error rates
dominated by false insertions; requires
new alignment and error correction
algorithms

Raw reads have high error rates
dominated by false deletions and
homopolymer errors; requires new
alignment and error correction
algorithms

Sparse sequencing rather than true
long reads; more complicated to
align, with poorer resolution of locally
repetitive sequences

Sparse sequencing with highly variable
genomic distance between pairs (1kb
to 1Mb or longer)

Limited algorithms to discover high-
confidence alignment between an
optical map and a sequence assembly

Piercing the dark matter:
bioinformatics of long-range
sequencing and mapping
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PacBio sequencing

Advantages:

® Long read lengths
e Few systematic errors
e Can detect some base modifications

e Can get more accuracy, if you loop over
the ZMW multiple times (consensus)

Disadvantages:
e High read error rate
e High cost per-base
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Platform
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Single-molecule long reads averaging
~10kb with some approaching 100kb;
several fold more expensive than short
reads

Single-molecule long reads averaging
~10kb with some >1Mb; several fold
more expensive than short reads

Linked reads spanning ~100kb

derived from a collection of short-read
sequences; moderately more expensive
than short reads

Pairs of short reads (<100 bp)
formed from crosslinking chromatin
interactions; moderately more
expensive than short reads

Optical mapping of long DNA
molecules (~250kb or longer) labelled
with fluorescent probes; less expensive
than short reads

PacBio SMRT, Pacific Biosciences single-molecule real time.

Major applications

De novo genome assembly,
structural variant detection, gene
isoform resolution and epigenetic
modifications

De novo genome assembly,
structural variant detection, gene
isoform resolution and epigenetic
modifications

De novo genome assembly and
scaffolding, phasing, detection of large
structural variants (>10kb) and single-
cell gene expression

Genome scaffolding and phasing

Genome scaffolding and detection of
large structural variants (>10 kb)

Bioinformatics challenges

Raw reads have high error rates
dominated by false insertions; requires
new alignment and error correction
algorithms

Raw reads have high error rates
dominated by false deletions and
homopolymer errors; requires new
alignment and error correction
algorithms

Sparse sequencing rather than true
long reads; more complicated to
align, with poorer resolution of locally
repetitive sequences

Sparse sequencing with highly variable
genomic distance between pairs (1kb
to 1Mb or longer)

Limited algorithms to discover high-
confidence alignment between an
optical map and a sequence assembly
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(Vertebrate) Genome project workflow
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Contig generation

OLC (Overlap Layout Consensus): wgs read 1
e For all pairs X, y, of reads Wgs‘:ad_zover]ap
e determine if there is sufficient overlap
e bundle stretches of overlap graph into +
contigs Wgs contig (CAAAD1000001-CAAAQ1224713)

e Computationally expensive (quadratic
scaling with current approaches)

e Assembly software

e Falcon (PacBio), Canu (PacBio, sequence ATGGAAGTCGCGGAATC
ONT), minimap/miniasm mers ATT%GAAGT
AAGi%GC
. adioeees
DBG: de Bruijn graph (k-mer): TESEEGA |
G T
e Build a graph of all subsequences of cesarte
length k. de Bruijn graph
ATGGAAG TGGAAGT GGAAGTC GAAGTCG AAGTCGC AGTCGCG

e Assembly software

* velvet, ABySS, SPAdes, wtdbg2 I_.lm}—ﬂ TCGCGGA |-+ CGCGGAA |-+ GCGGAAT |-+{ CGGAATC |

Assembly metrics

N50 = what is the smallest
contig at 50% of genome?

total length

number of sequences (contigs and scaffolds)

average length (contigs and scaffolds)
e |argest/smallest (contigs and scaffolds)

e N50 = X means 50% of the genome is in
sequences larger than X «N50

e NG50 (N50 scaled by the expected genome
size)

e Gene content (% conserved core genes
mapped)

H U rd |eS Repeats Repeat 1 Repeat 2

e Heterozygosity

4

Contig 2 Contig 3 Contig 4

e Sequencing errors
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Scaffolding

Goal: Order and orient the contigs into larger structure

Construct libraries of varying insert sizes

e Smaller size (2, 4 or 6 Kb), intermediate size (10-40 Kb), and libraries with large insert
sequences (>100 Kb)

e Ends of these clones are sequenced, generating sequence reads.

a — —
Sources of evidence K@ﬁf‘é‘}g—
* Mate-pair illumina libraries Y J
e Fosmid ends U
e Bacterial artificial chromosomes b  ——— —_—

. Scaffold "/ = =
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e Optical maps

Gaps consisting of N (unknown) bases are inserted between contigs



(Pseudo) chromosome assignment Diploid assembly

Goal: Assembly of chromosome-scale DNA fragments

from scaffolds A Reference Genome De novo Target Genome  Outgroup Genome AImOSt a” assemblers assume genome 1S hap\OId
Tl b e |gnore allelic variation between parental chromosomes
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Dealing with haplotype duplication
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Genome assembly QC

Base Accuracy
e Realign reads from the same species
- Identify SNPs+indels
- Indels - known to be enriched in Pacbio+Nanopore assemblies

Local structure accuracy
e External evidence
e Known adjacencies, e.g. PCR primers or structural variants

Gene content

e Order and orientation of genes/exons of BUSCO: assessing genome assembly and

known genes (e.g. housekeeping genes) :;'3:::122‘:gomplemnessw“h single-copy

e BUSCO: Quantitative assessment of genome Felipe A. Simdo, Robert M. Waterhouse, Panagiotis loannidis,
. Evgenia V. Kriventseva, Evgeny M. Zdobnov &
assembly and annotation completeness
based on evolutionarily informed expectations
of gene content

Bioinformatics, Volume 31, Issue 19, 1 October 2015, Pages 3210-3212,



Module 8: Genome assembly
exercises

In this module we will look at one chromosome of the lab strain of Plasmodium falciparum,
the IT clone. We have sequenced the genome with PacBio and lllumina.

A: Starting the PacBio de novo assembly

First we are going to start the PacBio assembly using the “canu” program. It first corrects the
reads and then uses the Celera assembler to merge the long reads into contigs.

e Navigate to the data directory (~/course_data/Module8_Assembly)

e The pre-filtered PacBio reads are called PBReads .fastq - have a look at the
contents of this file (less -S PBReads.fastq). What do you notice compared to
the lllumina fastq files you have seen earlier in the week?

e Now we will start the assembly with canu (https://canu.readthedocs.io/). This will take
some time, so we will start it now in the background and hopefully it will be done
while we complete the other exercises.

$ canu -p PB -d Pacbio -s file.specs -pacbio-raw PBReads.fastq &>
output.txt &

The “-p” option sets the prefix of output files to “PB”, while the “-d” option sets the output
directory to “PacBio”. The ‘&’ at the end will set this command running in the background
while you work on the following sections.

Before we move on, let’s just make sure the program is indeed running. Using the ‘top’ or
better ‘htop’ command will show you all processes running on your machine (type “q” to exit
top). You should hopefully see processes associated with canu running (maybe something
called “meryl”). We can also check the “output.txt” file where the canu logs will be written. If

we see error messages in there, then something has gone wrong.


https://canu.readthedocs.io/

B: Doing a de Brujin graph by hand

Here we are going to do an example of the de Brujin graph by hand! Sit together with
your neighbour and build the graph from the reads and find the contig(s).

AGCTGG TGGTGA GATCAG
GAGCTG e Koy

GCTGGT GGTGAT TGATCA TCAGCG
AGCGAG  CAGCGA  GTGATC Sepace CGAGCT

Use a k=5, we get the following k-mers from these reads. To finish the graph, join
k-mers that overlap by 4 bases.

ATCAG
TGATC GATCA
GTGAT
TCAGC
CAGCG
GGTGA
AGCTG
CTGGT AGCGA
- CGAGC
TGGTG GCTGG GCGAG

What is the contig sequence?

What was tricky here?

Where does the contig start?



C: Making an lllumina assembly

We are going to use the assembler velvet (https://www.ebi.ac.uk/~zerbino/velvet/) to
assemble the lllumina reads. Our lllumina reads are from the same sample we used
to generate the PacBio data.

To start

$ velveth k.assembly.49 49 -shortPaired -fastq -separate
IT.Chr5_1.fastq IT.Chr5_2.fastq

49 is the k-mer size. “k.assembly.49” is the name of the directory where the results
are going to be written. The other options specify the type of the input data. With the
following command you can see all possible options, but don’t be afraid, not all must
be used.

$ velveth

Now the assembler has to build the graph and find the path, as we did before in the
exercise:

$ velvetg k.assembly.49 -exp _cov auto -ins_length 350

The first parameter specifies the working directory. The second is to let velvet find
the median read coverage rather than specify it yourself. Last, the insert size of the
library is given. There is a lot of output, but the most important is in the last line:

Final graph has 978 nodes and n50 of 10508, max 54529, total 1374552, using
1397134/1510408 reads.

(Your exact result might differ depending on the velvet version used).

This line first gives you a quick idea of the result. 978 nodes are in the final graph.
An n50 of 10508 means that 50% of the assembily is in contigs of at least 10508
bases, it is the median contig size. This number is most commonly used as an
indicator of assembly quality. The higher, the better! (but not always!) “Max” is the
length of the longest contig. “Total” is the size of the assembly, here 1347kb. The
last two numbers tell us how many reads were used from the 7.5 million pairs.


https://www.ebi.ac.uk/~zerbino/velvet/

That wasn’t too bad! Now we have to try to improve the assembly a bit. The kmer
size has the biggest impact. Also the “-cov_cutoff” parameter can play a role. This
means that nodes with less than a specific k-mer count are deleted from the graph.
More parameters can be changed, but we would run out of time. In the beginning the
changes look a bit random, but with more experience, you will get a feeling for them.

First rerun velvet with a k-mer size of 49. As parts of the graph are already done, the
program will run far quicker. velveth doesn’t need to be rerun.

$ velvetg k.assembly.49 -exp_cov auto -ins_length 350
-min_contig lgth 200 -cov_cutoff 5

Maybe do assemblies for different k-mer sizes i.e. 55, 41, here the example is a
k-mer length of 55

$ velveth k.assembly.55 55 -shortPaired -fastq -separate \
IT.Chr5_1.fastq IT.Chr5_2.fastq

$ velvetg k.assembly.55 -exp_cov auto -ins_length 350
-min_contig lgth 200 -cov_cutoff 5

Write down the results for each assembly made using different k-mer sizes. Which
one looks the best?:

k-mer nodes n50 largest contig

41

49

55

If you want to play with other parameters, like the “-min_pair_count”, go for it. All
the options can be seen by typing:

$ velvetg




All the results are written into the directory you specified, e.g. b. The final contigs are
in contigs.fa. The stats.txt file holds some information about each contig, its length,
the coverage, etc. The other files contain information for the assembler.

Another way to get more stats from all the runs is to use a little program called
“assembly-stats”. It displays the number of contigs, the mean size and a lot of
other numbers. It might help to pick “the best” assembly

Just type:
$ assembly-stats k.*/*.fa

stats for k.assembly.41/contigs.fa

sum = 1435372, n = 199, ave = 7212.92, largest = 75293
N50 = 22282, n = 19

N6@ = 16569, n = 27

N70 = 13251, n = 37

N80 = 9535, n = 49

N9@ = 4730, n = 69

N100 = 202, n = 199

N_count = 51974

stats for k.assembly.49/contigs.fa
sum = 1452034, n = 175, ave = 8297.34, largest = 85317

N50 = 28400, n = 17
N6© = 26582, n = 23
N70 = 16485, n = 29
N80 = 12065, n = 39
N9® = 6173, n = 55

N1ee = 202, n = 175

N_count = 57000

stats for k.assembly.55/contigs.fa

sum = 1461496, n = 181, ave = 8074.56, largest = 71214

N50 = 28059, n = 19
N6© = 22967, n = 25
N70 = 14871, n = 33
N80 = 11360, n = 44

N9@ = 4885, n = 64
N100 = 205, n = 181
N_count = 69532

It looks that the best choice is a k-mer size of 49. The n50, average contig size and
the largest contigs have the highest values, while contig number is the lowest.
Before we look at the assembly itself, what could the N_count mean?




As we discussed before, DNA templates can be sequenced from both ends, resulting
in mate pairs. Their outer distance is the insert size. Imagine mapping the reads
back onto the assembled contigs. In some cases the two mates don’t map onto the
same contig. We can use those mates to scaffold the two contigs e.g. orientate them
to each other and put N’s between them, so that the insert size is correct, if enough
mate pairs suggest that join. Velvet does this automatically (although you can turn it
off). The number of mates you need to join two contigs is defined by the parameter
-min_pair_count.

Here is the description:

-min_pair_count <integer> : minimum number of paired end connections
to justify the scaffolding of two long contigs (default: 5)

Here a schema:

—_—— e, — Reads and 2 mate pairs

Contigs oriented by mate pairs

nnn Scaffold

It might be worth mentioning, that incorrect scaffolding is the most common source of
error in assembly (so called miss-assemblies). If you lower the min_pair_count too
much, the likelihood of generating errors increases.

Other errors are due to repeats. In a normal assembly one would expect that the
repeats are all collapsed, if they are smaller than the read length. If the repeat unit is
smaller than the insert size, than it is possible to scaffold over it, leaving the space
for the repeats with N’s.

To get the statistic for the contigs, rather than supercontigs, you can use following
command:

$ seqtk cutN -nl1l k.assembly.49/contigs.fa > tmp.contigs.fasta
$ assembly-stats tmp.contigs.fasta

depending from which assembly you would like the statistics. How does the contig
N50 compare to the scaffold N50?



D: What to expect from a genome assembly?

We are lucky with this this test dataset in that we have a known reference genome and some
expectations about the size and composition of the P. falciparum genome. How can we get
at this for new genomes we haven’t sequenced before? One way is to look at k-mer
distributions. Genomescope (http://gb.cshl.edu/genomescope/) will model the single copy
k-mers as heterozygotes, while double copy kmers will be the homozygous portions of the
genome. It will also a estimate haploid genome size.

Let’'s check with our P. falciparum lllumina data that the k-mer. To get a distribution of
21-mers, we use “jellyfish™

$ jellyfish count -C -m21 -s6G -t4 -o IT.jf <(cat IT.Chr5_1.fastq
IT.Chr5_2.fastq)
$ jellyfish histo IT.jf > IT.histo

Then we analyse with genomescope?:
$ Rscript genomescope.R IT.histo 21 76 IT.jf21

Where 76 is the read length of our input lllumina data and IT.jf21 is the output
directory. The output is summarised in a “summary.txt” file. What is the predicted
heterozygosity? What is the predicted genome size? Does this seems reasonable?

You should also find an image like below. Notice the bump to right of the main peak.
These are the repeated sequences.

We have some k-mer histogram for a handful of other species in the data directory.
Try running genomscope on these. Read length for all of these is 150bp.

e fMasArml.jf21.histo
o You should see an nice tight diploid peak for this
sample. It has very low heterozygosity - similar to
human.
e fAnaTesl.jf2l.histo
o What is the bulge to the left of the main peak here?
e fDreSAT1.jf21.histo
o What is the striking feature of this genome?

' If genomescope does not work, go to the genomescope website above and you can upload your
*.histo files to get the plots


http://qb.cshl.edu/genomescope/

Frequency

e fSalTrul.jf2l.histo
o This genome was actually haploid. How do we interpret the
features in the genomescope profile?
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E: Back to our PacBio assembly

So our lllumina assembly is ok, but not perfect. Let’'s have a look at the PacBio
assembly, which should have hopefully finished by now (check the output.txt log).

Now use the assembly-stats script to look at the stats of the assembly. What do you
think?

$ assembly-stats Pacbio/PB.contigs.fasta

Another long read assembler based on de Bruijn graphs is “wtdbg”
(https://github.com/ruanjue/wtdbg?2). Let’s try to build this assembly too.

$ wtdbg2 -t4 -i PBReads.fastq -o wtdbg
$ wtpoa-cns -t4 -i wtdbg.ctg.lay -fo wtdbg.ctg.lay.fa
$ assembly-stats wtdbg.ctg.lay.fa

How does it compare?

They may be similar in contig number and N50, but are they really similar. Let's map
the lllumina reads to each, call variants and compare.

$ bwa index Pacbio/PB.contigs.fasta

$ samtools faidx Pacbio/PB.contigs.fasta

$ bwa mem -t4 Pacbio/PB.contigs.fasta IT.Chr5 1.fastq
IT.Chr5_2.fastq | samtools sort -@4 - | samtools mpileup -f
Pacbio/PB.contigs.fasta -ug - | bcftools call -mv > PB.vcf

Do the same for wtdbg.ctg.lay.fa and then compare some basic stats.

$ bcftools stats PB.vcf | grep ~SN
$ bcftools stats wtdbg.vcf | grep ~SN

What do you notice in terms of the number of SNP and indel calls?
The wtdbg assembly has more variants due to having more errors. This is mainly

due to a lack of error correction step - something built into the canu assembly
pipeline.


https://github.com/ruanjue/wtdbg2

D: Polishing
Even with the canu assembly, there are still deviations from the lllumina data.

$ bgzip -c PB.vcf > PB.vcf.gz

$ tabix PB.vcf.gz

$ bcftools consensus -f Pacbio/PB.contigs.fasta PB.vcf.gz >
PB.contigs.polished.fasta

Map, and variant call like above (bwa index/bwa mem/samtools sort/samtools
mpileup/bcftools call) using this polished reference. When running on this new output, do we
still get variants?

E: Reference based Assembly

Velvet has an option to use a reference to help to resolve repetitive regions. When
velvet cannot resolve a repetitive region in the de Brujin graph, it can look where
read with this k-mer are mapping in the reference. This way it is possible to untangle
the graph to simplify finding the path in the graph. This module is called “velvet
columbus™.

Although it is still work in progress, the results seem to be better than the normal
assembly. The only difference would be to include: “-reference -fasta
Pf3D7_05.fasta” in the velveth call. Important is to map the reads against the
reference what we already did.

Run it as follow:

$ velveth k.columbus.55 55 -reference -fasta Pf3D7_©5.fasta
-shortPaired -fastq -separate IT.Chr5_1.fastq IT.Chr5_2.fastq

$ velvetg k.columbus.55 -exp _cov auto -ins_length 350 -
min_contig lgth 200 -cov_cutoff 5

Now compare the results with the assembly-stats program. Are they better?

$ assembly-stats k.*/*.fa
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1 Introduction to Integrated Genome Viewer (IGV)

1.1 A quick start guide
1.2 Introduction

Integrative Genome Viewer (IGV) allows you to visualise genomic datasets. This quick start guide
will give you a brief overview of IGV, how to load data, navigate the genome and visualise your
data. The IGV user guide is really useful and contains information on many more features than
we have the chance go through in this quick start guide.

Integrative Genome Viewer (IGV)

Broad Institute and the Regents of the University of California

Download: https://software.broadinstitute.org/software/igv/download
User guide: http://software.broadinstitute.org/software/igv/UserGuide

1.3 Learning outcomes

By the end of this quick start guide you can expect to be able to:

Index a reference genome for IGV
Load a reference genome file into IGV
Load gene annotations into IGV

Load alignment files into IGV
Navigate a genome in IGV

1.4 Authors

This tutorial was written by Victoria Offord.

1.5 Prerequisites

This guide assumes that you have the following software or packages and their dependencies
installed on your computer. The software or packages used in this guide may be updated from
time to time so, we have also given you the version which was used when writing the guide.

Package name Link for download/installation instructions Version
samtools https://github.com/samtools/samtools 1.6
IGV (https:/ /software.broadinstitute.org/software/igv/)  2.3.90



https://software.broadinstitute.org/software/igv/
https://software.broadinstitute.org/software/igv/download
http://software.broadinstitute.org/software/igv/UserGuide
https://github.com/vaofford

1 Introduction to Integrated Genome Viewer (IGV) 1.6 Indexing a reference genome for IGV

1.6 Indexing a reference genome for IGV

Before you begin, make sure you have an index for the reference genome which IGV will use to
traverse the genome. You can do this using samtools.

samtools faidx <your_genome_file.fa>

The resulting index file will have the extension .fai and must be in the same directory as the
reference genome.

1.7 IGV main window

When you start IGV, it will open a main window. At the top of this window you have a toolbar
and genome ruler for navigation. The largest area in the main window is the data viewer where
your alignments, annotations and other data will be displayed. To do this, IGV uses horizontal
rows called tracks. Finally, at the bottom, there is a sequence viewer which contains the base level
information for your reference genome.

@ 10V2380 Fie Gwomes Vew Tacks Regors Tooks Oescmesosce Heo CE' « 3 Q
e

Toolbar e B v B “ft<.>omx

Genome ruler

Data viewer

Sequence viewer

IGV - main window

1.8 Loading a reference genome

IGV provides several genomes which can be selected with the "Genome drop-down box" on the
toolbar. However, your reference genome may not always be on this list. When your reference is
not available, you will need to load it from a FASTA file.

To load a reference genome from file, go to "Genomes -> Load Genome from File...".

& 10v.2.3.90 Filo [ITIVUNTN View Tracks Regions Tools GenomeSpace Help CF 3 4 @ B Wed1013 Q
ece Losg s FASTA o gwoomo i ov
Human h18 - “

Toad Genome from File..
Load Ge

IGV -loading genome from file



https://github.com/samtools/samtools

1 Introduction to Integrated Genome Viewer (IGV) 1.8 Loading a reference genome

Select the FASTA file containing the reference genome and click "Open".

hiseanto xt
WT1_1 fastq
A Applications W1 2 tastq

iCloud Drive

MT1_sorted.bam
MT1_sorted bam.bal

{5 Desktop

MIZ_1.fastq
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PeeAS 3 Nsat2 e 6142

IGV - loading genome from file

1.8.1 IGV toolbar and genome ruler

Once the genome has loaded, the chromosomes will be shown on the genome ruler with their
names/numbers above. When a region is selected, a red box will appear. This represents the
visible region of the genome.

Above the genome ruler is the toolbar which has a variety controls for navigating the genome:

¢ Genome drop-down - load a genome
¢ Chromosome drop-down - zoom to a chromosome
* Search - zoom to a chromosome, locus or gene

There are several other buttons which can be used to control the visible portion of the genome.

* Whole genoeme - zoom back out to whole genome view

* Previous/next view - move backward/forward through views (like the back/forward but-
tons in a web browser)

* Refresh - refresh the display

e Zoom - zooms in (+) / out (-) on a chromosome

Chromosome Zoom to whole Next
drop-down genome view view

Genome Search Previous
- E3
drop-down locus/gene view

recs v3_genomesa [ | pecas.01v3 [ peens 011310000-150000  Go B <« » @ [ X B @

= T

A

Visible region Genome ruler

IGV - toolbar and genome ruler
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1.8.2 Sequence viewer

The sequence viewer shows the genome at the single nucleotide level. You won’t be able to see the
sequence until you are zoomed in. As you start to zoom in (+), you will see that each nucleotide
is represented by a coloured bar (red=T, yellow=g, blue=c and green=a). This makes it easier to
spot repetitive regions in the genome. Carry on zooming in (+) and you will see the individual
nucleotides.

IGV - sequence viewer

If you right-click on "Sequence" at the left-hand side of the sequence viewer and click "Show trans-
lation", you will also see the amino acid sequence for the forward three reading frames.

=
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IGV - sequence translation
You can also see the reverse three reading frames by right-clicking on the track and selecting "Flip
strand".

Note: at the bottom right of the main window is the amount of memory available to IGV and how much of
this it is currently using - always keep a wary eye on this!!

1.9 Loading gene annotations

In addition to your genome, you will probably want to load an annotation file that contains infor-
mation such as gene locations and gene structures (e.g. introns/exons/CDS).

To load a GFF file containing annotations, go to "File -> Load from File...".

@& 16v2.3.90 LT Genomes View Tracks Regions Tools GenomeSpace Help - - Er-3 « G B TS0 Q
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IGV -loading annotation
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Select the annotation file and click "Open".
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IGV -loading annotation

This will load the annotation track. At the genome level, you will see this shown as a density track
for the associated annotation. On the left you will see the track label which is the name of the file
you just loaded. You can change this label to something more recognisable by right clicking on
the label and selecting "Rename Track".

IGV - annotation density

As you zoom in (+), you will start to be able to see the individual genes (shown in blue).
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IGV - annotation track

1.9.1 Gene structure

Genes are represented in blue as boxes (exonic regions) and lines (intronic regions). The arrows
indicate the strand of the direction in which the gene will be transcribed. The box height indicates
whether the region is a coding seequence (taller) or untranslated region (thinner).

For a clearer view of the gene structure, right click on the annotation track and click "Expanded".
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PCHAS_0103700.1
> > > >

PCHAS_0103700

IGV - expanded annotation

Now you will see the annotated isoforms and can more clearly see the arrows that indicate which
strand the gene is on. If you zoom in further, you will also see the amino acid sequence superim-
posed onto the exons.

1.10 Loading alignment files

IGV can be used to visualise many different types of data, including read alignments. Each time
you load an alignment file it will be added to the data viewer as a new major track.

To load a read alignment file, go to "File -> Load from File...".

& 10v.2.3.90 JGTY Genomes View _Tracks Regions Tools _Genomespace _Help CF' <« @ B8 Tusos Q
(XX
3oeome LIONR- B o <« > @MW X

IGV -loading alignment from file

Select a sorted BAM file and click "Open".

567.1 M8 Document

IGV -loading alignment from file

Note: BAM files and their corresponding index files must be in the same directory for IGV to load them
properly.

For each read alignment, a major track will appear containing two minor tracks for that sample:
coverage statistics and read alignments. For the total number of visible tracks, see the bottom left
of main window.

At the genome level, there will be no coverage plot or read alignments visible. At the chromosome
level, there are two messages displayed: Zoom in to see coverage/alignments. Finally, once you
have zoomed in (+) you will see a density plot in the coverage track and your read alignments.




1 Introduction to Integrated Genome Viewer (IGV) 1.10 Loading alignment files

| Genome view | | Chromosome view | | Region view

IGV - alignment views

You can open more than one alignment file. Each alignment file will be loaded into a new track
with its coverage statistics and read alignments. However, make sure you keep an eye on the
memory usage in the bottom right corner or IGV may crash!
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IGV - all alignments

1.10.1 Visualising alignments

Coverage information When zoomed in to view a region, you can get alignment information for
each position in the genome by hovering over the coverage track. This will open a yellow box
which tells you the total number of reads mapped at that position, a breakdown of the mapped
nucleotide frequencies and the number of reads mapping in a forward /reverse orientation. In our
example, 95 reads mapped, 50 forward and 45 reverse, all of which called A at position 202,768 on
chromosome PccAS_05_v3.
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IGV - coverage information

Viewing individual read alignment information Read are represented by grey or transparen-
t/white bars which are stacked together where they align to the reference genome. Reads are
pointed to indicate the orientation in which they mapped i.e. on the forward or reverse strand.
Hovering over an individual read will display information about its alignment.

—

Hover over
read for
alignment oo
information — —

IGV -read information

Mismatches occur where the nucleotide in the aligned read is not the same as the nucleotide in
that position on the reference genome. A mismatch is indicated by a coloured bar at the relevant
position on the read. The colour of the bar represents the mismatched base in the read (red=T,
yellow=g, blue=c and green=a).

|
IGV - mismatch

For more information about how reads are coloured and what this means, see the IGV user guide.



http://software.broadinstitute.org/software/igv/UserGuide
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1.11 Navigating the genome

1.11.1 Whole genome view

In IGV you can navigate through different levels of visualisation, from the whole genome, all the
way down to a base level resolution.

To return to the whole genome view:

* Select "All" from the chromosome drop-down
¢ Click the "Home" button

I Select “All” | I Click “Home” |
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IGV - whole genome view

1.11.2 Chromosome view
You can also view each of the chromosomes individually. For example, to view PccAS_03_v3 you

can:

¢ Select "PccAS_03_v3" from the chromosome drop-down
¢ Type "PccAS_03_v3" into the search box
¢ Click on ""PccAS_03_v3" on the genome ruler

| Select “PccAS_03_v3” | | Type “PccAS_03_v3” | Click “PccAS_03_v3” in the genome ruler
° ) v B / GV - - |
Pecas_v3_genome.ta [ (AN B s G @ m x

IGV - chromosome view

In the chromosome view, the alignment track has changed from a density plot to showing individ-
ual gene, the genome ruler is now showing co-ordinates instead of chromosome name /numbers.
More importantly, the alignment tracks are saying that to see coverage or read alignments we need
to zoom in further.
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IGV - chromosome view

1.11.3 Region view

There are several ways to continue to zoom in and view specific regions or base level information.

Select region If you don’t know the specific co-ordinates of the region you want to look at, you
can click and drag to select a region on the genome toolbar.
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IGV - select region

Jump to region If you know the co-ordinates of the region you want to view, you can enter
them into the "Search" and click "Go". The format is chromosome:start-stop. For example, to view
from 100,000 to 100,100 on PccAS_01_v3, you would enter PccAS_01_v3:100,000-100, 100 in the
search box.

eoe o
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IGV - search region

Note: the visible region of the chromosome is indicated by the red box on the genome ruler.
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Jump to gene or locus Alternatively, if you know the name of the gene you want to view and
you have loaded an annotation file, you can enter the gene name into the "Search" and click "Go".
For example, to view PCHAS_0100100, you would enter PccAS_0100100 in the search box.

ece ov
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IGV - search gene

Note: the search box will try to help you by listing options to autocomplete the search box.

Zooming in and out You can zoom in and out from each view by using the "+" and "-" buttons
on the zoom control at the right-hand side of the toolbar. This will also work with the "+" and "-"
keys on your keyboard.
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IGV - zoom in/out

1.11.4 Navigating around the view

There are several ways you can move around the view:

¢ Left-click and hold on a track in the data viewer. Drag to move left or right.

* Move left right using arrow keys on your keyboard.

* Double click on a gene/feature in the anntotation track to zoom in and center on that
gene/feature.
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