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1 Introduction  
 
1.1 Human genetic variation  
Genetic variation describes differences in DNA sequences across individuals that are 

inherited from maternal and paternal chromosomes. Variation also arises through factors 

such as errors in DNA replication, incomplete DNA repair, or through the controlled 

development of the highly variable immune receptor genes (MHC, T cell receptor) (Barnes 

and Lindahl, 2004, Shiina et al., 2009).  

 

In studying population-level variation, we identify associations between the frequency of 

genetic variants and physiological differences. On a cellular level, we study how every cell in 

the human body contains the same DNA molecule yet different tissues carry out highly 

specialised functions. On a molecular level, sequence variation can affect gene expression 

and epigenetic functionality. Human genetics now encompasses the study of multiple layers 

of biological processes, which can represent intermediate steps through which variants 

ultimately affect organismal phenotypes.  

 

The most common type of genetic variation, and the focus of this thesis, is known as a single 

nucleotide polymorphism (SNP) where the type of nucleotide at one position varies across 

individuals. In humans, although there are four possible nucleotide combinations (A, T, G, C), 

in general only two of the possible four nucleotides are ever seen in a population, and one 

individual carries two copies (alleles) on each diploid chromosome (Casci, 2010, McDaniell 

et al., 2010). Variants are classified by the occurrence of the least frequent (minor) allele 

within a population. Common variants occur with minor allele frequency (MAF) ≥ 5% and rare 

variants are often defined as occurring with a MAF of less than 1%. A second class of 

variation is structural variation including insertions-deletions (indels), block substitutions, 

inversions and copy number variants (Frazer et al., 2009).  

 

SNPs are not inherited independently but are correlated, resulting in the systematic 

association and correlation of alleles at nearby loci (Slatkin, 2008). This structure is known 

as linkage disequilibrium (LD) and is variable across populations of different ancestries. 

The International HapMap Project defined LD regions in 269 individuals of four different 

populations including Yoruba in Ibadan, Nigeria (YRI), Utah with northern and western 

European ancestry (CEU), Han Chinese in Beijing (CHB) and Japanese in Tokyo (JPT) 

(International HapMap Consortium, 2005). Alleles of SNPs within the same LD block are 

inherited more frequently together in the same haplotype. A set of highly correlated loci 

(high LD) is known as a haplotype block, the boundaries of which are associated with 
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recombination hot spots. Within haplotype blocks, recombination is infrequent. In humans, 

haplotypes range in size from a few kb to over 100 kb (Wall and Pritchard, 2003, Daly et 

al., 2001). Despite the observation of a few large blocks, most European population 

haplotypes are smaller, between 5-20 kb (Wall and Pritchard, 2003). This discovery had 

wider implications for genetic association studies described in detail in Section 1.2.  

 

1.2 Identification of trait-associated genetic variants using genome-
wide association studies 
Identification of LD patterns, the establishment of public databases containing millions of 

curated SNPs and emerging microarray technologies together transformed genetic studies 

(International HapMap Consortium, 2005, Sachidanandam et al., 2001). At the beginning of 

the GWAS era, genotyping arrays could be designed based on known LD structure to 

contain probes assaying approximately 500,000 “tag” SNPs, which captured the majority of 

common European variation without directly genotyping every variant (Barrett and Cardon, 

2006). Later came the development of imputation methods, where high-quality haplotypes 

from reference populations were and still are used to estimate variant alleles that have not 

been directly genotyped (Huang et al., 2015). Using reference haplotypes such as those 

available from the UK10K, 1000 Genomes projects or both combined now enables 

association tests of tens of millions of variants (UK10K. Consortium et al., 2015, 1000 

Genomes Project Consortium et al., 2015, Huang et al., 2015). With the falling costs of 

whole-genome sequencing, we are also moving to using next-generation sequencing 

technologies to sequence all sites, which vastly improves the accuracy of rare or private 

variant detection (Bomba et al., 2017).  

 

Collectively these approaches are called genome-wide association studies (GWAS). For the 

analysis of diseases, GWAS identify discordant variant allele frequencies between cases and 

controls, where the association of a higher allele frequency with a disease suggests this is a 

risk factor. GWAS can also be applied to quantitative traits commonly using linear regression 

to test for association of the variant with increasing or decreasing trait values. In most 

studies, variants with additive effects are evaluated, where there is a linear and uniform 

increase in the trait value/disease risk with each copy of the effect allele (Bush and Moore, 

2012).  

 

For each variant, an independent statistical test is applied meaning that for a genome-wide 

approach, multiple tests are implemented. This greatly increases the probability of detecting 

false positive associations. When using a p value threshold of 0.05, there is a 5% probability 

of rejecting the null hypothesis by chance, which equates to a high number of observations if 
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performing millions of tests. Therefore, it is advisable to use a more stringent p value 

threshold. Based on the International Hapmap Consortium estimation of the number of 

common (MAF ≥ 5%) independent variants across the genome in a European population, a 

significance p-value threshold of 5 x 10-08 was suggested to control for multiple testing in 

GWAS (International HapMap Consortium). Alternatively, for a specific cohort, the Bonferroni 

correction can be used, where the threshold of 0.05 is divided by the number of independent 

tests. Alternative methods are discussed in Chapter 2 and implemented in Chapter 4. 

 

GWAS have transformed the study of complex traits and diseases by enabling the unbiased 

screening for significant genetic variants on a genome-wide scale. Hundreds of risk/trait-

associated loci have now been identified. As of the 10th October 2017, the NHGRI-EB GWAS 

catalog contains 52,491 unique variant-trait associations (MacArthur et al., 2017). This high 

number reflects the genetic architecture of complex traits in that they are multifactorial and 

explained by many variants influencing genes and pathways that are biologically relevant to 

the trait (polygenic) (Visscher et al., 2017). However, the overall phenotypic-variation 

explained by the identified loci is low, suggesting we have not been able to identify all genetic 

factors that constitute pre-calculated heritability estimates (Visscher et al., 2017). This is 

referred to as the “missing heritability” problem, which is an important challenge in the field 

but not the focus of this thesis (Manolio et al., 2009). 

 

Recently, an “omnigenic” model has been suggested in order to interpret the observation that 

trait heritability is spread across the whole genome, rather than clustered in key genes 

(Mumbach et al., 2017). This model posits that variants in highly relevant “core genes” 

directly affect the trait, but all genes (and variants within them) are highly interconnected 

through extensive networks, although a full knowledge of such connections is currently 

lacking (Mumbach et al., 2017). These multiple small effects cumulatively effect disease risk. 

The authors, however, acknowledge that GWAS provide important biological insights, such 

as identifying core genes and implicate pathways in which lead variants are enriched 

(Mumbach et al., 2017). Arguably, investigating cellular contexts of identified genes is still of 

value, particularly as the authors posit that these complex networks are also cell-type specific 

(Mumbach et al., 2017).  
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1.3 Challenges in gaining functional insight from GWAS  
Despite the successes of GWAS in identifying many trait-associated variants, there remain 

some key challenges. This main focus of this thesis is in the functional interpretation of the 

frequency and effect size spectrum of loci that is currently detectable by GWAS. This 

includes mainly common variants with modest effect sizes or in some cases low-frequency 

variants with intermediate effects (McCarthy et al., 2008). Mechanistic interpretation 

represents a major bottleneck in the GWAS to function process. Biological hypotheses are 

more straightforward when genetic variants are located within coding regions, particularly if 

the gene function is known and relates to a relevant phenotype and the variation results in a 

change in amino acid sequence (non-synonymous) (Vasquez et al., 2016). 

 

However, with the advent of GWAS, somewhat surprisingly, it became apparent that more 

than 90% of trait-associated SNPs were located in non-coding regions of the genome rather 

than within genic exons (Maurano et al., 2012, Vasquez et al., 2016). This complicates 

biological interpretation and linking of downstream consequences to the effect on the overall 

phenotypic trait.  

 

In addition, whilst LD enabled early successes of GWAS by allowing the assessment of tag 

SNPs, it complicates a definitive identification of the causal SNP(s). Causal SNPs are those 

that underlie the true trait association and of all variants in the locus demonstrate the best 

model fit to the phenotype (Battle and Montgomery, 2014). Distinguishing the true causal 

variants from highly correlated proxy SNPs (those with an r2 > 0.8) is extremely complex as 

these will likely fit the phenotype equally as well as the true causal variant (Battle and 

Montgomery, 2014). Larger sample sizes, high-density genotyping, imputation with a high-

quality reference panel or whole-genome sequencing all increase the number of variants 

identified and therefore the likelihood of identifying the causal variant (Battle and 

Montgomery, 2014). However, even the various statistical approaches for fine-mapping 

causal variants are limited in cases of high correlation between variants (Chun et al., 2017). 

Ultimately, functional experiments are required to fully resolve such loci. 

 

There are multiple approaches that attempt to address each of these challenges. This thesis 

will focus on those that aim to assign function to genetic loci, which can also aid identification 

of causal variants in some cases. I discuss the type of data and approaches in detail below. 
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1.4 Assigning function to genetic loci 
 

1.4.1 Understanding the non-coding regulatory genome  
Describing the biology of non-coding SNPs requires an understanding of the function of the 

regulatory genome. While we are unable to predict this function from DNA sequence, through 

the efforts of large-scale consortia such as ENCODE, ROADMAP and BLUEPRINT, we 

know now that much of the non-coding genome performs a regulatory function (Encode 

Project Consortium, 2012, Roadmap Epigenomics Consortium et al., 2015, Adams et al., 

2012). There are multiple different layers of (epi)genomic function. The data made available 

through such consortia can be used to investigate the context of non-coding genetic 

variation. Below, I summarise our current knowledge of key concepts of epigenomics 

function and gene regulation. 

 

1.4.1.1 Transcription initiation at promoters 
Transcription is a highly regulated process where RNA polymerase (RNAP) enzymes 

generate an RNA molecule that is complementary to the sequence of DNA. Transcription is 

initiated at core promoters, which are DNA segments of between 50 and 100 bp (Roy and 

Singer, 2015). Here, the core transcription machinery including RNAP and general 

transcription factors (GTFs) assembles. There are various RNAP enzymes, RNA polymerase 

II (Pol II) transcribes protein-coding genes as well as the non-coding RNAs, small-nucleolar 

(sn)RNA and micro(mi)RNA (Guiro and Murphy, 2017). Studies utilising cell-free systems 

identified six GTFs, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH (Roeder, 1996, Roy and 

Singer, 2015). GTFs recognise specific elements of the core promoter through sequence-

specific DNA binding. Classification of mammalian promoters based on canonical elements 

is complex as many do not contain such sequences, which include the TATA box, Initiator 

(Inr) element, the TFIIB recognition element (BRE) and downstream promoter element (DPE) 

(Roy and Singer, 2015). For example, only 5-7% of eukaryotic promoters contain a TATA 

box, and as such there are many cases of non-canonical core promoters (Roy and Singer, 

2015). These can contain unmethylated CpG islands or ATG deserts (low occurrence of ATG 

trinucleotides). Particular chromatin modifications can also mark mammalian promoters, 

which I discuss in detail below.  

 

Initiation is an important regulated step in transcription. Recently, the association of 

rs34481144 with severe risk of influenza in humans was shown to involve the disruption of 

promoter activity as a result of the change in one nucleotide from G (protective) to A (risk) 

(Allen et al., 2017). rs34481144 resides with the 5’ UTR of the interferon induced 

transmembrane protein 3 gene, IFITM3. Through a series of elegant experiments, the risk 

allele was shown to be associated with lower IFITM3 gene expression, lower promoter 
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activity and lower promoter binding of the innate immune interferon, IRF3 and disruption of a 

CpG methylation site in CD8+ T cells, where reduced methylation increased binding of the 

insulator factor CTCF. Carriers of the risk allele had lower numbers of CD8+ T cells in the 

airways during influenza infection, suggesting how reduced IFITM3 expression (due to 

reduced promoter activity and demethylation) could increase susceptibility to severe infection 

and providing evidence for a role of IFITM3 in the cellular response to infection (Allen et al., 

2017). Therefore, sequence-specificity is important to the recruitment of factors required for 

promoter activity and can be affected by SNPs. This example also highlights a potential role 

for DNA methylation in regulating gene expression. 

 

1.4.1.2 Regulation of transcription by enhancers and other regulatory elements 
Transcription is also regulated by the activity of distal regulatory sequences located upstream 

or downstream of the promoter (Heinz et al., 2015). These cognate regulatory elements are 

known as enhancers that activate transcription (Roy and Singer, 2015). Enhancers were 

originally identified using plasmid-based assays as sequences of no more than 100 bp that 

could drive gene expression (Banerji et al., 1981, Banerji et al., 1983, Krijger and de Laat, 

2016). Enhancer-gene interaction can be promiscuous but also selective and may not 

necessarily be between the nearest gene (Javierre et al., 2016, Mumbach et al., 2017, 

Krijger and de Laat, 2016). STARR-seq, a massively parallel reporter assay that enables the 

assessment of all genome-wide candidate enhancers through the ability of these sequences 

to drive transcription, was used to show that there were two different clusters of enhancer 

sequences that separately activated housekeeping genes and developmental genes (Zabidi 

et al., 2015).  

 

Silencers have similar properties to enhancers but instead act to inhibit transcription. 

Insulators are boundary elements that inhibit the spreading of transcription and chromatin 

interactions between neighbouring genomic regions (Gaszner and Felsenfeld, 2006, Ali et 

al., 2016). CTCF is a key factor in mediating insulation (Ali et al., 2016). Therefore, the 

spatial and temporal control of gene expression by distal regulators represents another layer 

of regulation and functionality of the non-coding genome (Ong and Corces, 2011).  

 

The enrichment of SNPs in enhancer regions is now well established and commonly used as 

a method to assign functionality to non-coding SNPs (Farh et al., 2015, Huang et al., 2017b, 

Musunuru et al., 2010, Chen et al., 2016a). Multiple examples of SNPs modifying enhancer 

activity are discussed throughout this thesis and my investigation into disease risk loci in 

Chapter 2 adds further examples to the many already demonstrated.  
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1.4.1.3 Transcription factors 
Transcription factors regulate gene expression through the sequence-directed binding to 

DNA at either promoters or regulatory elements such as enhancers. Multiple transcription 

factors bound at enhancers interact with components such as the Mediator complex or the 

general TF, TFIID to help recruit RNA polymerase II (Kagey et al., 2010). Looping out of 

intervening DNA enables interaction between enhancers and promoters. Other factors, such 

as the cohesin complex can act as scaffold proteins to ensure the stability of these 

interactions (Kagey et al., 2010, Schmidt et al., 2010). A study that assayed the binding of 

over 100 transcription factors in colorectal cancer (CRC) LoVo cells found that TFs were 

bound in clusters across the genome; 75% of the TF peaks were localised in 0.8% of the 

genome, consistent with previous observations that TF act combinatorially (Yan et al., 2013). 

Almost all clusters were formed around cohesin, demonstrating the importance of the 

cohesin complex in enabling complex TF binding (Yan et al., 2013).  

 

The initial selection of enhancers during the differentiation of specific cell lineages is 

controlled by pioneer transcription factors such as the haematopoietic-specific master 

regulator, PU.1 (Heinz et al., 2015). Pioneer factors can bind to their cognate motifs prior to 

any transcriptional activity or chromatin modification and at sites of DNase I inaccessibility 

(Heinz et al., 2010, Pham et al., 2013). Although PU.1 is an important factor for multiple 

haematopoietic cell types, PU.1 binding was shown to be cell-type specific (Pham et al., 

2013, Heinz et al., 2010). Cooperative binding of PU.1 with other collaborative transcription 

factors together establish the cell-type specific transcriptional signatures that support 

lineage-specific differentiation (Heinz et al., 2015, Pham et al., 2013, Adams and Workman, 

1995). For example, PU.1 is required for the generation of the general myeloid progenitor 

and the common lymphoid progenitor but different co-factors are associated with PU.1 at 

cognate binding sites between macrophages and B cells (Heinz et al., 2010). For example, 

C/EBP and AP-1 motifs were highly enriched within macrophage-specific distal PU.1 sites 

whilst E2A, EBF, Oct and NF-κB motifs were enriched in B cell specific PU.1 sites. These 

additional TFs both had roles in macrophage and B cell differentiation respectively (Heinz et 

al., 2010). In a PU.1 deficient myeloid progenitor cell line, the absence of PU.1 resulted in a 

reduced genome-wide C/EBPβ binding pattern. No corresponding PU.1 motifs were found in 

the C/EBPβ binding sites that remained. Restoration of PU.1 expression in this cell line using 

a fusion protein, increased PU.1 binding and the number of induced C/EBPβ-bound sites, 

75% of which were now co-bound by both TFs and enriched for the PU.1 motif (Heinz et al., 

2010). The importance of combinatorial TF binding was confirmed by evaluating the effects 

of naturally occurring motif mutations in PU.1 and C/EBPa between two different mouse 

strains (Heinz et al., 2013). Loss of binding of one TF as a result of motif disruption led to the 

corresponding loss of the second TF and vice versa (Heinz et al., 2013). It is suggested that 
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co-binding of these TFs enables competition with nucleosomes to maintain open chromatin 

and establish the required cell-type specific binding (Heinz et al., 2010).  

 

Some enhancers require additional co-factors to become fully activated, particularly in 

response to external or internal signals. Cell type-specific responses to the same stimuli can 

be achieved through the collaboration between pioneer factors, which first select enhancer 

sites in the respective cell types and open chromatin (Mullen et al., 2011, Heinz et al., 2015). 

Following this, a second tier of signal-dependent TFs can bind to these previously 

established enhancers ensuring that a specific subset of regulatory elements is activated in 

different cell types (Mullen et al., 2011, Heinz et al., 2010, Ghisletti et al., 2010). Multiple 

studies have provided evidence for a relatively small number of TFs that interact and bind 

with pioneer factors to determine cell type specific differentiation and signalling responses by 

directing the genes to which signalling TFs bind. For example, Mullen et al. (2011) used 

ChIP-seq to show that TGFβ signalling is mediated by Smad2/3, but only 1% of Smad3 

binding sites were occupied in more than one cell type between embryonic stem cells, pro-B 

cells and myotubes (Mullen et al., 2011). Further, they showed that cell-type specific 

signalling responses were the result of Smad2/3 co-occupying distinct sites with cell-type 

specific master/pioneer TFs; Oct4 in ES cells, PU.1 in pro-B cells and Myod1 in myotubes 

(Mullen et al., 2011). Similar cooperative interactions were shown in vivo where 61% of NF-

κB binding sites in strain-specific mice were already bound by PU.1 and CEBPa before Toll-

like receptor 4 (TLR4) stimulation (Heinz et al., 2013).  

 

In summary, cooperative binding of a relatively small and defined group of TFs establishes 

cell-type specificity of gene expression, lineage differentiation and response to external and 

internal stimuli. Given the importance of TF in these processes, it is often investigated 

whether a SNP disrupts TF binding motifs, many examples of which are discussed 

throughout this thesis.  

 

1.4.1.4 Transcription elongation and RNA processing 
Transcriptional regulation is not restricted to initiation. For many mammalian genes, high 

levels of transcription initiation were observed, but this was not correlated with a high level of 

gene expression (Guenther et al., 2007). This is due to post-initiation regulation where 

negative elongation factors can cause Pol II promoter-proximal pausing. Pol II can be 

released by factors such as the Positive transcription elongation factor (P-TEFb) (Rahl et al., 

2010, Zhou et al., 2012). This mechanism is thought to enable fine-tuning in transcription to 

produce the optimal level of cellular gene transcription as some genes will progress to 

productive elongation but not all (Zhou et al., 2012). Regulation at this stage also influences 
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processes that can be coupled to transcription such as 5’ mRNA capping, splicing and 3’ 

cleavage and polyadenylation (Zhou et al., 2012).  

 

Splicing is the removal of introns within genes to produce a mature processed RNA. 

Alternative splicing is widespread, occurring with up to 94% multiexonic human genes (Chen 

et al., 2014). The process can generate multiple transcripts from a single gene as a result of 

exon skipping, alternative 3’ acceptors, alternative 5’ donor sites or intron retention (Figure 

1.1) (Chen et al., 2014, Nilsen and Graveley, 2010). Splicing can be tissue and 

developmental-stage specific and is important in disease, with 15% of disease-causing 

mutations being located in splice sites (Chen et al., 2014). Mutations in splicing factor genes 

occur at high frequency in haematological cancers (Chen et al., 2014). Extensive transcript 

diversity as a result of alternative splicing was recently shown in haematopoietic progenitor 

and precursor cell populations, where 7,881 novel splice junctions were discovered as well 

as 2,301 alternative splicing events (Chen et al., 2014). In many cases transcript changes 

were not associated with detectable changes in gene expression, showing that increasing 

cell-type commitment during lineage differentiation involves the use of alternative transcript 

isoforms. Therefore, a full understanding of development diversity requires an assessment of 

all transcriptome effects not just those at the gene level (Chen et al., 2014).  

 

Two methods to quantify splicing events are summarised in Figure 1.1. Both of these 

methods were used in the BLUEPRINT consortium and as such as used in the analysis of 

variant function throughout this thesis. Accurate splicing quantification requires RNA-seq 

data. This is a technique that uses next-generation sequencing to quantify genome-wide 

gene expression profiles, where high gene expression is represented by an increased 

number of reads mapping to the corresponding gene location in the reference genome 

(Marioni et al., 2008). Reads across splicing junctions can also be counted, as is employed in 

the splicing annotation method, referred to as percent splice in (Figure 1.1) (Chen et al., 

2016a). Alternatively, the relative expression levels of all known and annotated transcripts, 

as defined by GENCODE for example, can be estimated using RNA-seq reads across the 

gene body (Figure 1.1) (Chen et al., 2016a). 

 

Splicing and donor-acceptor sites are highly sequence specific and therefore could be 

disrupted by genetic variants (Figure 1.1). In addition, branch points, exonic and intronic 

splicing enhancers/silencers and mRNA secondary structures can also be influenced by 

SNPs and result in splicing changes (Hiller et al., 2006). For example, the multiple sclerosis 

risk SNP, rs17612638 (G) abrogates an exonic splicing silencer, which normally functions to 

repress the use of a 5’ splice site of exon 4 of the PTPRC gene (Lynch and Weiss, 2001). 

This gene encodes a receptor of the protein tyrosine phosphatase family, also known as 



 
10 

Exon skipping

Alt 3’ acceptor

Alt 5’ acceptor

Alternative transcripts

Split reads:
Exon reads:

GT

A py-py-py AG

Exons

Introns

5’ 3’

Intron Retention

Ex
pr

es
si

on
 le

ve
l (

FP
KM

)

Transcript abundance

CD45, which expressed all nucleated haematopoietic cells (Lynch and Weiss, 2001, Nakano 

et al., 1990). The immune-related function of this gene suggests that disruption of the tightly 

regulated exon 4 and resultant alternative transcripts may underlie the observed MS risk 

(Lynch and Weiss, 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Alternative splicing mechanisms produces multiple distinct transcripts  
Schematic summarises the different molecular changes involved in alternative splicing and the 
different possible RNA transcripts. The cognate vertebrate splicing donor site contained in the 5’ intron 
sequence (GT) is also shown along with the 3’ splicing acceptor site (AG). The polypyrimidine tract 
(py-py-py) is a region high in C and T/U pyrimidines. Upstream of this tract is the branch point, which 
includes an A nucleotide and is important in the splicing molecular mechanism. RNA-seq can be used 
to quantify the reads (shown in red) across the splicing junctions. The examples above show split 
reads across two introns and reads within an exon, which both support exon inclusion. Splicing can 
also be assessed by quantifying the expression of the known alternative transcripts (right) by counting 
reads expressed in fragments per kilobase of transcript per million fragments sequenced (FPKM). 
Adapted from (Chen et al., 2014, Nilsen and Graveley, 2010). The percent splice-in method portrayed 
above is similar to that described by Geuvadis consortium and the information in the figure above was 
adapted from the (Geuvadis, 2010) webpage listed in the references.  
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1.4.1.5 Chromatin structure 
The regulatory processes described above do not navigate a simple linear DNA sequence, 

but a complex three-dimensional structure known as chromatin. For DNA to fit into an 

approximate 10 µm-diameter nucleus it is highly condensed in a nucleoprotein complex 

(Nieto Moreno et al., 2015). 147 bp of DNA is wrapped 1.7 turns around the histone protein 

octamer, which is known as a nucleosome (Figure 1.2) (Luger et al., 1997). Octamers 

comprise two H3-H4 and two H2A-H2B dimers and histone H1 (Figure 1.2) (Luger et al., 

1997). Nucleosomes are repeating units (Figure 1.3) and this structure allows further 

supercoiling and condensation into functional structural domains (Lavelle, 2014). Chromatin 

remodellers disassemble local compacted nucleosomes to allow access for Pol II and other 

cofactors, which is essential for active gene expression. This is a state generally referred to 

as “open chromatin”, whereas “closed chromatin” generally refers to genes and regulatory 

elements that are inaccessible due to the compact structure (Figure 1.3) (Bannister and 

Kouzarides, 2011). Further compaction beyond this leads to the formation of constitutively 

closed heterochromatin containing repressed genes.  

 

Chemical modification of the core histone proteins or protruding amino-terminal tails is also 

an important regulatory mechanism and confers function to chromatin. Histone modifications 

are chemical groups that are added to specific residues in the histone protein sequence by 

chromatin modifying proteins (Figure 1.2). Possible modifications include histone 

phosphorylation, acetylation, methylation and ubiquitylation. The charges associated with 

certain modifications, such as the negatively charged phosphorylation, can affect the 

interactions between histones and, it has been suggested, with the negatively charged DNA 

phosphate backbone changing the local compaction of DNA (Bannister and Kouzarides, 

2011). In addition, these groups can act as molecular “flags” for the binding of histone 

chaperones, other functional cofactors or additional chromatin remodellers. These proteins 

contain domains which can recognise modifications, for example, CHD1 binds to H3K4me3 

through the chromodomain and the heterochromatin protein, HP1, binds to methylated lysine 

9 on histone H3 (Flanagan et al., 2005, Bannister et al., 2001). Proteins containing 

bromodomains bind to acetyl-lysine modifications and subsequently initiate transcription, 

therefore targeting these domains offers an attractive potential for specific therapeutics in 

inflammation, viral infection and in regulating oncogene expression (Filippakopoulos and 

Knapp, 2014).  

 

Histone modifications are dynamic, can be altered in response to intracellular and 

extracellular stimuli, and regulate multiple processes beyond chromatin structure and 

transcription including DNA repair, replication and recombination (Bannister and Kouzarides, 

2011). Chromatin structure within genic regions can also influence alternative splicing (as 
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discussed above) through kinetic coupling with transcription whereby nucleosomes act as 

obstacles, promoting Pol II pausing and influencing exon inclusion/exclusion (Kadener et al., 

2001, Schor et al., 2009, Bintu et al., 2012).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2: Histone structure and modifications  
Nucleosomes are protein structure units consisting of approximately 147 bp of DNA (dark blue) 
wrapped around the octameric protein structure containing two copies of each of the core histones 
H2A, H2B, H3 and H4 (yellow). Histone H1 is a linker histone that stabilises higher order structure of 
chromatin and protects the DNA from nuclease digestion. Most histone modifications (dark purple) 
occur on the N-terminal histone tails (green). Modifications considered in this thesis are shown below 
for the histone tail of the H3 core histone. The notation of, for example, H3K4me3 refers first to the 
histone H3, then to the lysine residue that is fourth in the sequence counting from the N-terminus and 
then to the chemical modification itself, here a tri-methylation of the lysine residue. Modifications also 
occur within the core globular protein structure. Adapted from (Fullgrabe et al., 2011).  
 
 
  



 
13 

Genome-wide profiling of histone-bound regions indicated that specific histone modifications 

are associated with specialised functional genomic regions including promoters or 

enhancers. As such, these approaches have transformed the way we now identify functional 

genomic regions (Barski et al., 2007, Hon et al., 2009). To identify these regions the 

technique, chromatin immunoprecipitation followed by next-generation sequencing (ChIP-

seq), uses antibodies specific to a histone modification (or transcription factor) to enrich 

crosslinked protein-DNA fragments for bound-regions, which are then sequenced (Barski et 

al., 2007, Schmidt et al., 2009). Bound genomic regions are identified by pile-ups of 

sequence reads (referred to as “peaks”), which provide a quantitative measurement of 

genome-wide protein binding (Figure 1.4).  

 

Insights from these genome-wide profiles include the observation that H3K4me3 

preferentially associates with promoters and marks regions of active transcription (Hon et al., 

2009). Chromatin signatures at promoters were found to be similar across cell types but in 

contrast, H3K4me1 associated with cell-type specific enhancers (Heintzman et al., 2009 

2009). However, many H3K4me1-associated enhancer regions were later found to be 

inactive when tested in reporter assays, leading to the discovery that active enhancers are 

marked by a combination of H3K4me1 and H3K27ac (Figure 1.2-1.3) (Creyghton et al., 

2010). Instead, H3K4me1 alone marks poised enhancers that may not necessarily be active 

but could reflect molecular ‘memory’ of previous activation (Heinz et al., 2015, Creyghton et 

al., 2010). For example, many inactive haematopoietic stem cell developmental genes were 

found to be regulated by distal enhancers enriched with H3K4me1 (Creyghton et al., 2010, 

Cui et al., 2009). H3K27ac, which is deposited by both p300 and CREB binding protein 

(CBP) can also mark active promoters, when not in conjunction with H3K4me1 (Creyghton et 

al., 2010).  

 

Clearly the context of chromatin functional state has important consequences for molecular 

function. For example, using STARR-seq, it was observed that although many sequences 

possessed the capacity to act as enhancers, many were endogenously repressed (Zabidi et 

al., 2015, Krijger and de Laat, 2016). The multiple layers of transcriptional regulation and 

chromatin context are summarised in Figure 1.3. Also shown is the high levels of 5-methyl 

cytosine (5mC) in closed chromatin, contributing to gene repression (Figure 1.3) (Jones, 

2012). Recent advances in genome-wide DNA methylation mapping techniques have 

highlighted the varied roles of this epigenetic mark depending on the genomic context and 

interpretation of the functional effect requires appreciation of multiple genomic factors 

(Jones, 2012). 
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Figure 1.3: Multiple layers of gene regulation  
This schematic summarises the many molecular processes that control transcription. The level of DNA 
compaction controls access of DNA-binding cofactors. In the bottom panel, DNA is highly compacted 
and hypermethylated at cytosine residues (5mC) preventing access to transcriptional cofactors and 
repressing gene expression. Histone remodelling proteins (purple) can open chromatin allowing 
access to other cofactors (top panel). This leads to activation of RNA polymerase II and transcription 
initiation at the core promoter. Enhancer-bound cofactors can also influence transcription of distal 
genes through long-range interactions as a result of DNA looping and clustering. DNMT = DNA 
methyltransferase. HAT = histone acetyltransferase. HDAC = histone deacetylase. HDM = histone 
demethylase. HMT = histone methyltransferase. TET = ten-eleven translocation. Adapted from (Greco 
and Condorelli, 2015). 
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1.4.1.6 Higher-order chromatin structure 
With the advent of chromatin conformation capture techniques came the ability to study the 

three-dimensional spatial genomic structure on a global scale, showing that regulatory loops 

are widespread and provide another mechanism for transcriptional regulation (Dekker et al., 

2002). Chromatin conformation capture (3C) and adaptations of this approach including 4C, 

5C, Hi-C, ChIA-PET and promoter-capture HiC (PcHiC), identify long-range interactions by 

formaldehyde cross-linking of genomic regions located close in physical space (de Wit and 

de Laat, 2012). Similar to ChIP-seq, these fragments are sequenced and mapped to the 

reference genome, thereby identifying fragments connecting distally located elements. 

Chromatin conformation techniques differ by the resolution of interactions detected. For 

example, genome-wide approaches such as HiC revealed chromatin loops on a larger scale 

(100kb to 5Mb) referred to as topologically associated domains (TADs) (Lieberman-Aiden et 

al., 2009, Dixon et al., 2012, Krijger and de Laat, 2016). TADs are more likely to be tissue-

invariant but sub-TADs (median size of ~185 kb) and regulatory loops that form within TADs 

are more tissue-specific and dynamic (Dixon et al., 2012, Phillips-Cremins et al., 2013, 

Krijger and de Laat, 2016). Stabilisation of TADs requires CTCF and cohesin whereas 

regulatory loops also require additional tissue-specific TFs (Krijger and de Laat, 2016, 

Phillips-Cremins et al., 2013, Kagey et al., 2010).  

 

The physical partitioning of the genome into these architectural domains correlates well with 

genomic function including actively transcribed or repressed genes (Symmons et al., 2014). 

A definitive causal relationship between promoter-enhancer chromatin looping and gene 

expression was demonstrated by inducing looping between the beta-globin gene and 

corresponding super enhancer (locus control region), which resulted in significantly 

upregulated beta-globin gene expression (Deng et al., 2014).  

 

Connections between distal enhancers and gene targets complicate assignment of genes to 

regulatory SNPs. HiC data can be used to identify target genes of distal regulatory SNPs. 

PcHiC is used predominantly in this thesis and achieves higher resolution in comparison to 

HiC by enriching fragments for genome-wide promoter-mediated interactions using an array 

with promoter-probes of all cellular genes (Mifsud et al., 2015). This approach was recently 

used to identify the interacting regions of 31,253 promoters in 17 primary human 

haematopoietic cells (Javierre et al., 2016). Interactions were found to be highly cell-type 

specific, recapitulating the haematopoietic tree and interacting regions were enriched in 

GWAS disease variants (Javierre et al., 2016). Using this data, the 6q23 locus, associated 

with RA and psoriasis, was found to interact with the promoter of the most proximal gene, 

TNFAIP3, but also with the promoter of IL20RA, located 680 kb upstream (McGovern et al., 

2016). The risk allele of the likely causal SNP in this locus, rs6927172, correlated with 
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increased gene expression of IL20RA, increased binding of both enhancer-associated 

histone marks and the TF, NFkB (McGovern et al., 2016). In this case, monoclonal therapy 

against IL-20 has been shown to be effective for both diseases (McGovern et al., 2016). On 

a genome-wide scale, an independent but similar capture approach, HiChIP, was used to 

map disease SNP target genes (Mumbach et al., 2017). Instead of focusing on promoter 

interactions, HiChIP is a protein-centric technique that was recently used with H3K27ac as a 

bait to assay interactions in T cell populations (Mumbach et al., 2017). Using H3K27ac 

interaction maps, 2,597 target genes were identified for 684 autoimmune disease variants 

(Mumbach et al., 2017, Trynka, 2017). Only 14% of the mapped target genes represented 

the closest gene to the GWAS variant. This demonstrates the utility of interaction data to 

identify target genes, which is important in the translation of GWAS to the clinic. 

Capture techniques can be used to identify SNP target genes, but long-range interactions 

could themselves be disrupted by these variants. Disruption of TF binding has long been 

suggested as the predominant mechanism underlying regulatory variation (Pai et al., 2015). 

However, only a minority, 10-20%, of GWAS SNPs were found to be located within TF 

binding motifs (of 823 variants assessed), suggesting other regulatory mechanisms may 

underlie genetic associations (Farh et al., 2015). Evidence of allele-specific interactions has 

been observed, using ChIA-PET of CTCF and Pol II in different human cell lines. For 

example, 50 loci showed allele-specific tandem loops (loops coordinated by two CTCF motifs 

positioned in a tandem manner) that contained phased SNPs within the gene body (Tang et 

al., 2015). 44% of these loci displayed allele-specific expression (Tang et al., 2015). The 

authors also showed that the asthma-associated SNP, rs12936231, disrupted a CTCF motif 

and CTCF binding further abrogating looping and chromatin topology, which they postulated 

could represent the primary molecular event underlying the locus (Tang et al., 2015). Similar 

observations have been made combining H3K27ac HiChIP interaction data from primary 

human cells with available genome phasing (Mumbach et al., 2017). The authors observed 

4.2% of loops exhibited allelic bias (FDR < 0.05) where risk alleles either disrupted or 

increased enhancer-gene interactions (Mumbach et al., 2017). Thorough examination of the 

allelic bias of chromatin interactions in a larger population-scale cohort is needed to establish 

this as a widespread disease-relevant regulatory mechanism.  

 
1.4.1.7 Non-coding RNA regulation  
90% of the genome is transcribed into non-coding RNAs including ribosomal, transfer-RNAs, 

long non-coding RNAs and microRNAs, compared to 2-3% transcribed to protein (Roy and 

Singer, 2015, Lee, 2012). miRNAs are short (19-24 nucleotides) and function to cleave or 

repress complementary mRNA post-transcriptionally where binding is mediated by the RNA-

induced silencing complex (RISC) (Hrdlickova et al., 2014). The translation of more than half 

of protein-coding genes is regulated by miRNAs (Hrdlickova et al., 2014). Many lncRNAs, 
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which consist of a heterogeneous group of RNAs more than 200 nucleotides, are thought to 

regulate expression of protein-coding genes (Harrow et al., 2012, Hrdlickova et al., 2014). 

lncRNAs exhibit cell-type specific expression and widespread regulatory functions through 

interaction with DNA, RNA or protein enabling the control of processes such as gene 

silencing, RNA maturation and transport, protein production and chromatin remodelling 

(Derrien et al., 2012, Hrdlickova et al., 2014).  

 

Non-coding RNAs have been implicated in a range of neurodegenerative, cardiovascular and 

autoimmune diseases as well as cancer (Hrdlickova et al., 2014). Disease SNPs have been 

shown to confer risk by disrupting the function of non-coding RNAs, for example, by altering 

RNA expression or by changing binding sites in target genes. rs57095329 is associated with 

systemic lupus erythematosus (SLE) and located in the promoter of microRNA, miR-146a 

(Luo et al., 2011, Hrdlickova et al., 2014). Increased SLE risk is associated with lower miR-

146a expression levels, observed in peripheral blood leukocytes (Luo et al., 2011). 

Upregulated type I interferon pathway activity is known to occur in SLE pathogenesis and 

miR-146a functions as a negative regulator of this activity, explaining how a decreased 

miRNA expression could increase disease risk (Luo et al., 2011, Tang et al., 2009). Non-

coding RNA function and target gene interaction is another important regulatory function to 

consider in genetic function studies. Figure 1.4 summarises how all of the described 

epigenomic data can be used to annotate function of trait-associated variants and in part aid 

the prediction of putative causal SNPs.  
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Figure 1.4: Annotating genetic variants with epigenomic function  
Schematic summarises initial steps in predicting molecular mechanisms of trait-associated SNPs. 
Imputation, targeting genotyping or use of whole-genome sequencing data identifies all variants in LD. 
Disease-associated SNPs are intersected with epigenomic regions such as chromatin modification or 
transcription factor binding (ChIP-seq binding peaks in green). Combined with high-resolution 
chromatin interaction data, putative target genes can be identified. Further techniques to identify 
function such as quantitative trait studies are discussed below. Figure based on (Krijger and de Laat, 
2016). 
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1.4.2 Quantitative trait loci studies with molecular phenotypes 
Annotating the genome with epigenomic data (Figure 1.4), while helping to highlight 

molecular function, is prone to chance overlaps. Alternatively, using epigenomic data as a 

quantitative trait in association mapping can identify, with statistical confidence, specific 

variants (and those in high LD) associated with disrupting a molecular function. If a genomic 

locus is associated with both a disease or complex trait and with a molecular phenotype such 

as gene expression, this is a strong indicator of possible causal mechanism (Nica and 

Dermitzakis, 2013). 

 

Variation in gene expression can arise from environmental factors, epigenetic effects, 

random biological noise and genetic effects. QTL mapping uncovers the genetic basis of 

variation in quantitative phenotypes in a similar approach to GWAS. Smaller cohorts can 

reduce power and therefore, rather than genome-wide, the number of variants tested in a 

QTL study is constrained within a genomic window surrounding each molecular feature. 

These QTLs are referred to as cis-QTLs, which are SNPs that act locally to the feature being 

investigated (Nica and Dermitzakis, 2013). The definition of “local” can vary between studies; 

a window of 1 Mb either side of the start and end of the feature was used in the Chen et al. 

(2016) study. This approach limits the burden of multiple testing if all genome-wide variants 

were assessed. Depending on the assay, the expression of all genes (~22,000) can be 

tested for cis-QTLs.  

 

Early studies showed heritability of gene expression, chromatin modifications and 

transcription factor binding and identified that eQTLs (SNPs associated with gene expression 

variation) were fairly widespread, with some observations of up to 30% of genes having an 

eQTL in lymphoblastoid cell lines (LCL) (Stranger et al., 2007, Price et al., 2011, Grundberg 

et al., Pickrell et al., 2010, Montgomery and Dermitzakis, 2011, McDaniell et al., 2010, Pai et 

al., 2015). With increasing sample sizes and denser genotypes or sequenced data, the 

number of discovered eQTLs has increased. For example, the latest G. TEx analysis of 

RNA-seq gene expression across 44 tissues with 449 donors identified 152,869 cis-eQTLs 

for 19,725 genes corresponding to 50.3% and 86.1% of all known lincRNA and protein-

coding genes respectively (G. TEx Consortium, 2017).  

 

Cis-eQTLs are enriched at gene start sites and variants upstream of the TSS are observed to 

have greater effect sizes than those in gene bodies, suggesting that SNPs regulating 

transcription have a larger impact than those that may regulate post-transcriptional 

processes (G. TEx Consortium, 2017). However, splice site QTLs or those that introduce a 

stop codon do have a high impact on downstream consequences (G. TEx Consortium, 

2017). Early eQTL studies demonstrated high cell-type specificity, Dimas et al. (2009) 
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identified that 69-80% of eQTLs across three cell types, LCLs, primary fibroblasts and 

umbilical T cells were cell type specific (N = 75) (Dimas et al., 2009). Similar tissue specificity 

has been later confirmed in primary cell types (Chen et al., 2016a). Cell-type specificity can 

also manifest as opposing direction of effects of the same QTLs in different contexts. For 

example, Raj et al. (2014) identified 7000 shared eQTLs between monocytes and T cells 

(Raj et al., 2014). The effect size for most eQTLs, defined as the most significant SNP per 

gene, was concordant across the two cell types but for 42 genes, the most significant SNP 

had opposing directions where the allele with increased expression in one cell and 

decreased in the other (Raj et al., 2014). QTL studies in stimulated cell types have shown 

that context specificity not only applies to different cell types but also to different active 

states. Specific QTLs were only detected in activated immune cells when stimulated by, for 

example, bacterial components (LPS) or inflammatory cytokines (IFN-g) (Fairfax et al., 2014, 

Naranbhai et al., 2015, Kim-Hellmuth et al., 2017, Alasoo et al., 2017).  

 

eQTLs are often used to integrate with GWAS SNPs to identify gene targets. Zhu et al (2016) 

used a Mendelian randomization method adapted for summary statistics to analyse complex 

trait and disease GWAS and blood eQTL data (N = 5311) and subsequently identified 126 

loci for which there was evidence of pleiotropy between gene expression and complex trait 

variance (Zhu et al., 2016). Here, pleiotropy describes genetic loci associated with two traits 

that may not be linked via a causal mechanism where the variant affects a phenotype 

through an endophenotype such as gene expression. Importantly, for approximately 60% of 

the colocalised cases, the regulated gene target, as identified by an eQTL, was not the 

nearest gene to the sentinel GWAS SNP (Zhu et al., 2016). Therefore, identifying gene 

targets based on proximity may lead to incorrect assignment.  

 

QTL studies also allow the integrated study of genetic effects on gene expression, chromatin 

and TF binding, which has provided many insights into the mechanism of gene regulation. 

55% of eQTLs in LCLs overlapped with DNase I hypersensitivity QTLs marking open 

chromatin, suggesting that a subset of eQTLs may influence gene expression through 

disruption of chromatin modification or transcription factor binding (Degner et al., 2012). 

Three studies measuring chromatin state, modification, TF binding and Pol II occupancy, 

provided initial evidence of high variability in enhancer function as well as suggesting that TF 

binding was the primary mechanism underlying modification of regulatory chromatin (Table 

1.1) (Kasowski et al., 2013, McVicker et al., 2013, Kilpinen et al., 2013). These observations 

were confirmed and expanded by two recent studies in LCLs that assayed genome-wide 

binding of histone modifications, PU.1 and Pol II binding (Grubert et al., 2015, Waszak et al., 

2015). Both studies showed extensive local correlation of molecular features in defined 

genomic windows (< 1Mb), which Waszak et al. (2015) referred to as variable chromatin 
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modules (VCMs). Interestingly, SNP-mediated changes in the local chromatin state were 

also correlated with those observed more distally in regions located up to 200 kb away 

(Denker and de Laat, 2015). This coordination was shown to result from physical interaction; 

Grubert et al. (2015) showed that 15% of proximal hQTLs were associated with changes at 

distal histone modifications that were connected by long-range chromatin interactions by 

using HiC and ChIA-PET data. Distal hQTLs were enriched within TADs and the majority of 

local-distal QTL pairs occurred between different enhancers (Grubert et al., 2015, Koch, 

2015). Both studies provided evidence that TF activity underpinned chromatin variation, 

which in turn correlated with gene expression, in 99% of cases positively (Waszak et al., 

2015). A single genetic variant could, therefore, propagate to multiple correlated features, 

perhaps explaining why a degree of chromatin variation cannot be correlated with proximal 

effects (Waszak et al., 2015). Single disease SNPs could therefore disrupt an entire 

coordinated molecular system, supporting the use of epigenomic data including chromatin 

interactions in identifying disease mechanisms and target genes and thus demonstrating the 

power of QTL studies to provide medically relevant insights as well as improve our 

understanding of genomic regulation (Koch, 2015, Denker and de Laat, 2015).  

 

Chen et al. (2016) extended these efforts by assaying gene expression, splicing, DNA 

methylation, H3K4me1 and H3K27ac QTLs across multiple primary human cell types; 

monocytes, CD4+ T cells and neutrophils (Chen et al., 2016a). Of the 20,403 genes 

assessed across the three cell types between 33.9-39.3% of genes had an eQTL. Here, an 

average of 9.89% of methylation probes, 25.7% of H3K4me1 peaks and 11.5% of H2K27ac 

peaks had at least one QTL. Confirming previous observations, there was a high degree of 

cell-type specificity to all marks (Dimas et al., 2009, Chen et al., 2016a). Particularly, hQTLs 

were highly cell specific, as expected for enhancer function. By considering lead SNPs and 

those in high LD (r2 ³ 0.8), ~43.4% of eQTLs were also hQTLs, confirming previous 

observations of high correlation between chromatin and gene expression. For 18.4% of the 

genes, a splicing QTL effect was identified, but these were largely independent of eQTLs, 

shown by a low concordance of lead QTLs for the respective traits (r2 < 0.1). There was also 

a high degree of colocalisation with autoimmune disease, which is discussed in detail in 

Chapter 2. The details of key QTL studies are summarised in Table 1.1.  

 

In summary, observations from QTL studies and genome-wide approaches discussed above 

both support the role of key TFs underpinning chromatin state effects and gene expression, 

at least for a subset of sites. For regulatory QTLs that cannot be explained by TF binding or 

correlated with gene expression effects, it remains to be shown whether these effects could 

be explained by disruption of long-range interactions or whether there is extensive 

redundancy between enhancers removing downstream consequences of genetic disruption.  



 
22 

 

 
Table 1.1: Summary of key blood quantitative trait loci studies 

Author Cell type Stimulated/Resting Molecular Trait Trait Assay Cohort 
(Dimas et al., 2009) LCL Resting Gene expression Microarray 75 

(Kasowski et al., 2010) LCL Resting NF-kB, Pol II ChIP-seq 10 
(Maranville et al., 2011) LCLs Glucocorticoids Gene expression Microarray 114 

(Degner et al., 2012) YRI LCL Resting Open chromatin DNase-seq 70 
(Barreiro et al., 2012) Dendritic cells M.tuberculosis Gene expression Microarray 65 
(Westra et al., 2013) Whole blood Resting Gene expression Microarray 5311 
(Battle et al., 2014) Whole blood Resting Gene expression RNA-seq 922 

(Lappalainen et al., 2013) LCL Resting Gene expression, miRNA RNA-seq 452-462 
(Kasowski et al., 2013) LCL Resting H3K27ac, H3K4me1, H3K4me3, H3K36me3 and 

H3K27me3, CTCF, SA1 
ChIP-seq 19 

(Kilpinen et al., 2013) LCL Resting H3K4me1, H3K4me3, H3K27ac, H3K27me3, TFIIB, 
Pu.1, MYC, Pol II 

ChIP-seq 8 + 2 trios 

(McVicker et al., 2013) YRI LCL Resting H3K4me1, H3K4me3, H3K27ac, H3K27me3, Pol II ChIP-seq 10 
(Ding et al., 2014) CEU LCL Resting CTCF ChIP-seq 51 
(Raj et al., 2014) CD4+ T cell, Monocytes Resting Gene expression Microarray 461 

(Fairfax et al., 2014) Monocytes LPS (2h), LPS (24h), 
IFNg (24h) 

Gene expression Microarray 262-414 

(Lee et al., 2014) Dendritic cells LPS (5hr), influenza 
(10hr), IFNb (6.5hr) 

Gene expression Microarray 534 

(Naranbhai et al., 2015) Neutrophils Resting Gene expression Microarray 101 
(Kumasaka et al., 2016) CEU LCL Resting Open chromatin ATAC-seq 24 
(Caliskan et al., 2015) PBMCs Rhinovirus Gene expression Microarray 98 
(Waszak et al., 2015) CEU LCL Resting PU.1, Pol II, H3K4me1, H3K4me3, H3K27ac ChIP-seq 47 
(Chen et al., 2016a) 

BLUEPRINT 
Monocytes, neutrophils, 

CD4+ T cells 
Resting H3K27ac, H3K4me1, gene, splicing, methylation ChIP-seq, RNA-

seq, 450K 
Up to 197 

(Joehanes et al., 2017) Whole blood Resting Gene and exon expression Microarray 5257 
(Kim-Hellmuth et al., 2017) Monocytes LPS, MDP, 5’-ppp-

dsRNA (90min, 1 h) 
Gene expression Microarray 134 

(Alasoo et al., 2017) 
(preprint) 

iPSC differentiated 
macrophages 

IFNg (18h), Salmonella 
(5h), IFNg + Salmonella 

Gene expression, chromatin accessibility/open 
chromatin 

RNA-seq, 
ATAC-seq 

86, 42 

(G. TEx Consortium, 2017) 44 Multiple tissues post mortem Gene expression RNA-seq 449 
Watt et al., 2018 (in 

preparation) 
Neutrophils Resting H3K4me3, H3K27me3, PU.1, CEBPB, CTCF ChIP-seq 22-110 
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1.5 Functional, cellular and immune phenotypes 
Beyond molecular phenotypes, heritable genetic variation has been observed in cellular and 

functional phenotypes. Examples include the levels of a broad range of blood cell types and 

surface receptor expression levels quantified using FACs-based immunophenotyping (Orru 

et al., 2013, Roederer et al., 2015) as well as cytokine production and circulating cytokine 

levels (Brodin et al., 2015, Ahola-Olli et al., 2017). These additional phenotypes allow 

comprehensive insights into immune functions and disease risk.  

 

The Human Functional Genomics Project (HFGP) has collated an array of deeply 

phenotyped individuals with information such as microbiome composition, immune 

responses against human pathogens and disease status (autoimmune, diabetes, Lyme’s 

disease, gout) (Netea et al., 2016, Li et al., 2016b). Li et al. (2016) demonstrated how host 

genetics plays a major role in the variation of immune cell cytokine responses from either 

whole blood, peripheral blood mononuclear cells (PBMCs) or macrophages stimulated ex 

vivo in a healthy population (Li et al., 2016b). Interestingly, the authors observed that the 

cytokine with the strongest inter-individual variation was IL6. Variants in this pathway have 

been previously associated with a multitude of diseases (Chapter 2). This further supports 

the functional importance of this cytokine in immune responses. In total, 17 novel genome-

wide significant QTLs were associated with the production of mostly monocyte- or T cell-

specific cytokines. cQTLs were enriched in regions under selective pressure, in ENCODE 

monocyte-specific enhancers, in infectious disease SNPs (for monocyte-derived cytokine 

QTLs) and in autoimmune disease SNPs (for T cell-derived cQTLs) (Li et al., 2016b). Similar 

autoimmune disease- and complex trait- loci enrichments were identified using 27 SNPs 

associated with circulating levels of 41 different cytokines from an independent GWAS in a 

large healthy cohort of up to 8,293 Finnish individuals (Ahola-Olli et al., 2017). Continuing on 

the efforts to measure protein-level traits, 38 variants were associated with immunoglobulin 

levels (IgA, IgG, IgM), which are effector molecules of the adaptive immune system (Jonsson 

et al., 2017). Similarly, these variants also had known roles in autoimmune diseases and 

haematopoietic malignancies. 

 

An exemplary study demonstrated how the combination of multiple pieces of genetic, 

molecular and functional evidence can resolve complex autoimmune disease risk loci, in this 

case, the TNFSF13B gene locus encoding the cytokine B cell activating factor (BAFF) (Steri 

et al., 2017). An indel variant was associated with multiple sclerosis and systemic lupus 

erythematosus in a Sardinian cohort, as well as with 18 different endophenotypes including B 

cell and monocyte counts (Steri et al., 2017). The variant produces an alternative 

polyadenylation site and a 3’ UTR truncated transcript, which resulted in both a gene 

expression and protein translation effect, the latter due to the presence of fewer miRNA 
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binding sites. Ultimately this culminated in an increased level of soluble BAFF. Elevated 

BAFF levels were observed prior to disease diagnosis in separate preclinical samples, which 

was clear evidence of the causal relationship between higher BAFF protein levels and 

autoimmune disease (Steri et al., 2017). This clearly shows the power of combining 

functional and molecular phenotypes with longitudinal and clinical datasets when evaluating 

causal relationships between functional and disease phenotypes.  

 
There are more and more studies recognising the importance of multiple phenotypes in 

facilitating functional interpretation of GWAS loci and in providing basic biological insights. 

Very recently, the Hi-HOST Phenome Project have generated a catalog cellular GWAS 

associations using 79 phenotypes in response to live pathogens in 528 LCLs and identified 

17 genome-wide significant loci (Wang et al., 2017a). The cellular phenotypes measured 

included readouts of endocytosis, endosomal trafficking, cell signalling, cell death, cytokine 

production as well as the molecular readouts of transcriptional regulation (Wang et al., 

2017a). In addition, the Enhancing GTEx (eGTEx) project was recently announced, wherein 

a bid to describe the effect of variation from “molecule to individual”, other intermediate 

measurements such as protein expression and telomere length will be assayed in the wide 

range of tissue types from this project in addition to gene expression and molecular 

phenotypes (eGTEx Project, 2017).  

 

In future, similar efforts will likely be extended to multiple primary cell types and greater 

sample sizes providing rich resources for functionally annotating genetic loci.  

 
1.6 Recall-by-genotype studies 
Recall-by-genotype (RbG) studies are genotyped-directed experimental phenotyping 

investigations representing downstream hypothesis-driven approaches to investigate 

functional mechanisms (Corbin et al., 2017). They have emerged as the primary choice for 

designing experiments to further investigate the function of observations first identified in 

large-scale genetic studies. They allow greater functional resolution with smaller sample 

sizes compared to hypothesis-free GWAS (Figure 1.7). 

 

RbG test a small number of predicted causal variants (between 1 and 10) selected from the 

integration of GWAS-associated variants, functional studies and statistical methods such as 

fine-mapping. Similar to GWAS, RbG studies have the advantage of utilising genetic variants 

that have arisen from the random allocation of alleles at conception, which cannot, in turn, be 

influenced by the traits of interest (Section 1.7.1). A further advantage of RbG studies are 

that they are designed to query causal relationships in selected stratified groups based on 

previously observed biological associations. This increases the precision of functional insight 
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in a cost-effective, efficient manner (Corbin et al., 2017). I demonstrate the implementation 

and utility of a RbG study in Chapter 4.  

 

1.7 Haematopoiesis as a paradigm for genetics 
Haematopoiesis is the production of all mature blood cell types including thrombocytes 

(platelets), erythrocytes (red blood cells), myeloid cells (monocytes, macrophages, 

neutrophils) and lymphocytes (B cells and T cells) (Figure 1.5). Self-renewing haematopoietic 

stem cells (HSC) in the bone marrow differentiate to lineage-committed progenitor cells, 

which further differentiate into mature cells (Orkin and Zon, 2008, Vasquez et al., 2016). 

Chromatin regulation is important in this differentiation process and mutations in factors 

mediating histone modification and chromatin architecture result in myeloid malignancies 

(Woods and Levine, 2015). Chromatin was recently shown to be highly dynamic during 

lineage specification with 17,035 enhancers established de novo mainly after commitment of 

the first lineage progenitor (Lara-Astiaso et al., 2014). TFs are key to the activity of these 

enhancers, full activation of which preceded lineage-specific gene expression programmes 

(Lara-Astiaso et al., 2014). Therefore, haematopoiesis represents a model system for the 

study of all stages of stem cell development as well as chromatin formation, transcription 

factory activity and the cell-type specificity of these processes.  

 

Mature haematopoietic cells perform vital biological roles including oxygen transport (red 

blood cells), blood clotting (platelets) and immune responses (myeloid and lymphoid cells). 

Sustained haematopoiesis occurs under homeostatic conditions as well as during infection, 

(Orkin and Zon, Amulic et al., 2012). Dysregulated blood cell function is a known factor in the 

aetiology of a wide variety of diseases. Understanding the biological context of disease-

dysregulated processes can highlight important haematopoietic pathways and novel genes in 

haematopoiesis and mature cell function. The role of these cells in disease and function is 

discussed in detail in Chapter 2 and 3 of this thesis.  

 

Haematopoiesis and mature blood cells are both relatively experimentally tractable. Whole 

blood is easily accessible from a high number of individuals and from this specific cell 

populations can be isolated with high purity and relative technical ease. The evolutionary 

conservation of haematopoiesis also facilitates study in model organisms. As a result, 

haematopoiesis is one of the best-characterised mammalian cellular differentiation systems. 
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Figure 1.5: Haematopoiesis and the involvement of essential transcription factors 
Differentiation of self-renewing haematopoietic stem cells to form all mature cells (red blood cell, 
platelet, mast cell, eosinophil, neutrophil, monocyte and macrophage, B and T lymphocytes, NK cells). 
The transcription factors required for each stage were discovered using conventional gene knockouts 
that resulted in a blockage of haematopoietic differentiation. LT-HSC: long-term haematopoietic stem 
cell, ST-HSC: short-term haematopoietic stem cell, CMP: common myeloid progenitor; CLP: common 
lymphoid progenitor, MEP: megakaryocyte/erythroid progenitor, GMP: granulocyte/macrophage 
progenitor. Additional TFs, not shown here, were predicted using a highly sensitive ChIP-seq protocol 
to be involved in 16 differentiation stages (Lara-Astiaso et al., 2014). Figure adapted from (Orkin and 
Zon, 2008).   
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Blood cell phenotypes such as full blood counts (FBC), are also readily measured by 

automated haematology analysers (Chami and Lettre, 2014, Astle et al., 2016). The 

deviation from normal size, physical characteristics or number of blood cells is diagnostic for 

human disease such as infection, anaemia, thrombotic diseases or haematological disorders 

(Table 1.2) (Vasquez et al., 2016, Soranzo et al., 2009). FBC is therefore routinely measured 

as part of clinical diagnosis and assessment of general health (Chami and Lettre, 2014). 

Table 1.2 summarises the full range of phenotypes that can be measured with recent 

analysers such as the Sysmex system (Astle et al., 2016, Vasquez et al., 2016, Sysmex 

Corporation). 

 

Blood cell traits vary across healthy individuals and part of this variation is due to genetic 

factors (Pilia et al., 2006, Evans et al., 1999, Garner et al., 2000, Chami and Lettre, 2014). 

Therefore, studying naturally occurring genetic variation of circulating mature blood cell 

counts is a common and successful strategy used to gain insight into the regulation of 

haematopoiesis (Table 1.2). This approach has yielded many insights, not only in identifying 

novel haematopoietic regulators but also for the wider field of human genetics. For example, 

blood GWAS has been successful in identifying novel regulators of haematopoiesis (Gieger 

et al., 2011, van der Harst et al., 2012, Bielczyk-Maczynska et al., 2014). Previously 

unknown genes identified from GWAS of RBCs and platelets displayed haematopoietic 

phenotypes in model organisms (Vasquez et al., 2016).  

 

Up until 2016, blood GWAS only explained a fraction of variation in the population (4-10%) 

and high-powered cohorts for studying myeloid and lymphoid parameters were lacking 

(Vasquez et al., 2016, Gieger et al., 2011, van der Harst et al., 2012). The recent large 

GWAS using data from the UK biobank cohort (N = 173,480) investigated a high number of 

traits, 36 in total (Table 1.2) (Astle et al., 2016). 2,706 independent variants were identified, 

representing a ten-fold increase in the number of known loci that included hundreds of rare 

variants with high effects sizes (Vasquez et al., 2016, Kim-Hellmuth and Lappalainen, 2016). 

Most of the sentinel variants were highly specific across red blood cell, white cell and platelet 

traits and enriched in corresponding cell-type specific enhancers. Coding variants were 

enriched with Mendelian disease mutations, a demonstration of how important clinical insight 

can be gleaned from large-scale GWAS. Plausible molecular mechanisms were identified 

through integration with the BLUEPRINT QTL data for 276 blood trait variants that 

colocalised with at least one molecular QTL (Astle et al., 2016). It was estimated that a 

higher proportion of variance in the blood indices was explained by the common autosomal 

genotypes from this study, for example between 5-21% of variance in white cell traits (Astle 

et al., 2016). The full UK Biobank cohort of 500,000 individuals could identify further 

significant variants explaining trait variance (Collins, 2012).  
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Table 1.2: Summary of the main haematological indices, measurement unit and related disorders  
Adapted from (Vasquez et al., 2016, Astle et al., 2016). Additional traits were also tested in the Astle et al. (2016) GWAS, that included for example the 
percentage of granulocytes that is made up by neutrophils. I list the main traits measuring mature blood cell counts here that are routinely measured and have 
been explored in previous studies. 

 Trait [Units] Description Determination Example Diseases/disorders 
RBC Red blood cell count [per pL] Count of RBCs per unit volume of blood Impedance (measured) 

Anaemia, polycythemia vera 

HGB Haemoglobin concentration [g/dl] Concentration of Hb per unit volume of blood Light absorbance (measured) 

HCT Hematocrit [%] Volume fraction of blood occupied by red 
cells Impedance (measured) 

MCV Mean corpuscular haemoglobin 
concentration [fL] Mean volume of RBCs (HCT/RBC)×10 (derived) 

RDW Red cell distribution width [fL] Coefficient of variation of red cell volume 
distribution 

CV of impedance measured red 
cell volume distribution 

(measured) 

MCH Mean corpuscular haemoglobin 
[pg] Average mass of Hb per red cell (HGB/RBC)×10 (derived) 

MCHC Mean corpuscular haemoglobin 
concentration [g/dL] 

Concentration of Hb per unit of volume 
occupied by red cells (HGB/HCT)×100 (derived) 

PLT Platelet count [per nL] Count of platelets per unit volume of blood Impedance (measured) 

Essential thrombocythemia, thrombotic 
Thrombocytopenic purpura 

MPV Mean platelet volume [fL] Mean volume of platelets (PCT/PLT)×10000 (derived) 

PDW Platelet distribution width [fL] Spread of the platelet volume distribution 
(PDV) 

Impedance: Coefficient of 
variation of PDV (measured) 

PCT Plateletcrit [%] Volume fraction of blood occupied by 
platelets Impedance (measured) 

WBC White blood cell count [per nL] Aggregate count of white cells per unit 
volume of blood Impedance (measured) Autoimmune/immunological, infection, 

inflammation, leukaemia 

NEU Neutrophil count [per nL] Count of neutrophils per unit volume of blood (NEUT%×WBC)/100% (derived) Myelodysplasia, bacterial infections 

LYM Lymphocyte count [per nL] Aggregate count of lymphoid cells per unit 
volume of blood (LYMPH%×WBC)/100% (derived) Lymphoma, viral infections 

MON Monocyte count [per nL] Count of monocytes per unit volume of blood (MONO%×WBC)/100% (derived) Myelomonocytic leukaemia, chronic 
infections (tuberculosis) 

EOS Eosinophil count [per nL] Count of eosinophils per unit volume of blood (EO%×WBC)/100% (derived) Allergies, asthma, parasitic infections 

BAS Basophil count [per nL] Count of basophils per unit volume of blood (BASO%×WBC)/100% (derived) Hyperthyroidism, myeloproliferation 
disorders 
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1.7.1 Genetics, correlation and causation 
Correlation between blood indices and increased risk of certain diseases such as obesity, 

stroke and cardiovascular diseases has been observed (del Zoppo, 1998, Poitou et al., 2011, 

Ensrud and Grimm, 1992, Hoffman et al., 2004, Boos and Lip, 2007). However, correlation 

does not necessarily show causation as epidemiological and observational relationships can 

be subject to confounding factors, measurement error, bias or reverse causation (where the 

disease state influences the endophenotype such as blood indices).  

 

Genetics, with the exception of somatic mutations, is pre-determined at birth where variants 

are segregated randomly and independently of other traits (Evans and Davey Smith, 2015). 

In this way, confounding and reverse causation are both reduced as genetics precedes any 

biological effect or outcome (Evans and Davey Smith, 2015). We can also measure genetic 

variants with high precision, reducing measurement error that can occur in observational 

studies. Approaches have therefore been developed that use genetic variants (instrumental 

variables) that are known to influence a biological intermediate (exposure), which itself 

affects disease risk. In this case, the studied variants should also be related to the risk of the 

disease. This approach can assess both the causality of biological intermediates and 

quantify the size of the causal effect and is referred to as Mendelian Randomization (Evans 

and Davey Smith, 2015). There are certain assumptions that must not be violated in these 

analyses, which in some cases can be challenging to definitively confirm. These are 

summarised in Figure 1.6.  

 

This approach was implemented by Astle et al. (2016) to test for causal relationships 

between blood indices and each of a group of six autoimmune, three cardiometabolic and 

five neuropsychiatric diseases. Positive correlations were found between eosinophil count 

and rheumatoid arthritis and asthma, with a weaker effect between neutrophil indices and 

asthma. Interestingly, there was a reduced likelihood for causality between red blood cell, 

white blood cell, granulocyte and neutrophil counts and risk of coronary heart disease (CHD), 

despite previously reported correlations (Wheeler et al., 2004, Astle et al., 2016).  

 

Overall, studying the process of haematopoiesis and mature cell function increases our 

understanding of basic biology. Concomitantly, it also offers the potential to use blood cell 

traits as disease biomarkers and tractable intermediate phenotypes in genetic studies and 

functional follow-ups.  
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Figure 1.6 Mendelian randomization methodology and assumptions  
Schematic summarising a causal relationship between an exposure and an outcome/disease 
assessed by using genetic variants (Z) that are associated with the exposure and under causality are 
also associated with disease. Causal relationships are depicted with arrows. The three assumptions 
are also given. Adapted from (Evans and Davey Smith, 2015).  
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1.8 Aims of this thesis 
In this thesis, I use a combination of genetic and genomics approaches I have discussed to 

resolve functional consequences of genetic variation whilst also understanding the biology of 

haematopoietic cells. These are summarised in Figure 1.7. 

 

In Chapter 2, I discuss how these approaches have increased our understanding of 

autoimmune diseases. I apply the lessons learnt from these studies to diseases that are not 

traditionally classified as immune-mediated. I use epigenomic phenotypes to resolve 

mechanisms of risk loci and also explore potential insight into pathways or genes that could 

provide future therapeutic avenues for these diseases. I demonstrate that the combination of 

genomic and genetic approaches provides hypothesis-free identification of genes and 

pathways dysregulated in disease, representing an early step in identifying new therapeutic 

avenues. 

 

Following from this, I apply GWAS to novel neutrophil phenotypes with an overall aim of 

expanding the phenotype repertoire by providing additional functional datasets with which to 

annotate trait- or disease- associated loci. Finally, I implemented a recall-by-genotype study 

to perform an in-depth investigation into two genetic loci where there was previous evidence 

of an association with neutrophil count. Throughout my thesis, I demonstrate the application 

of varied but complementary approaches in gaining biological insight from genetic 

associations.  
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Figure 1.7 Approaches to investigate functional mechanisms of genetic variants  
Schematic summarises the type of experiments, number of individuals required, resolution of variants investigated and the chapters of this thesis where the 
techniques are used 
 


