
Chapter 2

Dataset description and methods used for
the generation and analysis of the familial
melanoma datasets

2.1 Introduction

This chapter introduces the process of selection for the sequencing dataset used in the project.
The pedigrees were initially chosen and sequenced as part of four distinct datasets, two exome
and two whole genome. The first exome dataset, referred to as the primary exome dataset in
this chapter, was sequenced and partly analysed before I started working on the project. The
remaining three datasets were chosen and sequenced after I started the project, for which I col-
laborated with members of our melanoma consortium called GenoMEL, described in Section
2.2.1. The description of these pedigrees as four distinct datasets is purely for the distinction
of the varied choices of pedigree selection, sequencing methodology, technology used and
the institutions they were sequenced in. Eventually, these cohorts were merged into a single
dataset and analysed as one large dataset for the rest of the project, with the exception of only
whole genome sequences being considered for the noncoding and structural variant analysis.
This chapter includes a description of assembly and sequencing of all four datasets and the
eventual process used to merge them into a single dataset and perform variant calling on them.
Additional methods on the filtering of the variants are also described in detail. Following this,
all the methods for analysing the dataset including an association analysis on the coding re-
gion variants, a joint association and linkage analysis, secondary exonic analyses, and studies
on variants disrupting transcription factor binding motifs and large structural alterations are
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also described in this chapter. The results from all of these approaches are presented in the
following chapter.

2.2 Dataset description and assembly

2.2.1 An introduction to GenoMEL

GenoMEL is a melanoma genetics consortium comprising researchers and investigators from
24 institutions across the world focussing on the identification of genes that increase the risk
of both familial and sporadic melanoma. It is the largest colletion of familial melanoma data
in the world and was started in the early 1990s by Professor Julia Newton Bishop from the
University of Leeds, with the number of collaborators constantly increasing every year since
then. The consortium also investigates the interaction of these genetic factors with environ-
mental factors and the relevance of the inheritance of these genes to familial melanoma risk.
The consortium emphasises open knowledge sharing and transfer of key knowledge related to
melanoma genetics research. This project was funded as part of the MELGEN Early Train-
ing Network under GenoMEL with data being provided by 8 of the 24 GenoMEL institutions
studying familial melanoma.

2.2.2 Cohort description

A total of 308 patients diagnosed with familial melanoma from 133 different pedigrees from
across the world were sequenced as a part of this project, making it the largest dataset of its
kind to date. These patients were selected to be CDKN2A and CDK4 negative to increase the
chances of finding a novel familial melanoma predisposition driver gene. An example of the
type of pedigree chosen to be sequenced is provided in Figure 2.1. The pedigree in this figure
comprises of 16 members, 6 of whom were diagnosed with melanoma.

The pedigrees that were sequenced as part of this dataset were identified by collaborators
in 9 different institutions across the world, shown in Table 2.1.
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Figure 2.1: An example of a pedigree sequenced as part of the study. Circles indicate fe-
male individuals while squares indicate male individuals. A diagonal line across the symbol
indicates that the individual is deceased. The members of the pedigree marked in red were
the patients sequenced from this pedigree. In this case, there were 6 affected members in the
pedigree, all of whom were sequenced.

Institution Location Lead Principal Investigator

University of Pennsylvania Pennsylvania, United States
of America

Dr. Peter A. Kanetsky

University of Sydney Sydney, Australia Professor Graham Mann

The QIMR Berghofer
Medical Research Institute

Brisbane, Australia Professor Nicholas
Hayward

Leiden University Medical
Center

Leiden, The Netherlands Dr. Remco van Doorn and
Dr. Nelleke Gruis

University of Leeds Leeds, United Kingdom Professor Tim Bishop and
Professor Julia
Newton-Bishop

Karolinska Institutet Stockholm, Sweden Dr. Veronica Höiom

Rigshospitalet Copenhagen, Denmark Dr. Karin Wadt

Institut d’Investigacions
Biomediques August Pi I

Sunyer

Barcelona, Spain Dr. Susana Puig

Kings College London, United Kingdom Dr. Veronique Bataille

Table 2.1: The different collaborative institutions and their corresponding lead investigators
who helped provide samples for this project and their respective locations.
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Additional criteria based on the number of primary melanomas, age of onset and number
of affected members in each pedigree were also used to finalize the list of patients chosen
for sequencing. DNA from these patients was collected by our collaborators at institutions
mentioned in Table 2.1 and sent to the Wellcome Sanger Institute for sequencing. The infor-
mation regarding the sequencing of each dataset, including sequencing platforms, baits and
read lengths for the whole genome and exome sequences are provided in Sections 2.2.3 and
2.2.4 respectively. The 308 patients were sequenced using a mixture of exome and whole
genome sequencing and were initially sequenced as four individual datasets:

1. Pilot whole genome dataset - Consisting of 123 whole genome sequences from 32 pedi-
grees.

2. Secondary Leiden whole genome dataset - Consisting of 28 whole genome sequences
from 6 pedigrees.

3. Primary exome dataset - Consisting of 80 exome sequences from 67 pedigrees.

4. Secondary exome dataset - Consisting of 77 exome sequences from 28 pedigrees.

The distribution of samples and families in each dataset based on the origin of the samples are
provided in Table 2.2.

The origin of cases with multiple primary melanomas and early age of onset (<40 years of
age) are provided in Table 2.3. Across all datasets, 29.06% of patients were detected to have
multiple primary melanomas while 27.92% of patients had an early age of onset.

The average number of people affected and sequenced from each pedigree across all the
datasets is given here:

• Pilot whole genome dataset = 6 affected and 4 sequenced.

• Secondary Leiden whole genome dataset = 5 affected and 5 sequenced.

• Primary exome dataset = 4 affected and 2 sequenced.

• Secondary exome dataset = 4 affected and 3 sequenced.

This shows that the whole genome datasets have a higher average number of people affected
and sequenced compared to the whole exome datasets. This is also due to the stricter criteria of
selection for patients and families imposed on these datasets. In the compiled overall dataset, 5
people were affected on average in every family and 2 were sequenced across all the datasets.
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Location Number of
families

(number of
samples)

Sequence type Dataset

Pennsylvania 4(15) Whole genome Pilot whole genome dataset
Sydney 9(56) Whole genome Pilot whole genome dataset

Brisbane 6(27) Whole genome Pilot whole genome dataset
Leiden 2(6) Whole genome Pilot whole genome dataset
Leeds 1(2) Whole genome Pilot whole genome dataset

Stockholm 1(2) Whole genome Pilot whole genome dataset
Denmark 4(10) Whole genome Pilot whole genome dataset

London (KCL) 5 (5) Whole genome Pilot whole genome dataset
Leiden 6(28) Whole genome Secondary Leiden whole

genome dataset
Leeds 65(75) Exome Primary exome dataset
Leiden 2(5) Exome Primary exome dataset

Barcelona 10(20) Exome Secondary exome dataset
Pennsylvania 1(3) Exome Secondary exome dataset

Brisbane 4(15) Exome Secondary exome dataset
Stockholm 2(6) Exome Secondary exome dataset

Sydney 7(28) Exome Secondary exome dataset
London (KCL) 3(3) Exome Secondary exome dataset

Leiden 1(2) Exome Secondary exome dataset

Table 2.2: Distribution of samples by location, type of sequence and dataset.
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Dataset Proportion of cases
with multiple primary
melanomas (MPM)

Proportion of
early onset cases

Number of cases for
which the information

was unavailable
Pilot whole

genome
dataset

36/116 30/116 7 for MPM, 7 for early
onset cases

Secondary
Leiden whole

genome
dataset

5/24 11/24 4 for MPM, 4 for early
onset cases

Primary
exome
dataset

3/9 2/9 77 for MPM, 77 for
early onset cases

Secondary
exome
dataset

15/54 12/48 23 for MPM, 29 for
early onset

Table 2.3: Distribution of patients with multiple primary melanomas and early age of onset in
each dataset.

2.2.3 Whole genome sequences - Sample selection and sequencing

2.2.3.1 Pilot whole genome dataset

In order to determine mutations causative of familial melanoma, the genomes of 123 individ-
uals from 32 families were sequenced. These samples were obtained from our collaborators
in Sydney, Pennsylvania, Stockholm, Leiden, Denmark, Leeds and Brisbane who are part
of the GenoMEL consortium (https://genomel.org). The dataset also included 8 samples ob-
tained from King’s College, London who are not a part of the GenoMEL consortium. These
8 samples were selected due to the presence of MPMs and/or early age of onset as opposed to
multiple members of the family affected. The distribution of the 123 individuals across these
locations is given in Table 2.2. Informed consent was obtained by each institution (Sydney:
HREC/13/CIPHS/71, Pennsylvania: 14.03.0033 Protocol MCC 17751, Sweden: 03-471, 03-
713, Leeds: 99/3/045, Leiden: Protocol No. P00.117-gk2, Copenhagen: Protokol af 7. juni
2012, version 3, Brisbane: P452 (H0204-013), London: 07/HO802/84). The distribution of
the families and samples are given below in Table 2.2. The criteria for selecting these partic-
ular samples varied depending on their origin of the families. These criteria are elucidated in
Table 2.4.

Genomic DNA (500 ng) was sheared to a median insert size of 500 bp and subjected to
standard Illumina paired-end DNA library construction. Adapter-ligated libraries were am-
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Families Criteria
All families Presence of multiple primary melanomas and an early

age of onset (<40 years) with 2 or more DNAs available
to sequence per family.

European and
American families

5 or more cases with 2 or more DNAs available to
sequence per family.

Australian
families

6 or more cases with 2 or more DNAs available to
sequence per family.

Table 2.4: Criteria for selection of whole genome samples in the pilot dataset.

plified by 6 cycles of PCR and subjected to DNA sequencing using the HiSeqX platform
(Illumina) according to manufacturer’s instructions. Read lengths of 150bp were obtained for
this dataset

2.2.3.2 Secondary Leiden whole genome dataset

An additional 29 samples from 6 pedigrees were obtained from our collaborators at the Lei-
den University Medical Center. The selection criteria for the samples were the same as the
ones previously mentioned in Section 2.2.3.1, i.e., 5 or more cases in each pedigree with at
least 2 or more DNA samples available to sequence. Ethical approval for sequencing was
obtained (Leiden: Protocol No. P00.117-gk2). Genomic DNA was sheared and amplified in
the same manner as Section 2.2.3.1. However, this was done using the HiSeq2500 instead of
the HiSeqX platform. Read lengths of 100 bp were obtained for this dataset. One sample was
removed for low average coverage (<9X across the genome), resulting in a total of 28 samples
from 6 pedigrees.

2.2.4 Exome sequences - Sample selection and sequencing

2.2.4.1 Primary exome dataset

The primary criteria for selection of the families for sequencing within this dataset were less
stringent compared to the whole genome datasets. These conditions are given in Table 2.5.

The pedigrees for this study were recruited by collaborators from the University of Leeds
and the Leiden University Medical Centre. Cases from these pedigrees were confirmed to be
negative for CDKN2A and CDK4 mutations. Informed consent was obtained under the Multi-
centre Research Ethics Committee (UK): 99/3/045 for the Leeds cases and Protocol P00.117-
gk2/WK/ib for Leiden cases. Genomic DNA was extracted from blood using standard methods
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Families Criteria
All families Presence of multiple primary melanomas in multiple

members and/or an early age of onset (<40 years)
European families 3 or more cases with 2 or more DNAs available to

sequence per family.

Table 2.5: Criteria for selection of exome samples in the primary exome dataset.

from our respective collaborators at these institutions, shown in Table 2.1.

5 µg of genomic DNA were sent for sequencing at the Wellcome Sanger Institute and
exonic regions were captured with the Agilent SureSelect Target Enrichment System. Paired-
end reads of 75 base pairs (bp) were generated on the HiSeq 2000 platform. A subset of
samples from the Leeds cohort were sequenced at the Beijing Genomics Institute (BGI), using
the Illumina HiSeq2000 platform, which generated 90 bp paired-end reads.

This dataset was previously a part of a larger dataset used by Dr Carla Daniela Robles
Espinoza at the Wellcome Sanger Institute and it led to the discovery of POT1 as a familial
melanoma driver gene[143]. Two of the families from this dataset were also sequenced in
the whole genome dataset. However, both the exome and whole genome sequences of these
families were included in the analysis to confirm that any variant seen within these families
was present in both versions.

2.2.4.2 Secondary exome dataset

The final subset of 77 samples from 28 pedigrees were obtained from collaborators in Barcelona,
Sydney, Pennsylvania, Stockholm, Leiden, Leeds and Brisbane who are part of the GenoMEL
consortium. Similar to the pilot whole genome dataset, samples with MPMs and/or early age
of onset (<40) were again obtained from King’s College, London who are not a part of the
GenoMEL consortium. The distributions of the 77 samples across these locations, number of
samples and number of families are given in Table 2.2. Informed consent was obtained by
each institution in the same way as mentioned in Section 2.2.3.1. The criteria for the selection
of these pedigrees was again less stringent compared to the whole genome samples. These
criteria are shown in Table 2.6. Genomic DNA (500 ng) was sheared to a median insert size
of 500 bp and subjected to standard Illumina paired-end DNA library construction. These
samples were then sequenced at the Wellcome Sanger Institute using the Illumina HiSeq 2000
platform with read lengths of 75 bp.
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Families Criteria
All families Presence of multiple primary melanomas and an early

age of onset (<40 years) with 2 or more DNAs available
to sequence per family.

European and
American families

4 or more cases with 2 or more DNAs available to
sequence per family.

Australian
families

5 or more cases with 2 or more DNAs available to
sequence per family.

Table 2.6: Criteria for selection of exome samples in the secondary exome dataset.

2.3 Alignment of DNA sequence data and variant calling

Samples from the different datasets were sequenced at different times. They were however
eventually aligned and processed into a single, larger dataset. The sequences were aligned to
the latest version of the reference build of the human genome which was the GRCh38 build
of the human genome. A Burrows-Wheeler aligner (BWA-MEM)[162] was used by the core
sequencing facility to align the sequences. This was followed by the estimation of sequenc-
ing depth in every sample across all positions. To ensure good coverage across all samples,
a coverage threshold of 15X was established. A single sample which was whole genome se-
quenced and belonged to the secondary Leiden whole genome dataset was removed from the
dataset due to low mean sequencing depth, i.e., less than 15 reads. Variant calling was then
performed using GATK Haplotype Caller[163] which employs a ‘joint calling’ approach. An
intermediate file called a Genomic VCF (gVCF) file is create for each sample which contains
the genotype information for that sample across all positions. The caller then jointly calls
genotypes across all samples from each gvcf file to create a single multisample file. This en-
sures that the genotype calls are available for all samples at all positions, regardless of whether
a specific sample contains a variant at a given loci or not. This output is termed as a Variant
Calling Format file (VCF). The multisample VCF file containing all the variants across all
the samples was then annotated with the predicted consequences for each variant using a tool
called Variant Effect Predictor[164] which was established by Ensembl. This resulted in the
first complete set of variants which comprised of all coding and non-coding mutations, prior
to further processing or filtering. The final step in the initial variant calling process was to
then filter for variants that were predicted to disrupt or alter the protein produced by different
genes. The different consequences that were retained for this step and their predicted impact
on the gene are shown in Table 2.7. The second complete set of variants was obtained as the
output of this step.
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Variant Effect
Predictor

Consequence

Description

Protein altering
variant

A variant that affects the protein through a change in the codons.

Missense variant A non-synonymous variant that changes an amino acid without
affecting protein length.

Inframe deletion An inframe non-synonymous variant which removes bases from
the coding sequence.

Inframe insertion An inframe non-synonymous variant which incorporates bases
into the coding sequence.

Transcript
amplification

Amplification of a region containing a transcript.

Start lost A non-synonymous variant that alters a base in the canonical
start codon.

Stop lost A non-synonymous variant that alters a base in a stop codon
resulting in longer transcripts.

Frameshift variant A non-synonymous variant that disrupts the reading frame of the
protein through the addition or removal of multiple adjacent
bases.

Stop gained A non-synonymous variant which disrupts a codon in such a way
as to introduce a stop codon which results in shorter transcripts.

Splice donor
variant

A splice variant that changes the 2 base region at the 5’ end of an
intron

Splice acceptor
variant

A splice variant that changes the 2 base region at the 3’ end of an
intron

Transcript
ablation

Deletion of a region containing a transcript.

Table 2.7: The list of predicted protein altering consequences and their impact on the protein,
as obtained from the Ensembl variation website[165].
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Additional filtering, annotation and processing of variants were then performed on these
two sets of variants which are explored in detail in the following chapters. A summary of the
workflow up to this point is given in Figure 2.2.

2.4 Exploration of population stratification bias within the
dataset

Inherent differences in the ancestry of different population subgroups, especially with respect
to the frequency of specific variants and alleles may lead to a bias in population based stud-
ies. As this project eventually involved association studies and the comparison of familial
melanoma cases to unaffected controls, there was a possibility that an association could be
identified with a particular loci due to such a bias within the population and not due to the in-
fluence of the loci on the disease status. Such a scenario is defined as population stratification.
In order to determine the possible presence of population stratification within the dataset, it
was deemed necessary to establish and confirm the reported population subgroups of the cases
as accurate.

Genotype and variant information for different population subgroups were obtained from
the 1000 genomes project and used as the control dataset for this assessment[166]. While there
were several different nationalities reported within the 1000 genomes project, the subgroups
were largely classified into: European, Indian, South American, Chinese and African. These
variants were filtered to have an allele frequency between 0.2 and 0.8 as variants with extreme
frequencies could also potentially bias the accurate estimation of the population subgroup for
each sample. These variants were also filtered to ensure that they were in linkage disequilib-
rium with each other. Once this subgroup of variants, determined to be variable across the
population, were identified from the controls, the same variants were also extracted from the
complete dataset of familial melanoma cases.

A principal component analysis (PCA) was performed for all samples on this subset of
variants using PLINK v1.9. To reliably differentiate between the population subgroups, the
first three principal components/eigen vectors were needed (named PC1, PC2 and PC3 re-
spectively). Figure 2.3 highlights the distribution of population clusters as a snapshot of a 3D
plot.

The three principal components are represented with the three dimensions of the figure.
Each nationality was assigned its own colour for the plot with larger population subgroups
sharing similar shades. The familial melanoma cases were all marked in black and are denoted
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DNA	Extraction

Sequencing

Alignment

Variant	calling

Consequence	prediction

Consequence	filtering

Variant	set	1	(All	
coding	and	non-
coding	variants)

Variant	set	2	(All	
protein-affecting	
coding	region	
variants)

NOTE:- gnomAD 
used for control 
data-set

Figure 2.2: Workflow describing the steps involved in the generation of candidate variant sets
in the search for novel driver genes and variants involved in melanoma susceptibility.
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Figure 2.3: Principal component analysis to verify ethnicity.
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using a small circle. It is evident that all the individuals from the Indian subcontinent, coloured
red to orange in the figure, cluster together. Similarly, there are two distinct green clusters of
the Chinese and the African subpopulations as well. The larger cluster at the top is a mixture
of the North American, the central American and the European population subgroups. The
central and south American populations are however distinctly clustered on the x dimension
of the 3D plot which leaves all the Europeans clustered together. The familial melanoma cases
are also clustered together with the European population. Therefore, the different population
subgroup clusters are observed as being independent of each other when all three principal
components are considered together.

Importantly, the cases (marked in black) cluster along with the European subgroup in all
three subplots. The familial melanoma cases were all reported to be of European origin when
they were sampled and sequenced; this is confirmed through the above analysis. This also
implies that there is no population stratification within the dataset and that association analysis
can be performed between the familial melanoma cases and a set of unaffected, European
origin controls.

2.5 Estimation of polygenic risk scores

2.5.1 Introduction

The origin of a disease with genetic roots may be traced either to the presence of a few single,
highly penetrant rare alleles or due to a high burden of common, low risk alleles. The esti-
mation of polygenic risk scores is a measure used to determine if the presence of the disease
in a particular individual is more likely due to the former scenario or the latter. Polygenic
risk scores are metrics which are a numerical measure of the impact of a combination of ge-
netic variants and their associated weights on a given trait. GWAS studies have helped in
determining significant variants with a high association to the phenotype of interest. However,
polygenic risk scores are considered to be a better approach when the trait is predicted to be
affected or determined by a combination of a large number of variants with lesser impact on
the trait than a singular high impact variant. These variants may or may not be statistically
significant, and as such may not be identified in a standard GWA study. Such traits which are
determined by not a single variant but by a combination of multiple variants in different genes
are called as polygenic traits.

Each variant that affects a polygenic trait is assigned a weighted score, which is propor-
tional to the association of the variant with the trait. Higher weighted scores correspond to
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a larger association with the trait of interest with negative scores corresponding to negative
association. Each allele at these variant positions are also given a coefficient corresponding
to the impact of the allele on the association at the variant position. If an allele has a higher
coefficient, it implies that the presence of the allele increases the impact of the variant on
the trait. The risk score of each variant is determined as the product of the coefficient corre-
sponding to the alleles and the weighted score of each variant. This would vary based on the
genotypes present in any given sample at the loci. The polygenic risk score of a sample is
finally estimated the sum of the risk scores of all the variants affecting the trait[167].

Common examples of polygenic traits include skin colour, eye colour and hair colour. In
addition to these normal phenotypes, several disorders are also thought to follow the poly-
genic model including type 2 diabetes and coronary heart disease[168, 169]. In recent years,
polygenic risk scores have also been used in determining patient risk for schizophrenia, bipolar
disorders and for certain types of cancer including breast cancer and prostate cancer[170–172].

In order to reliably determine the burden of common, low risk alleles within the famil-
ial melanoma cases, a secondary set of sporadic cases and unaffected controls was required.
The aim of this approach was to compare the risk scores of the familial melanoma cases and
compare these to the risk scores of sporadic cases and unaffected controls to observe if the
familial melanoma cases have a higher risk score in general. If they did, it would imply that
the presence of melanoma within these pedigrees could possibly be explained by the higher
burden of common mutations. If there was no discernible distinction between the different
groups, this would implicitly point to the presence of rare, highly penetrant variants within the
familial melanoma pedigrees.

2.5.2 Methods

A previously conducted genome wide association study (GWAS) on melanoma and a follow-
up meta-analysis study[51] established 20 loci, shown in Table 2.8 as possible SNPs which
increase predisposition to melanoma. This GWAS analysis included a estimation of risk be-
stowed by each of the listed variants.

The individual risk scores of these variants, as estimated by Law et al[51] is used in the
estimated of the polygenic risk score of each sample. Each polygenic risk score is determined
by combining the risk scores of all 20 SNPs based on the genotypes of the alleles present at
those positions within the sample. The polygenic risk scores for all 123 familial melanoma
cases within the pilot dataset were estimated using this approach. These scores were calcu-
lated using PLINK v1.941 and also verified manually. The secondary dataset required for the
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rs_ID Gene Chromosome Position Reference
allele

Alternate
allele

Beta
value

rs12410869 Intergenic 1 150883677 G T -0.130
rs1858550 Intergenic 1 226420403 C A -0.143
rs6750047 RMDN2 2 38049406 A G 0.088
rs7582362 FLACC1 2 201311571 A G 0.113
rs380286 CLPTM1L 5 1320132 G A 0.152
rs250417 SLC45A2 5 33952273 G C -0.891

rs6914598 CDKAL1 6 21163688 T C 0.108
rs1636744 Intergenic 7 16944656 C T 0.105
rs7852450 MTAP 9 21825076 T C -0.212

rs10739221 Intergenic 9 106298549 T C 0.120
rs2995264 STN1 10 103909085 G A 0.144
rs498136 Intergenic 11 69552350 A C 0.116

rs1393350 TYR 11 89277878 G A 0.198
rs73008229 ATM 11 108316962 G A -0.188
rs4778138 OCA2 15 28090674 A G -0.178

rs12596638 FTO 16 54081917 G A 0.143
rs75570604 FANCA 16 89780269 G C 0.600
rs6088372 RALY 20 33998942 C T 0.267
rs408825 MX2 21 41371569 C T -0.141

rs2092180 PLA2G6 22 38175556 A G -0.116

Table 2.8: Single Nucleotide Polymorphisms chosen for the polygenic risk score analysis.

comparison of these scores were obtained through the help of collaborators in the University
of Leeds, namely Prof. Timothy Bishop and Dr Mark Iles. The genotypes of 1800 sporadic
melanoma cases, 148 familial melanoma cases and 489 controls at these 20 loci were provided
for this purpose. The polygenic risk scores for these samples were also estimated using the
same method as used for the familial melanoma cases in the pilot dataset. The risk scores and
their implications for the dataset are discussed in Section 3.2.

2.6 The determination of novel variants through association
analysis

2.6.1 Selection of a control dataset

The cases chosen to be analysed for this project comprised familial melanoma patients. During
the design of the project, it was decided that there would be no sequencing of unaffected
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family members from the same pedigrees. The rationale behind this is that familial melanoma
is a result of multiple factors (both genetic and environmental) which determines the onset of
disease. An individual with a rare allele with high penetrance would have an increased risk of
developing melanoma but might not actually develop melanoma. For example, CDKN2A is the
single most important familial melanoma locus, with 45% of familial melanoma cases being
attributed to germline mutations in CDKN2A[173]. However, the penetrance of CDKN2A

mutations varies between 0.3 to 0.67, depending on the age of the carriers, indicating that
even the most common familial melanoma gene is not completely penetrant[174]. In such a
situation, sequencing unaffected members of the family as matched controls and filtering the
common variants could result in the potential loss of the high-risk allele that is causative of
the disease within the family.

To compensate for the absence of family-matched controls, a neutral, population matched
control set of exome/whole genome sequence data was required. The Exome Aggregation
Consortium (ExAC)[175] led by the Broad Institute was originally chosen for this purpose.
ExAC was established as a consortium of exome sequencing projects involving unrelated in-
dividuals from several population genetics studies across the world. It contains aggregated
variant level statistics on 60,706 individuals with population frequencies on each variant and
allele provided. The distribution of samples across different population subgroups in ExAC
is shown in Table 2.9. As the cases consisted entirely of patients of non-Finnish European
ethnicity, the same ethnic group was chosen from ExAC to be used as the control data set.
This comprised data from 33,370 individuals.

Population Description Genomes Exomes Total
AFR African/African

American
1,888 3,315 5,203

AMR Latino 2,254 3,535 5,789
EAS East Asian 2,016 2,311 4,327
FIN Finnish 2,084 1,223 3,307
NFE Non-Finnish

European
18,740 14,630 33,370

SAS South Asian 6,387 1,869 8,256
OTH Other (population

not assigned)
275 179 454

Total 33,644 27,062 60,706

Table 2.9: Distribution of samples across different population groups in ExAC.

During the course of the project, a larger data set of controls called the Genome Aggre-
gation Database (gnomAD)[175], also curated by the Broad Institute, became publicly avail-
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able. gnomAD is a global collaboration of collated summary data from several large-scale
sequencing projects. The total number of samples in the gnomAD data set 138,632 individ-
uals compared to 60,706 in ExAC. As the gnomAD data set includes both exome and whole
genome sequencing data, it was identified as the more suitable control and was chosen instead
of ExAC. The distribution of samples across different population subgroups in gnomAD is
given in Table 2.10.

Population Description Genomes Exomes Total

AFR African/African
American

4,368 7,652 12,020

AMR Admixed
American

419 16,791 17,210

ASJ Ashkenazi Jewish 151 4,925 5,076

EAS East Asian 811 8,624 9,435

FIN Finnish 1,747 11,150 12,897

NFE Non-Finnish
European

7,509 55,860 63,369

SAS South Asian 0 15,391 15,391

OTH Other (population
not assigned)

491 2,743 3,234

Total 15,496 123,136 138,632

Table 2.10: Distribution of samples across different population groups in gnomAD.

The non-Finnish European population subgroup was again chosen from gnomAD compris-
ing 7,509 whole genomes. The sequences were all originally aligned to Genome Reference
Consortium Human Build 37 (GRCh37). However, as the cases were sequenced and aligned
to Genome Reference Consortium Human Build 38 (GRCh38), the gnomAD VCF file con-
sisting of the aggregated variant information across all samples was lifted over from GRCh37
to GRCh38 using CrossMap v0.2.5[176]. The parameters used for this procedure are given in
Table 2.11.

The aggregated coverage data for the samples across the genome was also downloaded
from the gnomAD repository. The gnomAD dataset included information on 240,779,968
variants across all chromosomes and samples. Data from gnomAD v2.0.2 were used for this
purpose.

Note: gnomAD does not include any variants on the Y chromosome . As a result, variants
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Parameters Description
python CrossMap.py Execution of python script for CrossMap,

vcf Indicating that the format of the input and the required
format for the output is a VCF file.

hg38ToHg19.over.chain.gz Location of chain files; chain file describe genome-wide
pairwise alignments of positions between assemblies.
In this case, the chain file is a mapping of alignments

between GRCh38 and GRCh37.
input.vcf.gz Location of input vcf file to be lifted over.
hs37d5.fa Reference fasta file for the target output genome build,

in this case, GRCh37.
output_hg19.vcf Name of output VCF file to be generated.

Table 2.11: Parameters used for running CrossMap to lift the aligned gnomAD sequences
from GRCh37 to GRCh38.

from the Y chromosome were excluded from this analysis.

2.6.2 Initial filtering of variants

2.6.2.1 Control variants from gnomAD

The lifted over variants from the gnomAD VCF file were annotated using the Variant Effect
Predictor (VEP) tool from Ensembl. This was performed in order to annotate information
including the affected gene and the consequences of the variant on protein function. These
consequences include intergenic variants, intronic variants, nonsense mutations and loss of
function mutations. Following this, the variants were filtered to retain non-synonymous, non-
sense and loss of function mutations. The parameters used for this performing this function
are given in Table 2.12.

The list of the consequences chosen to be retained for this purpose was the same as the
ones previously mentioned in Table2.7. Genomic locations that were annotated with multiple
alternate alleles (multiallelic variants) were split into multiple entries, each entry carrying
information on one alternate allele. As gnomAD includes variant data on several population
subgroups, as shown in Table 2.10, only the variants present in the non-Finnish European
population subgroup were retained.
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Parameter Definition
-i Input VCF file.
-o Output VCF file.

-filter "Consequence in
missense_variant,inframe_deletion, inframe_insertion,

transcript_amplification,stop_lost,
frameshift_variant,stop_gained,

splice_acceptor_variant,
start_lost,protein_altering_variant,

splice_donor_variant,transcript_ablation"

List of consequences to be
matched. If the annotated
consequence is not present

in this list, the variant is
filtered.

--force_overwrite Overwrites the output VCF
if it already exists to create

a new VCF file.
--only_matched Only writes variants where

the annotated consequence
exactly matches the

consequences provided in
the filter step.

Table 2.12: List of parameters used for filtering variants based on their predicted consequence
on protein function using VEP.

2.6.2.2 Case variants

Variants from the cases were previously annotated and processed, as described in Section 2.3.
These variants were chosen as the initial dataset. Multiallelic variants were split as described
in Section 2.6.2.1. There were a total of 131,840 variants in the cases.

During the generation of a VCF file for the sequences, each sample is annotated with a
Genotype Quality (GQ) for every position. The GQ is a measure of confidence in the genotype
assigned to the sample represented through a Phred-scaled score, which is derived from the
probability of error. For instance, a Phred score of 30 indicates that there is a 1 in 1000 or 0.1%
rate of error. A higher GQ indicates a higher confidence in the genotype of a sample for a given
variant. The median GQ scores were calculated across all cases at every locus. The distribution
of median GQ scores across the variants is shown in Figure 2.4. The first quartile(Q1) of the
GQ distribution was at 90 while the third quartile (Q3) was at 99. Individual variants with
median GQ < 30 were removed from the cases.
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Distribution of median genotype qualities across all variants
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Figure 2.4: Distribution of median genotype qualities across all samples and positions. The
median GQ score is denoted on the x-axis while the number of variants with that GQ score are
given on the y-axis. The threshold for filtering variants based on the GQ scores was set at 30,
this is denoted with the red line. 5,544 variants had median GQ score less than 30 and were
removed from the set of variants, resulting in 126,296 variants in the cases.
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2.6.3 Joint processing of case and control variants

Following the initial processing, a joint set of variants was established by merging the case and
control variant sets together. This set was progressively filtered through several procedures for
quality control which are shown in Figure 2.5 and are described here.

2.6.3.1 Annotation and filtering based on frequency of variants in gnomAD

In order to improve the power of the study in detecting important, rare mutations and to reduce
the background variant burden, variants were filtered based on a population allele frequency.
Prior to this, to focus on low-frequency variants with high penetrance, an sequence artefact
filter was used for the cases: If a variant was contained in more than 8 families after the allele
frequency filter, it was likely that it is a sequencing artifact as opposed to being involved in
the development of the disease . Such variants were therefore removed from the cases. 88,994
variants remained in the cases after this step.

Variants in the cases were annotated with the allele frequencies of the variants from gno-
mAD. If the case variant was present in gnomAD, the frequency of mutation from the gno-
mAD dataset was annotated to the variant. If the case variant was not present in gnomAD, it
was annotated as being absent. 32,987 of the case variants were not present in the gnomAD
dataset while 56,007 variants were present in the gnomAD dataset. The distribution of pop-
ulation allele frequencies for these 56,007 case variants is shown in Figure 2.6. Figure 2.6 A
shows the distribution for all allele frequencies while Figure 2.6 B shows the distribution for
a subset of variants with allele frequencies less than 0.01. A similar distribution is shown for
the control variants from gnomAD in Figure 2.7. A cut-off of one in a thousand (10-3) was
set as the threshold for allele frequency to select for rare mutations. Variants with a gnomAD
allele frequency > .001 were removed from both the cases and the controls. Variants from the
cases which were absent in gnomAD were retained.

Variants from the cases were also filtered based on the number of affected families. The
distribution across all variants of the number of families is shown in Figure 2.8. The first
quartile(Q1) for the family counts was 1 family while the third quartile(Q3) was 16. The
median number of affected families for a variant was 2.

2.6.3.2 Annotation and filtering based on coverage of samples in cases and controls

Despite the removal of samples with low median coverage across the exome/genome in Sec-
tion 2.3, variant loci with low coverage across most cases and controls were still encountered.
Such variants were removed as they would yield unreliable variant calls. Variants from the
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Consequence filtered 
variant set

Quality filter Coverage
(Median coverage>15 
in gnomAD and cases)

Number of families
(Maximum per variant = 8)

Frequency of variant
in gnomAD < .001

Genotype 
quality>30

Variants split into
individual alleles

Alternate allele
reads > 4

Alternate allele
frequency >= 30%

Gene-filtering

Statistical testing

Genes over-mutated in 
cases identified through 

association analysis.

Figure 2.5: Overview of the steps involved in determination of genes with an increase burden
of mutations in cases through an association analysis.
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Figure 2.6: Distribution of allele frequencies for variants in cases A) This shows the distribu-
tion of allele frequencies for the 56,007 variants from the cases which were also mutated in
gnomAD. 74% of the variants from the cases were present in less than 1% of the population in
gnomAD. B) As the vast majority of variants had a low allele frequencies in gnomAD (<.01),
the distribution of allele frequencies between 0 and 0.01 were plotted in this Figure. The dis-
tribution is again skewed as roughly 44% of the 41,295 variants had an allele frequency less
than .001 (less than 1 in a 1000 people carried the variant). This was the chosen cut-off for the
allele frequency.
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Figure 2.7: Distribution of allele frequencies for variants in controls.A) This shows the dis-
tribution of allele frequencies for the 967,162 variants from the gnomAD dataset. 94% of the
variants occur in less than 1% of the population in gnomAD. B) This figure shows the distri-
bution of allele frequencies between 0 and 0.01 for variants from gnomAD. 93% of variants
occur at a very low frequency of less than 1 in a thousand.
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Figure 2.8: Distribution of affected family counts for all variants in cases. More than 50%
of the variants in the cases were present in less than 2 families. An artefact threshold of 8
families was used, represented as the red line in the figure.
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gnomAD dataset were first annotated with the coverages, which were obtained as a down-
loadable file. Individual coverages for the samples in gnomAD were not available; summary
information across all the samples was provided for each variant. The following summary
statistics were available (The number before the x indicates the number of reads covering each
variant position): i) Mean coverage across all samples ii) Median coverage across all samples
iii) Fraction of samples with a coverage ≥ 1x, 5x, 10x, 20x, 30x, 50x and 100x. A simi-
lar representation of coverages was established for the variants in the cases to enable a valid
comparison with the controls. The read depth of case samples at all variant positions were
determined by using the samtools depth command from Samtools v1.9[177]. In this manner,
metrics identical to the gnomAD coverages were established for the cases. The coverages
from the cases and the controls were annotated to the joint set of variants. Variants with a
median coverage of at least 15 in both the cases and the gnomAD dataset were retained for
further analysis, i.e., at least half of our cases had a coverage of at least 15x, and at least half
our our controls had a coverage of at least 15x for the variant locus to our filters. The complete
workflow of this process is shown in Figure 2.9.
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Statistical testing

Coverage filtered variants.

Variants in cases Variants in the gnomAD
dataset

Coverage generation

Summary coverage 
statistics for cases

Summary coverage 
statistics for gnomAD

Figure 2.9: Description of coverage generation, annotation and filtration of variants in cases
and controls.
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2.6.3.3 Annotation and filtering case variants based on alternate allele read depth and
frequency

Having removed poorly covered samples and poorly covered individual variants, the next filter
applied was to maintain variant quality uniformly for every variant locus and sample. This
filter was based on the allelic depths(AD) and the alternate allele read frequency. Specifically,
the allelic depth refers to the number of reads supporting each allele at a variant position. The
total number of reads is therefore the sum of the allelic depths for every allele at the position.
The allelic frequency for every allele is estimated as the allelic depth for the allele/total number
of reads at the variant position.

For a heterozygous variant, the allelic read frequency of both the reference and the alternate
allele would be expected to be between 0.3-0.6. However, there were some cases where the
total number of reads covering a position was greater than the applied threshold (15 reads)
but the alternate allele frequency was much lower than 0.3. Such variants are of low quality
and would increase the chance of miscalled variant. To account for this, the total number of
reads, the allelic depths and the alternate allele read frequencies allele reads were determined
at every variant position in the cases. Variants were retained if:

1. The total depth at the locus was at least 15x

2. The allelic depth for the alternate allele was at least 4x.

3. The alternate allele frequency (reads supporting alternate allele / total reads) was at least
0.3.

2.6.3.4 Annotation of cancer gene status

Previously identified familial melanoma genes (including CDKN2A, BAP1 and POT1) were
also mutated in other cancers, either through somatic or germline mutations. It is therefore
expected that any mutation that is involved in the the emergence of melanoma would exist in a
gene that is similarly affected in other cancers. A list of genes known to be affected in cancers,
the Cancer Gene Census (CGC)[178],was utilized to affix significance to such variants.

The CGC is a regularly updated set of genes with additional data on the types of cancers
affected, the type of mutations carried in these cancers. As of the version dated October 22nd
2018, the CGC comprised 719 genes in total. These genes were split into two tiers depending
on their impact on cancer development and the evidence available to support the relevance of
these genes:
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1. Tier 1 - Genes in Tier 1 are considered to be the gold standard for cancer genes and they
have compelling, documented evidence to support the relevance of the gene to cancers,
including activity that drives cancer and activity that promotes oncogenic transforma-
tion. There are 574 genes annotated as Tier 1 genes. Examples include AMER1, ATR,
BAP1, CDKN2A and POT1.

2. Tier 2 - Genes in Tier 2 have limited evidence to strengthen their claim as an important
cancer gene but are still considered to play an salient role in cancer development. There
are multiple reasons why these genes are not annotated in Tier 1: Lack of sufficient
evidence, extremely rare cases, low burden of mutations or genes involved in cancer
only through fusion. There are 145 genes annotated to be Tier 2 genes. Examples
include A1CF, CDKN1A, FAT3, SKI and ZEB1.

The variants in cases and controls were previously annotated with the affected gene through
VEP. These variants were annotated with CGC tier, if present. The tier list of the gene within
the CGC was also noted. This was later used to filter the list of genes to focus on cancer genes
for a component of the association analysis.

2.6.3.5 Calculation of total number of affected samples in genes

The power afforded by the low number of cases was too small to allow variant by variant
association testing. Therefore, variant counts were collapsed for every gene to get gene counts
in cases and controls instead. The gnomAD dataset comprised of individual unrelated samples,
by contrast the cases consisted of related family members. This meant that the likelihood of
two related family members carrying a mutation would be much higher than two unrelated
control samples carrying the same mutation. In order to account for this, it was decided that
the total number of affected families would be used to count cases, instead of the total number
of affected individuals. This was chosen to prevent an overestimation of case counts due to
the relatedness of samples. For each variant, every affected family in the cases was counted
exactly once. The total number of affected families were estimated for every gene through this
process.

For the variants in the gnomAD data set, the provided Genotype Count (GC), defined as the
count of individuals for each genotype, was used. The GC was provided for every population
subgroup including non-Finnish Europeans (GC NFE) which was used to determine the total
number of controls with a mutation. GC NFE counts were summed across all the variants
present in a gene to determine the total number of control samples carrying a variant for every
gene. This is an approximation which assumes that the same individual does not carry two
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different variants within the same gene. This is a reasonable assumption since the variants
have been filtered for a frequency of 1/1000 which would make it extremely unlikely for the
same person to carry two such variants within the same gene.

2.6.4 Statistical testing to determine ranked list of genes

The processed variants from the cases and controls were set up with the following data struc-
ture which was used for further analysis:

1. The name of affected gene, its associated HUGO Gene Nomenclature Committee (HGNC)
symbol and its corresponding Ensembl stable id.

2. Total number of families with and without a member carrying a filtered variant in the
gene (as described in Sections 2.6.2 and 2.6.3).

3. Total number of non-Finnish European samples in gnomAD with and without a filtered
variant in the gene (as described in Sections 2.6.2 and 2.6.3).

4. Presence of the gene within the CGC and tier list status, if present.

A 2x2 contingency table was created for every gene using this data. An example of a contin-
gency table is given in Table 2.13.

Contingency table Cases Controls
With variants 4 51

Without variants 131 7458

Table 2.13: A 2x2 contingency table as identified for POT1.

These tables were used as the input for a Fisher’s Exact test. A Fisher’s Exact test is a
statistical test that determines if there is an association between two categorical variables. The
null hypothesis is that the two variables are independent, which in this case would be the
variant status (number of people with a variant in the gene vs number of people without a
variant in the gene) compared to the disease status (cases vs controls). Deviations from the
null hypothesis would indicate that the presence of variants in the gene are associated with the
disease status. A p-value is produced as the output of the Fisher’s Exact test. As we expect
to find an increase in the proportion of members with variants in the cases compared to the
controls, a one-sided Fisher’s Exact test is more appropriate. Along with the Fisher’s Exact
test, an odds ratio(OR) is also be estimated. An OR is a measure of quantifying the level of
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association between two properties, i.e., the ratio of the probability of occurrence of the first
property in the presence of the second property compared to the probability of occurrence of
the first property in the absence of the second property. Assuming that the disease status and
the variant burden are our two properties of interest, the OR could be one of three outcomes:

1. OR<1 : The variant burden in the gene is associated with a lower probability of disease
occurrence.

2. OR=1 : The variant burden in the gene is independent of the disease occurrence.

3. OR>1 : The variant burden in the gene is associated with a higher probability of disease
occurrence.

For genes with a higher burden of mutations in the cases compared to controls, the OR would
be >1 which would associate the presence of variants in the gene with a higher probability of
disease occurrence. Thus, a one-sided Fisher’s Exact test would show if a variant in a gene
was associated with the disease, and the odds ratio would indicate the extent of association.
The OR and the p-value are computed for the contingency table for all genes.

Thousands of genes present in alternative scaffolds, pseudogenes and non-coding genes
were included in the analysis. These would be very unlikely to play a role in cancer de-
velopment but would still affect the identification of overburdened genes, particularly when
correcting for multiple testing. Two different filters were therefore applied on the list of genes
based on protein product : one was restricted to all the genes within the CGC while the other
was restricted to all known protein-coding genes as defined on Ensembl. A one-sided Fisher’s
exact test (coded in RStudio) was then applied on the contingency tables for all of the genes
on these lists, thus, producing p-values for every gene. These p-values were corrected for false
discovery rate using the Benjamini-Hochberg method. The two lists were then sorted based
on the corrected p-value, yielding two ranked lists of genes. These results are discussed in
Section 3.3.

2.6.5 Limitations of an association analysis

The use of the gnomAD as a control dataset has helped identify protein-coding genes associ-
ated with familial melanoma occurrence. However, this approach has some limitations, which
are listed here.

1. Information on individual sample genotypes are not available for gnomAD variants; ag-
gregated variant level information is instead presented across all samples. While this is
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sufficient for an association analysis, this comes with the caveat that it is not possible to
identify a sample having multiple variants within the same gene. This risk is minimized
due to a conservative variant frequency threshold of 1/1000, it is however still present.

2. The total number of cases with a variant in a gene is measured by the total number of
families with individuals who have at least one variant in the gene. Families with a
higher number of sequenced members have a higher probability of having a mutation.
By contrast, the controls consist of unrelated samples. Additionally, a variant that is
present in all sequenced members of a pedigree with 11 members would normally be
considered to be a much stronger candidate than a variant that is present in a pedigree
with 2 members. However, such variants cannot be distinguished in this scenario.

3. Another drawback to determining the number of cases as the number of families carry-
ing a variant in the gene is the loss of information regarding the segregation of variants
within the pedigree. For example, in a family with 4 members affected (all of whom
have been sequenced), a variant that is present in all four affected members is much
more likely to be involved in melanoma development compared to a variant that is only
present in only one of the members. An addition of linkage analysis is required to
account for this, this is discussed in Section 2.7.

4. While this approach determines an increased burden of mutations in genes, it is re-
stricted to non-synonymous coding region mutations. It does not account for the po-
tential role of non-coding region mutations or structural mutations in the development
of familial melanoma. The investigation of non-coding and structural mutations in
melanoma development and its resulting outcomes are discussed in Sections 2.11,2.12,3.8
and 3.9.
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2.7 Linkage analysis

2.7.1 An introduction to linkage analysis

Association studies, particularly GWAS, are normally aimed at identifying a set of common
risk alleles with low impact on the disease. As a result, they do not explain the cause of a
disease in a large percentage of cases, particularly for the disorders caused by rare, highly
penetrant mutations. This issue can be addressed through linkage analysis, which is primarily
used to detect and identify variants with large effect size or impact on the disease. Linkage,
in the context of genetics, is defined as the propensity for a group of genetic regions present
on the same chromosome to be transmitted together from a parent to an offspring during
meiosis. This is represented with a logarithm of odds (LOD) score. A LOD score is a statistical
estimate of the likelihood of two regions being inherited through linkage as compared to two
regions being inherited through chance; the higher the LOD score, the stronger the linkage.
Linkage analysis refers to the set of methods that use linkage to help determine the segments
of the chromosome which segregate along with the disease phenotype through affected and
unaffected individuals belonging to the same family.

Linkage analysis was originally used in the identification of genomic regions with strong
linkage signals. Unlike GWAS, it did not require a comprehensive set of markers and could de-
termine co-segregation of the trait with the marker on a larger scale. Genetic markers for disor-
ders including cystic fibrosis [179] and Huntington’s disease [180] were originally determined
through linkage analysis. The two most prominent familial melanoma driver genes identi-
fied to date, CDKN2A and CDK4 were also initially identified through linkage analysis[181].
Other major cancer genes that were discovered through linkage analysis include BRCA1 and
BRCA2[182, 183], which are collectively responsible for 90% of hereditary breast cancers
globally[184].

However, linkage analysis did originally have several drawbacks, particularly in the con-
text of identifying a genomic region with strong linkages to a disease where no causal gene
could be identified. It could not help in the determination of the exact variant responsible for
the presence of linkage signals within a given region. If the study focussed on exonic regions,
linkage peaks in regulatory regions present in the non-coding part of the genome could not be
identified. Innovations and advances in next-generation sequencing, particularly with cheap
sequencing costs of whole genome sequencing have helped resolve these issues and enabled a
joint association-linkage approach.
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2.7.2 The joint association and linkage approach - pVAAST

Variant Annotation, Analysis and Search Tool (VAAST) is a probabilistic tool developed in
2011 which was aimed at identifying disease causing genes from genome sequences[185].
Originally developed for personal genomes, an updated version of the software called pVAAST
(pedigree VAAST) was released in 2014 for the analysis of genetic data from high throughput
sequencing of related individuals [186]. pVAAST takes the germline sequences of affected
individuals, affected/unaffected relatives of these individuals and unaffected controls as its
input. The variants in the cases are compared to variants in the controls using a composite
likelihood ratio test (CLRT) [185]. In a CLRT, variants in genes are grouped together along
with the information on the frequency of the variants in the cases and controls. A composite
likelihood score is then estimated for these variants based on the observed frequencies of the
variant in the cases and controls.

Alongside the association, pVAAST also computes linkage scores in the form of LOD
scores for pedigrees with more than one affected individual. The estimated LOD scores are
unlike typical LOD scores as they compute linkage of entire genes with an associated trait
as opposed to individual variants. The LOD scores of each gene are cumulative across all
variants present in the given gene across all pedigrees. This helps provide a single linkage
peak for each gene across all cases compared to individual linkages for each family for each
gene. These LOD scores are combined with the variant frequency information, annotated
consequences for each variant using a built-in dataset and the association analysis to provide
a prioritized list of genes and variants where the genes are ranked based on their association
with the phenotype, shown in Figure 2.10.

In order to run pVAAST on the data, the following input files were required:

i) Variant files in VCF format for cases.

ii) Variant files in VCF format for the controls/background.

iii) A list of genes on which scoring is to be performed in a general feature format (.gff3).

iv) The human reference genome in the Fasta format.

v) The framework file for the different parameters used in running pVAASt in a control format
(.ctl).

vi) A pedigree file containing the following information for each affected individual - the
family id, the sample id for the individual in each family, the id of father of the indi-
vidual, the id of the mother of the individual, gender (represented as 1 for male and 2
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Figure 2.10: A graphical representation of the scoring pVAAST. Reproduced with permission
from [186].
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for female) and affected status for melanoma (represented as 1 for unaffected and 2 for
affected). This file is to be in the pedigree format (.ped).

The following output files are produced by pVAAST during the process of analysing the data:

i) Variant information for each individual in the cases in the Genome Variation Format (.gvf)
defined by the Sequence Ontology Group.

ii) Annotated variant files generated for each individual (.vat). This is performed using the
inbuilt variant annotator tool and includes information on variant id, the position, the
affected gene and the effect of the variant. The format is similar to the .gvf file and the
output of this step is usually a .vat.gvf file.

iii) A condenser file containing condensed representation of the variants across (.cdr) with
one file for each pedigree, one file for all singleton families combined and one for the
background samples.

iv) A Vaast file containing the output of the pVAAST runs including CLRT and LOD scores
(.vaast).

In order to maximise computational efficiency, each pVAAST run was performed using variant
information from all pedigrees for a single gene. This was repeated for all genes in the cancer
gene census list as it was not computationally feasible to run this across the entire genome.
This allowed for parallelization of the pVAAST runs as the CLRT scores and the LOD scores
for each gene could be directly compared with each other. The generation of the input files,
the intermediate files and the output files along with the results are described in Section 2.7.3.
The parameters used for each step are given in Supplementary Table 3.

2.7.3 Methods

The filtered list of variants used in the association analysis from Section 2.6.3.3 were used
for the joint association and linkage analysis through pVAAST. A bed file containing a list of
unique positions from these variants was generated. As pVAAST requires a VCF file as an
input; a VCF file with the variants at the filtered positions was generated for the cases. All
the files used by pVAAST for annotation and filtration of variants were built on and aligned to
GRCh37 reference build. As a result, the VCF file for the variants from the cases was lifted
over from GRCh38 to GRCh37 using CrossMap[176]. The new VCF file with the variant
positions corresponding to the GRCh37 reference build was sorted and indexed using the
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Tabix software. The next step in the procedure involved the generation of .gvf files from the
multi-sample VCF file. This was necessary as pVAAST used .gvf files as the primary input
for all downstream steps, primarily for variant annotation and condenser file generation. GVF
files were generated for every sample in the multi-sample VCF file using the build in vaast
converter tool available as part of the pVAAST package. Each GVF file was then sorted in
place, meaning that no duplicate files were created in the sorting process.

A PED file for containing the pedigree information for all the families with multiple se-
quenced members was manually created as a text file. pVAAST has certain inbuilt require-
ments for the structure of the pedigree : there could be no consanguineous marriages, pedi-
grees could only have the extended family on one side (either the father or the mother but
not both) and only two-generation nuclear families could be analysed in the recessive model.
No pedigrees or samples were removed in this process but unaffected extended members of
some pedigrees had to be pruned to account for these conditions. Pedigrees with a single
sequenced member, or singleton families, were grouped together as unrelated affected indi-
viduals as linkage analysis would not have been possible for such individuals. The cases were
therefore separated into two groups in this manner.

The sorted GVF files of each individual were then annotated with their impact on the
genes that they were present in using another pVAAST program called Variant Annotation
Tool. This process required .gvf files, the human reference genome and the list of genes and
their positions as the input files. The .gvf files were generated in the previous step of the
process while the reference genome file (FASTA format) and the list of genes (.gff3 format)
were provided by pVAAST. This produced .vat.gvf files, described in Section 2.7.2, for every
affected individual.

In order to run pVAAST across each pedigree, we need to group variants from samples
belonging to the same pedigrees together. This is performed through a process called variant
selection utilizing the Variant Selection Tool (VST) which is a part of the pVAAST package.
It performs set operations on the .vat.gvf files such as intersection, union, complement and
difference of variants within a given set of gvfs. The .vat.gvf files for all sequenced members
from each pedigree are used as the input for VST. The union of variants across all the samples
in the pedigree and the output produced is a condenser file or a .cdr file, described in Sec-
tion 2.7.2. As the singleton families are considered to be unrelated affected individuals, all
singleton families were grouped together and a joint .cdr file was produced for them.

pVAAST provided a set of background genomes as part of its package based on the 1000
genomes dataset comprising of 1,303 sample. This was used as the background population
for the first set of pVAAST runs. However, to validate these results, a secondary background
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dataset with more samples was required. As pVAAST required genotype information for
individual samples, data from ExAC or gnomAD could not be used as the background. A
set of 4,070 individuals were exome sequenced as part of the INTERVAL study of which
the Wellcome Sanger Institute was a collaborative member[187]. These individuals were not
enriched for any familial cancers or any other genetic disorders. Due to the presence of high
quality sequence data and individual level genotypes, these samples were chosen as the second
background dataset. A VCF file with variants from these samples were obtained from our
collaborators within the Sanger Institute. These variants were filtered for artefacts and variant
frequency similar to the cases using gnomAD. They were then processed similar to the cases
to generate a CDR file.

The penultimate step for running pVAAST involved the generation of a parameter file or
a .ctl file. This file contains the location of all the .ped files and .cdr files for each pedigree
to be considered. The location of the .cdr for the additional cases or the unrelated affected
individuals was also provided in this file. The inheritance model for the phenotype of familial
melanoma was defined as a dominant model. Additional parameters that were provided within
this file include the genotyping error rate, filtering of gene scores based on CLRT and LOD
scores, the mode of scoring the gene each gene based on CLRT and LOD scores and the de

novo mutation rate. This file remained unchanged for every pVAAST run, thus allowing the
scores from each run to be compared.

Once the .ctl file had been produced, pVAAST was run across all the pedigrees. The
input for each run included the .ctl file for the cases, the background .cdr file for comparing
variant frequencies, the region of the genome within which pVAAST calculated the scores
and the feature file containing information on all genes present in the genome. Each run of
pVAAST resulted in a .vaast output file containing the CLRT and LOD scores for all variants
and genes within the specified region. In order to parallelize the process, each pVAAST run
was restricted to a single gene. pVAAST was run for all the genes in the Cancer Gene Census
as it was not computationally feasible to run it across all the protein-coding genes in the
genome. This was done using both the original 1000 genomes project background file and the
INTERVAL exomes background file. The results from these runs are given in Section 3.4.

2.7.4 Limitations

A joint association-linkage approach has helped determine novel genes and variants involved
in familial melanoma onset which would not have been possible to discern through a straight-
forward association analysis. However, such an approach still has its limitations:
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i) A single run of pVAAST for 135 families in the region of a single gene requires 95-105
hours of computational time to process. As a result, genome wide runs of pVAAST are
currently not feasible if there are multiple pedigrees to be analysed.

ii) Extended pedigrees cannot be analysed using this approach as it currently exists. Large
pedigrees have to be pruned significantly to be analysed. Additionally, families with
multiple affected individuals but low number of sequenced individuals would yield low
LOD scores which would impact the scoring of genes.

iii) The annotation provided by the Variant Annotation Tool for the consequences of the vari-
ant is not as accurate as the Variant Effect Predictor. This is because VEP is updated
more regularly. There is also currently no suitable method for comparing the results of
VAT with VEP directly.

iv) Whilst the INTERVAL exomes provide a matching background and were suitable for this
approach, a larger dataset with additional samples would provide a much more stringent
comparison of variants and provide more accurate results. Additionally, the method has
estimated high scores for large genes with multiple functional domains but little to no
significance in cancer development such as the MUC and FAT family of genes. This
indicates that the background dataset is not powerful enough to discern and filter out
variants in such genes even after stringent quality filters for the variants.

2.8 The search for variants in known driver genes

Previous studies have helped determine several driver genes involved in the development of
familial melanoma, as described in Chapter 1. These genes include BAP1, BRCA2, CDK4,
CDKN2A, MITF, POT1 and TERT. The existence of any variants in these genes would explain
the presence of familial melanoma in the pedigrees carrying such variants and thereby make it
unlikely that these pedigrees also carried other novel, high-penetrant causative variants. Vari-
ants in these driver genes were therefore analysed concurrently with the association analysis
described in Chapter 3, to determine if they were causative of disease onset in any of the fam-
ilies. Such variants were then annotated with clinical relevance to disease onset, particularly
with respect to their connection with hereditary cancer. This information was obtained from
ClinVar[188]. The results from this investigation is presented in Section 3.5. Analysis of po-
tential pathogenic variants in all other genes as defined on ClinVar is discussed later in Section
2.10.
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2.9 Variants with high segregation within the cases

Variants which are present in all sequenced members of our pedigree are more likely to be
causative of the disease for the pedigree. Due to low power, such variants/genes might not be
found carrying a higher variant burden in an association study but might still be responsible
for the emergence of melanoma within the pedigree. To discern the presence of such variants,
variants from Section 2.6.3 were then filtered based on the proportion of samples carrying
the variant in the families with the variant. This was represented through a value called the
segregation proportion which was defined as: Segregation proportion (SP) = Total number of
individuals carrying the variant/Total number of sequenced individuals in pedigrees where the
variant is present

A variant is defined as completely segregating within a family if its SP =1, i.e., every
sequenced member in the family carries the variant. While complete segregation is ideal for
the determination of novel variants, phenocopies are also known to occur in the context of
cancers including melanoma [189]. In order to account for phenocopies, variants with high
segregation were determined as follows:

i) Variants were removed if there were no affected pedigrees with multiple se-
quenced members.

ii) Variants were retained if SP ≥ 0.85 , i.e., at least 85% of the samples sequenced
in every pedigree containing the variant carried the variant.

iii) Variants were also retained if they were present in a family such that the number
of members carrying the variant was at worst one lesser than the total number
of sequenced members in the pedigrees. This was to account for cases where
the SP would be less than 0.85 but the segregation is still high enough within
a single pedigree to warrant further investigation. An example of such a case
is the CDKN2A missense mutation described in Section 2.8: Three out of four
sequenced members carry the mutation; the SP for this variant would therefore be
0.75. However, the variant is still considered interesting as the member without
the variant is believed to be a phenocopy.

2.10 Pathogenic variants in ClinVar

A rare-variant association analysis would help in the identification of genes with an increased
burden of rare variants in familial melanoma patients. However, there are still a few cases
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Clinical significance Interpretation
Benign/Likely benign Variants that are not considered to affect disease onset and

progression.
Pathogenic/Likely

pathogenic
Variants that are considered to affect disease onset and

progression.
Uncertain

significance
Variants whose impact on the disease are unknown.

Drug response Variants that disrupt the efficacy of a drug without affecting the
disease.

Association Variants identified in genome-wide association studies.
Risk factor Variants which contribute to the pathogenicity of a disease

without being causative.
Protective Variants that reduce the pathogenicity of a disease.

Affects Variants that are not related to disease but are linked to specific
disruptive phenotypes.

Conflicting data from
Submitters

Variants submitted by a single consortium but with conflicting
interpretations of the significance.

Other Variants that do not fit under any of the above categories such
as variants with functional significance but no clinical

significance, literature reports with no supporting evidence etc.
belong here.

Table 2.14: Classification of clinical significance of variants in ClinVar. The interpretations
marked in bold are obtained from the guidelines recommended by the American College of
Medical Genetics and Genomics and the Association for Molecular Pathology[190]. Adapted
from the online documentation of ClinVar.

where the the development of melanoma within the family is caused due to a single, highly
pathogenic variant with a prior role to cancer development. Such mutations might not be
identified through a rare variant association analysis and thus, the reason for melanoma de-
velopment in such pedigrees may be undetected. If there were known phenotypes for the
variants observed in our cases, then we may be able to better link the variant with the dis-
ease. Data from ClinVar, a repository of variant phenotype relationships[188], was utilized
for this purpose. In addition to classifying the clinical significance of variants as being benign
or pathogenic, ClinVar also contains meta information on the variant (including information
on the protein product and transcript) and the supporting evidence for the classification of the
variant. The classification of clinical significance for a variant is shown in Table 2.14 while the
different review statuses provided by ClinVar for the variant based on the supporting evidence
provided is shown in Table 2.15

Variants from ClinVar were downloaded as a VCF file (version dated September 30th,
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Description Review status
Practice guideline practice guideline

Reviewed by an expert panel reviewed by
expert panel

Two or more submitters with assertion criteria and evidence
provided the same interpretation.

criteria provided,
multiple

submitters, no
conflicts

Multiple submitters provided assertion criteria and evidence (or a
public contact) but there are conflicting interpretations. The
independent values are enumerated for clinical significance.

criteria provided,
conflicting

interpretations
One submitter provided an interpretation with assertion

criteria and evidence.
criteria provided,
single submitter

The allele was not interpreted directly in any submission; it was
submitted to ClinVar only as a component of a haplotype or

a genotype.

no assertion for
the individual

variant
The allele was included in a submission with an interpretation

but without assertion criteria and evidence.
no assertion

criteria provided
The allele was included in a submission that did not provide an

interpretation.
no assertion

provided

Table 2.15: Review status classification of supporting evidence for variants in ClinVar in
descending order of quality. Adapted from the online documentation of ClinVar.

2018). Variants in our cases at locations common with the ClinVar VCF were identified.
Sample and family information were annotated to our case variants; the information on the
variants from the cases was then merged with the information from ClinVar into a single file,
one line per variant. Variants with more than 8 affected families were removed as artefacts,
as described in Section 2.6.3. To restrict the analysis to interesting variants, the reference and
alternate alleles from ClinVar were compared to the reference and alternate alleles from the
cases. Only variants with matching alleles were retained. Finally, the variants were restricted
to having one of the following clinical phenotypes from Table 2.14: pathogenic/likely to be
pathogenic, risk factor or protective. These were chosen as they were most likely to be dis-
ruptive to the protein product and to lead to disease onset. The results from this analysis are
discussed in Section 3.7.
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2.11 Non-coding variants

2.11.1 Background

2.11.1.1 Introduction

Previous analyses of cancer genomes have been restricted to the coding region due to an inter-
est in the determination of SNPs that disrupt protein function and the restrictive cost of whole
genome sequencing[191]. Large scale exome sequencing studies have helped identify several
key mechanisms and genes involved in the development of familial melanoma[143][145]. The
advent of next-generation sequencing technologies has drastically reduced sequencing costs,
from around $14 million in 2006 to $1,500 in 2016, which has enabled cheap sequencing
of whole genomes[192]. This has provided new avenues for the investigation of the impor-
tance of sequence variation data in disease onset. A facet of analysis that remains unexplored
in this context are variations in the non-coding region of the genome. It is estimated that
1.5% of the human genome encodes a gene, which leaves ~98% of the genome as non-coding
DNA[193]. While the role of these regions in genetic regulation was unknown for a long time,
it is becoming increasingly evident that the non-coding genome encompasses key regulatory
elements which play an important role in the transcription and translation of proteins.

Non-coding elements can broadly be classified into cis-regulatory elements and trans-
regulatory elements. Cis-regulatory elements (CRE) are generally found in the vicinity of the
gene that they modulate and control gene regulation through intramolecular interactions, i.e,
the components are active in the same gene[194]. Such elements include promoters, silencers
and nearby regulatory elements. Modification of sites in cis-regulatory elements therefore di-
rectly impact the activation of a gene. CREs can also be distal, i.e., hundreds of kilobases away
from the gene of interest. Enhancers and insulators are examples of distal cis-regulatory ele-
ments which activate and repress transcription of the gene respectively[195]. Such elements
interact with the promoter/gene in the three-dimensional structure of the genome through
chromatin looping regulated by proteins including CTCF and cohesion, as shown in Figure
2.11[196]. Trans-regulatory elements do not directly interact with the gene or the promoter,
rely on intermolecular interactions with cis-regulatory elements, and usually encode for tran-
scription factors[194].

2.11.1.2 Transcription factors and sequence logos

Transcription factors (TF) are a family of proteins that bind to the DNA, usually the promoter
of a gene, in a sequence specific manner and either activate or repress the transcription of a
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Figure 2.11: Depiction of chromatin looping to show enhancer-promotion interaction mod-
erated through mediators, CTCFs and cohesion. Figure A shows the linear arrangement of
proteins and enhancers on the chromatin while Figure B shows the interaction of the different
enhancers with the RNA polymerase at the promoter through a mediator protein by chromatin
looping. Figure reproduced with permission from reference [196].
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gene[197]. The region of the DNA that each transcription factor binds to is defined as a tran-
scription factor binding site (TFBS). A single transcription factor can regulate the transcription
of several genes and binds to multiple locations across the genome. Non-coding variants can
disrupt normal regulation of transcription by either creating or distorting the interaction be-
tween transcription factors and the DNA, usually in the promoter. The conserved sequence
that represents the bases across all transcription factor binding sites for a given transcription
factor are known as transcription factor binding motifs (TFBM). These motifs are visually
represented through sequence logos[198]. An example of a sequence logo is shown in Figure
2.12.

Figure 2.12: An example of a sequence logo for a transcription factor binding motif. Obtained
from the JASPAR[199] database.

The x-axis of the sequence logo represents the different bases across the TFBM while the
y-axis represents the combined frequency of all nucleotides through bits. A bit measures the
total amount of information present at every position of the sequence and is associated with
the answer to a binary question[198]. In the example shown in Figure 2.12, the base at the
first position of the motif is always a cytosine. This means that two binary questions need
to be answered: Is it a purine? If not, is it a cytosine or a thymine? The answers to these
questions are represented as bits of information. If there are multiple possible bases at a given
position such as position 7 in Figure 2.12, the amount of bits available at the position changes
accordingly. The height of every nucleotide at each position constitutes the relative frequency
of that nucleotide at that position.
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As shown in the figure, not all the positions across a transcription factor binding site are
equally conserved, some positions are more conserved than others. If a base is highly con-
served across all transcription factor binding sites for a transcription factor, it suggests that
the base is essential for the transcription factor to interact with and bind to the DNA. Variants
in positions that are highly conserved, such as position 1 in Figure 2.12, would impair the
function of a transcription factor more than a variant in a position that is less conserved such
as position 7.

2.11.1.3 The role of non-coding variants that modify the function of transcription fac-
tors in cancer

Variants in transcription factor binding sites that play a role in carcinogenesis have previ-
ously been observed both in the context of familial melanoma and in other cancers. Recurrent
variants have been observed in the promoter of Telomerase Reverse Transcriptase (TERT)

originally in sporadic and familial melanoma[131] and eventually in other cancers[140]. A
germline variant observed in familial melanoma was responsible for the creation of a binding
motif for the ETS family of transcription factors. This led to the recruitment of TFs includ-
ing T-cell factors (TCFs) to the promoter region of TERT which led to increased expression.
The mutation observed in the familial melanoma pedigree was 57 bases upstream of the tran-
scription start site while the three mutations in the sporadic melanoma cases were observed
at 124, 138 and 146 base pairs upstream of the transcription start site respectively. A follow-
up study determined that such germline TERT promoter mutations were quite uncommon in
familial melanoma[132]. Disruption and ablation of transcription factors have also been ob-
served in melanoma. Recurrent promoter mutations in SDHD were found to disrupt the TFBS
for two ETS transcription factors, GABPA and GABPB1, considered to be key regulators of
melanoma driver genes including TERT[200].

Murine double minute 2 (MDM2) is a protein encoded by the gene MDM2. Promoter
variants of MDM2 result in increased binding affinity to the Sp1 transcription factor which
results in the increased expression of MDM2[201]. Increased expression of MDM2 represses
the activity of the p53 pathway, accelerating cancer development. Variants in the promoter of
MDM2 have been associated with increased tumour formation in several types of p53-related
cancers including Li-Fraumeni syndrome[202] and breast cancer[203].

While the TERT promoter mutations are in cis-regulatory elements that are in the vicinity
of the gene, variants in distal regulatory elements have also been identified as playing a role
in cancer onset. A binding motif for the myeloblastosis family of transcription factors (MYB)
was created through somatic variants in enhancers upstream of an oncogene called T cell acute



94
Dataset description and methods used for the generation and analysis of the familial

melanoma datasets

lymphocytic leukaemia 1 (TAL1). This leads to the overexpression of TAL1 which results in
T-cell acute lymphoblastic leukaemia[204].

2.11.2 Methods

In order to focus on the prospective importance of TFBM disruption in familial melanoma
development, the methods and results in the following sections are restricted to the variants
within the whole genome sequenced individuals. Only variants that were present within known
TFBMs in Homo sapiens were utilised for this analysis. For this purpose, the start and end
sites of TFBMs along with the JASPAR binding matrices for all known transcription factors
in Homo sapiens was obtained from the Ensembl Regulation Database v91. Ensembl includes
information on transcription factors present in alternative chromosome haplotypes in addition
to the normal human chromosomes. To restrict our analysis to relevant variants, only motifs
in chromosomes 1-22, X and Y were considered. A bed file comprising the chromosome, the
start position of the motif and the end position of the motif was generated from the list of mo-
tifs ; the bed file was then sorted on the chromosome and the position. Variants in the whole
genome sequenced cases that were located within these TFBM regions were identified. Infor-
mation on the chromosome, position, reference allele, alternate allele and the consequence of
these variants were extracted from the VCF file for the cases and stored independently. After
the removal of duplicate variants, this file was sorted based on the chromosome and nucleotide
position of the variant. Multi-allelic variants were split into one variant per alternate allele.
Information regarding the number of individuals, families and segregation of variant within
all sequenced members of the families at each position was annotated to this file. Variants that
were present in more than 5 families were removed as they were considered to be sequencing
artefacts.

The whole genome non-Finnish European samples from gnomAD were chosen as the
control set for this analysis. This comprised summary genotype information for every variant
from 7,509 whole genome sequences. Variants from the controls which were present in the
binding motifs as determined from Ensembl were identified. Information on the chromosome,
position, reference allele, alternate allele and the consequence of these variants were extracted
from the control VCF file. This file was sorted based on the chromosome and position of
the variants after duplicate variants were removed. Multi-allelic variants were split into one
variant per alternate allele. As gnomaD only provided information on summary statistics for
samples and not individual genotypes, this resulted in additional duplicate variants as this
reported one variant per affected transcript of gene. Every variant at a given position had
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the same number of affected samples regardless of affected transcript, such duplicate variants
were therefore removed. Variants from the cases and controls were then jointly processed.

The mean and median coverage of every position within the cases and controls were de-
termined. Positions with median coverage below 10 reads were removed from both sets of
variants. In order to focus on rare variants with a potential impact on the function of TFs, vari-
ants in the cases were annotated with the allele frequencies of the variants from gnomAD. If
the case variant was present in gnomAD, the frequency of mutation from the gnomAD dataset
was annotated to the variant. If the case variant was not present in gnomAD, it was annotated
as being absent. Variants with gnomAD frequency > 0.05 were removed from the cases and
controls. Variants that were not present in gnomAD were retained in the cases. Several steps
that were performed for the association analysis of variants in the coding regions as discussed
in Chapter ??, including the annotation of cancer gene status (Section 2.6.3.4), calculation of
total number of affected samples for cases and controls (Section 2.6.3.5) and generation of
2x2 contingency tables based on sample counts for every gene (Section 2.6.4) were replicated
for this analysis. P-values were generated for every gene from these tables using the Fisher’s
exact test, also as described in Section 2.6.4. These values were then corrected for false dis-
covery rate using the Benjamini-Hochberg method. A workflow for these steps is shown in
Figure 2.13.

The complete results from this methodology is discussed in Section 3.8.

2.12 Structural variants

2.12.1 Background

2.12.1.1 Introduction

There are two major types of modifications in the human genome that are known to play a role
in cancer development. They can classified based on the size of the modification into small
variants and large variants.

1. Small variants consist of single base alterations (single nucleotide polymorphisms) and
small insertions or deletions of base pairs (indels). Previously, indels were considered
to be any variation that were between 1000 bp [205] to 10,000 bp[206] in length but
recent studies have identified indels as variants that are less than 50 bp long[207].

2. Large variants comprise of structural variants in the chromosome which change the
structure of the affected segment of the genome. They are between fifty to millions of
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Complete set of variants

Quality filter Coverage
(Median coverage>15 
in gnomAD and cases)

Number of families
(Maximum per variant = 8)

Frequency of variant
in gnomAD < .001

Genotype 
quality>30

Variants split into
individual alleles

Alternate allele
reads > 4

Alternate allele
frequency >= 30%

TF-factor filtering

Determine TF-motif 
binding sites from 

Ensembl

Gene-filtering

Statistical testing Genes with 
increased 
burden of 

mutations in 
cases within TF-
motif binding 

sites.

Figure 2.13: Overview of steps involved in the identification of genes with an increase burden
of variants within transcription factor binding motifs in cases through an association analysis.
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base pairs long. Some structural variant events such as chromothripsis can cluster and
disrupt entire chromosomes[208].

There are several types of structural variants that occur within the human genome. The most
prevalent types of structural variants are shown in Figure 2.14 and described below:

• Insertion : An insertion is a structural variant caused due to the addition of a segment of
DNA between two neighbouring bases in the genome. This is shown in Figure 2.14a.

• Deletion : A deletion is a structural variant caused due to the removal of a segment of
DNA between two neighbouring bases in the genome. This is shown in Figure 2.14b.

• Duplication : A duplication is a structural variant where a segment of DNA is replicated
and is then inserted alongside the original segment. This is shown in Figure 2.14c.

• Inversion : An inversion is a structural variant that is caused due to the reversal of a
segment of the DNA within the genome. This is shown in Figure 2.14d.

• Translocation : A translocation is a structural event where a segment of the DNA is
moved to another region of the genome. This is shown in Figure 2.14e. Although Figure
2.14e shows the translocated region to be close to the original position, translocations
may occur within or between chromosomes.

2.12.1.2 Structural variants in genetic disorders

Structural variants have been known to play a role in the development of several diseases.
The most prominent example of a genetic disorder caused by a structural change is Hunt-
ington’s disease, encoded by the Huntintgtin gene (HTT). A section of the gene comprises
trinucleotide repeats of CAG. A normal copy of the gene contains up to 26 copies of the CAG
repeats. However, an increase in the number of copies beyond 26 gradually increases the risk
and penetrance of the disease, with increased risk of transferring the disease to offsprings as
well[209]. A copy of HTT with 36-39 CAG repeats have reduced penetrance of disease while
copies with 40 or more CAG repeats are considered to be almost completely penetrant[210].
Another notable example of structural disorders is the development of Down syndrome which
is a genetic disease caused due to the presence of an additional copy of chromosome 21[211].
Disorders like Down syndrome which are related to extra chromosome copies are defined
as trisomy disorders. Other trisomy disorders include Edwards syndrome[212] and Patau
syndrome[213].
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(a) Insertion. (b) Deletion.

(c) Duplication. (d) Inversion.

(e) Translocation.

Figure 2.14: The different types of common structural variants within the human genome.
Each sub-figure has the reference genome without the structural variant shown on top. The
target genome with the structural variant is shown at the bottom. The black dotted lines on
the reference genome indicate the region where breakpoints would be present and should be
predicted.
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The earliest discovery of structural variants in the context of cancer development was dur-
ing in the study of cancer cells by Theodor Boveri who associated the growth of cancer cells
with observations of segmented chromosomes[214]. Multiple experiments involving fluores-
cence in situ hybridization (FISH) experiments led to the identification of several gene fusions
and amplifications in cancer such as the BCR-ABL fusion in chronic myeloid leukemia and
HER2 over-expression in breast carcinomas[215]. The growth and development of microarray
technologies furthered the understanding of the role of structural variants in cancer. Compara-
tive genomic hybridization, originally used to identify copy number alterations through FISH,
helped in the analysis of amplifications and deletions of genetic regions in solid tumours[216].
SNP genotyping arrays have also been used to determine copy number variations in cancers
in several studies such as the Cancer Genome Atlas (https://www.cancer.gov/tcga). In spite
of all such improvements, a precise estimation of structural breakpoints was not feasible till
the advent of next-generation sequencing technologies. Such technologies also enabled the
detection of copy neutral variations such as inversions and translocations.

2.12.1.3 Determination of structural variants in next-generation sequencing data

Structural changes are primarily identified from next-generation sequencing data through er-
rors in the alignment of the target genome reads to the reference genome. Depending upon the
type of error, these reads are classified into two types, shown in Figure 2.15:

• Discordant read-pairs. Since the paired-end NGS technique sequences both ends of each
DNA fragment with library insert sizes specific to a given library preparation method
and size selection procedure, the two paired reads will be generated at an approximately
known distance in the sample genome. A signature of a discordant read-pair is formed
when the mapping span and/or orientation of the read-pairs crossing the breakpoint
are inconsistent with the reference genome. Specifically, both reads of the pair can
be mapped to the reference genome, but they may map to different chromosomes or
different orientations, or their coordinates may not agree with the insert size.

• Splitting reads. A sequence read that spans a breakpoint in a structural variant is called
a splitting read. If both splitting parts of a read can be mapped and its mate is uniquely
mapped to the reference genome, the splitting read is further masked as a soft-clipped
read by some mapping algorithms such as Burrow-Wheeler Alignment(BWA) tool. Oth-
erwise, it is categorized as an un-mapped read. The splitting reads used by current SV
detection tools are all soft-clipped reads, and the term “splitting reads” is generally re-
ferred as soft-clipped reads.
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(a) Normal reads

(b) Discordant reads

(c) Split reads

Figure 2.15: Different types of read errors used in the identification of structural variants.

The different softwares that are available for the identification of structural variants from next
generation sequencing data are distinguished by two factors. The first factor is the type of
read error used in the identification of structural variants, i.e., discordant read pairs or split
reads. The second factor is the type of sequence that can be analyzed i.e., exome or whole
genome sequences. Softwares such as BreakDancer[217], HYDRA[218] and SVDetect[219]
use discordant reads for the identification of structural variants while other softwares like
CREST[220] use split reads. Recent approaches have also tried to combine the approaches
and to use information from both the type of errors in order to determine breakpoints. Ex-
amples of such softwares include DELLY[221] and LUMPY[222]. This section of the thesis
involves the identification and analysis of structural variants that potentially play a role in
cancer development within the sequenced cases.
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Parameter Description
-mw 4 Minimum weight across all samples

for a call (number of reads)
-tt 0 Trim threshold

-pe id:sample_id,
bam_file:lsample_id.bam

Sample id and its corresponding bam
file for a paired-end reads file

histo_file:sample_id.hist Statistics of insert size across the
bam file

mean:461.115724915 Mean insert size
stdev:83.3662594786 Standard deviation of insert size

read_length:151 Read length
min_non_overlap:151 Minimum number of bases that do

not overlap, usually equals read size.
min_mapping_threshold:20 Minimum mapping threshold for

reads
-sr id:sample_id,

bam_file:sample_id_2.bam
Sample id and its corresponding bam

file for a split reads file

Table 2.16: Parameters used for the identification of structural variants using LUMPY.

2.12.2 Methods

Cases from the pilot whole genome dataset were considered for the analysis of structural
variants. As structural variants consist of large scale changes that affect both the coding and
the non-coding region, exomes were considered to be not as informative as whole genome
samples. During the time of the analysis, the secondary Leiden whole genome dataset had not
yet been sequenced. A similar structural variant analysis approach was eventually performed
on these samples by our collaborators in Leiden.

The standard version of Lumpy (v0.2.13)[222] was used to generate structural variants
across the 123 whole genome samples from the pilot whole genome dataset. The parameters
chosen for this command are given in Table 2.16.

Individual VCF files for each sample were produced as the output from Lumpy, containing
information on the structural variants detected in these samples. These VCF files were sorted,
zipped and indexed based on the location of the variants. Information regarding the location,
length and type of every structural variant were extracted from each sample and saved as
individual text files. The number of supporting reads for each variant were also determined and
annotated to these files. Variants from each sample were merged into a single joint VCF file.
Ensembl contains information on individual haplotypes of chromosomes in addition to entire
chromosomes. Variants that were identified as being present in such haplotypes which were
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not in chromosomes 1-22, X, Y were removed. Generic breakpoints which cannot be classified
as inversions, insertions or deletions are marked as “BND” variants by Lumpy. Such variants
were also removed as the exact structural variant could not be established. This filtered set of
variants was then sorted on the chromosome and the variant position. Some variants started
and ended within 250 bp of each other in different samples but largely overlapped with each
other. The longest such variants were identified within the overlapping regions and chosen as
the representative variant for these regions. The median number of supporting reads were also
identified across all samples carrying the variant. A total of 86,697 structural variants were
identified in this manner. Variants that were greater than 1 million base pairs were removed as
they were considered to be structural aberrations created through sequencing artefacts. This
step resulted in the removal of 59,627 variants, resulting in 27,070 variants. The number of
samples and families carrying each structural variant were established, with the fraction of
samples in each family carrying the variant also being established. Variants that were present
in more than five families were removed as they were considered to be artefacts. Only variants
that were present in over 75% of the samples in the families with the variant were retained
which comprised 773 variants. Depending on the relative location of the structural variant to
the closest gene, each variant was annotated with one of six possible orientations, shown in
Figure 2.16. They are:

1. Gene contained within the variant (Figure 2.16a).

2. Variant contained within the gene (Figure 2.16b).

3. Variant overlaps with the beginning of the gene (Figure 2.16c)

4. Variant overlaps with the end of the gene (Figure 2.16d)

5. 5’ variant (Figure 2.16e)

6. 3’ variant (Figure 2.16f)

The strand and orientation of the structural variant and each gene is taken into account for
this purpose. In addition to the location of the variant, the distance to the gene was also
determined. To focus on structural variants that potentially disrupt cancer pathways, every
affected gene was finally annotated with information from the CGC list if they were present
in it, including their tier list. Variants that were present downstream of the gene, annotated as
being a 3’ variant, were removed as the probability of such variants affecting the expression
of the gene was lower. This resulted in a final set of 307 variants. Variants in genes associated
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with melanoma that were identified through this approach are discussed in Section 3.9. The
complete list of structural variants is shown in Supplementary Table 10.
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Figure 2.16: The relative locations of structural variant to gene of interest are shown here. a)
The structural variant completely encompasses the gene of interest. b) The structural variant
is completely contained within the gene of interest. c) The structural variant overlaps with the
5’ end of the gene of interest. d) The structural variant overlaps with the 3’ end of the gene
of interest. e) The structural variant does not overlap with the gene and is present upstream
of the gene of interest. f) The structural variant does not overlap with the gene and is present
downstream of the gene of interest.


