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Module 5:  Assembly 

Introduction 

Improvements in DNA sequencing technology have led to new opportunities for studying 
organisms at the genomic and transcriptomic levels. Applications include studies of genomic 
variation within species and gene identification. In this module we concentrate on data 
generated using the Illumina Genome Analyzer II, although the techniques you will learn are 
applicable to other technologies (e.g. 454 GS FLX and ABI SOLiD). A single machine can 
produce around 60 Gigabases of sequence data in a week! This is the equivalent of around 20 
human genomes! The data from the Illumina machine comes as relatively short stretches 
(35-105 base pairs) of DNA - around 300 million of them. These individual sequences are called 
sequencing reads. The older capillary sequencing method produces longer reads of ~500bp, 
but is much slower and more expensive. 

One of the greatest challenges of sequencing a genome is determining how to arrange 
sequencing reads into chromosomes. This process of determining how the reads fit together by 
looking for overlaps between them is called genome assembly. Capillary sequencing reads 
(~500bp) are considered a good length for genome assembly. Genome assembly using sequence 
reads of <100bp is more complicated due the high frequency of repeats longer than the read 
length and the massive amount of data. 

Nevertheless assembly is possible, although the results won’t be “perfect”; there will be many 
separate contigs for each replicon. When doing assembly with short reads, the most complicated 
part is to find all the possible overlaps between all the reads. One efficient way is to look for k-
mers (words of a specific length) in each read. If two reads contain the same k-mer they might 
also overlap. Each read contains several k-mers (n-k+1, assuming n is the read length). k-mers 
from the same read are connected in a graph. (A graph is an construct that helps to visualise 
abstract data structures. It has nodes that are connected by edges.) For our purpose we encoded 
the k-mer in a de Bruijn assembly graph (see overleaf). The next step is to simplify the graph 
and try to generate connected sequences, where k-mers in the graph are connected.  

Many short read assemblers exist and most are based on de Bruijn graphs, like Velvet (Zebrino 
et al., 2008) or ABYSS (Simpson et al., 2009). Although you don’t really need to know how an 
assembler works, merely get good results, here is a little example of a graph. 

Assembly of Sequence Data 
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Here we are going to do an assembly by hand.  
You have been given a set of reads. Generate all the different k-mers of length 5 and include them 
as nodes in the de Brujin Graph (second white box). We already generated most of the nodes, just 
four are missing. Next connect all the k-mers that are shared in a read. This should connect most of 
the nodes in the graph. Last find the path through the graph and generate contigs. 
(In this example we ignore the reverse complement!) 

Enter here the contig sequence: 

What is the difficulty here?  

Tip: In bacteria this kind of problem always occurs. The aim would be that the contig starts at 
the origin of replication. Can you do this here? To help you, maybe translate the contig into 
amino acids.... 

GAGCTG 

AGCTGG 

GCTGGT 

CTGGTG 

TGGTGA 

GGTGAT 

GTGATC 

TGATCA 

GATCAG 

ATCAGC 

TCAGCG 

CAGCGA AGCGAG 
GCGAGC 

CGAGCT 

AGCTG 

GCTGG 

CTGGT 

TGGTG 

GGTGA 

GTGAT 
GATCA 

ATCAG 

TCAGC 
CAGCG 

AGCGA 

Reads 

de Brujin Graph 
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 A: Generating de novo assemblies is useful even with a reference    

 In this exercise we will look at a the genome of a lab strain of P. falciparum, the IT clone. 
The reads are already mapped against the reference. We will look at some features in the 
mapping, as we did with Chlamydia. Maybe we will find regions that we cannot properly 
analyse without doing assembly.  

Open up a terminal and navigate to the course data directory, then type: 

$ cd /home/wt/Module_5_Assembly/!

Now open Artemis with chromosome 5 of P. falciparum 3D7 including the mapped reads 
of the IT clone. 

$ art -Dbam=IT.Chr5.bam,var.IT.Chr5.bcf Pf3D7_05.embl!

If you like, you can also map the reads yourself, the fastq files are called: IT.Chr5_1.fastq 
and IT.Chr5_2.fastq and the reference is Pf3D7_05.fasta. 

 Maybe have a look through the genome. Do you find something unexpected? 

 As a hint: 
 - Should all the region be covered by reads? 
 - Should the coverage be even? 
 - What kind of variance (i.e. SNP’s) would you expect to see? Can they be heterozygous 
in a haploid genome? 
 - Are there read pairs that outside of their expected insert size?  
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Here are some examples of regions, with problematic mapping: 1) Gene not covered. 2) 
Heterozygous SNP. 3) Read pairs too far apart. 

2. Should there be 
heterozygous SNPs in 
a haploid lab strain? 

1. Why is this gene 
not covered? 

3. Why are the mate 
pairs further apart? 
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 One way to resolve problematic mapping is to do an assembly. Here, we go through step 
by step how to perform an assembly and analyse it. This will be just a draft assembly, 
which wouldn’t be the final result, but it should give insight into some of the problems 
discussed above. 

We are going to use the assembler Velvet. As input we are using an ordered sam file. You 
could do this from the original bam file, but this would take around 10minutes, so we will 
skip to the pre-generated sam file. The command would be:  
samtools view IT.Chr5.bam  | sort > IT2.Chr05.sam 
Samtools view prints all the read information out, which will be ordered by the sort 
command. The “>” redirects the sort output to the file IT.Chr05.sam. From this file we 
are going to do the k-mer hashing. 

$ velveth k.assembly.49 49 -shortPaired -sam IT.Chr5.sam  

49 is the k-mer size. “k.assembly.49” is the name of the directory where the results are 
going to be written. The other options specify the type of the input data. If you want to see 
all input options, use: 

$ velveth  
(Don’t worry – not all options have to be used!) 

Now the assembler has to build the graph and find the path, as we did before in the 
exercise: 

$ velvetg k.assembly.49 -exp_cov auto  -ins_length 350  

The first parameter (k.assembly.49) specifies the working directory. The second (-exp_cov 
auto) is to let velvet find the median read coverage rather than specify it yourself. Last, the 
insert size of the library is given (-ins_length 350).  
There is a lot of output, but the most important is in the last line: 

Final graph has 978 nodes and n50 of 10508, max 54529, total 1374552, using 
1397134/1510408 reads. (Result might differ depending on the velvet version used). 

This line first gives you a quick idea of the result. 978 nodes are in the final graph. An n50 
of 10508 means that 50% of the assembly is in contigs of at least 10508 bases, ie it is the 
median contig size. This n50 parameter is most commonly used as an indicator of assembly 
quality. The higher, the better! “Max” is the length of the longest contig. “Total” is the size 
of the assembly, here 1347kb. The last two numbers tell us how many reads were used from 
the 7.5 million pairs.  

B: Doing the first assembly 
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First rerun velvet as before, with a k-mer size of 49, but using more parameters. As parts of 
the graph are already done, the program will run far quicker. velveth doesn’t need to be 
rerun. 

$ velvetg k.assembly.49 -exp_cov auto  -ins_length 350 -
min_contig_lgth 200 -cov_cutoff 5 

Maybe try assemblies for different k-mer sizes i.e. 55, 41, here the example is a k-mer 
length of 55  

$ velveth k.assembly.55 55 -shortPaired -sam IT.Chr5.sam  

$ velvetg k.assembly.55 -exp_cov auto  -ins_length 350 -
min_contig_lgth 200 -cov_cutoff 5!

Write down the results for each assembly made using different k-mer sizes. Which one 
looks the best?: 

k-mer        Nodes         n50         largest contig!

41!

49!

55         !

If you want to play with other parameters, like the  -min_pair_count, go for it. All the 
options can be seen by typing: 

$ velvetg  

 That wasn’t too bad! Now we have to try to improve the assembly a bit. The kmer size has 
the biggest impact. Also the -cov_cutoff parameter can play a role. This means that nodes 
with less than a specific k-mer count are deleted from the graph. More parameters can be 
changed, but we would run out of time. In the beginning the changes look a bit random, but 
with more experience, you will get a feeling for them. 

 All the results are written into the directory you specified, e.g. k.assembly.49. The final 
contigs are in contigs.fa. The stats.txt file holds some information about each contig, its 
length, the coverage, etc. The other files contain information for the assembler.   
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Just type: 

$ stats k.vel*/*.fa!

stats for k.assembly.41/contigs.fa 
sum = 1435372, n = 199, ave = 7212.92, largest = 75293 
N50 = 22282, n = 19 
N60 = 16569, n = 27 
N70 = 13251, n = 37 
N80 = 9535, n = 49 
N90 = 4730, n = 69 
N100 = 202, n = 199 
N_count = 51974 
------------------------------- 
stats for k.assembly.49/contigs.fa 
sum = 1452034, n = 175, ave = 8297.34, largest = 85317 
N50 = 28400, n = 17 
N60 = 26582, n = 23 
N70 = 16485, n = 29 
N80 = 12065, n = 39 
N90 = 6173, n = 55 
N100 = 202, n = 175 
N_count = 57000 
------------------------------- 
stats for k.assembly.55/contigs.fa 
sum = 1461496, n = 181, ave = 8074.56, largest = 71214 
N50 = 28059, n = 19 
N60 = 22967, n = 25 
N70 = 14871, n = 33 
N80 = 11360, n = 44 
N90 = 4885, n = 64 
N100 = 205, n = 181 
N_count = 69532 

 Another way to get more stats from all the runs is to use a little program called stats. It 
displays the number of contigs, the mean size and a lot of other numbers. It might help to 
pick “the best” assembly. 

 It looks that the best choice is a k-mer size of 49. The n50, average contig size and the 
largest contigs have the highest values, while contig number is the lowest. Before we look 
at the assembly itself, what could the N_count mean? 
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 As we discussed before, DNA templates can be sequenced from both ends, resulting in 
mate pairs. Their outer distance is the insert size. Imagine mapping the reads back onto the 
assembled contigs. In some cases the two mates don’t map onto the same contig. We can 
use those mates to scaffold the two contigs e.g. orientate them to each other and put N’s 
between them, so that the insert size is correct, if enough mate pairs suggest that join. 
Velvet does this automatically (although you can turn it off). The number of mates you 
need to join two contigs is defined by the parameter -min_pair_count.  

 Here is the description: 
 !!-min_pair_count <integer>       : minimum number of paired 

end connections to justify the scaffolding of two long 
contigs (default: 5)  !

 Here a schema: 

Reads and 2 mate pairs 

Contigs oriented by mate pairs 
Scaffold  nnn 

Scaffolding 

It might be worth mentioning that incorrect scaffolding is the most common source of error in 
assembly (so called mis-assemblies). If you lower the min_pair_count too much, the likelihood 
of generating errors increases. 
Other errors are due to repeats. In a normal assembly one would expect all the repeats to be 
collapsed, if they are smaller than the read length. If the repeat unit is smaller than the insert 
size, then it is possible to scaffold over it, leaving space for the repeats with “N”s. 

To get the statistics for the contigs, rather than supercontigs, you can use following command: 

$ countContigVel.sh k.assembly.49/contigs.fa!

Changing the files name depending on the assembly for which you would like the statistics. 
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Velvet has an option to use a reference sequence to help to resolve repetitive k-
mers. When velvet cannot resolve a repetitive region in the de Brujin graph, it can 
look up where reads map against in the reference. Remember, the k-mer is always 
shorter than the reads. So the k-mer can be repetitive (it occurs at least twice in the 
genome), but not necessarily the read. Knowing from which regions of the genome 
the repetitive k-mer originates from can help to untangle the graph into a simpler 
graph by splitting nodes. This simplifies the search of the path through the graph. 
This module is called velvet columbus. 

Although it is still a work in progess, the results seem to be better than the normal 
assembly. The only difference would be to include: -reference -fasta 
Pf3D7_05.fasta in the velveth call. It is important to map the reads against an 
accurate reference which we have made previously. 

For the following exercises we are going to use the assembly with a k-mer of 55.  

C: Reference based Assembly 

Run it as follow: 

$ velveth k.columbus.55 55 -reference -fasta Pf3D7_05.fasta  
-shortPaired -sam IT.Chr5.sam !

$ velvetg k.columbus.55 -exp_cov auto  -ins_length 350 !
-min_contig_lgth 200 -cov_cutoff 5 

Now compare the results using the stats program. Are they better? 

$ stats k.*/*.fa 
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 So far we have only looked at the stats for our assembly, and don’t know anything about 
the content of each contig. One way to look at this would be just to open the contigs in 
Artemis.   

 !! 

Assuming you want to look at the k-mer 55 of the velvet columbus assembly, type: 

$ art k.columbus.55/contigs.fa!

Although we see some open reading frames, a lot of work would need to be done to produce 
gene models e.g. find open readings frames, adjust the gene boundaries, do functional 
annotation, to then start to compare this assembly of the IT clone to the reference sequence. 

There is a better way! Couldn’t we use the reference somehow? 

Optional: Which gene is in the first open reading frame? Can you generate a gene model 
and blast it?  
(Double click mouse wheel or middle button over the open reading frame (ORF); “Create” -
> “Feature from base range”; Accept the new model; Select the model and “Run” a “BLAST 
against Uniprot”) !

 Possible CDS have no stop codons and 
high GC content 

Select “Create” and “Mark 
 Ambiguities”. This will show 
 you the gaps in the supercontigs. 

D: Looking at the assembly 
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 At the Wellcome Trust Sanger Institute we have developed a tool called ABACAS (Assefa 
et al., 2009) to order contigs against a reference. Any spaces between the contigs (gaps) can 
be filled in with “N” characters. The result is called a pseudo-molecule. This can be loaded 
into ACT (a bit like a sandwich of two Artemis views) and then be analysed. 

In order to start ABACAS you need a reference sequence (Pf3D7_05.fasta) and the contigs 
(we assume k.assembly.49/contigs.fa - but you can use another assembly). Next you decide 
if you want to do a comparison of nucleotides (nucmer) or amino acids (promer).  

$ abacas.1.3.1.pl -r Pf3D7_05.fasta -q k.columbus.55/
contigs.fa -p promer -b -d -a -o IT.ordered!

Abacas has many options. We use  
-b to generate a bin of contigs that don’t map. This is very important 
-a to append the bin onto the pseudo-molecule 
-d to use the standard comparison parameter, which is in this case faster 
-o to give the prefix for the output file name (IT.ordered) 

The command  

$ abacas.1.3.1.pl -h  

will give you a complete list of all options. 

-s  int  !minimum length of exact matching word (nucmer default = 12, 
!promer default = 4)!

Higher values decrease the runtime but gives lower sensitivity. 

-e       !Escape contig ordering i.e. go to primer design!
If you would just like to generate primers over gaps regions. 

-c    !Reference sequence is circular!

E: Contig ordering 
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Once abacas is done, it indicates which files it generated and how to load them into Act: 

Before opening the files in ACT, we can generate a BLASTN comparison file. (You can 
also generate a TBLASTX file if you want to focus on comparing the genes): 
$  ���formatdb -p F -i Pf3D7_05.fasta!
$  blastall -p blastn -m 8 -e 1e-20 -d Pf3D7_05.fasta -i 
IT.ordered.fasta -o comparison.blast!
$ act Pf3D7_05.embl comparison.blast <(cat IT.ordered.tab 
IT.ordered.fasta  ) &!

ACT has two Artemis  
windows   

Similarity between the 
selected items   

Interestingly, this is 
a VAR gene , which was  
not covered by mapped 
reads, see page 4!   

Contigs ordered and 
complemented 

against the reference.   

Gene models of  
reference   
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Scroll though the assembly. Maybe zoom in and out. How does it look? Are there any assembly 
errors?  

What happened with the gene PF3D7_0532500? 

Why does the contig has 
not similarity with the 
reference at this position? 

There are no big mis- 
assemblies, as there are 
no big synteny breaks.  

Why are those contigs not 
ordered against the 
reference? 
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We ran abacas with the -a option. This means that contigs that didn’t map against the reference are 
appended at the end. Scroll to the right hand site. Any idea what those contigs are? Could you order 
some into the core of the chromosome?  

This contig is indeed wrongly ordered. If you want 
you can do the following optional exercise to order 
the contig manually. 

Don’t close ACT for the next exercise.  

This looks like a CDS. Can you determine the 
function? It seems to have similarity to the 
reference.  
Why is it not ordered against the reference? 

Has this gene not enough 
similarity or were the contigs not 
ordered well enough? 

1. Right click -> View selected 
matches. Double click on it.  
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Here we describe how you can reposition (or re-order) a contig of your choice manually 
using drag and drop. At first it might feel fiddly, but just give it a go. 

First note the name of the contig you want to reposition (NODE_132). Next note down 
between which contigs you want to place it (NODE_131 and NODE_138). 

F: Manual contig ordering (Optional) 

1. Right click on the contig to 
order -> Edit -> Contig Ordering. 

2. Right click and zoom in x1/10. 
Be a bit patient when you zoom, 
give time for the window to 
update. 

3. Select the contig, and drag it to the left  

4. Do this until you place the contig at the correct position. Maybe use the zoom functions. Just 
play around. 
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Observe, when you move the contig around, the ACT window gets automatically updated. 
(In some cases, the ACT comparison might look strange; just scroll to update the 
comparison file.)  

The gene order is now restored. Any idea why the contig might have been placed wrongly 
by ABACAS? 

As this exercise is optional, and we are using a pre-computered bam file for the next exercise, you can 
either: 
1.  Save the assembly with the ordered contig, and remap the reads, or 
2.  Close ACT without saving and reopen it. 
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 The motivation for the assembly was to untangle regions where the mapping looked weird. 
For example, reads don’t map against VAR genes as the amino acid identity between them 
is less than 30%.   
Obviously, we want to see if the two gene examples from page 4 are in better shape.  

G. Evaluating the assembly 

If you are using your own assembly (not the k.columbus.55/contigs ordered with abacas), 
map the reads (IT.Chr5_1.fastq / IT.Chr5_2.fastq) with bwa against your abacas results. 
If you want to use a preprocessed version (we use a BLAST comparison rather the crunch 
file, as this will make the differences more obvious), just type : 

$ act Pf3D7_05.embl Pre/comp.blast Pre/abacas.artemis!

If you have mapped the reads yourself, adapt the command. You can do the BLAST with: 
formatdb -p F -i Pf3D7_05.fasta 
blastall -p blastn -W 30 -m 8 -e 1e-20 -d Pf3D7_05.fasta -i <your abacas ouptut> -o 
comp.blast 
(adapt the command to your input file)!

 First load the bam file  
IT.Chr5.bam onto the reference 

 Next load the bam file  
Pre/IT_onDenovo.bam (this file 
is different if you remapped the 
reads onto the ordered contigs). 

So the next task would be to compare the reads mapped against the reference to the 
reads mapped against the assembly. Notice, these are the same reads! Skim through 
the assembly, and look for: 
1. Regions that aren’t covered in the reference but are in the ordered contigs 
2. Regions where the mapping against the reference is weird (i.e. heterozygous SNP, 
distant mate pairs) 
3. Partially mapped reads 

Important: highlight SNPs (BAMVIEW window, right click, show SNP MARKS). 

So far we have already established that the VAR genes were too divergent to have 
mapped reads, but the de novo assembly of them looks good. 
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 Gaps 

PF3D7_0504700: Though the assembly has better mapped 
reads, there are still gaps in the new gene model. 

 Those regions look better! 
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In summary, we did different assemblies and could improve some regions. Our new 
chromosome 5 of the IT clone has some gaps, but most of the difficult regions are now in a 
better shape. The best way to prove this is to see which reads map with their full length, 
without any differences to the reference (red marks). 

You may have noticed that the new assembly doesn’t have any annotation. Before we work 
on this, some more comments on assembly…!

 This regions has definitely improved. If you zoom 
further in, you’ll see it is a repetitive region.  

 PF3D7_0530900: IT has an insertion at this position. 
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Were you able to find a mis-assembly? Look for synteny breaks, where a region maps to 
another part of the genome. 

H: Manual correction of assembly (Optional) 

This regions of the reference has 
similarity to another region of 
assembly.  

In the new assembly 
there is a gap. 

Find the region with the similarity in the new assembly. Does it look like a mis-assembly?  

What kind of information could you use to track down a possible mis-assembly?!



-21- 

Module 5:  Assembly 

This looks like a mis-assembly. But yet we don’t 
have the full proof! Zoom in at that position and 
have a look at the mate pairs. 
Filter the Proper Pairs (right click, Filter) 

Now you can see reads that map 
on the reverse strand. Right click 
on one read and select first the 
last, then the second last option.  

This is the region 
with the similarity. 

There is again a 
gap. 

Change the view -> Strand 
Stack. Can you see read 
pairs that bridge this gap? 

The last option shows you where the read and the mate are 
mapping. This data are actually from the BAM file.  
The second last option will take you to the position where 
the mate is mapping. Where is it? 
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 Over ten mate pairs indicate that they are mapping very far apart, and suggest that the contig 
should be broken here and placed in the gap that we saw on page 20. With the fact that synteny 
breaks in the core regions of Plasmodium are rare and the assembly has a contig break at the left 
hand side, we can assume that this is a mis-assembly.  

 If you want to fix the mis-assembly, this is the way to do it: 

Please be aware that this is a pretty advanced editing. At the Wellcome Trust we are currently  
working on software to break these regions automatically. (Perhaps google in for REAPR)  
After this step you can order the new contig set again with abacas.   

Perl could help here to find the reads that map wrongly in an easier, more automated way. 

1. Delete the light blue contig. 

2. Select the region that is misplaced. 
The reads can help you! 

3. Right click on the selected region  
-> Create -> Feature from Base Range 

4. Change the key to contig, and press 
apply. 

5. Now you can order this contig 
manually as before 
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Though until now we could determine that the assembly represents the sequence, it is not 
perfect, as it still has compressions and gaps. One reason for this is that the assembly of 
Plasmodium is more difficult than that of most bacteria (due to the high AT content and 
repeats). It is nevertheless a useful example, highlighting the problems you will 
encounter when assembling genomes.  
A good assembly of a bacterial genome will return 20-100 supercontigs. Here we 
describe which methods you could use to improve the assembly. All the tools are 
installed on the USB stick.  

SSPACE: This tool can scaffold contigs. Although velvet also scaffolds contigs, 
SSPACE generally performs better. 

Abacas has the option to design primers which can be used to generate a PCR product to 
span a possible gap. This new sequence can then be included in the assembly. This 
process is called finishing.  

Image (Tasi et al, 2010) is a tool that can close gaps in the assembly automatically. First 
the reads are mapped against the assembly. When one mate maps close to a gap and its 
mate would be “in the gap”, all those reads and their mates are gathered together and a 
local assembly is done. This is repeated iteratively. This procedure can close up to 80% 
of the sequencing gaps. 

iCORN (Otto et al, 2010) can correct base errors in the sequence. Again, reads are 
mapped against the reference and differences are called. Those differences that pass a 
certain threshold are corrected. A correction is accepted if the amount of perfect mapping 
reads doesn’t decrease. This algorithm also runs iteratively. N.B. perfect mapping = the 
read and its mate map in the expected insert size without any difference to the iteratively 
derived reference. 

If you are interested in running these programs it is worth downloading the PAGIT suite 
(post assembly genome improvement toolkit), that contains tools including IMAGE and 
iCORN to improve genome assembly. (http://www.sanger.ac.uk/resources/software/
pagit/) 

Further improvement to assemblies 
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 So far we did a completely new assembly of one chromosome of Plasmodium. The main 
motivation was to resolve issues of mid size indels and sequence which is too divergent or 
novel.  

 If you are just interested in novel sequence (or very divergent regions such that reads don’t 
map), you won’t need to do a complete assembly, but just an assembly of non mapping 
reads. We call this “Bin” assembly. 

 First we will get all the reads that don’t map against the reference from the bam and then 
assemble them.  

H: Bin assembly (OPTIONAL) 

First we get the reads that don’t map. 

$ samtools view -f 0X04 IT.Chr5.bam > bin.IT.Chr5.sam!

This command returns all the reads that don’t map (they have the 0x04 flag in the bamfile). 
Next we do a normal assembly as before. Note that the way we used the command, we 
don’t have the correct format for read pair data, so we use the reads as single end reads. 
(Any idea how to get both mates?). 

$ velveth k.bin_assembly.49 49 -short -sam bin.IT.Chr5.sam  

$ velvetg k.bin_assembly.49 -exp_cov auto!

Have look at the n50. Which genes would you expect to be in this assembly? 

The next steps could be to abacas it, or to BLAST open reading frames… but we might run 
out of time doing this.!

 It is important to notice that the bin assembly runs faster, as fewer reads have to be 
assembled. The assembly of a certain region might also be better, as fewer reads are 
included in the assembly, so certain k-mers might not be as repetitive as they were in the 
complete assembly. 

A PERL script would be one option to get the mate pairs of the reads that don’t map.  
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 Now we have the contigs ordered against the reference. This is an achievement, but yet we 
know nothing about the position and function of possible genes. Normally we would need 
to do ab initio gene finding (this will be covered later). But can’t we just use the annotation 
of the reference, and adapt it to the new assembly? 

 We developed a tool called RATT (Otto et al., 2011 “Rapid annotation transfer tools”), that 
can transfer the annotation from a reference to a new assembly. In the first step the 
similarity between the two sequences is determined and a synteny map is constructed. This 
map is used to map the annotation of the reference onto the new sequence. In a second step, 
it tries to correct gene models. One advantages of RATT is that the complete annotation is 
transferred, including descriptions. Thus careful manual annotation from the reference 
becomes available in the newly sequenced genome. Obviously, where no synteny exists, no 
transfer can be done. Let’s see if this will work for our assembly. 

I: Annotation transfer 

With this command you can run RATT. As input we use the reference annotation and the 
output of abacas.  

$ start.ratt.sh embl Pre/abacas.fasta Transfer Strain > 
out.ratt.txt!

Transfer is a prefix for the result and Strain is the transfer type. 
RATT generates a lot of output, such as the synteny block, which genes were corrected and 
most importantly how many genes were transferred. It’s all in the file out.ratt.txt. With the 
following step you get the transfer statistics: 

$ grep -iA 1 “gene models” out.ratt.txt!

���321 !Gene models to transfer.!
285 !Gene models transferred correctly.!
5 !Gene models partially transferred.!
5 !Exons not transferred from partial CDS matches.!
31 !Gene models not transferred.!

So around 10% of the genes couldn’t be transferred at all. Those are probably in the 
subtelomeric regions. It looks like that in 5 genes, one exon couldn’t be transferred. 
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Next we are going to have a look at the annotation in Artemis. It can be loaded by 

$ art Transfer.ordered_Pf3D7_05.final.embl  &!

Skim through the genome. Can you see regions that have clear open reading frames 
(ORFs) that are not annotated?  
In Malaria around 50% of the genes are spliced. In the first round Plasmodium falciparum 
annotation it was difficult to find all exons correctly. How well do you think RATT 
performs? 

Also the splice site is 
correct (99% GT -AG) 

Those models seem to be 
correctly transferred. 
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Due to the gap, RATT placed the last three exons incorrectly. Tomorrow we are going to revisit 
annotation issues.  

Some models are wrong. In Artemis it is easy to find certain types of incorrect gene 
model: 
View -> Feature filter -> Suspicious Start / Stop codon or Stop in Translation 
To find incorrect splice sites, select -> feature select. Enable “Contains introns without 
GT..AG” 
Those should find you most of the problematic gene models. 

Look for the following gene PF3D7_0515600. Can you correct this gene model? 
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In summary, we did different assemblies and looked into some regions. Our new 
chromosome 5 of the IT clone has some gaps, but most of the core gene models could be 
trensferred.!

A good way to analyse the transferred gene models is to load the data into act. Start it by: 

$ act Pf3D7_05.embl Pre/comp.blast 
Transfer.ordered_Pf3D7_05.final.embl!

Load into the Pf3D7_05 (upper) sequence the file 
Transfer.Pf3D7_05.NOTTransfered.embl. Select one entry per line (right click on gene 
track). Into the new assembly load the file Transfer.ordered_Pf3D7_05.mutation.gff from 
the Query directory.  
The first file shows you which gene couldn’t be transferred. The second file shows you 
which regions had no synteny. In those region you would need to do ab initio gene 
prediction - tomorrow! 

Regions without synteny. 

Track with all genes from 
the reference 

Track with genes not 
transferred 

1. Right click on the gene 
track. A menu will pop 
up. Enable “One Line Per 
Entry” 
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Important aspects of the assembly procedure 

The secret is the read quality and the insert size 

For a good assembly you need good libraries. In our case we used a PCR-free 
library (Kozarewa et al., 2009), with a good insert size of 350bp. A standard 
library would have generated far more contigs, and probably an N50 of 1-3kb. 
With a large insert size library (approx 3kb) our assembly might have returned 
fewer than 10 contigs. For good libraries, you need enough DNA, good hands 
(experience) and a well tuned sequencing machine. 

Powerful computers 

In this example we assembled a single chromosome. We used reads that were 
already mapped onto the known IT chromosome. The methodology for the 
complete assembly would be the same. The k-mer size might need to be bigger 
because a 49 k-mer might be unique in a chromsome, but not for the complete 
genome. Also the computer would need to have more memory (up to 30 gb) and 
more time. For even bigger genomes (>100gb), memory requirements would 
increase significantly.  

Bacterial genomes are easier 

The good news is that for bacterial genomes this methodology should generate 
sufficiently good results to do the analysis. 

Bin assembly 

In some cases, you may just want to do an assembly of the reads that didn’t map. 
This should return you contigs unique to your sample, with less computer power. 

Tips 

    It is always a good idea to try different programs for any particular problem in 
computational biology. If they all produce the same answer you can be more 
certain it is correct. 

    The field of assembly develops fast! There are always new tools to improve 
assembly. For example the reads can be corrected before the assembly, or the 
assembly can be improved by image and iCORN, as mentioned. 

  Always evaluate your assembly. You can use a reference and map reads 
back and look for badly mapped mates/reads! 

  There will be always problems with repeats! 
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What to do without a reference? 

In some cases no closely related reference is available, or the quality of the 
reference is rather poor (many contigs, bad annotation). To obtain a good 
assembly in this case is far more work intensive (and expensive).  

Mix of insert size libraries  

To obtain large supercontigs you will need a range of insert sizes. A small one, 
300-500bp, a 3kb, and if working with mid size (> 40mb) eukaryotes, 8k and 
20kb. 

The better your assembly is, the easier the analysis will be – fewer genes will be 
split, and there will be more context around the genes. 

Improve assembly 

You can improve the assembly as described on page 23 (Further improvement to 
assemblies) 

Annotation 

To find the genome models in eukaryotes you will need to manually generate 
gene models and train gene finders. You would need at least 200 manually 
curated gene models which can take up to two weeks to generate and curate. It 
is very useful to have expression data (ESTs or RNA-Seq). In bacteria you would 
just run a gene finder like glimmer. 

Actually, this topic will be covered in the next module. 


