

Wellcome Sanger Institute Wellcome Trust Genome Campus Hinxton, Cambridge CB10 1SA, UK

mouseinterest@sanger.ac.uk www.sanger.ac.uk

Mysm1 (MAHN; EPD0019_1_A05)

Allele: Mysm1^{tm1a(KOMP)Wtsi}

Embryonic stem cell targeted: JM8 Embryonic stem cell origin: C57BL/6N

Background used for Germ Line Transmission: C57BL/6Brd-Tyr c-Brd

Subsequent backcross background: C57BL/6NDnk and inter cross from within Colony

Genetic background: C57BL/6NDnk; C57BL/6Brd-Tyr c-Brd; C57BL/6N

Coat Colour Information:

Due to the presence of a mutation within the Tyrosinase gene of the **C57BL/6Brd-***Tyr* ^{c-Brd} colony used during the initial confirmation of germline transmission any intercrossing has the potential to produce albino offspring.

Black and Albino

Breeding Performance and Lifespan:

- Generally heterozygous mice from this colony conform to normal expectations of the background strain. For maintenance of our colonies we pay particular attention to the age of the mating pairs and the resulting litters. In our experience the C57BL/6N substrain used to establish and progress this colony has shown some characteristics such as poor breeding, high pre-weaning mortality rates and failure to breed beyond three litters. We believe disturbance of litters has a detrimental effect on the mating pair. For our core and mutant colonies we have actively reduced our intervention with the mice. Daily observations, health checks, cleaning and cage movement is minimised in litters under 14 days of age.
- · Viability at Weaning Homozygous Subviable

Bedding:

Aspen Chip derived from a Baltic supply – Supplier B&K Universal

Diet:

Autoclavable Mouse Breeder Diet 5021 – A controlled constant-nutrient diet formulated to compensate for nutrient losses that occur during steam sterilization. Supplier Lab Diet www.labdiet.com

Husbandry:

Cleaning frequency is based against cage occupancy and technician assessed level of soiling. Base changing is performed in a HEPA filtered change station which remains positive to the room environment. Gloved hands are disinfected between each cage. Diet is fed ad-libitum.

Housing System:

Individual Ventilated Cages maintained at positive pressure to the room with an average of 60 HEPA filtered air changes per hour.

This technical data sheet and information ("Datasheet") is supplied by Genome Research Limited ("GRL").

Although reasonable care is taken in the preparation of this Datasheet, GRL gives no warranties express or implied for any use of the Datasheet or for the accuracy of the Datasheet. GRL assumes no responsibility or liability for any decisions based upon the Datasheet. Without limiting the foregoing the Datasheet was prepared for mice supplied directly from GRL and where copies of this Datasheet are available from third party repositories or distribution centres ("Third Parties") GRL shall not be liable for any inconsistency between the mouse strain supplied by the Third Party and the Datasheet howsoever arising.

Last updated: 12-02-2020

Wellcome Sanger Institute Wellcome Trust Genome Campus Hinxton, Cambridge CB10 1SA, UK

mouseinterest@sanger.ac.uk www.sanger.ac.uk

Whilst all reasonable effort is made to verify the mouse line and verify the individual mouse genotype at shipment, we recommend this is confirmed by the recipient.

The homozygous genotype for this strain has phenotypic observations noted on the following:

Homozygous viability at P14 Recessive Lethal Study Weight Curves Open Field Neurological Assessment Hot Plate Dysmorphology Rotarod **Indirect Calorimetry** Body Composition (DEXA) X-ray Imaging Eye Morphology Plasma Chemistry Plasma Immunoglobulins Haematology (CBC) Micronuclei **PBL Terminal** Tail Epidermis Wholemount Brain Histopathology Salmonella Challenge

Sanger MGP mutant mouse lines are mouse lines in development; information about breeding and phenotyping characteristics may be incomplete.

As the mutant mouse strains progress through the Sanger MGP primary phenotypic characterisation, the information gathered may be viewed through the International Mouse Phenotyping Consortium (IMPC; www.mousephenotype.org).

Information supplied here is current as of the date indicated below.

Please consult the IMPC for progressive updates on colony information such as Viability at weaning, Fertility, General Observations.

Contact MGPEnquiries@sanger.ac.uk

Phenotype enquiries may be made through the contact MGPEnquiries@sanger.ac.uk.

Details of the colony quality control tests performed for a specific mouse line may be observed through the International Mouse Phenotyping Consortium (IMPC; www.mousephenotype.org), searching for your gene and follow the link from 'Product Details' for the mouse strain of interest.

General Descriptions of the mouse strain quality control (QC) assays. www.i-dcc.org/kb/25

General information about structure of IMPC alleles and their derivatives www.mousephenotype.org/about-ikmc/targeting-strategies

This technical data sheet and information ("Datasheet") is supplied by Genome Research Limited ("GRL").

Although reasonable care is taken in the preparation of this Datasheet, GRL gives no warranties express or implied for any use of the Datasheet or for the accuracy of the Datasheet. GRL assumes no responsibility or liability for any decisions based upon the Datasheet. Without limiting the foregoing the Datasheet was prepared for mice supplied directly from GRL and where copies of this Datasheet are available from third party repositories or distribution centres ("Third Parties") GRL shall not be liable for any inconsistency between the mouse strain supplied by the Third Party and the Datasheet howsoever arising.

Last updated: 12-02-2020

Wellcome Sanger Institute Wellcome Trust Genome Campus Hinxton, Cambridge CB10 1SA, UK

mouseinterest@sanger.ac.uk www.sanger.ac.uk

Guidelines for converting alleles

www.infrafrontier.eu/sites/infrafrontier.eu/files/upload/public/pdf/Resources%20and%20Services/eucomm_komp-csd_allele_conversion_guide_v3a_2016.pdf

International Mouse Phenotyping Consortium (IMPC) Mouse Resources www.mousephenotype.org

IKMC Knowledgebase www.i-dcc.org/kb

Publications

Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling M-C, Bottomley J, Brown SD, Bürger A, Bult CJ, Bushell W, Collins FS, Desaintes C, Doe B, Economides A, Eppig JT, Finnell RH, Fletcher C, Fray M, Frendewey D, *et al.* (2012) The mammalian gene function resource: the international knockout mouse consortium. *Mamm. Genome*, **23**, 580-586.

Liang, Q., Conte, N., Skarnes, W. C. and Bradley, A. (2008). Extensive genomic copy number variation in embryonic stem cells. *Proc. Nat. Acad. Sci.*, **105** (11), 17453-17456.

Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, Lloyd KC, Bradley A & Skarnes WC (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. *Nature methods*, **6**, 493-495.

Ryder, E., Doe, B., Gleeson, D., Houghton, R., Dalvi, P., Grau, E., ... Ramirez-Solis, R. (2013). Rapid conversion of EUCOMM/KOMP-CSD alleles in mouse embryos using a cell-permeable Cre recombinase. *Transgenic research*. 23(1), 177–185.

Ryder E, Gleeson D, Sethi D, Vyas S, Miklejewska E, Dalvi P, Habib B, Cook R, Hardy M, Jhaveri K, Bottomley J, Wardle-Jones H, Bussell JN, Houghton R, Salisbury J, Skarnes WC; Sanger Mouse Genetics Project, Ramirez-Solis R. (2013). Molecular characterization of mutant mouse strains generated from the EUCOMM/KOMP-CSD ES cell resource. *Mamm. Genome.* **24**, 286–294.

Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T. *et al.* (2011) A conditional knockout resource for the genome-wide study of mouse gene function. *Nature*, **474**, 337-342.

White, J. K., Gerdin, A.-K., Karp, N. A., Ryder, E., Buljan, M., Bussell, J. N., Salisbury, J., *et al.* (2013). Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes. *Cell*, **154**(2), 452–464.

Additional Useful Publications

Birling M.C., Gofflot F. and Warot X. (2009). Site-specific recombinases for manipulation of the mouse genome. *Methods Mol. Biol.*, **561**, 245-263. Review.

Farley FW, Soriano P, Steffen LS, Dymecki SM. (2000). Widespread recombinase expression using FLPeR (flipper) mice. *Genesis*, **28** (3-4), 106-110.

Kranz A., Fu J., Duerschke K., Weidich S., Naumann R., Stewart A. F., Anastassiadis K. (2010). An improved Flp delete mouse in C57Bl/6 based on Flpo recombinase. *Genesis*, **48** (8), 512-520

This technical data sheet and information ("Datasheet") is supplied by Genome Research Limited ("GRL").

Although reasonable care is taken in the preparation of this Datasheet, GRL gives no warranties express or implied for any use of the Datasheet or for the accuracy of the Datasheet. GRL assumes no responsibility or liability for any decisions based upon the Datasheet. Without limiting the foregoing the Datasheet was prepared for mice supplied directly from GRL and where copies of this Datasheet are available from third party repositories or distribution centres ("Third Parties") GRL shall not be liable for any inconsistency between the mouse strain supplied by the Third Party and the Datasheet howsoever arising.

Last updated: 12-02-2020