
The NestedMICA motif finder

Thomas A. Down
Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA

td2@sanger.ac.uk

Version 0.05 [20050202]

Abstract

NestedMICA is a new, scalable, pattern-discovery system, aimed at finding
transcription factor binding sites and similar motifs in biological sequence. This
document describes a preliminary version of NestedMICA – it needs more testing
and polishing before public release. Any text in [square brackets] is a note by
the author, and probably ought to be removed or replaced...

If you have any problems or questions about the system, please contact
Thomas Down.

1 Theory

Motif-finding is a long standing problem in sequence bioinformatics. A typical state-
ment of the problem would be “given a set of sequences, which motifs are significantly
over-represented with respect to a given background model.” In fact, background
models are often ignored but they are very important for real motif-finding applica-
tions, as we will discuss later.

The classical use for motif-finding software is the detection of transcription factor
binding sites in promoter regions, but there are other interesting functional elements
in biological sequences and elsewhere which can be found by motif-discovery meth-
ods.

Motif-finding strategies can be broadly divided into two classes: those which
rely on exhaustively enumerating a set of motifs (generally using an optimized data
structure such as a suffix tree) then reporting the most frequent, and those which
find significant motifs by optimizing or drawing samples from a probabilistic model.
Exhaustive enumeration is a good strategy for finding perfectly conserved motifs (i.e.
every instance is identical), but for typical transcription factor binding sites, which
often have several weakly constrained positions, exhaustive enumeration becomes
problematic and the results usually have to be post-processed with some kind of
clustering system. We will not consider exhaustive enumeration further.

Probabilistic motif-finders treat the supplied sequences as a mixture of ‘interest-
ing’ motifs and ‘non-interesting’ background sequences. This problem has classically
been reduced to a simple case: considering just one motif at a time, model each

1

sequence with a random background model which may, or may not, contain a single
instance of the motif under consideration. This is the zero-or-one occurance per
sequence (ZOOPS) model. It can be easily represented as a hidden Markov model
(figure 1)), and standard techniques such as expectation maximization [1] or Gibbs
sampling [2] can be used to find good sets of model parameters (corresponding to
good motif models).

N N

Start End

m5m4m3m2m1

Figure 1: The ZOOPS sequence mixture model

There are two significant concerns about this strategy which NestedMICA tries
to address

• Real regulatory regions, and most other contexts where interesting motifs can
be found, don’t really contain just a single instance of a single motif. Programs
which use the ZOOPS model work around this by finding the strongest motif
in a set, then scanning for all its instances, masking them out, and re-running
the process on the remaining sequence. This strategy is greedy and it is by
no means clear that its behaviour will be optimal, especially when working
on a system where there is a set of closely related, yet still distinct, motif
types. In an environment where novel transcription factors are created by
gene duplication then diverge to perform a new function, such situations seem
quite probable, and have not yet been well investigated.

• Existing techniques for optimizing or exploring sequence models of this type
tend to be strongly local in nature – they concentrate on regions of the prob-
ability landscape close to their starting point. This is particularly clear for
expectation-maximization methods, which always move in a direction which
increases the likelihood of the model. Sampling strategies don’t strictly have
this limitation, but in practice, crossing the low-likelihood valley between two
high-likelihood peaks is unlikely, often to the point where it becomes vanish-
ingly rare.

2

1.1 Motif ICA

We treat finding multiple motifs in a set of sequences as a form of independent
component analysis (ICA) problem. In linear ICA, a matrix of observations, X is
approximated as a linear mixture, A of some sources, s:

x = As + ν (1)

(where ν is a noise matrix). A classical example is the “cocktail party problem”
where a set of M microphones record different mixtures of the voices of N speakers.
Given samples from these microphones at t timepoints, ICA attempts to factorize
the M ×t observation matrix into a N ×t source matrix and a M ×N mixing matrix.

It’s possible to generalize ICA to any mixing situtation...
In motif ICA, the sources are short sequence motifs (currently, but not necessarily,

modeled as position-weight matrices [3]), while the observations are larger sequences.
There are a number of interpretations of the mixing matrix. Currently, we use a
boolean mixing matrix (all coefficients are either 0 or 1), and a given sequence is
expected to contain a given motif if the relevent mixing coefficient is 1. The ‘noise’
part of the ICA model represents all the sequence which isn’t modelled by one of the
motifs.

1.2 Nested sampling

Nested sampling is an alternative way of performing probabilistic inferene in a
Bayesian framework, proposed recently by John Skilling [4]. It can be considered
to be a Monte Carlo method, since the process is driven forward by a series of ran-
domly chosen events, but it is quite distinct from the classic Metropolis-Hastings
method, and methods such as Gibbs sampling and slice samplings, which can all be
considered as optimized implementation strategies for Metropolis-Hastings.

Nested sampling is applied to an ensemble of states, which represent possible
solutions to the problem at hand. The ensemble is initialized by sampling uniformly
from the prior distribution, then sorting the states according to their likelihoods. In
nested sampling, Eech state in the ensemble is considered to be a representative of
the set of states with similar likelihoods. If the likelihood of each state is drawn as a
contour on the likelihood distribution, we see a nested set of contour lines, converging
towards the peaks of the likelihood distribution. We therefore call the ordered set of
states a nested ensemble. For each cycle of nested sampling, the least likely state in
the ensemble is discarded, and a new state is chosen by sampling uniformly from the
prior subect to the constraint that the likelihood of the new state must be greater
than or equal to the likelihood of the discarded state.

In this context, the most exciting propertly of nested sampling is that, given a
reasonably large ensemble, the final sample drawn from a converged nested sampler
can be expected to reflect the global optimum of hte likelihood landscape. Moreover,
in cases where more than one globally significant optimum exists, these should be

3

represented in the sample set in direct proportion to the amount of posterior mass
they represent.

[NestedMICA 1 only makes full use of the first of these properties. Proper in-
terpretation of multiple samples is difficult because of the inherent symmetry in our
mixture models. NestedMICA 2 will offer faster convergence by taking advatage of
multiple samples]

1.3 Background models

The background model is an important component of the SMM framework – after
all, it will usually be responsible for modeling the majority of the input sequence!
The simplest strategy – and still a common one – is to treat all non-motif sites as
independent and identically distributed. In HMM terms, this makes the background
model a zeroth-order Markov chain. However experience shows that genomic DNA
sequence, even when apparently totally non-functional, is not a good fit to the i.i.d.
model. The best known deviation is perhaps the dramatic under-representation of
CpG dinucleotides in most parts of vertebrate genomes, but other significant effects
are known. In any case, practical experience shows that motif finders equipped
with naive background models tend to report low-complexity elements rather than
interesting binding sites.

The first obvious improvement is to replace the zeroth order Markov chain with
a first order chain (i.e. the probability of observing a particular symbol at position n

depends on the symbol at position n−1). This model is good at capturing anomalies
like the CpG underrepresentation. The success of first order background models has
led some researchers to investigate higher order models. One investigation of Markov
chain backgrounds can be found in [5]: this concludes that pentanucleotide frequency
tables (i.e. fourth-order background models) are optimal. However, there are two
concerns about this result: firstly, it leaves an open question about what these
high-order correlations in background sequence mean (and why fourth-order models
appear to outperform fifth-order). Also, training a background model generally
requires sequence propoortional to the number of free parameters in the model.
Fifth order models, with 768 parameters, therefore require large amounts of sequence.
Moreover, it is desirable to train the background model on sequence which does not
contain target motifs, since a fifth order model could easily capture some information
about this motifs, thereby reducing the sensitivity of the motif-finding process. But
it is hard to find large amounts of representative background training sequence which
doesn’t contain interesting motifs.

[Maybe this explains why fifth order is optimal – higher order models always
capture more motif information than you gain by improving the background fit].

A different way to generalize the naive background model is to allow several
different classes of sequence, each with its own particular base distribution (which
could be zeroth-order or higher-order). We call these mosaic models, since their
underlying assumption is that genome evolution includes some set of constraints
which act non-uniformly, even on background sequence.

4

To investigate the benefit of mosaic models, we took a set of human upstream
flanking regions, and split the set in half, using one subset to optimize the background
model parameters and the second subset for testing. Test likelihoods for a variety
of class numbers and Markov chain orders are shown in figure 2. Considering one
class ‘mosaics’ (which are equivalent to uniform background models), we repeat the
previously reported observation that higher order Markov chains are better models
of genomic DNA. However, we also see large increases in likelihood when moving to
larger numbers of mosaic classes. Interestingly, the lines for zeroth-order and first-
order models run almost paralell: this suggests that the benefits of mosaic models
are almost orthogonal to the benefits of first-order models. However, this is not true
when moving beyond first-order models.

-14000

-13900

-13800

-13700

-13600

-13500

-13400

-13300

-13200

 0 2 4 6 8 10

Li
ke

lih
oo

d
of

 te
st

 s
eq

ue
nc

es

Mosaic classes

Order 0
Order 1
Order 2

Figure 2: Comparison of mosaic backgrounds

Based on these results, we recommend the use of a four class, first order, mo-
saic background model for most motif-finding applications on mammalian genomic
sequence. In practice, the four classes appear to be:

• A relatively neutral class

• A C+G rich class (CpG islands?)

• Purine rich

• Pyrimidine rich

[Probably the observation that > first order Markov chains appear to be helpful
is artifactual – if several of the previous bases were pyrimidines, it’s likely that you
are in a pyrimidine-rich block, and therefore the probability of observing another

5

pyrimidine increases. It ought to be possible to test this on synthetic data sampled
from a mosaic model.]

There are still open questions about the biological significance of the mosaic
classes we have observed...

2 Running NestedMICA

NestedMICA is open source software, released under the GNU Lesser GPL. The
main program is written in Java, but there are a few small pieces of native C code
which are required. The C code is simple and (hopefully) portable, so it should be
possible to run NestedMICA on most modern computer platforms.

The NestedMICA source distribution can be downloaded from http://www.sanger.ac.uk/Users/td2/nmica.
This distribution includes all the required library code. To compile the Java code,
you’ll need a recent version of the ANT java build tool, which can be downloaded
from http://ant.apache.org/.

2.1 Compilation

The main body of the NestedMICA code is written in Java. To compile this, type
ant. This will compile all the Java code and package it as a JAR file, located in
ant-build/nmica.jar.

For performance reasons, there is also a small amount of C code, which must be
compiled separately. To compile it, change into the native directory and type:

make -f Makefile.PLATFORM

Currently supported platforms are OSX (Mac OS X), gcc (most Intel platforms
which use the GCC compiler), and icc (Linux with the proprietary Intel ICC com-
piler). The Linux/Unix makefiles require that you have the JAVA HOME environment
variable set to point to your JDK installation. The native code is generally called
something like libnmica.so, but this can vary a bit depending on platform, e.g.

libnmica.jnilib, nmica.dll. Note that we’ve had reports of problems when build-
ing on Mac OS with old developer tools (before gcc version 3.1). If in doubt, please
install the latest developer tools.

Wherever possible, we recommend the latest available JDK release. In particular,
there are some significant performance improvements in Sun JDK 1.5 compared to
1.4.2.

The main NestedMICA programs can be run using simple wrapper scripts which
are included in the bin directory of the NestedMICA distribution. You should add
this directory to your PATH environment variable, e.g.:

export PATH=‘pwd‘/bin:$PATH

The wrapper scripts locate all the Java and C code they need relative to the
place where the scripts are located, so if you need to install NestedMICA in a new

6

location, copy the complete directory structure (minus the src directory if you don’t
want that) to the desired location, then set your PATH accordingly.

Note that the wrapper scripts will only work on Unix-like systems. If you need
to use the code on an exotic platform, you’ll need to write your own wrapper scripts
or call the Java code directly.

2.2 Basic operation

This section describes a (very) small set of test sequences named micatest100.fa.
This consists of 100 synthetic sequences, each of 50 bases long. The set contains two
spiked-in motifs.

Given a new dataset, the first step is to obtain or train a suitable background
model. In this case, a simple model can be trained using:

makemosaicbg -seqs micatest100.fa

-mosaicClasses 1 -mosaicOrder 1 -out mt100.sbg

Note that, despite the name of the program, this won’t be a true mosaic back-
ground, since it is limited to a single class. If the -mosaicClasses paramater is
increased, mosaic models with arbitary numbers of sequence types can be trained
using this program.

[Future versions may come with a tool for automatically optimizing the back-
ground model architecture].

Once the background model is trained, you can start the motif finder using a
command like:

motiffinder -seqs micatest100.fa -backgroundModel mt100.sbg

-numMotifs 2 -ensembleSize 50

This runs the motif finding system until the nested sampling process is close to
convergence, then writes the optimal set of motifs to a file named motifs.xms.

To view the results of a motiffinder run, type:

motifviewer motifs.xms

This runs a simple viewer application, as shown in figure 3. If your test run
doesn’t find the two motifs shown here, please contact the author. MotifViewer has
some simple capabilities for arranging and annotating motif sets [more about this
once I’ve sorted out the UI...]

The sample files contain motif data in a NestedMICA-specific binary format
(actually serialized instances of BioJava WeightMatrix objects).

7

Figure 3: Motifs discovered from the demonstration set.

2.3 Motif-finding options

The MotifFinder program has many options. A complete list can be seen by viewing
the Java source code: whenever you see a method named setFoo, it means that -foo
can be used as a switch on the command line. These option are, however, gradually
being rationalized. Undocumented options may disappear in the future!

All boolean options can be negated by prepending no, but this follows Java
capitalization conventions e.g. the negation of -revComp is -noRevComp.

2.4 Everyday options

These are options that you’ll use all the time, and are generally well-behaved.
-numMotifs n specifies the number of motifs you want to find (default=1).
-targetLength n the maximum length of motifs to find (default=10).
-seqs filename a FASTA-formated database of sequences to analyse.
-backgroundModel filename the background model to use, normally generated

by running the MakeMosaicBackground program.
-outFile filename name of a file to write the final motif set (default motifs.xms)
-sampleFile filename name of a file to write periodic samples during the motif-

finding process. If you run the finder with the option -sampleFile foo, it will write
sample files foo.1000.xms, foo.2000.xms, etc.

-sampleInterval n number of cycles between sample files (default=1000).
-maxCycles n the maximum number of cycles to run the sampler. The program

will then exit regardless of convergence status. Currently the criteria for deciding
when the process has converged are quite conservative, so this option may be useful.

-ensembleSize n the size of the nested ensemble used to explore the probability
landscape. Larger values improve reproducibility at the expense of speed. Default
behaviour is to set the ensembleSize to 200 for large problems (>= 5 motifs), but
to use larger ensemble sizes when learning less motifs, up to a maximum of 1000
when learning a single motif. This should give maximum sensitivity under most
circumstances. When learning one or two motifs from a very simple dataset, you
may want to explicitly force a small ensembleSize for performance reasons.

-revComp allow motifs to occur in either orientation (off by default, slows the
program down by a factor of about 2).

8

-cluster prefer motifs which occur in clusters. Causes a small slowdown in
training. Currently not sure how helpful this is.

2.5 Advanced options

More complex options, that we’d prefer weren’t there. If you’re interested in these,
it’s probably best to discuss them with Thomas Down.

-mixtureType (binary|flat|logit|weighted)Wierd switch which effects the
interpretation of the mixing matrix. Default is binary, leave it that way unless you
know what you’re doing.

-mixtureUpdate (resample|weakResample|max|queue|random)Strategy for up-
dating the mixing matrix during training. resample is the best in theory and works
well for most problems. weakResample gives better results on large sets of human
promoters. Don’t use any of the others.

-expectedUsageFraction d number between 0.0 and 1.0 giving the prior belief
of motif frequency. Default is 0.5. Try 0.1 if you think motifs are rare, 0.9 is you
think almost all the sequences are likely to contain an instance.

-crossOverProb d controls how rapidly information is exchanged through the
nested ensemble. Values > 0.5 may increase convergence speed, but increase the risk
of learning duplicate motifs.

-replaceComponentProb d controls how often the trainer tries to completely re-
sample a model component. Default is 0.2 which is probably good for most purposes.

2.6 Checkpointing

To minimize the risk of data loss during long runs, NestedMICA can generate check-
point files at regular intervals during the training process. If you want to keep
checkpoint files, add the following arguments to your MotifFinder command line

-checkpoint mycp -checkpointInterval 1000

Like sample files, checkpoints are automatically numbered with the cycle number
at which they are taken. Unlike samples they files are rather large (typically several
megabytes, increasing rapidly with dataset and nested ensemble size). By default,
MotifFinder deletes old checkpoints: in the standard configuration only two check-
points are kept on disk, so after the third is written, the first will be deleted. This
behaviour can be changed using the -keepCheckpoints option.

To restart from a checkpoint:

motiffinder -restartFromCheckpoint mycp.12000.jos

-maxCycles 100000 -sampleFile sample -sampleInterval 10000

-checkpoint mycp2 -checkpointInterval 1000

Note that, while the entire trainer state is restored from the checkpoint file, cur-
rently none of the ‘housekeeping’ options (termination, sampling, and checkpointing)

9

are, so it is necessary to re-specify them when restarting the checkpoint. This is po-
tentially useful if you want to continue the training of a run which hasn’t quite
converged for a few extra cycles.

2.7 Alternate background models

There is an alternative background model designed specifically for finding non-
coding motifs embedded within protein-coding sequence. These are trained using
the MakeCodingBackground program. Contact Bernard Leong for more details.

To use a totally custom background model, write a new implementation of the
net.derkholm.nmica.model.motif.SequenceBackground interface, then construct
a suitably parameterized instance and write it to disk using the standard Java seri-
alization mechanism.

2.8 Multithreaded operation (SMP machines)

If you are running on a multi-processor machine, add the option -workerThreads

N to the MotifFinder command line, where N is the number of processors in the
machine, or the number of CPUs in a large multiprocessor server that you want to
devote to MotifFinder. This mode of operation is quite efficient, often giving better
than 95% scaling from one to two processors.

2.9 Distributed operation (clusters, farms, Beowulfs, etc.)

An alternative approach to paralelizing a large MotifFinder run is distribute the
workload over multiple nodes. Start MotifFinder as usual, but add the options:

-distributed -port XXXXX

You may use any port number between 1024 and 65535, but if you are running
multiple MotifFinder jobs on one cluster, you should give each job a unique port
number. This process will be your master node. Once it has started up, you can run
any number of worker nodes, which will evaluate sub-problems for the master node.
To run a worker node:

dlepnode -server YYYYY -port XXXXX

Where YYYYY is the name (or IP address) of the master node, and the port
number matches that used to start the master. To remove a worker node from the
cluster you can simply kill the process. It’s fine to add and remove workers at any
point during the run, although there is currently a short (1̃5 seconds) glitch after
a worker dies during which no work will be done. If the MotifFinder run ends
normally, all associated worker nodes will be sent a shutdown message, but under
other circumstances it may be necessary to kill worker nodes manually.

10

2.10 Care-free comparative genomics

If groups of orthologous regulatory regions are available, NestedMICA can take ad-
vantage of the known relationships between species. Unlike phylogenetic footprinting
and other ‘infinite monkeys’ techniques, comparative NestedMICA does not consider
the alignments of the sequences, but simply assumes that orthologous regulators are
likely to contain similar complements of motifs. In practice, this is implemented by
using a single row of the ICA mixing matrix to model all the orthologs.

To run NestedMICA in comparative mode, just add more than one -seq option
to the MotifFinder command line. If two sequences in different files share the same
name, they will be treated as orthologues.

There are two options for providing background models in comparative mode.
If only one -backgroundModel switch is present on the command line, that sin-
gle background model will be used for all species. Alternatively, you can train
a separate background model for each species, and specify them with multiple
-backgroundModel switches, e.g.

-seq human.fa -backgroundModel human.sbg

-seq mouse.fa -backgroundModel mouse.sbg

If you use multiple background models they must be listed in the same order
as the sequence databases, and there must be exactly equal numbers of sequence
databases and background models.

If ortholog information is only available for some sequence, that’s fine.
There is no limit to the number of species that can be used (except for practical

memory limits). We would expect to see diminishing returns beyond about 4 species,
but much more testing is needed to determine the optimal configurations.

[When using more that two species, there ought to be some option to specify
approximate branch lengths, and weight the contributions accordingly.]

References

[1] Bailey T, Elkan C: Fitting a mixture model by expectation maximization

to discover motifs in biopolymers. In Proceedings of the Seconding Interna-

tional Conference on Intelligent Systems for Molecular Biology 1994:28–36.

[2] Thompson W, Rouchka E, Lawrence C: Gibbs Recursive Sampler: finding

transcription factor binding sites. Nucleic Acids Research 2003, 31:358–
3585.

[3] Bucher P: Weight matrix descriptions of four eukaryotic RNA poly-

merase II promoter elements derived from 502 unrelated promoter

sequences. Journal of Molecular Biology 1990, 212:563–578.

[4] Skilling J: Nested Sampling[[http://www.inference.phy.cam.ac.uk/bayesys/]].

11

[5] Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouze P, Moreau Y:
A higher-order background model improves the detection of promoter

regulatory elements by Gibbs sampling. Bioinformatics 2001, 17:1113–
1122.

12

