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2.1 Introduction

Although a rare genetic disorder, by definition (according to the European
Commission), has a frequency of 1 in 2000, collectively rare diseases affect 6-
10% of the population [248]. Rare genetic disorders are associated with high
mortality rates, may account for 51% of deaths in children under 1 year [249],
add a significant burden to the health care system in terms of cost (accounted for
184% more hospital charges than children who were hospitalized for other

reasons [250]) and often under diagnosed [251].

Studying rare genetic disorders is essential to improve the quality of health care
services and to obtain a precise and early diagnosis to these patients.
Additionally, the insights from rare genetic disorders have helped to improve our
understanding of many novel genes and molecular phenomena such as
uniparental disomy, parental imprinting and epistatic interactions. These
insights have also improved our understanding of the etiology of the risk and
pathology of complex disease. For example, studying severe forms of familial
insulin resistance has revealed important key genes when studying the common

form of Diabetes Mellitus Type II [252].

In the last few decades, researchers have used different approaches to find the
underlying genetic causes of rare disorders, such as positional cloning, linkage
analysis and candidate gene resequencing among other methods. Despite these
great efforts, the Online Mendelian Inheritance in Man (OMIM) [253] database
lists 3,675 suspected Mendelian phenotypes without any known molecular basis
, as of January 7t 2013. This large number of unidentified disorders shows the

limitation of the traditional tools in identifying their genetic causes.
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2.1 Introduction

Next Generation Sequencing (NGS) platforms promise to accelerate this process.
In 2005, the 454 Roche sequencer was introduced to the scientific community
and soon other similar platforms followed, such as the Genome Analyzer from
[llumina, SOLID from Life Technologies and many others (discussed in chapter
1). These NGS platforms are able to generate unprecedented high-throughput
DNA sequencing from whole genome or targeted sequences (e.g. exome or
linkage regions) in a very short time and at an affordable cost. The first
successful example of finding causal variants in a novel gene was published in
2010 when Sarah Ng et al. [174] used NGS to sequence the whole exome of four
patients with Miller syndrome (OMIM #263750) and showed that mutations in
the DHODH gene cause this recessive disorder. Soon afterwards, other groups
around the world started using NGS to discover the causes of more than 100
novel genes in less than 3 years (Figure 2-1). This number is expected to grow as
more researchers adopt NGS platforms for gene discovery in other monogenic

disorders [202, 254] (discussed in monogenic disorder section in chapter 1).
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Figure 2-1 Number of Mendelian disease genes identified by NGS 2010 to mid of 2012 [254]
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2.1 Introduction

Congenital heart defects (CHD) are considered the most common birth defects
worldwide when taken collectively [14]. However, they are considered rare
disorders when considered separately (CHD prevalence is review in chapter 1).
Inspired by the success of NGS in finding the genetic causes in other rare
disorders, I approached CHD using family-based study designs combined with
NGS.

However, since the genetic architecture of CHD is not currently clear, I have
considered both Mendelian and non-Mendelian contributions to CHD. Not all
pathogenic mechanisms can be evaluated using exome sequencing since it
targets a small proportion of the genome (only coding DNA regions or < ~1-2%
of the human genome size (Table 2-1). Cryptic splice sites, intragenic and long-
range promoter variants that affect gene regulation cannot be studied using
exome sequencing alone, and as such as they do not fall within the scope of this
thesis. The existing examples of genetic causation of CHD are diverse, with
respect to both their modes of inheritance and molecular mechanisms, and so
investigation of CHD by exome sequencing requires a suite of tools capable of

exploring different scenarios.

Table 2-1 lists the major inheritance patterns with syndromic or / and isolated
CHD examples from literature, and whether they are amenable to analysis in
whole exome sequence data (WES) or not, using tools [ developed or

implemented to scrutinize the candidate variants.
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2.1 Introduction

Table 2-1 Selected patterns of Mendelian and non-Mendelian inheritance and whether they are
amenable to analysis using whole exome data. * Indicates mechanisms that have been evaluated

in this thesis.

Inheritance Exam.ple of Can be evaluated with E)‘(plm:ed
—— syndromic and/or WES? Software in this
P isolated CHD i thesis?
Autosomal Adams-Oliver
recessive * syndrome OMIM # Yes FEVA
100300
five affected children
Autosomal .Wlth rlght atrial
Recessive isomerism were
compound Yes FEVA
(compound
heterozygous) * heterozygotes for Chapter 2,
truncating mutations in 3and 4
GDF1 255
Mendelian - gene [255]
Autosomal Alagille syndrome Yes FEVA
dominant * OMIM # 118450
X-linked Opitz GBBB syndrome
dominant * OMIM # 300000 Yes FEVA
X-linked X-linked heterotaxy
recessive * OMIM # 306955 ves FEVA
No reported CHD cases.
. Unlikely to harbor Not
Y-linked heart developmental Yes FEVA explored
genes
De novo mutations in
Recurrent de novo hlsto.ne?modlfymg s . . Chapter 3
mutations * genes in isolated and Yes, if in coding regions DenovoGear and 4
syndromic CHD cases
using exome data [256]
N No reported CHD cases. .
Digenic . Digenic
inheritance * But as an example: long Yes module Chapter 3
QT syndrome
Non- Polygenic Tetralogy of Fallot Orslz eviightfgﬁzas:gsl? le Case/Control Not
Mendelian* inheritance [257] ; analysis explored
case/control analysis
Uniparental
Imprintin Prader-Willi syndrome Yes. if large segment Disomy Not
printing OMIM # 176270 [258] »1tiarge segment. (UPD) caller | explored
by Dan King,
Excess affected MTHFR C677T Rare
(segrziesgeastion cfr?t]r}?t?l?trept}:;ihm:r?iyof Yes, in trio based studies collapsed Chapter 3
distortion) * CHDs [259] TDT module

2.1.1 Chapter overview

The main goal of this chapter is to describe the pipelines and analytical tools I

developed and then applied to evaluate the utility of four family-based study

designs (index cases with linkage analysis, affected sib-pairs, trios and affected

parent-child). The lessons learnt from these analyses were subsequently applied

to two CHD subtypes (Tetralogy of Fallot and Atrioventricular Septal Defects) in

chapters 3 and 4, respectively. Figure 2-1 shows the main analytical components

required for family-based exome studies.
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2.1 Introduction

In this chapter, first, I describe the three pipelines used to call SNVs and
indels from all CHD samples included in this thesis. My colleagues at the
Wellcome Trust Sanger Institute implemented two of the three pipelines (the
Genome Analysis Production Informatics (GAPI) and the (UK10K) pipelines
whilst I implemented the third one to call de novo variants, which was later
adapted by Ray Miller for the Deciphering Developmental Disorders (DDD)
project [260].

Each pipeline outputs a large number of variants including many false positive
variants that would adversely affect any downstream analysis. At the beginning
of my work on exome sequencing three years ago, it was not clear what best
practices I should use to improve the sensitivity and specificity of variant
calling. In the second part of the results, [ describe how I chose various filters
such as strand bias, phred-like quality scores among other filters to improve the
sensitivity and specificity of the variant calls. Choosing the right filters is a
dynamic research area and the best practices are expected to change to reflect
new statistical models for variant calling. Many of the results [ describe in this
section do not reflect the current best practices but they represent examples of
how to approach and set proper filter thresholds in exome-based studies. In
addition to these filters, I discuss how I merged the variant calls from multiple
callers to enhance sensitivity. | show that the precise manner in which the
outputs from these callers are combined can have an unexpectedly large effect

on the number of candidate variants

Once I have obtained a high quality set of variants for each sample, I describe in
the third part of the results, how I used minor allele frequency and additional
family data to minimize the search space for causal variants. These combined
steps reduce the search space for causal variants to a few tens or hundreds

instead of tens of thousands of variants.

Finally, I describe a suite of tools that I have designed to automate many steps
discussed above. Although similar software, such as SVA, EVA and VarSift [261-
263], have been published during my PhD, none of them were able to fulfill the
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2.1 Introduction

needs for my studies. One of the main drawbacks of these tools is that they are
not suitable for high-throughput analysis. Additionally, most of them use hard
coded filters, which is not practical to explore new filters. For these reasons, |
developed a suite of tools called Family-based Exome Variants Analysis
(FEVA) that reports candidate variants under different modes of inheritance
(autosomal recessive, autosomal dominant and X-linked) for different study
designs (index cases, affected sib-pairs, affected parent-child, and trios). In the
last part of this chapter, I show how I used FEVA to identify pathogenic and

candidate pathogenic genes under different study designs using real examples.
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Figure 2-2 Overview of pipelines, tools and annotation discussed in this chapter.

Blue boxed are quality control tests that are performed at different stages of the workflow. The
two main pipelines used to call variants from sequence data are GAPI and UK10K. A third one,
the de novo pipeline (orange box), uses the sequence data (BAM files) and includes further steps
described in Figure 2-9. Additional descriptions of these steps are available in Table 2-2.GAPI:
the Genome Analysis Production Informatics pipeline, UK10K: UK10K variant calling, SNVs:

single nucleotide variants, INDELs: insertion and deletion, QC: quality control.
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2.1 Introduction

Table 2-2 A list of main analytical tasks described in this chapter with a short description of each

section.

Task

Section

Description

Variant calling

Genome Analysis Production
Informatics (GAPI) pipeline

To call single nucleotide (SNVs) and
insertion/deletion variants (INDELs) using
three callers (Samtools, GATK and Dindel) in
381 CHD samples

Used to call SNVs and INDELs variants using

PR UK10K pipeline two callers (Samtools and GATK) in 125 CHD
pipelines
samples.
De novo variant calline piveline Used to call de novo SNVs and INDELs variants
§PP using one caller (DenovoGear) in 252 CHD trios
Sample-based DNA quality test Various tests to detect the quantlty.and quality
of the DNA samples and any possible sample
(DNA samples) o L
contamination and swapping issues.
Sample-based data quality test Quality of NGS sequencing data in terms of
(Sequencing data) depth, coverage and other parameters.
Improving Quality of variant calling based on the number
sensitivity and Variant-based quality tests of variants, genotypes, variants predicted effect
specificity on the protein and other quality ratios.
o . . Multiple filters based on thresholds of quality
Filtering low quality variants metrics used to exclude low quality variants
Combining multiple variant callers (e.g.
Using multiple callers Samtools, GATK and Dindel) to overcome the
deficiencies of individual callers
Using  different  population-based = MAF
Minor allele frequency (MAF) resources to exclude common variants (>1%)
Minimizing the and the effect of allele matching algorithm.

search space for
causal variants

Family-based designs

The effect of considering additional members
of the family (either healthy or affected) on the
final number of candidate variants and genes

Applications

FEVA suite

An easy to use suite of programs I developed to
automate many of the steps discussed above
(minimize the search space for causal variants
and prioritization). These tools are available
for small scale use with a graphical user
interface and as common-line tools for high-
throughput analysis.

Simple monogenic diseases
combined with linkage analysis

Use of FEVA to find pathogenic variants from
four different index cases within linkage
intervals for different neurodevelopmental
monogenic disorders

Affected sib-pairs

Use of FEVA to analyze CHD in affected sib-
pairs from eight non-consanguineous and two
consanguineous families.

Affected parent-child

Using FEVA to analyze CHD in three affected
parent-child pairs.

Example of affected trios
combined with candidate gene
screening

Use of FEVA to analyze 1,080 trios from
Deciphering Developmental Disorders (DDD)
project trios and screen 1,142 candidate genes.
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2.2 Methods

2.2 Methods

2.2.1 Samples and phenotypes

Table 2-3 summarises the different sample collections that [ analyzed to evaluate
the utility of different study designs. These sample collections were accessed
through collaboration with various researchers and clinicians from the UK,
Europe and Canada. All samples were collected from the families after obtaining
informed consents and approved by the Ethical Review Boards of their
respective organizations. Not all of the analyses of these sample sets are

described in detail in this thesis.

Table 2-3 Samples and family-based study designs included in this thesis.

* Sample cohorts discussed in this chapter. GO-CHD: Genetic Origins of Congenital Heart Disease
Study, DDD: Deciphering Developmental Disorders project, AVSD: atrioventricular septal defects.
TOF: tetralogy of Fallot.

Targeted Consangui Number of
Design 8¢ Cohort Origin g Phenotype families or
Region neous
samples
Whole GO-CHD UK No Various CHD 110
Index exome Toronto Canada No AVSD 78
cases
Linkage Amish* USA No Various 4
region Neurodevelopmental
GO-CHD UK No Various CHD 2
Newcastle UK No TOF 30
Whole Toronto Canada No AVSD 3
. exome
Trios
Leuven Belgium No AVSD 10
DDD UK No Developmental 1,080
Candidate | \o castle UK No TOF 250
genes
Toronto Canada No AVSD 1
Affected Whole Birmingham* UK Yes Various CHD 2
ib-pai
Sth-palrs exome Birmingham* UK No Various CHD 8
GO-CHD* UK No Various CHD 1
Affected
parent- Whole GO-CHD* UK No Various CHD 3
child exome
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2.2 Methods

2.2.2 DNA preparation and Quality Control

Our collaborators extracted the DNA from the patients’ blood and / or saliva and
sent the samples to the Sanger Institute for quality control before they were
submitted for sequencing. The DNA sample quality control included three tests.
The first was to determine the amount and concentration of DNA, which was
analyzed by gel or picogram. The second test detected the sample’s gender by
genotyping SNPs on the sex chromosomes and compared it to the supplier sheet
in order to detect any potential gender mismatches. The third test was to check
for the possibility of sample contamination or swapping by genotyping another
30 SNPs. The genotyping was done using Sequenom platform and any sample,
which failed one of these tests, was flagged for replacement or exclusion. The
Sample Logistic Team at the Sanger Institute performed these quality control

tests.

2.2.3 Target capturing and sequencing

DNA (1-3pg) was sheared to 100-400 bp using a Covaris E210 or LE220 (Covaris,
Woburn, MA, USA). Sheared DNA was subjected to [llumina paired-end DNA
library preparation and enriched for target sequences (Agilent Technologies;
Human All Exon 50 Mb - ELID S02972011) according to manufacturer's
recommendations (Agilent Technologies; SureSelectXT Automated Target
Enrichment for Illumina Paired-End Multiplexed Sequencing). Enriched libraries
were sequenced using the HiSeq platform (Illumina) as paired-end 75 base reads

according to manufacturer's protocol.
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2.3 Results

2.3.1 Assessing variant calling pipelines

2.3.1.1 Genome Analysis Production Informatics (GAPI) and UK10K pipelines

There are several pipelines deployed at the Wellcome Trust Sanger Institute
(WTSI) to call variants from human whole genome and / or whole exome data.
The majority of samples analyzed in this thesis were processed through the
Genome Analysis Production Informatics (GAPI) pipeline (managed by Carol
Scott et al.) except 125 samples that formed part of the UK10K RARE project,
which were processed through the UK10K pipeline (managed by Shane
McCarthy et al.) [264]. Both pipelines are used to call single nucleotide variants
(SNVs) as well as insertion/deletion variants (INDELs). The GAPI pipeline
provided single-sample calling only while UK10K pipeline provided both single
and multi-sample calling. Although, the latter has some potential advantages, |
decided to use single-sample calling only in order to be able to compare variants

from both pipelines.

However, differences between these pipelines led to variability in the type and
numbers of variants (Table 2-4, Table 2-5 and Figure 2-5). Data that were
processed through the GAPI pipeline tend to have a larger number of SNVs and
INDELs compared to UK10K pipeline. GAPI sequence data had 60% more SNVs
compared with UK10K data although most of these differences can be attributed
to non-coding variants which include intronic, intragenic, downstream, upstream

and variants in untranslated regions UTRs).

To see if using different filters and thresholds in Table 2-5 caused the difference
seen in SNVs counts between the two pipelines, I applied UK10K’s filters on
samples from the GAPI pipeline. First, I created a new set of samples called GAPI-
II by merging variants from GATK and Samtools only and excluding Dindel calls
since it is not part of the UK10K pipeline. This set of samples showed a similar

number of coding and non-coding variants between both pipelines (Figure 2-4)
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2.3 Results

except for loss-of-function variants (LOF) where the UK10K pipeline has almost
double the number of LOF variants compared with GAPI or GAPI-II (t test, P
value < 2.2 x 10-16). A difference in a caller version and its underlying statistical
model is likely to cause this variation. This is more readily observed in LOF
counts since they are fewer than missense variants and have a lower number of

true variants and so are more sensitive to calling errors.

On the other hand, INDELs show larger differences between GAPI and UK10K
pipelines (Figure 2-5). GAPI calls almost two to three times more INDELs than
UK10K or GAPI-II (Figure 2-5-A). This is true regardless of the location of the
indel with respect to coding sequences (Figure 2-5 B, C and D). One explanation
for this observation would be the use of an additional caller specifically designed
to call INDELs, called as Dindel, in the GAPI pipeline but not in the UK10K
pipeline. Dindel is a dedicated caller for INDELs that uses a probabilistic
realignment model to account for base-calling errors, mapping errors, and for
increased sequencing error INDEL rates in long homopolymer runs [158].
Dindel’s superior performance comes at a price of high computation demands,
and the same underlying model has been incorporated into later versions of
SAMtools, which is why the UK10K informatics team has refrained from using it

on large numbers of samples.
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2.3 Results

Table 2-4 Similarities and differences between the components of Genome Analysis Production
Informatics (GAPI) pipeline and the UK10K pipeline. Multiple factors are likely contribute to the
differences in the number of variants generated by GAPI compared with UK10K pipeline such as
the number of used callers, different software versions which usually reflect subtle changes in
the underlying statistical models, filters and thresholds and how the output from different callers
is merged (i.e. the order of callers from the most to least preferred, see section 2.3.2.2 for details)

Step Goal / Description GAPI UK10K
GRCh37 GRh37
Reference senome Which version of the human (hs37d3) (human_g1k_b37)
§ reference genome used 1000 genome phase 1000 Genomes

Il reference

Phase 1 reference

Align sequence reads
to reference genome

Generate SAM/BAM files

BWA (v0.5.9-r16)

BWA (v0.5.9-r16)

Mark duplicates

To mitigate the effects of PCR
amplification bias introduced during
library construction.

Picard tools (v1.46)

Picard tools (v1.46)

Realignment around . . GATK (v1.1-5-
indels Enhance variant calling GATK (v1.4-15) 06f432841)
Recalibrate base quality scores of
Base quality score reads according to the base features ) GATK (v1.1-5-
recalibration (e.g., reported quality score, the GATK (v1.4-15) g6f43284)

position within the read)

Calling target region

Calling variants is limited to the
coding regions plus variable flanking

Exon bait regions
plus or minus a

Exon bait regions
plus or minus a

region 100bp window 100bp window
SNV callin Single nucleotide variants calling Samtools (v0.1.16) Samtools (v0.1.17)

g programs GATK (v1.0.15777) GATK (v1.3-21)
INDEL callin Insertion and deletion variants Samtools (v0.1.16) Samtools (v0.1.17)

g calling programs Dindel (v1.01) GATK (v1.3-21)

Variant predicted The effect of variant on the protein is
offect predicted by VEP VEP 2.2 to 2.4 VEP 2.6 to 2.8

Caller merging The order of which variants called Dindel > GATK > GATK > Samtools

by different callers are merged

Samtools

General filters

Filters applied during variant calling

See
Table 2-5 for details
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GAPI Il workflow
(simulating UK10K pipeline
using samples from GAPI)

Samtools
GATK
(SNVs) (SNVs +
INDELSs)

Merging Merged

[Variant-based QC] Number of variants,
transition / transversion ratio, etc

Figure 2-3 A workflow diagram to describe how I generated VCF files for GAPI-II set. The main
goal is to use files from GAPI pipeline and apply similar workflow to UK10K and see if this would
be enough to explain the differences between the pipelines.

Each sample from the original GAPI pipeline has three VCF files of variants called by GATK,
Samtools and Dindel. I merged VCF files from GATK and Samtools but not from Dindel. Next, I
applied the same filters used by UK10K to exclude low quality variants (filters were supplied by
Shane McCarthy). A list of UK10K filters is available in Table 2-5.
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Table 2-5 Filters and thresholds applied on variants from UK10K and GAPI pipelines.

; Pipelines
Variant Filters Variant type
callers GAPI UK10K
Depth at locus (DP) SNVs 4 < DP and DP > 1200 4 < DP and DP > 2000
P INDELs |4 <DPand DP > 1200 4 <DP and DP > 2000
) ) SNVs MQ <=10 MQ <= 25
Mapping quality (MQ) ™= p e ™o <= 10 MQ <= 25
) SNVs NA GQ <= 25
Genotype quality (GQ) INDELs A GQ <= 60
. ) SNVs NA QUAL <= 30
Variant quality (QUAL) INDELs A QUAL <= 60
SNVs StrandBiasPval < 0.0001 |NA
Samtool StrandBiasPval
amtoo’s randeiastva INDELs _ [StrandBiasPval < 0.0001 |NA
BaseaBiasPval SNVs BaseqBiasPval < 1e-100 [NA
1 INDELs  |BaseqBiasPval <1e-100 |NA
. SNVs MapgBiasPval < 0 NA
MapqBiasPval
apqriastva INDELs  MapgBiasPval < 0 NA
SNVs EndDistBiasPval < 0.0001 |[NA
EndDistBiasPval
navistElastva INDELs _ |[EndDistBiasPval < 0.0001 |NA
MinbbfromGa SNVs MinbpfromGap < 10 NA
P P INDELs _ MinbpfromGap < 10 NA
SNV UAL < 30
Variant quality (QUAL) INDEES 3iAL =30 EA =
) SNVs D<5.0 QD <5
Quality by Depth (QD) INDELs EA QD <2
Homopolymer run SNVs HRun > 5 Hrun > 5
length (Hrun) INDELs |NA NA
SNV SB>-0.1
Strand bias (SB) INDEES IS\Ii> 10 NA>
. SNVs INA FS > 60
Fishers p-value (FS) INDELs _ INA FS > 200
SNV NA
ReadPosRankSum INDEES Ei <20
SNV NA
InbreedingCoeff S NA
GATK INDELs |[NA <-0.8
SNV Filtered if site covered by [Filtered if site covered by
InDel known indel mask file known indel mask file
INDELs INA NA
Repeat of QUAL < 30
LowQual SNVs (applied at calling) NA
INDELs [NA NA
Filtered if 3 SNPs within a
SNV . NA
SnpCluster s 10bp window
INDELs [NA NA
SNVs 4 < DP and DP > 1200 NA
Depth atl DP
epth atlocus (DP) INDELs 4 <DPand DP>1200  |NA
SNV MQO >=4 and MQO >=4 and
Hard to validate (MQO/(1.0*DP)) (MQO/(1.0*DP))
INDELs INA NA
Homopolymer run
length (hp10) INDELs  [HRun > 10 NA
Variant quality (q20) INDELs |QUAL <20 NA
Dindel Non-reference allele INot covered by at least one
(fr0) INDELs read on both strands NA
Multiple indels in the INDELs Other indel in window had NA

same window (wv)

higher likelihood
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Figure 2-4 Differences in the counts of coding single nucleotide variant (SNVs) between GAPI and
UK10K pipeline and GAPI_II, which include the same sample in GAPI but subjected to UK10K’s
filters (i.e. I applied the UK10K filter in Table 2-5 on GAPI samples).

LOF: loss-of-function variants include stop gain and variant disturbing donor or acceptor splice
sites. Ts/Tv: Transition/Transversion ratio. Hom/Het: Homozygous/ Heterozygous ratio.
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Figure 2-5 Differences of insertion-deletion variant (INDELs) counts between GAPI, UK10K
pipeline and GAPI_II which are the same sample in GAPI but subjected to UK10K’s filters).

2.3.1.2 Differences between GAPI releases

Since most of the samples analyzed in this thesis went through the GAPI pipeline
at different points of my PhD, I sought to examine the effect of different releases
of GAPI pipelines on the samples from three CHD cohorts (Figure 2-6 and Figure
2-7). The first cohort includes 94 samples of mostly atrioventricular septal
defects (AVSD) children collected from SickKids hospital, Toronto, Canada
(labeled as CHDT). The second cohort includes 90 samples of Tetralogy of Fallot
(TOF) affected trios from the University of Newcastle while the third cohort

includes 24 samples of affected sib-pairs of samples affected with various CHD
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subtypes (about a quarter of these samples are from consanguineous families of
a Pakistani origin). I found the variant counts were consistent between these
cohorts even though they were generated at different times and with different
versions of the GAPI pipeline. Small variations may occur as a result of systemic
differences caused by the depth of the sequencing, or the population ancestry of
the samples (e.g. samples with African ancestry are expected to have more

variants than non-African samples).
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Figure 2-6 Differences of single nucleotide variant (SNVs) counts between GAPI studies. CHDT:
Congenital heart defect samples from Toronto (discussed in chapter 4). CHDUK: Congenital heart
defect samples from UK (discussed in application section in this chapter), TOF (Tetralogy of
Fallot samples discussed in chapter 3). Ts/Tv: Transition/ Transversion ratio. Hom/Het:
Homozygous/Heterozygous ratio.
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Figure 2-7 Differences of insertion-deletion variant (INDELs) counts between GAPI studies.
CHDT: Congenital heart defect samples from Toronto (discussed in chapter 4). CHDUK:
Congenital heart defect samples from UK (discussed in application section in this chapter), TOF
(Tetralogy of Fallot samples discussed in chapter 3).
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2.3.1.3 Implementing a de novo variant calling pipeline

Initially, I tried to identify potential de novo variants based on the variants called
by either GAPI or UK10K pipelines in the child and not in parents. However, this
approach yields a large number of candidate de novo variants per trio. A more
efficient approach is to discover potential de novo variants from the child and his
parents in a unified statistical framework. 1 designed and implemented a
pipeline to call, filter, annotate and visualize de novo variants from trio-based
studies based on DenovoGear program [265, 266]. This software was developed
by Don Conrad and adopts a Bayesian approach to calculate the posterior
probability of a de novo mutation at a single locus using the joint likelihood of the
read-level data for all three trio members. DenovoGear outputs ~170 plausible
de novo variants (with a posterior probability of greater than 0.001) per trio on
average. However, most of these candidate variants are false positive since the
expected number of de novo coding variants is ~1 according to published studies

[190, 267-271].

1.6

g
ES

=
N

[

o
o

0.6 HSNVs

WINDELs

I
»

Average number of coding de novo varaints per exome

Published studies

Figure 2-8 Average number of coding de novo variants per exome in different trio-based studies
[190, 267-271]. (The literature survey and data are courtesy of Dr. Matthew Hurles)
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In order to keep the number of false positive variants as small as possible, |
applied five filters to exclude: (i) variants in tandem repeat or segmental
duplication regions, (ii) common variants with minor allele frequency > 1% in
the 1000 genomes [155], NHLBI-ESP exome project [199] and the UK10K Twins
cohort [264], (iii) when > 10% of the reads in either parent support the
alternate allele (i.e. the variant is more likely to be inherited from a parent), (iv)
variants not called by an independent caller such as SamTools, Dindel or GATK,
and (v) variants predicted to be non-coding by the VEP tool [170]. Collectively,
these filters effectively remove ~98.8% of the original candidate de novo variants

(leaving ~1.8 coding plausible de novo candidate per exome).

This pipeline was used to automate several tasks designed to obtain high quality
sets of candidate de novo variants from trios. This first step is calling candidate
de novo variants from whole genome or whole exome data from human or mouse
trio samples, followed by applying various filters to improve the specificity of the
calls. The pipeline was designed in a modular fashion where each step generates
intermediate files that are used as input for subsequent steps (steps are listed in
Figure 2-9). This design allows the end user to change the pipeline by modifying
steps and files or add new steps in order to customize the pipeline to suit the

need of different studies.

One of the challenges faced by this pipeline is the run time per trio (~12 hours
for whole exome data and up to 36 hours for whole genome data). To make the
pipeline run faster, especially for large-scale project, I modified the code (which I
wrote in Python programming language) to split sequence data in each sample
into 24 segments (by the chromosome) and run them in parallel. This has
shortened the run time to 2-3 hours for whole exome data and 10-12 hours for
whole genome data. Moreover, another layer of parallelism is achievable by
running multiple trios at the same time, which is suitable for large-scale projects
such as the Deciphering Developmental Disorders (DDD) project with thousands

of trios.
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[ used this pipeline to call de novo variants in 238 trios affected with Tetralogy of
Fallot in the third chapter and in 13 trios with atrioventricular septal defect in
the fourth chapter. Moreover, this pipeline has been used successfully in several
whole genome sequencing projects in human and mouse pedigrees that are

investigating the factors influencing rates of germline mutation.

DenovoGear pipeline 0.6.1 (whole genome or whole exome
trios) for human or mouse projects (May 2012)

Workflow steps Output files / action

Create directories new folder

Sy D ehiciD PP
Each BAM file is divided
Split BAM by chr into 23 chromosomes
chrl chr2 ¥
bam bam o
Index BAM files [ chr3.bai |
Child I | Motner | | Father
Generate BCF
(samtools) chr3.bef
Call DNMs
DenovoGear 0.2.1 or chr3.dng
0.5)
Annotation | (VEP) chri.in.vep | chrd.in.vep
Merge (*.dng and
Concatenate all *.mrg i
.

Add annotation Il
(1KG-MAF, GERP, Add to final
HI, Grantham score)

Add annotation Il
(custom annotation Add to final

by user e.g SegDup)

IGV batch file igv_batch. txt

Add alternative reads

aolnts Add to final

House keeping Delete .bam , .bai & .bef

Figure 2-9 The workflow of the DenovoGear pipeline.

PED: pedigree files. BCF are binary files of VCF (variant call format) that are generated by
Samtools mpileup with genotype likelihoods required by DenovoGear [272]. DNMs: de novo
mutations. VEP: variant effect predictor [170]. 1KG-MAF: 1000 genomes minor allele frequency.
GERP: Genomic Evolutionary Rate Profiling scores [164]. HI: haploinsufficiency scores [273].
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2.3.2 Minimizing the rate of false positive variants

2.3.2.1 Variant-based filters

At the beginning of my PhD studies, it was not clear what were the best practices
[ should use to improve the sensitivity and specificity of variant calling from
exome data. To investigate this aspect of data analysis, | tested different filters in
order to determine the best callset possible from CHD samples called by the
UK10K pipeline. These callsets include raw unfiltered variants called by GATK
(G), Samtools (S), or both callers (GS). In this analysis, | focused mainly on SNVs
since they are the most abundant variants and represent a large proportion of
the known pathogenic variants [274]. More importantly, there are many high
quality training SNVs data sets available to improve variant quality (e.g.
HapMap). On the other hand, indels were, and still are, more difficult to call and

tend to have a higher false positive rate [155].

SNVs are thought to be among the easiest variant classes to call from NGS data
but nonetheless sequencing errors can generate false positive calls. Sequencing
error rates depend on factors such as the context of the DNA sequence, depth of
sequencing, and the type of substituted bases among other factors [143]. To
control for these biases in the exome NGS data, I examined the relationship
between strand bias (SB), quality by depth (QD), genotype quality (GQ) and
variant quality (QUAL) with transition/transversion ratio (Ts/Tv). This ratio has
been used by different groups in the 1000 genomes consortium as a quality
control test and typically ranged between 2.9-3.3 in coding regions based on
sequence data from different NGS platforms. [ used the Ts/Tv ratio as the truth
measurement to determine the proper thresholds values for each one of the four

filters.
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Variant quality (QUAL)

The QUAL parameter is the phred-scaled quality score probability of the
alternative allele at a given site in sequencing data being wrong. This scale is
calculated as:

QUAL =-10 *log (1-p)

where p is a base-calling error probability. A value of 10 indicates one in 10
chance of error, while a value of 100 indicates one in 100 chance. Higher QUAL
values indicate higher confident in the variant calls. I plotted the QUAL scores for
eight different callsets based on filtered and unfiltered variants from Samtools,
GATK or both against the Ts/Tv ratio (Figure 2-10). The Ts/Tv ratio was at its
highest when variants are called by both GATK and Samtools and pass the callers
internal filters (Figure 2-10, dashed red line) and dropped slightly below 3 when
the QUAL was < 30, which I used as the minimum accepted threshold.

Ts/Tv
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e o reemeomge==s GS unfiltered
- - G unfiltered
~_S-unfittered
<=~ Allfiltered
GS filtered
- G filtered
o = S filtered
T T T T
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Figure 2-10 The relationship between variant calling quality (QUAL) and the transition/
transversion ration (Ts/Tv) of coding SNVs. The plot shows eight different callsets based on
variants called by a single caller or two callers and whether the internal filters of a caller were
applied (filtered) or not (unfiltered). These internal filters are usually part of the pipeline itself.
(S) is a variant callset called by Samtools alone, (G) variants called by GATK alone, (GS) variants
called by both Samtools and GATK, and (All) is a callset composed of variants from the previous
three callsets. The GS filtered callset (dashed red line) is the only callset that shows a Ts/Tv ratio
close to the expected range (2.9-3.3). However, since the Ts/Tv ratio of this callset drops below
QUAL of 30, I used this value as the minimum threshold of high quality variants. Any variants
with QUAL < 30 were excluded from the downstream analyses.
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Quality by depth (QD)

The QD is a simple statistic to quantify the variant confidence given as ‘variant
confidence’ (from the QUAL field) divided by ‘unfiltered depth of non-reference
samples’ where low QD scores are indicative of false positive calls [275]. QD is
only available for variants called by GATK only and thus I was not able to test
variants called by Samtools (Figure 2-11). Similar to the QUAL metric above, the
variant callset closest to the expected Ts/Tv ratio is the one called by both GATK
and Samtools and has passed their internal filters (dashed red line). Unfiltered
variants with QD < 5 has significantly lower Ts/Tv ratio below 2.0, which is the

minimum accepted threshold I chose for QD (Figure 2-11).
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Figure 2-11 The relationship between quality by depth (QD) and the transition/ transversion
ration (Ts/Tv) of coding SNVs. (A) I plotted QD values from eight different callsets as described
in the previous figure (Figure 2-10). QD values are available for GATK variants, thus variants
called by Samtools alone are not shown. The GS filtered callset (dashed red line) the closest
Ts/Tv ratio to the expected range (2.9-3.1) is and was consentient along QD values on the X axis.
(B) To choose the appropriate minimum QD threshold, I plotted the QD values of all variants,
regardless of the caller, from unfiltered callset (All unfiltered, black dashed line in plot A) and
restricted the QD to values between 0-15. This shows variants with QD < 5 are enriched for low
quality variants (i.e. did not pass the internal filters).

Strand bias (SB)

The third filter I assessed was the strand bias (SB) metric, which quantifies the
evidence of a variant being seen on only the forward or only the reverse strand

in the sequencing reads. Higher SB values > 0 denote significant strand bias and
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are associated with lower values of Ts/Tv ratio, therefore they are more likely to

indicate false positive calls (Figure 2-12).
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Figure 2-12 The relationship between strand bias (SB) and the transition/ transversion ration
(Ts/Tv) of coding SNVs. I plotted SB values from eight different callsets as described in the
previous figure (Figure 2-10). At the time, SB values were available for GATK variants only and
thus variants called by Samtools are not shown. The callset with closet Ts/Tv ratio to the
expected range (2.9-3.1) is the GS filtered callset (dashed red line) and was consentient along SB
values (-0.01 to -200). The Ts/Tv ratio values drop dramatically when SB > 0 (solid lines).

Genotype quality (GQ)

Finally, the GQ is another phred-scaled score that represents the confidence of
the true genotype at a certain locus. In a diploid genome, the homozygous
reference, heterozygous, and homozygous non-reference genotypes are denoted
(‘0/0’,0/1’ and ‘1/1’) respectively in the variant call format files (VCF files). For
a heterozygous genotype (0/1), the genotype quality (GQ) is calculated as :

L(O/1)/L0/0)
LO/1)/LA/1)

where L is the likelihood of a genotype given the NGS sequence data at that locus.
Variants with a GQ of < 30 tend to have lower Ts/Tv ration (~2.7) and hence I

used this as the minimum cutoff (Figure 2-13)
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Figure 2-13 The relationship between genotype quality (GQ) and the transition/ transversion
ration (Ts/Tv) of coding SNVs. I plotted GQ values from eight different callsets as described in
the previous figure (Figure 2-10). The callset with closet Ts/Tv ratio to the expected range (2.9-
3.1) is the GS filtered callset (dashed red line) when GQ values > 30.

These four filters where used at the early stages of my analyses of UK10K data to
improve the sensitivity and specificity of SNVs calling. It is important, however,
to notice that choosing the best filters with highest sensitivity and specificity
remains an active area of research. As the developers keep tuning the underlying
statistical models in their variant calling programs, these filters need to be
adjusted accordingly to reflect the current best practices. More importantly,
reviewing the results of validation experiments using capillary sequencing

periodically is essential to gain insights about the performance of each filter.

2.3.2.2 Merging caller sets and caller priority

In order to increase the confidence of variant calls, the GAPI pipeline used two
independent callers with different underlying probabilistic statistical models to
detect SNVs and two callers for INDELs [152-154, 276]. GATK and Samtools were
used to call SNVs and while Samtools and Dindel are used to call INDELSs. Since

Samtools are used to call both SNVs and indels, the GAPI pipeline generates three
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files, one from each caller in a variant call format (known as VCF files) [161], per

sample.

Using three files separately would complicate downstream analyses since two
callers do not agree on the total number of variants, genotypes, and alternative
alleles. For example, two SNV callers may detect different alternative alleles at a
given locus or report different genotypes (e.g heterozygous by one and
homozygous non-reference by the other). To overcome this issue, I decided to
merge the three VCF files into a single file per sample. This would have been an
easy task if the two callers agreed on all variants, but since this is not the case, I
needed to decide on which caller of the two, generated a more reliable set of

variants and thus should be used in the conflict cases.

To answer this question, I generated seven different callsets, (Table 2-6 first
column) where each callset is composed of at least one group of variants from
five scenarios (from 1 to 5). These five scenarios are based on the variant’s status
according to the two callers (A and B). A variant status can have one of three
possible values: (PASS) when a variant is called and passes the caller’s filters,
(Non-PASS) when a variant is called but does not pass the caller’s filters (e.g.
when a variant has a low genotype quality), and third status (Not called) is when
a variant is missed completely by the caller. Based on the variant status in the
two callers, there are five scenarios and each callset is composed of variants

from one or more scenarios.

One benefit of organizing variants in these callsets is to test various levels of
stringency. For example, the callset named ‘Any PASS’ includes variants from all
five scenarios regardless of the variant status. On the other hand, the callset
named “both PASS” includes only variants that pass the called and pass the filters
of both callers. These different levels of stringency allowed some callsets to have
more variants than other and thus reflected different levels sensitivity and
specificity. Moreover, I generated these callsets for both SNVs and INDELs
separately (Table 2-7) since SNVs are called by GATK (G) and Samtools (S) while
INDELSs are called by GATK (G) and Dindel (D).
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To decide which callset has the most desirable properties, I measured three
different ratios. First, I used the Ts/Tv ratio for the SNVs the expected values
ranges between (2.9-3.3) based on different sequencing projects at the Wellcome
Trust Sanger Institute and 1000 genomes consortium. For INDELs, I used the
coding in-frame/frameshift (n3/nn3) ratio, which was expected to be above 1
where the premise is coding frameshift variants are under much stronger
negative selection. The third ratio I used was the rare/common ratio for both
SNVs and INDELs (rare variants are defined as MAF < 1%).

Table 2-6 The criteria of choosing different variant callsets in order to determine the closest set
to the truth measurements (Ts/Tv, n3/nn3 and rare/common ratios).

Scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Caller A: Caller A: Caller A: Caller A: Caller A:
Callset name PASS PASS Non PASS PASS Not Called
Caller B: Caller B: Caller B: Caller B: Caller B:
PASS Non PASS PASS Not Called PASS
Both PASS Yes - - - -
Any PASS Yes Yes Yes Yes Yes
Priority PASS
(single Caller) ves ves i ves i
Any PASS
(stringent) Yes Yes Yes - -
Priority PASS
(stringent) ves ves i i i
Priority PASS Yes Yes - Yes Yes
(plus)
No Conflicts Yes - - Yes Yes

The total number of SNVs varies between the callsets (Figure 2-14-A). The
variation in coding SNVs was observed in the Ts/Tv ratio as well as
rare/common ratio (Figure 2-14-B and C). As expected, the most stringent callset
(bothPASS), that includes a variant only if it is called by both callers (GATK and
SamTools) and passes both of their filters (i.e. PASS), has the highest Ts/Tv ratio
(~3.18) while (anyPass) callset has the lowest Ts/Tv ratio (~3.01).
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Table 2-7 A list of callsets in each call set based on the caller and if the pass the caller’s internal

filters (i.e. PASS).

SNVs INDELs
Callset Name Callset included Callset Name Callset included
Both PASS GS Both PASS DS
Any PASS GS, Gs, gS, G, .S Any PASS DS, Ds, dS, D, .S
G Priority PASS GS, Gs, G. D Priority PASS DS, Ds, D.
S Priority PASS GS, gS, .S S Priority PASS DS, dS, .S
Any PASS (stringent) GS, Gs, 'gS' Any PASS stringent DS, Ds, 'dS'
G Priority PASS (stringent) GS, Gs D Priority PASS (stringent) DS, Ds
S Priority PASS (stringent) GS, gS S Priority PASS (stringent) DS, dS
G Priority PASS (plus) GS, Gs, G, .S D Priority PASS (plus) DS, Ds, D, .S
S Priority PASS (plus) GS, gS, G, .S S Priority PASS (plus) DS, dS, D, .S
No Conflicts GS,G., .S No Conflicts DS, D, .S

Keys: A single letter denotes each caller. For example “G” denotes GATK, “S” for Samtools and “D” for Dindel.
Capital letter means the variant is a PASS (i.e. passed the caller internal filters) and a small letter if does not
pass. The “” means the variant was not called by the caller. As an example, the callset named “G Priority
PASS (stringent)” under SNVs includes two types of variants (GS) and (Gs). The (GS) is all variants that are
called as PASS in both GATK and Samtools while (Gs) includes all variants that are called by GATK as PASS

but called as non-PASS by Samtools.

On the other hand, the rare/common ratio of loss-of-function (or functional

variant) shows the opposite trend; “bothPass” callset has the lowest
rare/common ratio (~0.09) and “anyPass” showed the highest (~0.15). The
benefit of using rare/common ratio is that it can tell us if a certain callset is
enriched for rare variant more than expected. Since single-sample variant callers
are not aware of the variant frequencies (i.e. whether it is common or rare) one
would not expect the callers to be biased towards either rare or common
variants. However, the variants called by Samtools seem to be enriched for rare
variants mainly in three callsets that use Samtools as the dominant caller
(S_Priority, S_ PriorityPASSplus and S_PriorityPASSstringent). What is even
more interesting is that the Ts/Tv and rare/common ratios are inversely
correlated (Figure 2-14-D). The higher Ts/Tv ratio gets, the lower the
rare/common ratio becomes. Additionally, this correlation is also seen in other
classes of variants such as functional (missense), silent (synonymous) and

intronic variant (data not shown).
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Similarly for INDELs, I examined different callsets derived from two callers,
Dindel and Samtools (Table 2-6 and Table 2-7). The truth measurement I used
for INDELs includes coding in-frame/frameshift (n3/nn3) and the rare/common
ratios. Not surprisingly, the most stringent callset is “bothPASS” which includes
INDELs that are called both callers and pass their internal filters. This callset
performs well on both matrices (the n3/3nn ratio is ~1.66 and the rare/common
ratio is ~0.10, see Figure 2-15 A-C). Here again, we see inverse correlation
between these two ratios as we saw between the Ts/Tv and rare/common in the

SNVs (Figure 2-15-D).
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Figure 2-14 Comparison of SNV callsets from GATK and Samtools.

(A) Shows the total number of variants in each call set (n=960 samples) and most are
comparable. (B) Ts/Tv ratios of functional variants (missense) SNVs per callset. (C)
Rare/common ratios of functional variants (missense) SNVs per callset. (D) The relationship
between Ts/Tv and rare/common ratios per callset.
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Although these analyses were very informative, they were not enough to
determine which caller contributed the most to the false positive rate (in terms
of low Ts/Tv, n3/nn3 and / or rare/common ratios). The final piece of
information was obtained by dissecting each callset to its basic five scenarios as
defined in (Table 2-6). For example, SNVs variants can be grouped into five
groups (GS, Gs, gS, G. and S.). Similarly, for INDELSs, there are five classes (DS, Ds,
dS, D. and .S) (see Figure 2-16). This analysis shows that Samtools tends to call
more rare variants (in both SNVs and INDELs) and generally performed worse

than other callers.
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Figure 2-15 Comparison of INDEL callsets from Dindel and Samtools callers.

(A) Shows the total number of variants in each call set (n=960 samples) and most are
comparable. (B) In-frame/frameshift (n3/nn3) ratios of coding INDEL variants per callset. (C)
Rare/common ratios of coding INDEL variants per callset. (D) The relationship between n3/nn3
and rare/common ratios per callset.
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This has a very important consequence on the downstream analysis since, on
average, Samtools contributes 2.5 rare loss-of-function SNVs, four rare missense
and two rare coding INDELs per sample. These might seem small for the number
of candidates in one sample, but in a project with 100 or 1000 samples, this has a
tremendous effect on the number of candidate variants needed to be validated or

sent for functional studies.
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Figure 2-16 Comparing callsets by callers.

(A) Ts/Tv ratio of functional (missense) SNVs. (B) Rare/common ratio of loss-of-function SNVs
(includes stop gain and variants that disturb the acceptor or donor splice sites). (C)
Rare/common ratio of coding INDELs. (D) In-frame/frameshift (n3/nn3) ratio for coding indels.
A single letter denotes each caller: “G” denotes GATK, “S” for Samtools and “D” for Dindel. Capital
letter means the variant is a PASS (i.e. passed the caller internal filters) and a small letter if does
not pass. The “.” means the variant was not called by the caller. As an example, the callset named
“G Priority PASS (stringent)” under SNVs includes two types of variants (GS) and (Gs). The (GS) is
all variants that are called as PASS in both GATK and Samtools while (Gs) includes all variants
that are called by GATK as PASS but called as non-PASS by Samtools.
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Collectively, these results suggested the importance of discarding or flagging the
rare coding variants called by Samtools alone (both SNVs and INDELSs) in order
to decrease the false positive rare candidate variants. It is important to notice
that these observations are true for the specific older version of Samtools and for

the filters used in the pipeline and may change accordingly.

2.3.2.3 Sample and data quality control tests

Before obtaining a set of high quality DNA variants for any downstream analysis,
several tests are required to detect any quality issues such as contamination,
sample swapping or failed sequencing experiments at the level of DNA samples,

sequence data (BAM files) and called variants (VCF files).

DNA sample quality tests

The sample logistic team at the Wellcome Trust Sanger Institute tested the DNA
quality of each sample using an electrophoretic gel to exclude samples with
degraded DNA. The team also tested DNA volume and concentration using
PicoGreen assay [277] to make sure every sample met the minimum
requirements of exome sequencing. Additionally, 26 autosomal and four sex
chromosomes SNPs were genotyped as part of the iPLEX assay from Sequenom
(USA). This test helps to determine the gender discrepancies or possible
contamination issues. Occasionally, the relatedness between sample and the
family membership may need to be tested using the genotype of SNPs in iPLEX
assay from the sample sequence data. An example of relatedness test from
sequence data is discussed in chapter 3 (part of a replication study of 250 trios

with tetralogy of Fallot).

Sequence data quality tests

The second group of quality tests was performed on the sequence reads
generated by the next-generation sequencing platform. Carol Scott from the
Genome Analysis Production Informatics (GAPI) team performed these tests to

detect samples with low sequence coverage.
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Variant quality tests

The third group of quality control tests targets the called variants that are stored
in the Variant Call Format (VCF) files [161]. The aim of these tests is to detect the
outlier samples based on the counts of single nucleotide variants (SNV) or
insertion/ deletion variants (INDEL) in comparison to other published and / or
internal projects (Figure 2-17 for SNV and for Figure 2-18 for INDEL variants).
These plots are based on 94 CHD samples generated by GAPI pipeline and these
plots are generated for each CHD project in chapter 3 and 4. These serve to
monitor the consistency of variant calling between samples from the same
project and also between different projects. Samples that show extreme low or
high values above 2-3 standard deviations of the mean values are flagged for
further investigations to determine the possible causes (e.g. contamination

issues, poor sequence data, etc.)
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Figure 2-17 An example of QC plots I routinely generate for all samples in each study.

Variant counts per sample (n=94 selected CHD samples). (a) Total number of variants, both SNVs
and INDELs, that pass caller internal filters (i.e. PASS). (b) Total number of single nucleotide
variants only. (c) Percentage of common variants (MAF = 1% in 1000 genomes project). (d)
Number of rare and common loss-of-function (includes stop gain and variants that disturb the
acceptor or donor splice sites). (e) Number of functional (missense), silent (synonymous) or
others (include non-coding variants such as intronic and variants in untranslated regions, UTR).
(f) Transition/transversion ratio of coding SNVs. (g) Count of heterozygous and homozygous
variants. (h) Homozygous/heterozygous ratio of all or rare variants.
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(a) Indel frequency per sample (b) % of indels as common
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Figure 2-18 Count of INDEL variants per sample (n=94 selected CHD samples). (a) Total number
of INDELSs that pass caller internal filters (i.e. PASS). (b) Percentage of common variants (MAF =
1% in 1000 genomes project). (c) Number of rare and common INDELs. (d) Coding In-
frame/frameshift ratio (n3/nn3).

2.3.3 Minimizing the search space for causal variants

2.3.3.1 Minor allele frequency

In this thesis I have assumed that highly penetrant genetic causes of CHD are
rare in the population given the fact that CHD affects usually less than 1% of the
population and highly penetrant alleles should be strongly selected against. This
makes annotating variants in CHD samples with allele frequency in matching
population highly important for downstream analyses such as the family-based
co-segregation, case/control and many other analyses. In this section, I describe
the different resources of population allele frequencies that I used and their

effect on the final number of rare candidate variants.
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It is generally accepted that rare variants are defined as the variants with a
minor allele frequency of 1% or less [278]. Currently, there are three major
projects from which the allele frequency is available in a large number of
samples. The first is the 1000 genomes that include 1,092 samples from different
populations and used low-depth whole genome sequencing and high-depth
whole exome sequencing [155]. The second is the NHLBI Exome Sequencing
Project and includes 6,015 individuals of European American and African
American ancestry and uses high-depth whole exome sequencing [199]. The
third MAF resource is the UK10K cohort of low-depth whole genome sequencing
from ~4,000 individuals of European ancestry [264]. While the individuals from
the 1000 genomes and UK10K Cohort are presumably healthy, the NHLBI Exome
Sequencing Project includes affected patients with various different phenotypes.
This led me to disregard the MAF from NHLBI-ESP samples since I cannot rule
out the possibility that some samples may have congenital heart defects.
Additionally, the captured exome data in NHLBI-ESP project is based on a
smaller set of genes (~17,000 genes compared with ~20,000 genes captured in
the exome data in my samples), which can adversely affect many downstream
analyses such as the case/control analysis by generating spurious false positive

signals.

In addition to publicly available MAF resources, I generated an internal MAF
based on 576 healthy parents from the Deciphering Developmental Disorders
(DDD) project. The main goal of using the internal MAF is to exclude variants
that appear as rare according to population MAF recourse but appear in > 1% of
the samples. These are expected to be novel ‘common’ variants or, possibly more

likely, sequencing / pipeline errors.

At the time of writing this thesis, there was no general consensus on the best
strategy to match the exome sequence variants with variants in population
frequency resources, especially the indels, in our internal pipelines (GAPI and
UK10K) nor in other external sequencing centers like the Broad institute in the

USA (Shane McCarthy, personal communication). Some groups match variants in
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their projects with MAF from public resources if both have the same
chromosome and position only while others expand this matching strategy by

matching variants in a window of 10-30bp to the closest variant.

Variant Matching Algorithm

SNVs ‘ INDELs
[ [
Exact match | ‘ (A) Exact match (B) Lenient match |
[ ]
Same chr Same chr | | Get indels within +/- 10 bp If multiple matches found;
' prioritize by
Same pos Same pos .
Same ref Same ref Same chr
- Closest ‘
Same alt Same alt | Same size
! ~ if multiple matched found
same type (ins,del) at the same distance

Get the lower AF

Figure 2-19 The variant matching algorithm between alleles in exome data and alleles from MAF
resources.

[ designed a hierarchical algorithm that matches between the source files
(UK10K, 1KG and ESP) and the target files (CHD samples or other samples like
DDD) (see Figure 2-19). The goal of this algorithm is to make sure I match the
right allele in my CHD samples with the corresponding alleles in the MAF
resources. This algorithm generates two keys; one from the source file (e.g. CHD
sample) and the second key is generated from the target file (1000 genomes MAF
file) and then tests if both keys match each other (see Figure 2-20 for examples).

In the case of SNVs, I constructed the key using four values (chromosome,
position, reference allele and alternative allele) and called this an “exact 1”
matching. On other hand, INDELs are harder to annotate because callers might
call the INDEL alleles differently especially in repeat regions. To accommodate
these different scenarios, I tested three different matching definitions. The first is
“exact I” which is similar to the SNVs and is considered the most stringent
approach. The second strategy is called “exact II” where I construct a key, also

using four values (chromosome, position, slice and direction). This key requires
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both INDELSs in the target and source files to be at the same locus (chromosome
and position) while ‘slice’ is computed based on the DNA sequence difference
between the reference and alternative alleles and ‘direction’ is either deletion or
insertion. Although “exact II” matching may look different to “exact I”, it is also a
stringent matching that tries to accommodate the differences imposed by

different callers when they call the same INDEL.

When a matching algorithm fails to find any results using “exact I or II”
strategies, it switches to a lenient matching mode where it expands the search
for similar INDELs within 10-30bp flanking window. If the algorithm finds more
than one INDEL that meet its criteria, it chooses the nearest matching INDEL to
the target locus and if it finds multiple INDELs at the same distance, it picks the

one with lower MAF value, to be conservative.

VCF Chr Pos Ref Alt Direction Slice

(A)

fi | e chrl 866511 ccect ccecreccT ins cceT

Retrieve all variants in 1KG at region chrl: 866511 +/- 10bp flanking region

Chr Pos Ref Alt Direction Slice AF
chrl 866505 G A - - 0.00023
(B) chrl 866511 cceer C del ccer 0.00176
chrl 866511 cceer cceereccr ins ccer 0.58993
chrl 866517 C G - - 0.00431

Figure 2-20 Example of how MAF matching algorithm works. (A) The chromosome (Chr),
position (Pos), reference (Ref) and alternative (Alt) alleles from a source file (e.g. VCF file of a
CHD sample). (B) Possible matching alleles within + 10bp flanking region extracted from the MAF
resource file from 1000 genomes project. The direction of the allele can be either insertion or
deletion in case of INDELs and ‘- for SNVs (i.e. point mutation). ‘Slice’ (red) is the DNA sequence
difference between reference and alternative alleles and computed for INDELs only. In this
example, since the VCF file contain an INDEL, the matching algorithm will try to look for “exact I”
matching key (same chromosome, position, reference and alternative alleles). If this failed, it will
start matching using “exact II” strategy (i.e. same chromosome, position, direction and slice),
which corresponds to the third record in the (B) where the allele frequency is (0.58993) in the
1000 genomes.
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To test the algorithm performance under each mode (exact I, II and lenient), I tested the
correlation between three MAF resources (1KG, UK10K and ESP) with DDD internal MAF
described above (

Table 2-8). My assumption is that the vast majority of variants should have
similar allele frequency in the DDD samples as in the three MAF recourses
(except for private or extremely rare variants and sequence errors). A proper
matching algorithm should be able to match same alleles and thus the MAF
values should show a strong correlation between the DDD samples and the other
MAF resources. Both exact [ and exact Il strategies show a strong correlation
between the allele frequencies in 1KG, UK10K or ESP with DDD internal allele
frequencies (correlation coefficient > 0.8) but not the lenient strategy for

declaring a match (correlation coefficient -0.03 to 0.008).

After [ showed that both ‘exact I and II' algorithms are well suited for matching
alleles in samples sequenced locally with alleles available in public resources, I
decided to test the effect of using MAF from different resources on the number of
rare coding variants per sample. To evaluate the effect of these MAF recourses, |
selected 288 samples from DDD project and annotated them with allele
frequency from four MAF recourses (1KG, UK10K, ESP and DDD’s internal MAF)
(Figure 2-21) in order to eliminate common variants (MAF > 1%). The number of
variants left after excluding common variants based on MAF from the 1000
genomes project or the UK10K project was comparable (616 and 631
respectively). The MAF from ESP on the other hand do not appear to be very
effective for filtering. This is not unexpected since the ESP sequence data are
based on a smaller version of the exome compared with the whole genome data
in the 1000 genomes and UK10K projects. However, using all three MAF
resources together was more effective than using each separately (~428 rare

variants per sample).
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Table 2-8 Correlation values between "allele frequencies" of ~9,000 INDELs on chromosome 1
from DDD (n=576 samples) and the corresponding allele frequencies from three population-
based projects: 1000 genomes, UK10K twins cohort (n=~4000), and ESP projects (n=~6500)
using three matching strategies (exact I, II and lenient). 1KG: 1000 genomes, COHROT: UK10K

twins cohort, ESP: NHLBI Exome Sequencing Project, cor=correlation coefficient.

Population-based Matching strategy
Projects Exact type I Exact type Il Lenient
1KG 0.80 0.83 -0.03
COHROT 0.92 0.73 0.01
ESP 0.89 0.88 0.01

Surprisingly, using the internal MAF from healthy parents in DDD project was
even more effective than using all three public MAF together (~419 rare variants
per sample when used alone and 327 when used in addition to the other three
MAF resources). A possible explanation is that alleles with MAF > 1% and
specific to a given project are likely to be sequence or pipeline errors, otherwise
they would have been identified in large-scale projects such as the 1000
genomes, which aims to discover alleles with low allele frequency of at least 1%

in the populations studied [155].
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0
1KG UK10K ESP 3 AFs DDD 4AFs
W Heterozygous | 518.4 572.7 994.8 401.1 408.7 322.2
W Homozygous 98.5 58.4 470.1 27.2 10.8 5.2

Figure 2-21 average number of autosomal rare variant when filtering based on < 1% minor allele
frequencies from different resources. The data are based on 288 samples from the Deciphering
Developmental Disorders (DDD) project. 1KG: 1000 genomes, UK10K: 4,000 healthy twins from
UK10K cohort, ESP: 6,015 samples from NHLBI Exome Sequencing Project. 3 AFs includes rare
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variants in (1KG, UK10K and ESP). DDD is an internal allele frequencies based on 576 healthy
parents from DDD project. 4 AFs includes rare variants in 1KG, UK10K, ESP and DDD.

2.3.4 Family-based study designs in CHD

There are many family-based designs one can consider when studying CHD, such
as singletons, affected sib-pairs, parent-offspring trios, affected parent-child and
multiplex families. However, since the mode of inheritance in CHD is poorly

understood in general, there is no obviously optimal study design.

Each design has advantages and disadvantages, for example, in terms of the
feasibility of the sample collection and the availability of suitable analytical
approaches (Table 2-9). Singletons (or index cases) are the easiest to collect but
each sample has several hundreds of rare coding variants if analyzed separately,
which makes the task of finding likely pathogenic variants difficult. On the other
hand, trio family designs are usually more difficult to collect but they offer a
chance to detect de novo and definitive compound heterozygous variants in the

affected child, which are not feasible in singleton or affected-sib pair designs.

To see how different study designs may affect the final number of candidate
genes, | selected one family of healthy parents and three affected children (two
females and one male, Figure 2-22) to estimate the number of rare, functional
coding variants under different designs and inheritance scenarios. Variants were
defined as rare if they have a minor allele frequency < 1% in the 1000 genomes
[155] and in 2,172 parents from the Deciphering Developmental Disorders
(DDD) project [260] (this analysis was performed more recently with a newer
version of the DDD project which include a larger number of parents compared
with analysis described in previous sections where I included 576 parents only).
Functional coding variants are defined as variants predicted by VEP tool [170] to
be either loss of function (stop gain, frameshift or variants affected donor or
acceptor splice sites) or functional (missense or stop lost). I excluded silent

(synonymous) variants from the analysis.
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Table 2-9 Overview of study designs and analytical approaches

Study Design Advantages Disadvantages Analytical
approaches
Index cases | -Easy to collect -Lack of family genotype -Case/control

information means larger
search space for causal
variant(s).

(collapsed, weighted,
etc.)

Extended - Co-segregated variants that - Rare to find and collect - Linkage analysis and
families are absent from control samples. then targeted
provide strong evidence for sequencing.
causality.
Trios - Utilize parental genotype to - More difficult to collect - De novo
detected de novo variants - Co-segregation
- Compound heterozygous - Transmission

mutations can be detected
- Avoid population
stratification bias (e.g. TDT
tests)

disequilibrium test
(TDT)

Affected-sib

- Suggestive of autosomal
recessive disorders.

- The lack of parental
genotype information

- Runs of homozygosity
- Co-segregation

airs
P - Small search space due to inflates the number of - Identical By Decent
few autosomal recessive homozygous variant (IBD) analysis
candidates and siblings share | candidates. (Autozygosity)
only half of the variants. - Identical by State (IBS)
analysis (Allozygous)
Multiplex -Combine the power both - Difficult to analyze when | Same as trios in addition
families trios and affected sib-pairs affected members have to the affected sib-pairs

(parents plus >
1 affected
child)

- Smaller search space for
variant with more affected
children.

heterogeneous phenotypes
- Less common families
than the trios.

Affected
parent-child

- Suggestive of autosomal
dominant disorders.

- The variant search space
is larger than in trios.

- Co-segregation of
heterozygous variants

AS

PS PS

Figure 2-22 Pedigree chart of a multiplex family (three affected children and their healthy
parents) used to count the number of candidate genes with rare coding under different
inheritance scenarios.

AS: aortic stenosis, PS: pulmonary stenosis.
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Initially, I analyzed each affected child separately to test the singleton design and
found two rare coding homozygous, 10 compound heterozygous and 381
heterozygous variants on average (Table 2-10). If I consider two children as an
affected sib-pair and look for shared rare coding variants, the number of rare
coding heterozygous variants drops to less than half and less than a quarter of
recessive variants (both homozygous and compound heterozygous) compared
with the singleton design. Combining all three affected sibs at the same time
shows only 75 rare coding heterozygous variants shared among them, which
represents 80% less than singleton and 50% less than two affected sib-pairs but

no recessive variants are shared between all three sibs.

On the other hand, the number of candidate genes with rare coding variants
drops dramatically to just a handful of genes in the trio design when I consider
the parents and assume complete penetrance. This is mainly because the
parents’ exome data provides additional genotype information to exclude most

heterozygous variants (see Table 2-11 for details).

These empirical numbers of rare coding variants shared between different
family members are in general agreement with what I would predict from
Mendelian inheritance. For example, since the number of rare coding
heterozygous variants observed in each child is ~381 on average, two affected
sibs should share 50% (IBD=1) or 190 variants which is not far from what I
observed in the three affected sib-pairs in this family (~153). Similarly for the
rare coding homozygous variants, the observed average in each child is ~10 and
each sib-pair is expected to share 25% (IBD=2) or 2.5 homozygous variants,

which is very close to the observed value (~2.67).

The variation between the observed and the expected numbers of shared
variants under Mendelian inheritance laws is likely caused by under-calling the
same variant in one more member. I found the same broad agreement between
the average numbers of variants in the affected parent-child pairs (~157)
compared with the expected numbers under Mendielian inheritance laws

(~190).
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Table 2-10 Number of rare coding variants in affected children under different study designs (see
family pedigree Figure 2-22).
Singleton: each affected case is analyzed independently. Affected sib-pairs: shared variants
between two or more affected sibs without parental information. Trios: each child is analyzed
with his/her healthy parents and assuming complete penetrance (see Table 2-11 for the full list
of allowed genotypes). Multiple: analysis of two or more children with their healthy parents and
assuming complete penetrance.
* Indicates the average number of one affected parent (father or mother) and any child of the
three. NA: not applicable (e.g. no autosomal recessive variants are allowed in affected parent-

child design).
Number of candidate genes
Family study with rare coding variants
. Samples . p
design Recessive Recessive .
Dominant
(homozygous) (compound)
Child I 1 11 373
Singleton Child II 1 12 413
Child I11 4 8 357
Shared between sibs
(I'and II) 0 > 162
Shared between sibs 1 1 171
. (I'and III)
Affected sibs Shared bet m
ared between sibs
(Il'and III) 0 2 126
Shared between sibs
(I, IT'and III) 0 0 75
One affected parent and "
one affected child NA NA 157
Affected One affected parent «
parent-child and two affected children NA NA 74
One affected parent "
and three affected children NA NA 37
Trio (child I) 0 3 1
Trios Trio (child IT) 0 5 0
Trio (child III) 0 5 0
Shared between trios
(I'and II) 0 4 0
Shared between trios
. (I'and III) 0 0 0
Multiplex
Shared between trios 0 4 0
(IT and III)
Shared between trios
(L 11, IIT) 0 0 0
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Finally, I consider the shared rare coding variants between two or more trios (i.e.
multiplex family design). This study design has identified four genes only with
compound heterozygous that are shared between child-I and child-II and
another four genes between child-II and child-IIl. No rare coding variants were
detected when all three sibs and their parents were analysed at the same time.
This may suggest either a possible under-calling of a monogenic variant (i.e.
missed by the callers) or an oligogenic nature of the disease (i.e. multiple genes
with different rare causal variants). Nonetheless, the trio design is clearly
superior to the affected-sib pairs or singleton designs since it identifies very

small number of candidate genes.

Table 2-11 The accepted genotype combinations in a complete trio are the genotypes that are
compatible with Mendialin inherence laws and also in agreement with the assumption of
complete penetrance. Each trio includes an affected child (male or female) and two healthy
parents. Each cell in the first column “genotype combinations” represents three genotypes in
child, mother and father. “0” indicates a homozygous reference genotype, “1” is a heterozygous
genotype, and “2” is a homozygous genotype in diploid chromosome (autosomal) or hemizygous
in a haploid chromosome (e.g. X-chromosome in a male child). Y-chromosome and mitochondrial
DNA are omitted from the table. Empty cells indicate that a given genotype combination is
incompatible with Mendelian laws (e.g. 1,0,0 is de novo) or not expected under complete
penetrance assumption (e.g. 1,1,1 is heterozygous in both the affected child and his parents).
Only three genotype combinations were considered when 1 performed trios or multiplex
analysis.

X- chromosome
Genotype X- chromosome .
L o, Autosomal . . in an affected female
combinations in an affected male child child

(1,0,0)

(1,0,1)

(1,0,2)

(1,1,0)

(1,1,1)

(1,1,2)

(1,2,0)

(1,2,1)

(1,2,2)

(2,0,0)

(2,0,1)

(2,0,2)

Hemizygous inherited

(2,1,0) from a carrier mother

Homozygous in child and
(2,1,1) inherited from carrier
parents

(2,1,2)

(2,2,0)

(2,2,1)

(2,2,2)

Compound heterozygous

(1,0,1) and (1,1,0) in the child in a given gene
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2.3.5 Family-based Exome Variant Analysis (FEVA) suite

To generate a list of candidate genes from exome data of a given rare, putatively
monogenic, disorder, one needs to go through multiple steps that include
excluding low quality variants based on various filters, excluding incompatible
genotype combinations with either the study design or the plausible inheritance
models (see Table 2-11 for an example of incompatible genotypes with a trio
design) and filtering common variants (MAF > 1%) as well as non-coding
variants since rare coding variants (except silent) are more likely to have a
measurable effect on the phenotype. Performing these steps manually in non-
specialized software, such as Microsoft Excel, is time consuming and error prone
due to the large number of variants. This is clearly not suitable for large-scale

projects of hundreds of samples with different family structures.

To automate the analysis and variant reporting under different Mendelian
inheritance models I designed a ‘Family-based Exome Variant Analysis’ tool.
FEVA is a suite of tools that enable users to generate a list of candidate genes
under various study designs. FEVA offers two interfaces for the end user. The
first interface is a Command Line Interface (CLI) suitable for high-throughput
analysis, which can be incorporated into automated data analysis pipelines. The
second interface is a graphical user interface (GUI) aimed for low-throughput
analysis that is easy to use with minimal training (Figure 2-23). I designed the
GUI version of FEVA three years ago when many sequencing projects, such as the
UK10K RARE project, was just starting at the Wellcome Trust Sanger Institute. At
that time, there was no GUI available for our collaborators to explore variants
files (VCF files) with ease. 1 coded most FEVA components in the Python
programing language, which I chose for its readability and agility for
prototyping. Since Python is a high-level programming language; it can be slow
when performing computer intensive tasks (such as parsing large files which are
commonly used in the next-generation sequencing era). However, Python is
easily extendable by other low-level statically typed, and thus quite fast,
programming languages to overcome this limitation. For example, I have used

many C and C++ libraries to parse large exome/genome files. Moreover, I used
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graphical user interface components, which are written in C++ (QT library) for

fast viewing.
test_large &
Annotation ) ( DNA seq. ) ( Export ) | | HOM_variants $ ( Filter out ) ( Filterin ) ( Reset filters ) | Number of variants = 27814
CHROM POS [} REF ALT QUAL FILTER oP AN DB AC MQ NC Mz ST
Filters :
—
@ = TE
CHROM POS 1] REF ALT QUAL FILTER oP AN DB AC MQ NC MZ sT m
1 1 100089177 rs2307130 A G 99 0 49 2 1 1 58 2.45 0 22:2,24
2 1 100108949 rs2230306 C T 99 o 43 2 1 1 59 1.75 0 9:12,14
3 1 100112813 rs634880 C A 929 0 34 2 1 1 57 -1.39 0 19:0,14
4 1 100119329 rs3736296 T C 99 0 96 2 1 1 60 0.31 0 16:24,1
5 1 100126263 rs555929 G A 99 0 106 2 1 1 59 -3.04 0 10:48,9
6 1 100129729 rs2035961 T A 99 0 72 2 1 1 60 1.13 [ 38:1,27
7 1 100149036 rs2274570 C A 88 0 37 2 1 1 60 -1.53 0 1:22,0.
8 1 100348521 rs13375867C A 929 ) 61 2 1 1 60 2.37 0 13:13,2
9 1 100371454 rs472498 C A 60 0 11 2 1 2 60 1.61 0 0:0,2:9
10 1 100371455 rs687513 C T 60 0 11 2 1 2 60 2.49 0 0:0,2:9
1m 1 100444648 512021720 T c 99 0 37 2 1 2 59 1.84 0 0:1,14
12 1 100976415 rs3176879 G A 99 0 162 2 1 2 60 -1.45 0 0:0,40.
13 1 1011209 rs10907177 A G 99 0 26 2 1 1 57 0.54 0 0:11,5
14 1 1011278 rs3737728 A G 48 0 7 2 1 2 57 -1.42 0 0:0,2:5
15 1 101150433 rs10493940 A G 81 0 154 2 1 1 60 2.02 0 1:74,0
6 1 10162234 rs41310363A c 80 0 10 2 1 1 60 -4.23 0 0:3,3:4
17 1 102068867 rs10493973 T C 99 0 191 2 1 1 60 1.91 0 33:57,2
18 1 10244641 rs4846209 C A 75 0 20 2 1 1 59 -0.15 0 2:10,0:¢
19 1 10249994 rs12141246A T 99 0 21 2 1 1 57 -4.09 0 11:0,9:
20 1 10257511 rs17396973C T 929 [ 36 2 1 1 59 -3.15 0 17:0,19
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Figure 2-23 Screen print of FEVA graphical user interface (GUI).

This simple interface shows three parts. The green rectangle shows a list of variants and their
annotations. Each row represents one variant along with its quality scores and biological
information such as gene, variant type, effect on protein, etc. The red rectangle is where the user
can enter filter conditions to exclude or include rows. The blue rectangle includes additional
functions such as applying a set of pre-defined filters or to export a list of candidate variants to
other programs.

Although other tools have been published during my work with similar
functionality, such as SVA, EVA and VarSift [261-263], none of them were able to
fulfill the needs for my projects. One limitation common to these tools it that they
are not suitable for both interactive and high-throughput analysis. Additionally,
many of them have hard coded filters, and so lack flexibility, or require a certain
formatting that is not necessarily compatible with the VCF files generated by the
GAPI or UK10K pipelines (see Table 2-12 for comparisons with FEVA).

The family-based analyses in FEVA go through three steps (Figure 2-24): (1)
reduce the search space by applying quality and MAF filters (e.g. exclude
common variants, low quality, etc.), (2) identify co-segregating variants in family
members (e.g. exclude variants in healthy sib or shared variants between
affected parent-child), (3) Group the possibly pathogenic variants by the

inheritance model (e.g. recessive or dominant).
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Table 2-12 Comparison of four freely available graphical user interface applications for genome
or exome analysis. N/A: not available.

VarsSift
Features FEVA EVA[262] | SVA[261] "E; 6‘3]‘”
Desktop application Yes No Yes Yes
User custom annotation Yes No Yes No
Visualization No Basic Advanced No
Custom filters Yes Hard-coded Hard-coded Hard-coded
Whole genome Yes No Yes No
Accepts compressed files Yes No N/A No
Family Based analysis Yes Yes No No (Var-MD)
Memory usage (RAM) Minimal N/A Large N/A
QC statistics External Yes Yes No
module
Has command-line tools Yes No No No
Input files VCF VCF VCF & bco VCF
Cross-platform Yes N/A Yes Yes
Affected sib-pair with PCD
RS Sib1 Sib2
\"= Step (1) Reduce the search Unfiltered. 131,068 193266
: space by applying filters. v 3
(Depth > 10, Genotype PASS 46,978 45,990
Quality > 75 , etc.) v v
MAF <0.05  —eseeee e
~
& Step (2) For each family,
= Affected perform co-segregation N v
L4 parent-child " ‘- Shared filtered
‘ analysis according to the it 881
A -~ design. Search for shared
— - genes in between families
Affected Index cases
sib-pairs v
Step (3) Group the output | [Aalowel | |
variants into tiers for FUNC | COMN_1XG| 4 2 200
systemic interrogation. t‘;’:‘l lZ‘;"iIIE ‘f ‘;‘ ey
wor e e |5 | s 2

Figure 2-24 FEVA workflow.

An example of one sib-pair affected with Primary Ciliary Dyskinesia (PCD), which has been
sequenced as part of the ciliopathies study in the UK10K RARE project. The user supplies the
variants files and chooses which family design and FEVA performs three tasks automatically.
First, FEVA excludes low quality variants and common variants using a MAF threshold supplied
by the user. In the next step, FEVA applies the rules of co-segregation designed for affected sib
pairs (i.e. shared variants in both sibs). Finally, FEVA groups shared variants under recessive
(homozygous or compound heterozygous) and dominant models. Furthermore, FEVA can divide
the candidate variants into loss-of-function and functional classes according to the user settings.
Almost all steps described here are adjustable by the end user, which enable FEVA to
accommodate different needs and scenarios.
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The rules of co-segregation vary according to the family design (e.g. singleton,
trio of healthy parent or trio of affected father-child, etc.) and can be made more
or less stringent. These models are configurable by the user to suit a unique
study design (only in the command-line version of FEVA). In the next section, I
will describe how [ used FEVA with different study designs to identify

pathogenic and candidate pathogenic genes for different disorders.

2.3.6 Application of FEVA in rare disease studies

Application 1: Targeted sequencing of linkage regions (monogenic disease)

Dr. Andrew Crosby and his team at St. George’s University of London have
previously detailed the clinical features of members of a large UK family affected
by dominantly transmitted distal hereditary motor neuropathy type VII (OMIM
158580). The team had previously mapped the gene responsible to
chromosomal region 2q14 in a family of 14 affected and 12 unaffected members
and I collaborated with them to analyze the exome sequence data of one affected

family member.

Coding regions were captured with SureSelect All Exons (50 Mb) and sequenced
by Illumina HiSeq at the Wellcome Trust Sanger Institute, yielding 9.8 Gb data
(~130 million reads) corresponding to 91% target coverage with a mean depth
of 1,073 and identifying 52,806 variants. Based on previous linkage analysis
[279, 280], I used the FEVA software to report rare coding variants in two

regions (~13.5 Mb) with high LOD scores (Table 2-13).

Table 2-13 Genome coordinates of microsatellite marker

Regions Size Marker ID Locus in human genome
AC084377 Chr2:99560750
Region (1) 9.2Mb
D2S5160 Chr:2:112998734
D2S2970 Chr2:118948333
Region (2) 4.3Mb
D2S2969 Ch2:123237183
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After filtering common and non-coding variants (Table 2-14), I identified only
one loss of function variant within the critical region; this was a single base
deletion (c.1497delG) in SLC5A7 gene encoding the Na*/Cl- dependent, high-
affinity choline transporter. This novel variant was found to co-segregate in all
affected members using capillary sequencing and this work was published in the

American Journal of Human Genetics [281].

[l Aftected individual included in study
[] unaftected individual included in study
Affected individual not included in study

Unaffected individual not included in study

, ko
ﬁgg}i o ﬁééLﬂéﬁ o

Vil V2 V8 V4 V2 V9 VIO VIi4 VIS Vet V2 VB V7 VI8 V16 V17 VIO VIO V9 IViI0 . V18 V19 VIt Vi20  Vi21 VIi2

218 bp

198 bp

Figure 2-25 Family pedigree and c.1497delG cosegregation in SLC5A7 gene [281]. The c.1497delG
variant results in the creation of a novel Sspl restriction site that facilitates cosegregation
analysis by restriction digestion of exon 9 PCR products resolved by polyacrylamide gel
electrophoresis. (Image and caption are adapted from [281])

Table 2-14 Number of variants in two linkage regions (~total size of 13.5 Mb). The variants are
classified based on genotype (heterozygous or homozygous), by the predicted effect on protein to
functional (missense) or loss-of-function (LOF class includes stop gain, frameshift and variants
that disturb acceptor or donor splice sites). Only one rare LOF variant, a coding frameshift, found
in SLC5A7 gene that encodes for choline transporter protein.

Common Rare
Genotype All variants
Functional LOF Functional LOF
Heterozygous 134 32 2 23 1
Homozygous 77 24 1 0 0

Similar to the analytical strategy I used to discover causal mutations in SLC5A47
gene, | utilized FEVA to analyze data from other monogenic diseases under an
autosomal recessive model in collaboration with Dr. Crosby and his team (Table
2-15). In all of these cases, I used the linkage analysis information to guide FEVA

while filtering for rare coding homozygous or compound heterozygous variants.
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These analyses were usually straightforward since FEVA reported only one or

two candidate variants per sample because of the small linkage intervals.

Table 2-15 Results from other monogenic phenotypes where linkage analysis was used to guide
the variant filtering of variants from whole exome or custom designed data (using FEVA).

PRERGETIE Hereditary spastlc Developmental delay with Microlissencephaly
paraplegia macrocephaly
Mendelian . . .
Autosomal recessive Autosomal recessive Autosomal recessive
model
Linkage 14.3Mb (chr12) 19q.13.32 2.36Mb (chr19)
analysis
Seque_ncmg Custom design Whole exome Custom design
region
Number of 1 1 1
samples
Candidate B4GALNT1 KPTN WDR62
gene
. . ¢.1562T>A and
Casual variant c.1458insA c.776C>T 4038-4039delAA
Project status Published in [282] Published in [283] Manuscript is being
prepared

Application 2: Affected trio families combined with candidate gene

screening

The aim of the Deciphering Developmental Disorders (DDD) project is to collect
DNA and clinical information from undiagnosed children in the UK with
developmental disorders and their parents [260]. I used FEVA to test its
performance in high-throughput on 1,080 trios of affected children with various
developmental disorders and also to estimate the number of candidate genes,
assuming healthy parents and complete penetrance of rare coding variants

(Table 2-16).

FEVA was able to report rare coding variants according to the genotype rules in
(Table 2-11) under autosomal recessive (homozygous or compound
heterozygous) and X-linked models (separately for male and female children).
The rare variants are defined as variants with MAF < 1% in the 1000 genomes
project and in parental MAF from DDD (n=2,172). Regardless of gender, each

child has, on average, four candidate genes with autosomal recessive rare coding
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variants (excluding silent) and another three candidate genes on the X

chromosome.

[ also tested FEVA'’s ability to screen candidate genes for the presence of rare or
novel coding variants (Table 2-16, DDG2P genes). DDG2P is a list of 1,148
manually curated genes with strong evidence supporting involvement in
development disorders (the DDG2P gene list was developed by the DDD team).
The screening analysis revealed, on average, only one autosomal rare coding
variant, one X-linked in females and 0.18 X-linked in males. However, the DDD
team implements additional filtering steps for their clinical reporting pipeline.
These steps involve matching the phenotype and family history to the genotype
(i.e. compatibility with the Mendelian rules), which lowers the number of

candidate genes per child still further.

Table 2-16 Number of candidate variants in 1,080 affected DDD trios assuming healthy parents
and complete penetrance (558 males and 522 females).

LOF: loss-of-function (include strop gain, variants disturbing acceptor or donor splice sites and
frameshift), functional (includes missense). DDG2P: a list of 1,148 manually curated genes with
strong evidence supporting involvement in development disorders (the DDG2P gene list is a
courtesy of DDD team).

All genes DDG2P genes
Variant | Chromosome Genotype (n=~20,000) (n=1,148)
LOF Functional LOF Functional
Homozygous 0.02 1.01 0.08
Autosomal C d
SNVs ompoun 0.13 2.99 0.01 0.42
heterozygous
X-chromosome
(male child) Homozygous 0.1 3.28 0.02 0.63
Homozygous 0.03 0.03 0.08
Autosomal C d
INDELs ompown 0.11 0.07 0.01 0.43
heterozygous
X-chromosome
(male child) Homozygous 0.07 0.12 0.03 0.66
Total candidate genes in a female child 0.29 41 0.02 1.01
Total candidate genes in a male child 0.46 7.5 0.07 2.3

FEVA requires 1-3 minutes to generate a report of candidate genes for one trio.
When run in parallel, FEVA can generate reports of candidate genes for

thousands of exomes in a few hours with minimum memory usage (< 50 Mb per
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trio). This feature makes FEVA suitable for large-scale projects such as the DDD,
which aims to analyze the exome data from 12,000 trios in the next couple of

years.

Application 3: Affected sib-pairs in UK CHD families

In collaboration with Prof. Eamonn Maher at the University of Birmingham, I
analyzed the exome data of 10 families with at least two CHD affected sibs. Two
of these families are consanguineous (from Birmingham Pakistani population).
All families have two affected sibs except family CHD1 and CHD16 where each
has three affected sibs of various CHD phenotypes.

[ used FEVA software to generate reports of rare coding variants that are shared
between at least two sibs (Table 2-17). The rare variants are defined as variants
with MAF < 1% in 1000 genomes and the internal MAF of 2,172 parents from
DDD project. As expected, affected sib-pairs from consanguineous families
(CHD1 and CHD4) have more candidate genes with autosomal recessive rare
coding variants than non-consanguineous families. On average, each family’s
FEVA output lists 3.5 gene candidate genes with homozygous rare coding
variants and 25 candidate genes with compound heterozygous rare coding

variants.

Initially, I focused my search for candidate genes with rare loss of function (stop
gained, frameshift or variants disturbing acceptor or donor splice sites) (Table
2-18). The top recurrent five genes that appear in most of the families
(ANKRD36C, LINC00955, CDC27, OR4C5, and MUC3A) are unlikely to be linked to
the CHD phenotypes since they have compound heterozygous LOF in almost all
families. Most of the remaining genes do not have knockout mouse models
except three genes (TTN, PLA2G1B and RBMX) and TTN is the only gene that
shows structural cardiac defects in the mouse models. Since it not expected to
identify recurrent pathogenic genes in such a small study with variable CHD
phenotypes, I only considered genes that appear in one affected sib-pair only. I

also excluded genes with frameshift variants (INDELs) since they tend to have a
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higher false positive rate. Only two genes, GMFG and TASZR43, met all filters.
TAS2R43 gene encodes a taste receptor and it is unlikely to have a rule in CHD.
On the other hand, GMFG harbors a rare homozygous stop gain variant
(p-Arg24X) in two sibs diagnosed with tetralogy of Fallot in family CHD1 (Figure
2-26). Upon validation with capillary sequencing (carried out by my colleague
Chirag Patel), the same homozygous variant co-segregate in the third affected
child with TOF (IV:4) but heterozygous in both parents not seen in the fourth
child with ventricular septal defect (IV:3) . This variant was absent from ~200

ethnically matched control chromosomes.

Table 2-17 Number of candidate genes with shared coding rare variants, in at least two sibs,
under autosomal recessive model.

* Numbers in parenthesis are number of gene candidates with rare coding variants shared
between all three sibs.

. . Number | Number of candidate genes
Family [Consanguineous .
. Child / Phenotypes of
ID family . Compound
sibs | Homozygous
heterozygous
Child 1:TOF
CHD1 Child 2:VSD 3 23 (1)* 36 (29)*
Yes Child 3: VSD, PA (TOF spectrum)
Child 1: VSD, PA (TOF spectrum)
CHD4 Child 2: AS 2 18 24
Child 1: VSD, RV hypoplasia
CHD5 Child 2: ASD, RV hypoplasia 2 3 21
Child 1: TOF
CHD6 Child 2: TOF 2 6 25
Child 1: VSD
CHD11 Child 2:AS, BAV 2 1 29
Child 1: TGA, VSD, PS
CHD13 Child 2: TGA 2 0 25
No Child 1: TOF
CHD16 Child 2: VSD, CoA, BAV 3 39 (1)* 36 (28)*
Child 3: ASD
Child 1: Tricuspid Atresisa
CHDZ0 Child 2: TGA, RV hypoplasia 2 1 29
Child 1: HLHS
CHD22 Child 2: VSD 2 4 19
Child 1: AS, subaortic stenosis
CHD23 Child 2: AS, subaortic stenosis 2 0 23

ASD: Atrial Septal Defects, AS: Aortic stenosis, BAV: Bicuspid Aortic Valve, CoA: Coarctation of Aorta, HLHS:
Hypoplastic left heart syndrome, PA: Pulmonary Atresia, RV: Right Ventricle, TGA: Transposition of the
Great Arteries, TOF: Tetralogy of Fallot, VSD: Ventricular Septal Defects.

GMFG was initially identified as a growth and differentiation factor acting on
neurons and glia in vertebrate brain [284]. GMFG encodes a small protein of 142
amino acids an actin-binding protein predominantly expressed in microvascular
endothelial cells and inflammatory cells [285, 286]. The expression of GMFG was

found to be unregulated at the site injury during the heart regeneration in
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zebrafish models[287]. However, its role in the heart development in mammals
has not been studied yet. A knockout mouse of GMGF is being modelled at the
Wellcome Trust Sanger Institute to investigate further its role during the
development of the heart.

Table 2-18 List of candidate genes with rare loss-of-function variants shared in between at least
two affected sibs. Genes in red harbor stop gained (SNVs) variants while the rest have
frameshift. The phenotypes in knockout mouse models from the Mouse Genome Database [288].

Number of families with .
candidate genes carrying Phenotypes in mouse knockout
Gene A mouse models
Homozygous Conmpen Mouse Genome Database
Heterozygous
ANKRD36C 10 NA
LINC00955 10 NA
cDC27 10 NA
OR4C5 9 NA
MUC3A 9 NA
RBMX 5 Decreased lean body mass
CCDC144NL 4 NA
FAM182A 1 NA
TTN 1 First branchial arch and somites, vascular,
cardiac and skeletal muscle defects.
MUC4 1 NA
PLA2GIB 1 Abnc.)rmalltles in 11p.1d abso'rpt.lon and
increased insulin sensitivity.
KLHL24 1 NA
ROPN1 1 NA
PITPNC1 1 NA
GMFG 1 NA
TAS2R43 1 NA
ZNF717 1 NA

Next, | performed the same analysis but for shared rare missense variants and
identified 119 genes with homozygous and / or compound heterozygous
variants in these families (Table 2-19). The majority of the genes appear only in
one affected sib-pair while a few appear in all of them (mainly genes from the

Olfactory or Mucin gene families which are unlikely to be causal in CHD).
Two of these genes are well known CHD genes such NOTCHZ and TBXZ20

although as dominant genes. Other genes knockout mouse models exhibit

structural heart defects (UTY, HSPGZ2, CTBP2, and ADAM12).
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Table 2-19 List of candidate genes with rare missense variants shared between at least two sibs.
Genes in red have a knockout mouse models that exhibit structural heart defects [288].

Number of
Affected
sib-pairs

Homozygous

Compound heterozygous

ZC3H13, PGLYRPZ2, FAM182A, PLCHZ, KIAA1683, ZFX,
NPIPB1P, PSG6, HR, SHROOM4, PSG11, GMIP, GUCYZF,
IKBKG, LPAR4, OR11H6, SPTBN4, UTY, FCGBP, TRGCZ,
GPKOW, TAS2R43, SLITRKZ2, MUC16, CXorf61, CXorf64,
GPR112, LYNX1, ZNF431, MEGF6, IL12RB1, LRBA,
NADK, ZNF30, NKX2-1, ASXL3, OR11H7, MCOLN1,
VCX2, OR4L1, TUBGCP5, NDUFA13, HSPG2, TRIT1,
OR4K13, PKN2, AQP12A, HNRNPA1L2

CTBPZ, MYEOV, FILIP1L, FAM182A, TMCZ2, LRSAM1,
CMYAS5, KANK1, FAT1, TYRO3, IGHV5-51, MYOCD,
TBX20, STIL, SPTBN5, NRCAM, GPR108, MY015A4,

PITPNM1, ADAM12, MYO7B, GCOM1, FRAS1,
PLA2G1B, LAMBZ2, RANBPZ, IQGAP1, AHRR,
PRRCZB, PTGFRN, ODZ4, TRIOBP, HNRNPCL1,
KIAA2022, IGHV3-38, NOTCHZ, FRG2B, PDHX,
AHNAKZ2

MUC4

FRG1, SRRM2, FAM27E1, USP6, DNAH14

SLC9B1P1

ATM, IGHV7-81, MUC16, ARSD

PRSS1, CCDC144NL

TTN, TRGCZ, LINC00273

IGHV2-70, IGLV5-45

CEP89, NCOR1, RBMX

TAS2R31

O[O0 |0 [0 | WD

MUC4

(U
o

MUC6, TRBV6-5, ANKRD36C, MUC34, BCLAF1,
OR9G1, CDC27, AQP7, LINC00955, KCNJ12, MUC34,
OR4C5, OR4C3
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Figure 2-26 Pedigree chart of family CHD1.
Four affected sibs from a consanguineous family of a Pakistani origin. Only three sibs had their
exome sequenced in this study (IV:1, IV:2 and IV:3). All sibs are diagnosed with tetralogy of Fallot
except IV:3 who is diagnosed with ventricle septal defect (VSD). The homozygous stop gain
variant was detected in two sibs with TOF (IV:1, IV:2) and capillary sequencing confirmed the
presence of the same homozygous stop gain variant in the third sib with TOF (IV:4). Both parents
are heterozygous for this variant and in 200 ethnically matched control chromosomes but not
see in the child with VSD (IV:3). (Dr. Chirag Patel at the University of Birmingham performed the
validation work).
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Application 4: Affected parent-child pairs in UK10K CHD families

Most of the samples in UK10K (RARE CHD) are index cases (110 out of 124
samples) except for a few related samples (three affected parent-child pairs, one
affected sib-pair and two parent-offspring trios). In this analysis, [ focused on the
affected parent-child only as this family structure is not covered in the analyses
described above. In such a family design, I only looked for inherited rare coding

and heterozygous variants shared between the parent and the child.

[ used FEVA software to report rare coding heterozygous variants shared
between the parent and the child. I defined rare as variants with MAF < 1% in
1000 genomes and the internal MAF of 2,172 parents from DDD project. On
average, each affected parent-child pair shared 230 candidate genes (Table
2-20), which is much higher than the number of candidate genes in affected sib-
pairs or complete trios (28 and 7 candidate genes, respectively). It is important
to note that the number of candidate genes in these families is even larger (47%
more) than the number of candidate genes from the simulated parent-child
family (see Table 2-10 for details), which has 157 candidate genes on average.
This is likely to be as a result in the differences in the calling pipelines (UK10K
vs. GAPI). The internal MAF from the 2,172 is based on GAPI pipeline and it is
likely to be less effective on samples that went through the UK10K pipeline and

thus have more candidate genes per family.

Table 2-20 Number of candidate genes with rare coding heterozygous variants shared between
affected parent and child in three CHD families form UK10K RARE CHD project. Loss of function
class includes (stop gain, frameshift, variants that disturb acceptor or donor splice sites),
functional class includes (missense, in-frame deletion or insertion and stop lost).

CHD phenotype lember of
. candidate genes
Family Id L f
Child Parent OSS.O Functional
function
UK10K_CHD_0015 Atrial septal defect Atrial septal defect 23 219
UK10K_CHD_0060 | Atrioventricularseptal | gy o o o homaly 24 208
defects
Pulmonary stenosis .
UK10K_CHD_0067 and Atrial septal defect Pulmonary stenosis 15 201
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Since the number of genes with rare functional variants is large in each affected
parent-child pair (~200), I focused my search for genes with rare heterozygous
loss of function variants (this class includes stop gain, frame-shift, variants that
disturb acceptor or donor splice sites) and are shared between the affected
parent and the child (Table 2-21). The heart phenotypes observed in these
families are varied from family to family and thus I did not expect to see the
same gene appear more than once. There are 29 genes where each one has a
single loss of function in a single family (first row in Table 2-21). Only one gene,
CCDC(C39, shows heart phenotypes in knockout mouse models. This gene harbors
a rare frame-shift (c.610_614delTTAGAinsA) in a parent with Ebstein's anomaly
and a child with atrioventricular septal defect (family id: UK10K_CHD_0060).

CCDC(C39 gene encodes a protein that localizes to ciliary axonemes and is essential
for the assembly of inner dynein arms and the dynein regulatory complex [289].
Recessive loss of function variants have been found to cause a large proportion
of primary ciliary dyskinesia in human. However, the knockdown of Ccdc39 in
zebrafish embryos at the 2-cell stage caused a dose-dependent increase in heart
looping defects and other laterality defects may suggest a possible CCDC39
haploinsufficiency [289]. Moreover, a knockout mouse model submitted to the
Mouse Genome Database (MGI:5445973) [288] shows double outlet right
ventricle, atrial septal defect and dextrocardia but it has not been published.
These findings suggest the involvement in CCDC39 in the development of the
heart but further work is required to confirm the role of this heterozygous

frame-shift variant in causing the heart phenotypes observed in this family.

Table 2-21 List of genes with rare loss of function (stop gain, frameshift, variants that disturb
acceptor or donor splice sites) variants shared between affected parent and child.

Number of affected

parent-child pairs Genes

ATXN3L, AXDND1, CCDC39, CCDC7, CCL8, CD5L, COL6AS5, CYP2(S8,
AC061992.1, ERAP1, F5, FAM49A, FHAD1, FLGZ, GPLD1, MUC19,

1 NDUFA10, NLRP5, OR51E1, OR51T1, OR5AN1, POLR1A, SERGEF, SMYD4,
TAS1R3, TASZ2R43, VNNZ2, VPS8, ZNF211

2 PRSS3, RBMX

3 CDC27, LINC00955, FRG1B, MUC3A, OR4C5
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2.4 Discussion

NGS has accelerated gene discovery in rare monogenic disorders in the last few
years. More than 180 novel genes have been identified using whole genome or
whole exome sequence data generated by NGS platforms so far. Based on the
current rate of novel gene discovery, it has been estimated recently that most of
the disease-causing genes of rare monogenic diseases will be identified by the

year 2020 [202].

The success of NGS with rare monogenic disorders inspired me to apply the
exome sequencing strategy for studying congenital heart defects (CHD).
However, applying NGS to CHD cases is not straightforward since the inheritance
model for CHD is not well defined. Evidence from genetic epidemiology and
genome-wide association studies has supported the polygenic model [112, 115]
and at the same time several monogenic examples of isolated and familial forms
of CHD have been reported in the literature [14]. There is no general consensus
on what is the most plausible inheritance model that can explain CHD. For this
reason, | explored four different family-based study designs in order to evaluate
the power of each design to identify rare coding variants that might explain the

monogenic CHD cases.

This chapter describes the tools and pipelines used to call single nucleotide
(SNVs) and insertion/deletion (INDELs) variants from exome data. One major
challenge I addressed is how to improve the sensitivity and specificity of variant
calling from exome data. The issue of sensitivity and specificity stem from the
underlying probabilistic statistical models implemented by different variant
callers. These models are being actively developed and thus it is expected that
the best practices for filtering and cleaning up exome data will keep changing for

the foreseeable future, especially for indels.

In this thesis, two pipelines have been used to call variants from exome data:

GAPI and UK10K pipelines. Both of these pipelines use different callers and
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filters to generate the variants. Although they have been able to detect a
relatively comparable number of coding SNVs, the number and type of INDELs
varied substantially in both pipelines. This is most likely caused by the use of an
additional caller, Dindel, to detect INDELs in the GAPI pipeline. On the other
hand, the intra-pipeline comparisons between GAPI sample releases at different
time points show minimal differences. These findings highlight the need to use
only one pipeline for consistency and to avoid unnecessary complications for the
downstream analysis (such as case/control analysis using the samples from

different pipelines as discussed in chapter 4).

To improve the sensitivity and specificity of SNV calls generated by UK10K
pipeline as an example, I tested the relationship between strand bias (SB),
quality by depth (QD), genotype quality (GQ) and variant quality (QUAL) with
transition/transversion ratio (Ts/Tv) to chose the proper filtering thresholds.
Applying these filters has helped me to eliminate low quality variant calls in a
systematic fashion. However, this method of variant filtering using hard cut-offs
is no longer considered the best practice and newer filters based on
sophisticated statistical models that integrate several quality metrics
simultaneously have now been used. One example is the Variant Quality Score
Recalibration (VQSR) scores recently implemented in GATK, which seems to be
superior to other filtering methods. However, VQSR is not so successful for

filtering indel callsets since it is sutable for SNV callsets only.

[t is not uncommon to use more than one variant caller to detected SNVs and / or
INDELSs to improve the sensitivity and specificity of variant calling. Theoretically,
callers that utilize different probabilistic models to call variants independently,
are most appropriate. However, it was not clear how to resolve conflicts that
arise when a variant passes the filters of one caller but not the other, or when a
variant is missed by one of them. My analysis of 14 different datasets (seven
INDELs and seven SNVs) based on different scenarios shows that INDELs called
by Dindel were superior to Samtools calls, as they show in-frame/frameshift
(n3/nn3) ratio closer to the exacted ~1.5 ratio. Similarly, GATK SNVs calls were

superior to Samtools calls in terms of transition /transversion (Ts/Tv) and
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rare/common ratios. These results have led me to change the order of caller
when [ merge calls in the final variant call format files (i.e. I used Dindel as the
default caller for INDELs and GATK as the default caller for SNVs). Such a small
decision has a large effect on the final number of rare coding variants. For
example, Samtools calls more rare loss of function variants than GATK or Dindel.
Such that, in large-scale projects, this could mean hundreds of false positive
candidate variants that would slow down any downstream analysis or functional

studies.

Once an optimal callset of variants is obtained, it is important to exclude
common variants based on minor allele frequencies (MAF) to minimize the
number of candidate variants. There are many population-based MAF recourses
available to facilitate this step such as 1000 genomes (1KG), UK10K Twins
cohort (UK10K) and the NHLBI Exome Sequencing Project (ESP). Additionally, I
generated a fourth MAF resources (called internal DDD MAF) based on 2,172
parental samples generated by GAPI pipeline to target variants that appear as
rare variants in the public MAF recourse but are common in the internal samples

which likely indicate that they are sequence or calling errors.

Matching alleles between sequenced samples (e.g. DDD or CHD samples) and
the population variation resources (e.g. 1000 genomes project) in order to
obtain the correct minor allele frequency is straightforward for SNVs but more
difficult for INDELs since they can be called differently due to the genomic
context such as homopolymer runs for example. To assign the correct MAF, I
tested three allele-matching strategies (two exact matching algorithms and one
lenient algorithm based on 10-30bp matching window) and [ used the
correlation between the observed minor allele frequency in DDD samples and
the population allele frequency from all three MAF population resources as a
metric to compare different matching strategies. 1 showed that the exact
strategies have a stronger correlation between the observed minor allele
frequency from DDD samples and population allele frequency from all three MAF

population resources.
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Using the exact matching algorithm, [ evaluated the consequence of applying
each MAF resource independently and combined on the final number of rare
candidate variants in 288 affected samples from the DDD project. This analysis
showed that the internal frequency from the DDD project alone was able to
eliminate most common variants compared with other combined public MAF
recourses. Combining two or more MAF is more effective than using each
individually. However, using allele frequencies from ESP and UK10K has some
drawbacks. First, ESP includes many affected samples with unpublished
phenotype, which may include CHDs and thus cannot be used as controls.
Moreover, the targeted exome in ESP is smaller than the exome design used to
sequence CHD samples in my thesis, (~16,000 genes and ~20,000 genes,
respectively. Similarly, the MAF from the UK10K Twin cohort does not include
variants on X-chromosome. For these reasons, I decided on a MAF filtering
strategy using the 1000 genomes project data combined with the internal allele
frequencies from healthy parents in DDD project to exclude common variants

and pipeline errors.

Another factor that affects the final number of candidate variants/genes is the
family design. [ performed a simulation analysis using one multiplex family of
three affected sibs and two parents and showed how the number of candidate
variants varied between singletons, sib-pairs, parent-child, and complete trios

study designs within the same family.

The Singleton study design generates the largest number of candidate variants
per sample compared with other family-based study designs, unless it is
combined with linkage analysis to limit the search in a smaller region. The
example of ‘distal hereditary motor neuropathies type VII' with two small
linkage regions (9.2 and 4.3 Mb) has identified only one candidate gene, SLC5A7.
This example, in addition to another three genes identified using the same
strategy (B4GALNT1, KPTN and WDR62), indicates that finding causal genes by
combining NGS and linkage analysis can be powerful and relatively
straightforward. Without linkage analysis, the number of candidate genes per

sample is usually large especially for dominant disorders. In the absence of
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linkage analysis information, sequencing multiple unrelated cases may help to
identify the causal gene in monogenic disorder, but can be challenging for
extremely genetically heterogeneous disorders such as intellectual disabilities
and CHD. In such disorders, a case/control analysis might be more suitable but

requires a large number of samples.

The affected sib-pairs design is helpful when looking for shared homozygous or
compound heterozygous candidate genes in non-consanguineous families or
homozygous candidates in consanguineous families. This analysis has
highlighted variants in a few known CHD genes such as NOTCHZ and TBX20, but
these genes are mostly known to cause CHD under a dominant model while they
have been reported here to harbor rare and presumably recessive variants. It
remains to be seen if these variants are pathogenic. Additionally, I identified
novel genes such as GMFG with a homozygous stop gain shared between three
affected sibs in the same consanguineous family of a Pakistani origin. These
candidate genes were found in a single sib-pair only and thus require additional
families sharing the same candidate genes to be identified and / or to be
confirmed by functional studies. Nonetheless, the number of recessive candidate
genes in this design is manageable and provides a chance to investigate the

recessive model in different CHD subtypes.

The trio and multiplex designs identify far fewer candidate genes than the
other designs because of the additional information from the parents. Assuming
healthy parents and complete penetrance, each trio has, on average, seven rare
inherited coding variants and a smaller number in multiplex families. The small
number of candidate genes per trio makes most downstream analyses amenable
to further investigations either in silico or by functional experiments (e.g.
modeling in zebrafish). The design is also suitable for de novo analysis, as [ will

discuss in the next two chapters.

Many of the steps described above are time consuming and error prone when
performed manually in non-specialized software such as Microsoft Excel. |

designed the “Family-based Exome Variant Analysis” (FEVA) tools to
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automate applying various quality filters and to report candidate genes from
different study designs. FEVA reports candidate variants under different models
of inheritance and can be customized by the end users to accommodate new
family designs not covered by the program default settings. I used FEVA
successfully to find causal genes in monogenic disorders from single cases such
as the SLC5A7 gene in distal hereditary motor neuropathy (type VII) [281] and
another three genes (B4GALNTI, KPTN and WDR62) in various
neurodevelopmental disorders (manuscripts were submitted or are being
prepared). Other groups at the Wellcome Trust Sanger Institute as well as
external groups from Cambridge University, University College London and
other institutes, working with different rare disorders such as ciliopathies [290-
292], neuromuscular, thyroid disorders and familial hyperlipidemia, have used
FEVA to identify mutations in novel or known genes. Moreover, FEVA is also
being used in large-scale projects with hundreds of families, such as in the

Deciphering Developmental Disorders (DDD) project [260].

The results from this chapter show that at every step of the analysis pipeline
small, seemingly insignificant, changes can have a big impact on the numbers of
candidate variants being explored. Planning an upgrade of a pipeline,
implementing a new version of a caller, modifying a filter threshold are some of
the decisions that should not be taken lightly without careful consideration of
how such a decision would affect the output. This is especially true in clinical
settings where maximum levels of sensitivity and specificity are required for a

definitive diagnosis.
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