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Abstract

NestedMICA is a new, scalable, pattern-discovery system for finding tran-

scription factor binding sites and similar motifs in biological sequences. Like

several previous methods, NestedMICA tackles this problem by optimising a

probabilistic mixture model to fit a set of sequences. However the use of a

newly developed inference strategy called Nested Sampling means NestedMICA

is able to find optimal solutions without the need for a problematic initialisa-

tion or seeding step. We investigate the performance of NestedMICA in a range

scenarios – on synthetic data and a well-characterised set of muscle regulatory

regions – and compare it to the popular MEME program. We show that the

new method is significantly more sensitive than MEME: in one case, it suc-

cessfully extracted a target motif from background sequence four times longer

than could be handled by the existing program. It also performs robustly on

synthetic sequences containing multiple significant motifs. When tested on a

real set of regulatory sequences, NestedMICA produced motifs which were good

predictors for all five abundant classes of annotated binding sites.
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INTRODUCTION

Motif-finding is a long standing problem in sequence bioinformatics, with a his-

tory going back over twenty years (1). A typical statement of the problem would

be “given a set of sequences, which motifs are significantly over-represented with

respect to a given background model.” The term “motif” could refer to a single,

perfectly specified, word, but usually describes a family of words, with at least

some positions where several alternate symbols are acceptable. For example, both

TATATAAA and TATAAAAA are good TATA-box sequences (2). A classical appli-

cation for motif-finding software is the discovery of novel transcription factor binding

sites in transcriptional regulatory regions, but there are other interesting functional

elements in biological sequences – both nucleic acid and protein – which can be found

by motif-discovery methods. While the program described here has been developed

and tested on DNA sequences, the techniques are all applicable to other types of

sequence and therefore we prefer the general term “symbol” to describe an element

of a sequence.

Motif-finding strategies can be broadly divided into two classes: those which rely

on exhaustively enumerating a set of motifs – for example all nucleotide n-mers,

then reporting the most frequent or overrepresented, and those which find the most

significant motifs by fitting a probabilistic model to the sequence data. Exhaustive

enumeration can be very fast when implemented with optimised data structures

like suffix trees (3), and is a good strategy for finding totally constrained motifs

(i.e. every instance is identical). However, for typical transcription factor binding

sites which often have several weakly constrained positions, exhaustive enumeration

becomes problematic and the results usually have to be post-processed with some

kind of clustering system as in (4). We will not consider exhaustive enumeration

here further.

Probabilistic motif-finders treat the supplied sequences as a mixture of interesting

motifs and non-interesting – at least from this point of view – background sequence.

We therefore refer to them as Sequence Mixture Models (SMMs). In principle, any

probabilistic model can be used to represent the interesting motifs, but the usual

choice is the Position-Weight matrix (PWM) (2). This is a model which treats

each position in the motif independently, and records a probability distribution over

symbols which can be observed at that position. PWMs are a good way of modelling
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motifs which have a mixture of highly constrained and weakly constrained positions,

but they lack any capacity to record possible correlations between positions in the

motif – a factor which could be significant in real interactions between proteins and

nucleic acid (5). PWMs are often visualised as a pictogram where each position

is represented by a stack of letters whose height is proportional to the information

content of that position (6). This ‘logo’ representation of PWMs is used throughout

the results section of this paper.

The probabilistic motif-finding problem has classically been reduced to a simple

case: considering just one motif at a time, model each sequence with a random

background model which may, or may not, contain a single instance of the motif

under consideration. This is the zero-or-one occurrences per sequence (ZOOPS)

model. It can be easily represented as a hidden Markov model (7), as shown in figure

1, and standard techniques such as expectation maximisation (8) or Gibbs sampling

(9) can be used to find high-likelihood sets of model parameters, corresponding to

good motif models.

There are several significant concerns about this strategy, which we have tried to

address in this work. Firstly, real regulatory regions, and most other contexts where

interesting motifs can be found, usually contain more than one distinct functional

motif. Many regulatory regions also contain several instances of the same motif –

at least in some contexts seeing five or more binding sites for a single transcription

factor in less than a kilobase of sequence is not unusual (10). Programs which use a

ZOOPS-like model work around these issues by finding the strongest motif in a set,

then scanning for all its instances, masking them out, and re-running the process

on the remaining sequence. This strategy is greedy and it is by no means clear that

its behaviour will be optimal, especially when working on a system where there is

a set of closely related, yet still distinct, motif types. In a genomic environment

where novel transcription factors are created by gene duplication then diverge to

perform a new function, such situations seem quite probable, but we do not know

of any investigation into the behaviour of motif-finders when faced with related but

distinct motifs.

Another major concern with existing techniques for optimising or exploring se-

quence mixture models is that that they tend to be strongly local in nature: the

optimisation concentrates on regions of the probability landscape close to their start-

ing point. This is clear for expectation-maximisation methods, which always move
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in a direction which increases the likelihood of the model. This can lead to a local

maximum which can never be left since every direction leads to a lower likelihood.

Strategies based on Monte-Carlo sampling methods do not, in theory, suffer from

this limitation, but in practice crossing the low-likelihood valley between two high-

likelihood peaks tends to be an unlikely event, often to the point where it becomes

vanishingly rare.

Here we present a novel method, NestedMICA, which avoids both these issues,

firstly by using a sequence model based on the independent component analysis

framework to learn models for multiple motifs simultaneously, and secondly by using

an alternative inference strategy which is likely to find a globally optimal model in

a single run. NestedMICA has also been implemented in a fashion which allows

arbitrary background models to be plugged in, allowing the investigation of more

sophisticated backgrounds. We discuss a general-purpose background model in this

paper, but it is also possible to develop highly specialised backgrounds, for example

to search for motifs embedded in protein-coding sequence (B. Leong, unpublished).
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MATERIALS AND METHODS

Motif ICA

We treat finding motifs in a set of sequences as a form of independent component

analysis (ICA) problem (11, 12). In linear ICA, a matrix of observations, X is

approximated as a linear mixture, A, of some sources, s:

x = As + ν (1)

(where ν is a noise matrix representing any errors in the linear approximation). A

classical example is the cocktail party problem where a set of M microphones record

different mixtures of the voices of N speakers. Given samples from these microphones

at t time points, ICA methods attempt to factorise the M × t observation matrix

into a N × t source matrix and a M ×N mixing matrix.

While this straightforward view of mixing as matrix multiplication is clearly

not directly applicable to strings such as biological sequence data, if we can find

a satisfactory alternative definition for the mixing operator, we can handle a wide

variety of problems within an ICA-like mixture modelling framework.

In motif ICA (MICA), the sources are short sequence motifs (currently, but

not necessarily, modelled as position-weight matrices (2)), while the observations

are larger sequences. There are several possible interpretations of the ICA mixing

matrix. In the implementation described here, we use a binary mixing matrix (all

coefficients are either 0 or 1), and a given sequence is expected to contain a given

motif if the relevant mixing coefficient is 1. The ‘noise’ part of the ICA model

represents all the sequence that is not modelled by one of the motifs.

ICA problems can be handled in a Bayesian probabilistic framework by writing

a likelihood function which defines the probability of a set of observations given

particular source and mixing matrices (12). For linear ICA a typical likelihood

would be a Gaussian distribution centred on As, with the Gaussian modelling the

noise part of the ICA model. For each sequence, we collect the set of motifs with

non-zero mixing coefficients, and generate a hidden Markov model as shown in figure

2. This is somewhat similar to the ZOOPS HMM except that there is (potentially)

more than one motif, and it is possible to pass through a given motif more than once

while generating a single observed sequence.
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Given a likelihood function – in this case the probability of a sequence being

generated by the HMM – we can place priors over the parameters of the model (the

source and mixing matrix) then perform Bayesian inference (13) to find likely values

for the parameters given a set of data. A number of inference strategies exist, and

the choice is important: not all strategies are guaranteed to explore the whole of

parameter space. We chose to use a new and powerful inference strategy, nested

sampling, which is described below.

Nested sampling

Nested sampling is a novel approach to performing probabilistic inference in a

Bayesian framework, proposed recently by John Skilling (unpublished, manuscript

available at http://www.inference.phy.cam.ac.uk/bayesys/). Along with ex-

isting methods such as Metropolis-Hastings and Gibbs Sampling (both described in

(13)), it can be classified as a Monte Carlo method, since the process is driven forward

by a series of randomly chosen events. However, nested sampling is quite distinct

from the family of classic Monte Carlo methods. While Metropolis-Hastings and all

its derivatives rely on making an unbiased random exploration of the probability

landscape, nested sampling proceeds in a more orderly fashion.

Nested sampling is always applied to an ensemble of states – typically a few

hundred – each of which represents a possible solution to the problem at hand. The

ensemble is initialised by sampling uniformly from the prior distribution, then sorting

the states according to their likelihoods. Each state in the ensemble is considered

to be a representative of the set of states with similar likelihoods. If the likelihood

of each state is drawn as a contour on the likelihood distribution, we see a nested

set of contour lines, converging towards the peaks of the likelihood distribution. We

therefore call the ordered set of states a nested ensemble. For each cycle of nested

sampling, the least likely state in the ensemble is discarded, and a new state is chosen

by sampling uniformly from the prior subject to the constraint that the likelihood of

the new state must be greater than or equal to the likelihood of the discarded state.

The exact strategy used to draw constrained samples from the prior should not be

important for the final results, but the usual strategy – recommended by Skilling

and employed in our implementation – is to randomly pick an existing state from

the ensemble, duplicate it, then use conventional Monte-Carlo techniques to move

the new state to a new point in the prior. Since priors are generally much smoother
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than likelihood functions (indeed we use a uniform prior over weight-matrix space),

drawing good quality samples from the prior in this way does not pose any great

technical difficulties.

Nested sampling has some similarity to simulated annealing techniques (13) in

that during the course of the sampling process, we move from a situation where the

distribution of states is defined by the prior to a situation where the distribution of

states is influenced mainly by the likelihood function. But unlike annealing, there is

no temperature parameter to control, and no risk of states becoming trapped because

of phase-change events.

In this context, the most exciting property of nested sampling is that, given a

reasonably large ensemble, the final sample drawn from a converged nested sampler

can be expected to reflect the global optimum of the likelihood landscape. Moreover,

in cases where more than one globally significant optimum exists, these should be

represented in the sample set in direct proportion to the amount of posterior mass

they represent.

Mosaic background sequence models

The background model is an important component of the SMM framework – after

all, it will usually be responsible for modelling the majority of the input sequence.

The simplest strategy – and still a common one – is to treat all non-motif sites

as independent and identically distributed (i.i.d.). In HMM terms, this makes the

background model a zeroth-order Markov chain. However experience shows that

genomic DNA sequence, even in apparently non-functional areas, is not a good fit to

the i.i.d. model. The best known deviation is the dramatic under-representation of

CpG dinucleotides in most parts of vertebrate genomes, but other significant effects

have been reported (14). In any case, practical experience shows that motif finders

equipped with naive background models tend to report low-complexity elements

rather than interesting binding sites.

The first obvious improvement is to replace the zeroth order Markov chain with

a first order chain (i.e. the background probability of observing a particular symbol

at position n depends on the symbol at position n − 1). This model is good at

capturing anomalies like the CpG underrepresentation. Success with first order

background models has led some researchers to investigate higher order models.

One investigation of Markov chain backgrounds can be found in (15): this concludes
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that pentanucleotide frequency tables (i.e. fourth-order Markov chains) are optimal.

However, there are two concerns about this result: firstly, it leaves an open question

about what these high-order correlations in background sequence mean (and why

fourth-order models appear to outperform fifth-order). Also, training a background

model generally requires sequence proportional to the number of free parameters in

the model. Fifth order models, with 768 parameters, therefore require large amounts

of sequence. Moreover, it is desirable to train the background model on sequence

which does not contain target motifs, since a fifth order model could easily capture

some information about this motifs, thereby reducing the sensitivity of the motif-

finding process. But it is hard to find large amounts of representative background

training sequence which doesn’t contain interesting motifs.

A different way to generalise the naive background model is to allow several

different classes of sequence, each with its own particular base distribution (which

could be zeroth-order or higher-order). We call these mosaic models, since their

underlying assumption is that genome evolution includes some set of constraints

which act non-uniformly, even on background sequence.

To test the effect of mosaic models, we took a set of 192 non-redundant hu-

man promoter sequences from release 69 of the Eukaryotic Promoter Database (16).

These were split into 142 training sequences and 50 test sequences. For each model

architecture, the parameters were optimised on the training sequences using the

Baum-Welch algorithm (7), as implemented in the BioJava HMM library, then the

likelihood of the test sequences given those learned parameters was calculated. Test

likelihoods for a variety of class numbers and Markov chain orders are shown in fig-

ure 3. Considering just the one class ‘mosaics’ – equivalent to classical Markov chain

background models – we repeat the previously reported observation that higher order

Markov chains are better models of genomic DNA. However, we also see large in-

creases in likelihood when moving to larger numbers of mosaic classes. Interestingly,

the lines for zeroth-order and first-order models run almost parallel: this suggests

that the benefits of mosaic models are almost orthogonal to the benefits of first-order

models. However, this is not true when moving beyond first-order models.

Based on these results, we recommend the use of a four class, first order, mo-

saic background model for most motif-finding applications on mammalian genomic

sequence. In practice, the four classes appear to include a C+G rich class (corre-

sponding to classically reported CpG islands), a purine-rich class, a pyrimidine-rich
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class, and a final relatively neutral class. This four-class background model is used

for all subsequent NestedMICA tests in this paper, and is available to download from

the NestedMICA web site.

Synthetic data spiked with known motifs

Non-repetitive intergenic regions of various lengths were extracted randomly from

the human genome (release NCBI34) using gene and repeat annotation from the

Ensembl human database release 20.34 (17). To generate test sequences for motif-

finding programs, we selected experimentally derived transcription factor weight ma-

trices from the JASPAR database (18), and generated target motifs by sampling from

the weight matrices, assuming each position of the motif is independent. Target mo-

tifs were inserted into the intergenic regions at random positions. In cases where

more than one motif was inserted into a single sequence, non-overlapping positions

were chosen.

Muscle regulatory regions with annotated binding sites

Sequences for muscle regulatory regions, as described in (19) were downloaded

from http://www.cbil.upenn.edu/MTIR/DATATOC.html. We took binding site an-

notation from the HTML pages linked from http://www.cbil.upenn.edu/MTIR/HomePage.html

and manually mapped it back to the FASTA-formatted sequence file.

Weight matrix ROC curves and scores

Log-likelihood weight matrix scores were calculated for each possible position in

the set of test sequences, then the complete list of hits was sorted by score. Hits

were classified as correct if they overlapped the annotated binding sites for a target

transcription factor, incorrect otherwise. We calculated accuracy (proportion of

correct hits) and coverage (proportion of annotated binding sites covered by at least

one hit) for successively larger head-lists (initially just the highest scoring hit, then

the best two, and so on until the complete list is used). Plotting accuracy against

coverage gives a form of receiver operating characteristic (ROC) curve.

For comparison purposes, the area under ROC curves was calculated by direct

summation. At the same time, we calculated the expected ROC score if high-scoring

hits were distributed randomly along the sequence.
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NestedMICA implementation

NestedMICA was implemented in Java, with a small amount of C code for loops in

the dynamic programming code responsible for calculating sequence likelihoods. The

primary motivation for using C was the availability of optimising compilers which

could rewrite the key loops to use vector processing capabilities of certain modern

CPUs (e.g. Pentium 4s). The BioJava library (http://www.biojava.org/) was used

for loading sequence data and manipulating motifs and PWMs. The main program

was developed on Linux and Mac OS X machines, but should be easy to port to any

platform with a good Java implementation. Source code, documentation, and test

datasets can be downloaded from http://www.sanger.ac.uk/Users/td2/nmica/

Analysing a 70kb sequence set takes around 3-4 hours on one Pentium IV proces-

sor at 2.8GHz. Processing time is dominated by the dynamic programming routines

which evaluate the likelihood of the sequence set. Execution time therefore scales

linearly with the number of sequences, meaning that analysis of large datasets is fea-

sible. In addition, the likelihood of each sequence can be calculated independently,

which offers a natural and efficient way of dividing the workload up between multiple

processors.
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RESULTS

Testing on simple synthetic data

Evaluating the relative performance of motif-finding software on real data is

difficult, because there are very few large collections of sequences where we can be

confident that every functional binding site has been accurately annotated. Therefore

we generated synthetic evaluation sequences containing a known number of known

sequence motifs. To make the synthetic data as realistic as possible, our synthetic

data was based on sequence fragments taken from intergenic regions of the human

genome, into which we inserted experimentally derived human transcription factor

binding sites from the JASPAR collection (18).

Our basic test strategy was to take a set of 100 intergenic sequences of a particular

length, then spike the known motif into 50 of these. We chose to focus on sets of 100

sequences because this is the typical order of magnitude for clusters of co-regulated

genes selected from contemporary experiments such as microarrays – for example

(4). We only placed the target motif into half of these sequences since this makes

the motif-finding problem considerably more challenging – it becomes necessary to

determine which sequences contain motifs, rather than merely discover their locations

– and because it is rare to obtain a large set of sequences which are known with 100%

certainty to contain the same functional element.

We investigated a number of human motifs from JASPAR, representing binding

sites from a range of major transcription factor families. We analysed each set of

sequences using the NestedMICA program as described here, and also with MEME

version 3.0.4 (8). Both methods were run with default options. For NestedMICA,

background model generation is a separate step. We used a general four-class human

background model, learned from the EPD sequences discussed previously.

Both programs tested here tended to fail rapidly. By this, we mean that, below

a certain threshold sequence length (which depends on the method) the recovered

motif was always very similar to the target, while above the threshold length a

dramatically different motif is found. Examples of this are shown in figure 4. This

rapid failure makes it possible to quantify the performance of a method for finding

a particular motif by identifying the longest set of sequences from which it can be

successfully recovered.

12



Results for a selection of JASPAR motifs are shown in tables 1-3. For reference,

the subset of JASPAR used in the tests published here is shown in figure 5.

NestedMICA proved to be significantly more sensitive in most cases. The extent

of the difference varies depending on the motif in question. In the case of HLF,

NestedMICA successfully retrieves the expected motifs from sequences four times

as long as the longest handled by MEME. At the other extreme, the sensitivity of

both methods was similar when searching for the HFH-1 motif. Considering these

two motifs, we note that HFH-1 has a highly constrained core, with a central GTTT

sequence which is conserved in all instances. On the other hand, HLF has no such

obvious core, and indeed the JASPAR profile contains no single position which is

totally constrained. We suggest that motifs with highly constrained cores may be

favoured by MEME’s seeding heuristics

Synthetic data with decoy motifs

Real regulatory regions do not contain single instances of single motifs. Therefore,

we also tested the response of MEME and NestedMICA on sequences containing

multiple motifs. We picked two of the JASPAR motifs discussed above (CREB and

Tal1beta) and spiked 50 instances of each into independently chosen subsets of the

intergenic background sequences (i.e. about a quarter of the sequences were spiked

with both motifs, and a quarter contained no motifs). MEME and NestedMICA

were run with the same parameters as before, except that they were told to find two

motifs (-nmotifs 2 for MEME, -numMotifs 2 for NestedMICA).

We assessed the ability of NestedMICA and MEME to find the CREB binding

sites in the presence of the decoy Tal1 sites. Results are shown in table 4.

The presence of a decoy motif makes little difference to the discovery of CREB by

NestedMICA. But while MEME can successfully find this motif in 400 base sequences

with no decoy, it fails in the presence of the Tal1beta decoy. We suggest that the

presence of multiple overrepresented motifs makes it harder to pick a good starting

point for expectation maximisation algorithms.

Analysis of muscle regulatory regions

Finding real biological sequence with comprehensive, high-quality annotation of

transcription factor binding sites is difficult, but some such data does exist. One well-
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known collection is a set of confirmed regulatory for muscle-specific genes, curated

by Wasserman and Fickett (19). This is still a relatively small dataset: 43 sequences,

mostly of around 300 bases in length, with significant redundancy (orthologous re-

gions from related species). Binding sites for a number of transcription factors are

well-annotated within these regions, allowing formal testing of motif-finding software.

We ran NestedMICA on the complete set of 43 sequences with default options,

requesting 20 motifs of up to 12 bases in length. A four-class mosaic background

model learned from a large set of human upstream regions was used for this test.

We also ran MEME on the same sequences, again requesting 20 motifs of 12 bases

with default options.

Weight matrices can be used to scan sequence and provide a score at each po-

sition, which we hope is indicative of the affinity of transcription factor binding at

that position (20). To predict a set of sites, it is necessary to specify a score thresh-

old. The choice of threshold controls the trade-off between accuracy and coverage.

This makes evaluating the quality of weight matrices (and other predictive models)

from different sources difficult since it is not obvious whether a model which gives

high coverage at low accuracy has more or less predictive power than another model

which gives much better accuracy at the expense of coverage. The solution is to

consider the receiver operating characteristic (ROC) curves for each model. These

are graphs of accuracy against coverage for a variety of score thresholds. Having

obtained the data for a ROC curve, we can either inspect them visually or calcu-

late the total area under the curve (sometimes called the ROC score), which gives

a threshold-independent measure of a model’s predictive power. A model which can

predict all the sites in the data set (100% coverage) with no false positives (100%

accuracy) will receieve the maximum possible ROC score of 1.0. On the other hand,

a model with no predictive power will be given a ROC score equal to the fraction

of positions in the dataset which are considered to be correct. Since in this case

the targets are a relatively small number of annotated binding sites in a large set

of sequences, the expected random ROC scores are rather low (less than 0.05 even

in the case of the most abundant binding site, MyoD). A model which predicted

all the sites with a uniform 50% accuracy would get a score of 0.5 but – perhaps

more realistically – a method which found half the sites with a very high accuracy

but only found the remainder with a very relaxed threshold and consequently much

lower accuracy would also score around 0.5. It should be understood that it is not
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necessarily realistic to hope for a ROC score of exactly 1.0: in particular, there may

be some real binding sites which have been missed by annotation, which will lead

to apparent false positives and prevent 100% accuracy being reached. Nevertheless,

higher ROC scores are a good indication of better predictive power.

We calculated ROC scores as described in the methods section for all the motifs

learned by both MEME and NestedMICA against each factor for which more than

5 binding sites were annotated. For each factor, we picked the highest-scoring motif

from each method. ROC scores are listed in table 5, and examples of complete ROC

curves for SRE sites are shown in figure 6.

In all but one case, MEF2, the NestedMICA weight matrix received a higher

ROC score than the equivalent MEME weight matrix. In the case of MyoD, none

of the MEME motifs had any significant predictive power – a surprising result since

MyoD was the most common motif in the dataset with 40 annotated instances.

In some cases, reference weight matrices were already available, based on manual

alignment of the curated site sequences. In figure 7, the reference MEF2 weight

matrix is compared to the best-scoring matrices from MEME and NestedMICA. In

this case, both programs generate a weight matrix which is instantly recognisable as

being similar to the reference motif. The NestedMICA motif is shifted by one base

to the right compared to the reference and MEME motifs, and it is possible that

this explains the slightly higher predictive power of the MEME motif in this case.

Nevertheless, the results are generally extremely similar.

A rather different situation can be seen in figure 8. Once again, visual inspection

shows that the NestedMICA result is very similar to the reference motif, so the

good ROC score is unsurprising. However, the highest-scoring MEME motif has no

obvious similarity. In this case, the most surprising result is that the MEME motif

got a high ROC score at all. Looking at the ROC graph for this motif in figure 6,

we see that although three instances of SRE are covered with good accuracy, the

remaining 8 instances are not detected even with much more relaxed thresholds. We

therefore believe that the MEME motif may be discovering some feature which lies

close to several of the annotated SRE sites, rather than the sites themselves.

We cannot say for certain why MEME finds MEF2 but misses SRE. One pos-

sibility is simple numbers: there are 13 annotated MEF2 sites but only 11 SREs.

However, this does not seem like a particularly large difference, especially considering

that MEME also fails to find the 40 MyoD sites. An alternative consideration is that
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the MEF2 site has a high-information core, including a perfectly constrained TAT

sequence, while SRE does not have a clear core. Preferential seeding of motifs with

high-information cores by MEME is consistent with the results from our synthetic

data tests.

16



DISCUSSION

We were able to compare different motif-finding methods in a quantitative fashion

by searching for known motifs in synthetic datasets. Since these were based on real

intergenic sequence and experimentally-derived binding sites, we believe that these

results should be representative for real data. One possible criticism is that the

synthetic motifs are sampled from weight matrices while assuming that each position

in the motif is independent. This assumption is known to be incorrect in at least

some cases (5). However, since this assumption is built into the sequence models

for both MEME and NestedMICA, we do not expect it to significantly affect the

comparisons we provide here.

NestedMICA outperforms existing methods such as MEME when discovering

most known regulatory motifs from the JASPAR database. In general, we suggest

that MEME (and methods which use similar seeding strategies) will perform best

when searching for motifs with a core of very highly constrained bases. The advan-

tages of using a non-seed-based strategy are greatest when considering motifs with

few positions that are 100% constrained, such as the HLF motif shown in figure 5.

Extending the analysis to the somewhat more realistic case of a dataset containing

two different known motifs, we find that NestedMICA responds robustly, and still

finds the expected element as well as the decoy. This result makes us optimistic

that NestedMICA will also perform well when faced with a real set of regulatory

sequences, containing a variety of functional motifs.

Real data sets that are sufficiently well annotated to allow rigorous evaluation

are currently rare and limited in size. We have, however, tested NestedMICA on

one small but high-quality set of muscle regulatory regions. We learned weight

matrices which detected many of the experimentally annotated binding sites with

good predictive power, and which also agreed well with weight matrices determined

directly from curated sets of binding sites. In four out of five cases, PWMs from

NestedMICA outperformed those from MEME.

During the preparation of this manuscript, we learned about a very different

scheme for evaluating motif finders, described in (21). This is interesting because

it includes evaluation results from 13 different sets of predictions on a single set

of test sequences (including two sets of MEME predictions, submitted by different

experts using different post-processing strategies). The benchmark is not ideally
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suited to NestedMICA, since our program is designed to find PWMs rather than sets

of motif instances. We were also concerned about the data preparation, in particular

the fact that some datasets consisted of unrealistically small numbers of sequences.

Nevertheless, we ran NestedMICA on the human portion of the benchmark set (26

out of 52 datasets), then predicted motif instances by picking the highest-scoring

PWM hit from each sequence. If other positions had scores within 0.5 bits of the

maximum, these were reported too. Given our previous experiences on synthetic

datasets, where both MEME and NestedMICA reported motifs other than the target

when running on long sequences, we chose to be conservative and made no predictions

for sequences of 1000 bases or longer. Other than this, we did not use any expert

input or per-dataset adjustments, although these were permitted in the original

assessment. Using the web-based evaluation software described in (21), we saw a

correlation coefficient (nCC) of 0.149. This compares favourably with the winner of

the assessment (both overall and on the human subset), an exhaustive enumeration

method called Weeder (22) which scored 0.115. For comparison, the best of the two

MEME entries scored 0.034.

The NestedMICA program has been designed to scale to large sets of data. It can

run on symmetric multiprocessor machines and clusters if performance becomes an

issue. We hope that the improved sensitivity and ability to learn multiple patterns

simultaneously will ultimately allow us to extract near-complete sets of regulatory

motifs from large amounts of genomic sequence. Searching for large, general, sets of

regulatory motifs presents new challenges in evaluating the results. We are encour-

aged by the recent publication of a large (1367 binding sites for 87 factors) collection

of Drosophila binding site annotation (23), and believe that this will be a powerful

resource for evaluating motif-discovery on a large scale.

We are considering a number of refinements to the method. One direction is to

couple the motif-based sequence model with models of other, associated data, such

as gene expression patterns. Our use of the ICA framework can help here: models

already exist for ICA of microarray gene expression data (24), and it is possible to

couple multiple ICA systems together by using a shared mixing matrix.

Another direction, which may prove powerful when analysing large data sets,

is to learn rules about the co-occurrence of groups of separate motifs – sometimes

called regulatory modules (10). While applications such as STUBB (25) can search

sequences for clusters of motifs, and learn about co-occurrence of known motifs,

18



it seems reasonable to assume that the sensitivity of motif-finding methods could

be improved by including co-occurrence in the underlying model. However, the

computational cost of adding such an extension to our model would be significant.

An important aspect of NestedMICA is its use of multi-class (mosaic) back-

ground models, rather than the single class Markov chains described elsewhere. We

find that human genomic sequence can be partitioned into four distinct classes, one

of which appears to correspond to the widely reported CpG islands. We are still

uncertain about the biological significance of the three remaining classes, but they

add an intriguing extra dimension to the genome landscape. We suggest that the

previously-reported benefits of using high-order (greater than first-order) Markov

chain background models may actually be a reflection of the mosaic structure in

the genome rather than a result of real high-order constraints in genomic sequence.

If several of the previous bases in a sequence were, for example, purines, then this

suggests that the current context might be a purine-rich region and therefore the

chance of the next base being a purine is higher than would otherwise be expected.

As the Markov chain order increases, the chance of being able to correctly guess the

local compositional bias increases.
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TABLES

Length 100 150 200 300 400 500 600 700

MEME y y n n n n n n

N’MICA y y y y y y y n

Table 1: Discovery of the HLF motif from sets of 100 synthetic sequences of various

lengths. A ‘y’ indicates that the correct motif was found, ‘n’ indicates failure.

Length 200 300 400 500 600

MEME y y n n n

N’MICA y y y y n

Table 2: Discovery of the c-FOS motif from sets of 100 synthetic sequences of various

lengths.

Length 800 1000 1200 1400 1600

MEME y y y n n

N’MICA y y y n n

Table 3: Discovery of the HFH-1 motif from sets of 100 synthetic sequences of various

lengths.

Length 100 200 300 400 500 600 800

MEME y y y y n n n

N’MICA y y y y y y n

MEME decoy y y n n n n n

N’MICA decoy y y y y y y n

Table 4: Discovery of the CREB motif in the presence and absence of a decoy

Tal1beta motif

23



Factor Random score MEME score N’MICA score

MyoD 0.045 0.05 0.31

SRE 0.016 0.21 0.64

CArG 0.014 0.05 0.17

MEF2 0.020 0.44 0.36

M-CAT 0.0093 0.42 0.50

Table 5: ROC scores of best MEME and NestedMICA motifs for binding sites anno-

tated in the muscle regulatory region set. The ‘random’ column gives the expected

score for a factor if predictions were made randomly along the sequences.

FIGURES

Background

Start End

m1 m2 m3 m4

Background

Figure 1: The Zero or One Occurrences per Sequence (ZOOPS) sequence mixture

model, represented as a hidden Markov model. The states labelled m1-m4 are re-

sponsible for modelling the interesting motif while the other states model the non-

interesting remainder of the sequence.
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BackgroundStart End

m1 m2 m3 m4

m1 m2 m3 m4

Figure 2: A multiple-uncounted Sequence Mixture Model containing two motifs. The

black dots are silent states which are not responsible for modelling any part of the

sequence.
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Figure 3: Likelihoods of a set of test sequences given mosaic background models of

various orders and class-numbers.
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Figure 4: a) The original HLF motif from JASPAR. b) results for searching for HLF

in a set of 150 base sequences using MEME. c) MEME with 200 base sequences. d)

NestedMICA with 600 base sequences. e) NestedMICA with 700 base sequences.
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Figure 5: A selection of mammalian JASPAR weight matrices that used for synthetic

data tests.
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Figure 7: The MEF2 motif derived from curated sites, and the corresponding high-

scoring motifs from NestedMICA and MEME.
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Figure 8: The SRE motif derived from curated sites, and the corresponding high-

scoring motifs from NestedMICA and MEME.
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