Gene: Glyatl3 Colony prefix: DAAS Allele: Glyatl3em1(IMPC)Wtsi Allele type: Crispr/Cas9 mediated deletion ## Allele information: Further information about the allele can be found on the 'International Mouse Phenotyping Consortium' (IMPC) web site at http://www.mousephenotype.org/data/alleles/MGI:3647683/em1%2528IMPC%2529Wtsi #### Mouse QC information | Loss of WT Allele
(LOA) qPCR | | Mutation Sequence confirmed | pass | |---------------------------------|---|------------------------------|------| | Mutant Specific SR-PCR | • | Off-target analysis complete | na | #### **Mutant Allele sequence:** CCATTATGGTATCCTAGGTGTAGCTTGTTGCTAAAGAGATCTCAACCCCACTCATTTCTCACAGCTATATGACAT TATTTACACACCTTCACTTCATATTTCCATGTCTTAGAATGATTAGTTATCATTACTGTCTAGCTAATTTTCTATTT CCCAAATTAGCTACCTGGAAACAGAAACAAAGAATAAGACTAATAAA Deletion size (bp): 314 This technical data sheet and information ("Datasheet") is supplied by Genome Research Limited ("GRL"). Although reasonable care is taken in the preparation of this Datasheet, GRL gives no warranties express or implied for any use of the Datasheet or for the accuracy of the Datasheet. GRL assumes no responsibility or liability for any decisions based upon the Datasheet. Without limiting the foregoing the Datasheet was prepared for mice supplied directly from GRL and where copies of this Datasheet are available from third party repositories or distribution centres ("Third Parties") GRL shall not be liable for any inconsistency between the mouse strain supplied by the Third Party and the Datasheet howsoever arising. Report Generated on: 15-11-2017 # **Guide RNAs used in initial experiment** | Sequence | Chr | Chr Start | Chr End | |-------------------------|-----|-----------|----------| | CTATACCTCTCCCAGTATACAGG | 17 | 40910972 | 40910994 | | CCCTATGAAGTCCATGAAATGTC | 17 | 40910945 | 40910967 | | CAACACCGAAGCATATCTTCTGG | 17 | 40911203 | 40911225 | | CCCAAATTAGCTACCTGGAAACA | 17 | 40911282 | 40911304 | This technical data sheet and information ("Datasheet") is supplied by Genome Research Limited ("GRL"). Although reasonable care is taken in the preparation of this Datasheet, GRL gives no warranties express or implied for any use of the Datasheet or for the accuracy of the Datasheet. GRL assumes no responsibility or liability for any decisions based upon the Datasheet. Without limiting the foregoing the Datasheet was prepared for mice supplied directly from GRL and where copies of this Datasheet are available from third party repositories or distribution centres ("Third Parties") GRL shall not be liable for any inconsistency between the mouse strain supplied by the Third Party and the Datasheet howsoever arising. ## Genotyping by end-point PCR These mice may be genotyped through a combination of separate PCR reactions that detect the gene-specific wild type allele and a mutant allele-specific short range PCR. Interpretation of the consolidated results produces the genotype of the mice. In addition to the expected product, the mutant assay may also amplify the endogenous wild type sequence which will appear as a larger band on an agarose gel. The presence of this extra band will depend on the size of the original deletion. ## PCRs primer pairs and expected size bands | Assay Type | Assay | Forward Primer | Reverse Primer | Expected Size Band (bp) | |--------------|-----------|----------------|----------------|-------------------------| | Standard PCR | Wild type | Glyatl3_DF1 | Glyatl3_ER1 | 266 | | Standard PCR | Mutant | Glyatl3_DF1 | Glyatl3_DR1 | 497 | ## **Primer sequences** | Primer Name | Primer Sequence (5' > 3') | |-------------|---------------------------| | Glyatl3_DF1 | CTCCAGTTTTTCTTCCATTTCCACA | | Glyatl3_ER1 | CAAGGTAAGATCAAGTTCAAGGCAT | | Glyatl3_DR1 | CCATTTCCAGCAAACAACCTATTCT | #### Reaction setup | Reagent | μl | |---------------------------|-------| | DNA (~50-100 ng) | 1 | | 10x Buffer | 1.5 | | MgCl2 (50 mM) | 0.45 | | Platinum Taq (Invitrogen) | 0.15 | | dNTPs (100 mM) | 0.15 | | Primer 1 (10 µM) | 0.3 | | Primer 2 (10 µM) | 0.3 | | ddH20 | 11.15 | | Total | 15 | #### **Amplification conditions** | Step | Conditions | Time | |------|-----------------------|----------| | 1 | 94°C | 5 min | | 2 | 94°C | 30 sec | | 3 | 58°C | 30 sec | | 4 | 72°C | 1:30 sec | | 5 | Go to '2' + 34 cycles | - | | 6 | 72°C | 5 min | | 7 | 12°C | forever | This technical data sheet and information ("Datasheet") is supplied by Genome Research Limited ("GRL"). Although reasonable care is taken in the preparation of this Datasheet, GRL gives no warranties express or implied for any use of the Datasheet or for the accuracy of the Datasheet. GRL assumes no responsibility or liability for any decisions based upon the Datasheet. Without limiting the foregoing the Datasheet was prepared for mice supplied directly from GRL and where copies of this Datasheet are available from third party repositories or distribution centres ("Third Parties") GRL shall not be liable for any inconsistency between the mouse strain supplied by the Third Party and the Datasheet howsoever arising. Report Generated on: 15-11-2017 ## Genotyping by loss of WT allele qPCR Assay (gene-specific assay) The wild type loss of allele (LoA) qPCR assay uses a hydrolysis probe assay (for example Applied Biosystems TaqMan® technology) to determine the copy number of the wild type allele in a sample. Homozygotes will show no amplification, heterozygotes one copy and wild type mice will show two copies when compared to a wild type control. The number of copies of the wildtype allele can be detected using a FAM-labelled custom qPCR TaqMan® assay. These are multiplexed with a VIC® labelled endogenous control assay (for example TaqMan® Copy Number Reference Assay, Mouse, Tfrc; Applied Biosystems part #4458366). Reference DNA controls of known genotypes should also be included to facilitate correct analysis. ## Primers for LoA qPCR assay | Gene | Source | Forward Primer Seq. | Reverse Primer Seq. | Probe Primer Seq. | |---------|--------------|---------------------|---------------------------------|----------------------| | Glyatl3 | l | | GCTGTATTCTACAAAGATATCAGAGCTTACC | AACAGCTATTGGAAGAACAT | | | Technologies | | | | Reactions are performed in a 10µl volume using an Applied Biosystems 7900HT Fast Real-Time PCR System or Applied Biosystems Viia7 with DNA prepared using the Sample-to-SNPTM kit (Applied Biosystems) from mouse ear biopsies. GTXpressTM buffer is also used (Applied Biosystems). | Reagent | μl | |---------------------------|-----| | 2x GTXpressTM buffer | 5 | | 20x target assay | 0.5 | | ddH2O | 3 | | Tfrc endogenous 20x assay | 0.5 | | DNA | 1 | # **Amplification conditions** | Step | Conditions | Time | |------|-----------------------|--------| | 1 | 95°C | 20 sec | | 2 | 95°C | 10 sec | | 3 | 60°C | 30 sec | | 4 | Go to '2' + 34 cycles | - | This technical data sheet and information ("Datasheet") is supplied by Genome Research Limited ("GRL"). Although reasonable care is taken in the preparation of this Datasheet, GRL gives no warranties express or implied for any use of the Datasheet or for the accuracy of the Datasheet. GRL assumes no responsibility or liability for any decisions based upon the Datasheet. Without limiting the foregoing the Datasheet was prepared for mice supplied directly from GRL and where copies of this Datasheet are available from third party repositories or distribution centres ("Third Parties") GRL shall not be liable for any inconsistency between the mouse strain supplied by the Third Party and the Datasheet howsoever arising. Report Generated on: 15-11-2017 #### Links to information and frequently asked questions MGP mouse phenotype data: http://www.mousephenotype.org #### **Useful publications** White, J.K., Gerdin, A.-K., Karp, N.A., Ryder, E., Buljan, M., Bussell, J.N., Salisbury, J., Clare, S., Ingham, N.J., Podrini, C., et al. (2013). Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes. Cell 154, 452–464. Mali P, Yang L, Esvelt KM, et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–6. doi: 10.1126/science.1232033 Jinek M, Chylinski K, Fonfara I, et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21. doi: 10.1126/science.1225829 Cong L, Ran FA, Cox D, et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23. doi: 10.1126/science.1231143 Singh P, Schimenti JC, Bolcun-Filas E (2014) A Mouse Geneticist's Practical Guide to CRISPR Applications. Genetics genetics.114.169771–. doi: 10.1534/genetics.114.169771 Brandl C, Ortiz O, Röttig B, et al (2015) Creation of targeted genomic deletions using TALEN or CRISPR/Cas nuclease pairs in one-cell mouse embryos. FEBS Open Bio 5:26–35. doi: 10.1016/j.fob.2014.11.009 Zhou J, Wang J, Shen B, et al (2014) Dual sgRNAs facilitate CRISPR/Cas9 mediated mouse genome targeting. FEBS J. doi: 10.1111/febs.12735 Kraft K, Geuer S, Will AJ, et al (2015) Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep. doi: 10.1016/j.celrep.2015.01.016 Shen B, Zhang J, Wu H, et al (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23:720–3. doi: 10.1038/cr.2013.46 Wang H, Yang H, Shivalila CS, et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–8. doi: 10.1016/j.cell.2013.04.025 Yang H, Wang H, Shivalila CS, et al (2013) One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering. Cell 154:1370–1379. doi: 10.1016/j.cell.2013.08.022 This technical data sheet and information ("Datasheet") is supplied by Genome Research Limited ("GRL"). Although reasonable care is taken in the preparation of this Datasheet, GRL gives no warranties express or implied for any use of the Datasheet or for the accuracy of the Datasheet. GRL assumes no responsibility or liability for any decisions based upon the Datasheet. Without limiting the foregoing the Datasheet was prepared for mice supplied directly from GRL and where copies of this Datasheet are available from third party repositories or distribution centres ("Third Parties") GRL shall not be liable for any inconsistency between the mouse strain supplied by the Third Party and the Datasheet howsoever arising. Report Generated on: 15-11-2017