
Chapter 4

Quality control and the initial analysis of
the IBD 15x cohort

4.1 Introduction

Genetic association studies of inflammatory bowel disease have uncovered the vast archi-
tectural complexity of the disorder [92, 49, 116]. While some, mostly coding, genetic
associations for IBD increase the risk of the disorder several-fold (e.g., variants in NOD2

for CD, HLA-DRB1*01:03 for both CD and UC), the majority of known associations are
noncoding and have a modest effect size (OR ∼ 1.2).

A common criticism of GWAS is whether the discovery of such low-risk associations
is relevant to our understanding of disease pathogenesis and, ultimately, whether such
discoveries could be translated into therapeutic targets for the next generation of IBD
therapies. To counter this, one could point out the long history of IBD GWAS uncovering
associations in genes and pathways that are targeted by existing and newly-developed IBD
therapies: IL23, implicated in the pathogenesis of CD back in 2006 [57], is targeted by
ustekinumab – a monoclonal antibody, approved for the treatment of CD in 2016; TAB2

and NFKB1 are within the TNF signalling pathway targeted by anti-TNF therapies; at least
three known associations within the integrin genes (2017 [49]), support the efficacy of
vedolizumab and etrolizumab which target the α4β7 dimer [49]. Neither of the of the
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integrin-related variants have a high effect size (OR = 1.10–1.12 [49]), emphasising the
inconclusive relationship between the disease risk effect size and the therapeutic relevance.

The success of IBD GWAS at identifying known drug targets is consistent with the
observation that drugs with genetically supported targets have double the success rate in
clinical development [129, 98]. It is not well understood whether drug targets that are
supported by evidence from high effect size variants are more therapeutically relevant.
King et al. [98] demonstrate that the drugs that target the manually curated gene-disease
associations, described in the Online Mendelian Inheritance in Man dataset (OMIM), have a
higher success rate compared to those that target ‘GWAS to gene to trait’. One explanation
for this is the difficulty in linking the noncoding GWAS variants to the causal gene, resulting
in the misidentification of drug targets (see the Introduction chapter). Alternatively, the
Mendelian focus of the OMIM dataset means that the majority of genetic variants that are
present in it have a very high effect size, suggesting a positive relationship between the effect
size and the drug target success.

The translation of GWAS association to genetic targets is nontrivial. Association studies
across numerous complex diseases indicate that the majority of the identified common
variants are located within the noncoding regions of the genome and cannot be always
mapped to a causal variant, yet alone gene [82]. The early-day approach of mapping the
noncoding variants to the nearest gene is now known to be error-prone [29] and has been
largely superseded. eQTL colocolisation techniques have become a powerful instrument
for linking known noncoding associations to their respective genes, but require careful
consideration of the tissue type, cell type or even cell stimulation type.

Coding associations provide an easier path from GWAS to target. However, the typically
stronger effect size of such variants is at odds with purifying selection: selective pressure
either keeps the large effect size risk variants rare, or rapidly pushes them down the allele
frequency spectrum. Uncovering further large effect genetic variants associated with IBD is
nontrivial. The most recent large-scale GWAS for IBD included more than 25,000 cases and
35,000 controls and was extremely well-powered to detect common, large effect associations.
Therefore, the field has likely reached a ‘saturation point’ when it comes to uncovering such
variants. Further discoveries will require a foray into the rare allele frequency spectrum,
which is poorly captured by genotyping techniques (see the Introduction chapter).
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The IBD 15x study was set up to understand the role of rare coding and noncoding
variation in IBD. It is a case-control cohort that includes around 19,000 subjects – 7,000
IBD patients and 12,000 controls, all whole-genome sequenced at 15x target depth. In
contrast to array genotyping, short read whole-genome sequencing provides an unbiased
way to study rare single nucleotide (SNP) and short insertion/deletion (INDEL) variation
across approximately 95–98% of the human genome. In addition, whole genome sequencing
(WGS) allows the study of structural variation [102] and accurate typing of alleles in complex
regions of the genome such as HLA [55] and KIR [157].

In the past few years, various complex disease consortia have published studies perform-
ing rare-variant association studies on WGS datasets, uncovering several novel rare-variant
associations for their respective traits (e.g., [63, 125]). However, these efforts are yet to result
in a ‘gold rush’ of new associations similar to the early days of GWAS.

IBD 15x follows a previous IBD WGS study by Luo et al. [116] (4,280 cases sequenced
at low-coverage and 3,652 controls) which uncovered a 0.6% frequency missense variant in
ADCY7 that doubles risk of ulcerative colitis. However, the IBD 15x builds upon the insights
gathered during the low-coverage sequencing project. Firstly, the cohort includes almost
exclusively Crohn’s disease patients, allowing us to get more power to detect variants that
have a differential effect between CD and UC (see Section 4.3.4). Secondly, it maintains an
important balance between the cohort sample size and sequencing depth in order to maximise
the statistical power, while not sacrificing too much sensitivity, to detect low frequency and
rare variant associations (see Section 4.3.1). Lastly, it contains noticeably more cases and
controls to perform the association tests. As discussed in the Introduction and in Section
4.3.1, for anything other than variants with semi-Mendelian effect sizes (OR > 10; have not
been previously identified for IBD) it is important to study rare variation in a dataset with at
least 15–20,000 samples.

In addition, 15x is planned to be analysed in conjunction with two exome-sequencing
datasets: the Broad WES cohort (early meta-analysis described in Section 4.3.4) and the
upcoming Sanger IBD WES cohort. Combined, these should exceed 35,000 cases and 75,000
controls, providing a great opportunity to study the contribution of rare coding variation
in IBD. In the following discussion, I describe the approaches that can be used to study
the noncoding variants – a challenging task at this sample size, but that could help us to
understand the genetic architecture of IBD even better.
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The analysis stage of the 15x cohort began just a few months ago, and the majority of
this time was spent on the sample quality control procedures that are described in the chapter
below.

In this chapter, I describe the IBD 15x association study. I describe the initial efforts at
variant and sample quality control, in order to enable a whole-genome association study of
IBD. In addition, I describe the first results from the IBD 15x study: namely, the replication
of several rare variant associations uncovered in the whole-exome cohort produced at the
Broad Institute.

4.2 Methods

4.2.1 Power modelling

Sequencing depth (coverage) is the mean number of sequence reads that align to reference
bases. For most of the use-cases, it is insufficient to perform sequencing at 1x depth:
individual sequence reads have a high error rate and there are likely to be substantial gaps in
the sequenced genome. Therefore, a higher sequencing depth is usually chosen – 10x–30x
for most association studies, >50x for applications like structural variation discovery and
tumour analysis. Variant calling tools, like GATK and DeepVariant, are able to use redundant
reads to correct for errors, thus increasing the genotyping quality.

The default coverage for the past two generations of short read sequencers (Illumina
HiSeq X, NovaSeq) is 30x, as are the majority of commercial sequencing offers (e.g., Broad
Institute Genomic Services, Dante Labs). The relationship between the sequencing cost and
depth is close to linear. Given a fixed budget, researchers setting up studies have to consider
whether it is more beneficial to sequence a larger cohort (increasing the statistical power) or
sequence a smaller cohort at a higher depth (increasing the sensitivity).

In order to increase the size of the cohort, the cases and controls for the IBD whole-
genome study were sequenced at 15x target depth. In practice, the median sequencing depth
in the final 15x dataset is around 18.5x due to some over-provisioning when libraries are
sequenced in multiplexed mode (Figure 4.1). Early in my project, I was involved in efforts to
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Figure 4.1 Histogram of mean per-sample coverage for samples in the combined 15x cohort.

Median depth in the 15x cohort: 18.56x. N=19,374.

evaluate how the lower sequencing depth of the 15x study would influence the the ability to
perform rare-variant association studies.

Variant calling sensitivity at different depths

Reduction in sequencing depth is expected to reduce the sensitivity to call variants. NA12878
is a whole-genome sample produced by the Genome in a Bottle project [44]: sequenced
with extremely-high ∼300x coverage, it is considered to be the current ‘gold standard’ of
short-read WGS data. Validated variants called at ∼300x are considered to be the truth set in
various variant calling benchmarks.

The sample was downscaled by randomly discarding paired-end reads, simulating se-
quencing at a lower depth. At simulated 30x coverage, 98% of SNPs and 79% on INDELs
from the truth set were called by the GATK 3.3 variant caller [147] (work done by Martin
Pollard).
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Figure 4.2 Influence of sequencing depth on the ability to detect SNPs and INDELs. Esti-

mates provided by Martin Pollard.

The sample was further downscaled to estimate the loss of sensitivity, compared to
sequencing at 30x depth (see Figure 4.2)1.

The fraction of the called truth set variants appears to plateau around 15–17x. At 15x
depth >97.5% sensitivity to discover SNPs at and >87% for INDELs is retained.

Computational model for estimating the statistical power of sequencing studies

I implemented a numeric simulation to calculate the power to detect single variant associations
in case-control and quantitative trait settings. The method takes into account sensitivity to
detect SNP variants at different depths. In the case-control setting, the variant is present
with a probability Pcase in cases and Pctrl in controls. The model is supplied with a pre-
calculated table of sensitivities to detect the variant at a depth S(d). For each of the cases and
controls, a random draw between 0 and 1 from a uniform distribution is made. If the draw is
≤ pcase ∗S(d) (or pctrl ∗S(d) for controls), the variant is considered observed. The Fisher

1Variant calling and comparison to the truth set was performed by Martin Pollard [147]
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exact test on 2 x 2 table of observations in cases and controls is used to calculate the p-value
and the odds ratio. If the p-value is less than or equal to the significance α , the simulation
run was successful. Nsim simulations are performed to calculate the fraction of successful
associations, which is used as a measurement of the statistical power.

4.2.2 Sample selection

Cases: IBD 15x

Samples were initially selected for sequencing from previous DNA collections available at
the Sanger Institute. In addition, new samples supplied by the IBD BioResource [143] and
other collaborator groups from across the UK were sequenced.

Throughout this chapter I will use the term ‘phase’ to denote large batches of samples
in both IBD 15x (cases) and INTERVAL 15x (population controls). IBD and INTERVAL
15x consisted of three phases each. Within each phase the sequencing protocol remained
consistent, while some protocol variability was allowed between the phases to improve the
sequencing results (see 4.2.3).

I enforced several criteria for the selected samples:

• Disease type: Crohn’s disease2

• Self-reported ethnicity: White – British, White – Irish or White – other

• DNA sample passing the QC criteria for PCR-free sequencing on Illumina HiSeq X

• Sample was not previously sequenced as a part of an earlier phase

At the later stages of the project, this was done by my colleagues, who followed a similar
protocol.

Considering the high cost of whole-genome sequencing, I attempted to minimise the
number of duplicate samples. Firstly, I checked the sample IDs for duplication (e.g., if centre

2Some of the patients in the IBD 15x Phase 1 and Phase 3 were diagnosed UC instead of Crohn’s. I am
finalising the list of the UC patients but it appears to be ∼300 cases.
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x sends the DNA sample y twice). Secondly, I tried to account for situations where the
DNA of the same individual is sent for sequencing twice with different IDs (e.g., first from a
collaborating centre and then from the IBD BioResource).

I implemented a pipeline that compares the genetic fingerprints (15–25 SNPs via Fluidigm
or Sequenom targeted genotyping platforms) that are produced as a byproduct of sample QC
by the Sanger DNA Pipelines. The fingerprints are primarily used to detect sex discordance
and to evaluate the DNA quality (higher fingerprint messiness typically indicates lower DNA
quality and therefore lower quality of sequencing). The pipeline converted the fingerprints
for each considered sample (previously sequenced and new candidates for sequencing) into a
joint VCF file. I then ran identity by descent calculation via AKT [9] (PLINK-like kinship
estimation method). Empirically, I determined that it was only possible to reliably detect
duplicates (or monozygotic twins) and not first degree relatives or lower.

Controls: INTERVAL 15x

INTERVAL is a large study of 45,000 healthy blood donors that was initially set up to study
the effect of blood donation frequency on subjects’ health. The cohort was then used to study
the effects of the genetic variation on a variety of blood cell traits [10]. All samples included
in the INTERVAL 15x were previously genotyped. Prioritisation for sequencing was based
on the availability of certain metabolic phenotype data (not covered in this thesis). Unrelated
subjects of European ancestry were selected for further whole-genome sequencing. Sample
selection was performed by the Soranzo Team members at the Sanger Institute.

4.2.3 Sequencing

The samples were sequenced at the Sanger Institute between 2016 and 2018. DNA, extracted
from whole blood, underwent short-read paired-end sequencing by synthesis using the
Illumina HiSeq X Ten machines. The target coverage depth was 15x. Considering the
time-scale of the project, there was some variability between individual batches:

PCR versus PCR-free sequencing: INTERVAL 15x Phase 1 (controls, n=5,093) was
the first batch of samples that underwent sequencing. During the DNA library preparation,
an additional PCR amplification step was added due to the specifications of the library prep
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kit. Libraries for the subsequent INTERVAL (Phases 2 and 3) and IBD (Phases 1–3) were
prepared using a PCR-free kit.

Single versus dual indexing: IBD 15x Phase 3 (cases, n=2,530) was the latest batch to
be sequenced as a part of the 15x project. Dual-indexing of the DNA fragments was applied
during the library prep to minimise index misassignment. Other batches were sequenced
using the standard single-indexing approach. I provide an overview of how single- and
dual-indexing influences the sequencing quality in Section 4.3.2.

4.2.4 Alignment and variant calling

BWA MEM [106] software was used to align the reads to the reference genome. Genome
Reference Consortium GRCh38 (with decoys) was used as a reference genome for all phases
of IBD and INTERVAL 15x.

Germline variant calling was performed using the GATK4 toolkit [121] following the
‘Best Practices’ pipeline. Briefly, intermediate sets of SNPs and INDELs were called for
each sample via local de-novo assembly of haplotypes using the HaplotypeCaller tool. All
intermediate calls from both IBD and INTERVAL 15x were then refined during the Joint
Genotyping stage.

Alignment was performed by the NPG group and variant calling was performed by the
HGI group at the Sanger Institute.

4.2.5 Computational analysis pipeline

One of the biggest difficulties with conducting this project was the scale of the dataset and
the computational challenges associated with analysing it. The combined size of the variant
call files in compressed VCF format for was approximately 15 terabytes in size (TB = 1024
gigabytes). This is approximately seven times larger than the imputed genotypes of the
500,000 individuals in the UK Biobank cohort [35] and 1,000 times larger than the PANTS
anti-TNF dataset described in Chapter 2.

The scale of the present-day association study cohorts has long passed the point at
which they can be analysed on a single powerful computer within a reasonable time-frame.
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This issue is addressed by distributed computing: analytical tasks are spread across several
computers or servers, each with multiple central processing unit (CPU, ‘processor’) cores.
A technique that is often used for performing distributed computation is called MapReduce
[50], whereby the tasks are separated into two stages: the map procedure independently
applies a particular function across individual parts of the dataset (e.g., counting the number
of INDELs present in each partition) and the reduce procedure collects the outputs from the
map stage and summarises them (e.g., adding up the outputs of map functions and getting the
total number of INDELs in the dataset). While it is possible to implement MapReduce-like
pipelines using traditional GWAS analytical tools like PLINK [151] (breaking up the dataset
into per-region .BED files, running the analytic pipeline, creating a custom reduce function),
the scale of the 15x makes the application of such an approach challenging: the majority of
these tools assume that the dataset can be trivially modified and a new version saved onto
disk (e.g., when a single individual is excluded during the QC). Writing an additional 15 TB
of data onto a disk can take tens of hours even when using a large computational cluster and
costs thousands of pounds a year to maintain. The second issue with such ad hoc distribution
is that as the complexity of the analytical pipeline increases (e.g., multiple filtering stages,
followed by logistic regression), so does the complexity of writing the reduce functions. In
theory, tasks can be scheduled efficiently so that the processing of individual parts of the
dataset can proceed independently until they need to access the outputs from other parts of
the dataset, but the creation of such tree- and graph-based schedulers is nontrivial and is an
active research area in computer science.

Early on in my project, I evaluated several tools that could enable the efficient and timely
analysis of the 15x dataset (and also wrote a simple scheduler of my own). Ultimately, I
decided to use the Hail [77] toolkit for the analysis. Hail is a ‘data analysis tool with additional
data types and methods for working with genomic data’. It was previously used for the
all-phenotype GWAS of the UK Biobank (4,200 traits across 360,00 genotyped individuals)
[127] and is currently used to produce releases of the gnomAD database (125,748 exomes
and 15,708 genomes) [95]. Hail uses Apache Spark, a distributed cluster manager that builds
upon the principles of MapReduce.

Unfortunately, the deployment of Hail on the internal cluster was a nontrivial task. While
the actual deployment was led by the Human Genome Informatics team, as one of the early
adopters (starting with the QC of the PANTS cohort) I was involved in identifying and trying
to fix numerous stability and performance issues. We are still experiencing hardware-related
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problems, which have limited some of the analyses (e.g., the full genome-wide logistic
regressed), but the current deployment has facilitated the analyses I describe below.

The majority of the analytic pipeline for IBD 15x was written in Python, using the Hail
0.2 framework and a variety of analytical packages (scikit-learn, statsmodels, pandas,
etc.). At different stages, it was executed across 200 to 1,350 CPU cores on the Sanger
Institute’s OpenStack cluster.

4.2.6 Dataset overview and pre-processing

Autosomal chromosomes (1–22) were converted into the MatrixTable format used by Hail
(19,371 samples, 205,889,702 variants). Multiallelic variants were split into separate records
(226,027,757 variants). Standard variant and sample quality control metrics were calculated
to facilitate further filtering.

The samples were sequenced across several batches. Batch-specific features are high-
lighted in bold.

• IBD Phase 1 (1,427 samples, cases, PCR-free sequencing)

• IBD Phase 2 (3,060 samples, cases, PCR-free sequencing)

• IBD Phase 3 (2,530 samples, cases, PCR-free sequencing with dual indexing)

• INTERVAL Phase 1 (5,093 samples, controls, PCR sequencing)

• INTERVAL Phase 2 (5,570 samples, controls, PCR-free sequencing)

• INTERVAL Phase 3 (1,691 samples, controls, PCR-free sequencing)

4.2.7 Sample quality control

Inclusion of low-quality and outlier samples may negatively influence the results of the
association study. The main goal of sample QC is to identify a set of samples that have
similar high quality metrics, belong to the same ancestry group, and are not strongly related
to each other.
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Each of these steps helps to prevent biases that can cause spurious associations or reduce
the power to detect the true ones: poorly genotyped samples are likely to contain systematic
bias across many sites; due to genetic drift, ancestry outliers differ in frequency of certain
common and rate variants; related samples will influence the significance of variants present
in the related individuals. Below, I describe a series the QC steps that were carried out for
the IBD 15x study.

Hard filters

A number of hard filters were applied to exclude low quality samples:

• Median FREEMIX across the read groups > 2% (143 samples)

• Mean depth < 12x (128 outliers)

• Call rate < 95% (9 outliers)

• Chimerism rate > 5% (38 outliers, estimated via Genome STRiP 2.0)

A total of 315 samples were excluded at this stage.

All filters were applied simultaneously, meaning that, for example, a sample with high
FREEMIX and low call rate will appear on the list twice. This also applies to the distribution-
based filters described in next section.

Overall, the QC metric filtering parameters and thresholds were inspired by the the
filtering done to create the gnomAD database [95]. Some of the thresholds were adapted
to reflect the data in our cohort (e.g., minimal depth lowered from 15x to 12x, as 15x was
our target sequencing depth). It should be noted that some of the filters may be refined in
the future: while gnomAD is currently the largest genetic variation database that includes
hundreds of thousands of WES and tens of thousands of WGS samples, it is not used as a
basis of case-control studies.
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Distribution-based filters

A two-stage approach was applied. Firstly, I removed samples that were outliers within
individual batches (e.g. IBD Phase 1, Interval Phase 3). In addition, it was observed that
distribution of several metrics (e.g., number of INDELs) were different for samples that were
sequenced using PCR (INTERVAL Phase 1) and PCR-free protocols (all other cohorts). I
have repeated the outlier removal protocol grouping the samples by sequencing protocol
(PCR versus PCR-free).

A sample was excluded if the value of the QC metric was four median absolute derivations
(MAD) higher or lower than the median in the batch or sequencing protocol. The metrics
used at this filtering stage were:

• Number of SNPs called

• Number of insertions called

• Number of deletions called

• Insertion-deletion ratio

• Transition-transversion ratio (Ti/Tv)

• Heterozygous-homozygous ratio (heterozygosity rate)

• Call rate

306 samples did not pass the distribution-based filters. The majority of outlier samples
were outside the acceptable range for several metrics (Figure 4.3), indicating that the selected
metrics and the applied thresholds were not needlessly excluding high-quality samples. A
total of 621 samples were excluded during both stages of sample filtering (hard filters and
distribution filters). The samples passing the QC criteria were brought forward for further
analysis.

Identifying batch effects via metric-based PCA

Sample QC metric-based principal component analysis was used to verify the absence of
hidden batch effects that may have been introduced during sequencing. The assumption was
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Figure 4.3 Set intersection of the samples failing different QC metric thresholds in the 15x

dataset. Left bars – number of samples failing individual categories. Dots – set overlaps. Top

bars – the number of samples overlapping between the sets. First seven columns (single dots)

– number of samples failing only one QC metric.

that any substantial difference in the sequencing protocol for a set of samples would lead to
separation of these samples on the PCs.

The sample QC metrics (mentioned in the previous two sections) were normalised and
used to calculate ten principal components. Principal component eigenvalues showed that
only the first 2–3 explained any substantial variance (PC1 – 5.80, PC2 – 3.06, PC3 – 1.00,
PC4 – 0.43).

PC1 clearly separated samples between PCR (INTERVAL Phase 1) and PCR-free batches
(all other). Inspecting the PC loadings (weights), the separation was almost equally driven by
all considered QC metrics. All other PCs did not reveal any substantial clustering, suggesting
that there were no major hidden batch effects that I was not aware of. PC2 was driven by
depth and the number of called variants (SNPs and INDELs). PC3 was driven almost entirely
by FREEMIX. PC4 was driven by depth and the number of called SNPs (Figure 4.4).

One of my concerns was that the PCA is performed on the same set of QC metrics that
are used for filtering (i.e., the analysis is circular). However, when the PCs were built on the
full set of the available QC metrics (e.g., adding the number of singletons and star alleles)
the results were virtually the same.

This analysis does not substitute the genotype-based PCA that will be discussed below.
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Figure 4.4 The first four principal components built based on the QC metrics of the samples

in the 15x cohort. Samples coloured by sequencing phase. PC1 clearly separates samples

sequenced with PCR and PCR-free library preparation protocols.
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Identifying genetic ancestry outliers via 1000G PCA loading projection

Cryptic population structure may inflate the results of association analyses, especially for
rare variants where the frequency of many genetic variants may vary drastically or even be
entirely exclusive to a certain population. Population structure can be partially accounted for
via statistical methods (e.g., PCA or generalised linear model-based methods). Alternatively,
it is possible to analyse each population separately, combining the results in a trans-ancestry
meta-analysis. However, these techniques require a semi-balanced distribution of each
population group between cases and controls.

The majority of subjects in the 15x cohort have self-identified to be of European de-
scent. However, self-reported ancestry is often discordant from the genomic ancestry and is
insufficient for identifying cryptic population structure [123]. The PCA weight projection
technique was used to estimate the genetic ancestry of the individuals in the 15x cohort.

The 1000G Project cohort includes samples from 2,504 individuals from 26 populations
around the world. Principal component analysis of the 1000G cohorts reveals the complexity
of the global population structure. Members of the same population or population group
(e.g., South East Asian, European) cluster closely together and diverge from other clusters on
the first few principal components.

The 15x dataset was filtered down to a subset of high-quality common variants that are in
low linkage disequilibrium and have pre-computed population-scale loadings from 1000G.
The variant set (N=17,535) was derived by the authors of the AKT package [9] and consists
of common genetic variants (>5% MAF in 1000G), and is limited to balletic SNPs that are
known to be present on several genotyping arrays and have been shown to be consistently
called by different variant calling pipelines.

In order to estimate the genetic ancestry of each individual in the IBD and INTERVAL
15x datasets, I projected the samples onto the 1000G data. I obtained the 1000G principal
component loadings for the AKT ‘high confidence’ variant set described above. The samples
were projected, accounting for the heterozygosity and the allele frequency in 1000G.

The first ten PC projections were then inspected manually (Figure 4.5). As expected,
considering the sample selection criteria, the absolute majority of the 15x samples clustered
together with the European population group in 1000G. A small number of the IBD samples
clustered closely with non-European population groups or were positioned between the major
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clusters, suggesting admixture. Given the lack of INTERVAL samples of a similar ancestry,
they had to be excluded. In addition, some samples were marginally outside the ‘edge’ of the
European ancestry cluster, suggesting presence of admixture.

In order to identify the non-European samples within the cohort, the following procedure
was followed. The 1000G cohort was subsetted to contain only individuals of European
ancestry (EUR population on Figure 4.5.) For each of the ten PCs, the median and the median
absolute deviation (MAD) of the 1000G European population’s (N=503) PC scores were
calculated. Next, the 15x samples with PC scores outside the three MAD from the median
were identified. A total of 434 15x outliers were identified.

All but seven outliers were removed due to being outside three MAD in the first four PCs
of 1000G (Figure 4.6). This is expected, as the PCs are ranked in terms of the explained
variance (i.e., earlier PCs explain more variance and separate more genetically divergent
populations).

Samples that passed the filter clustered together with the European population of 1000G
(Figure 4.7). In addition, comparison of PC distributions of IBD and INTERVAL PC scores
did not indicate any major shifts in the distributions, suggesting that cases and controls were
well-mixed (Figure 4.8). In total, 434 samples were excluded from subsequent analyses,
leaving 18,940 samples in the dataset.

Removal of duplicated and related samples

The kinship estimation technique was used to identify closely-related individuals and du-
plicated samples in the cohort. The kinship estimation was performed on the same 17,000
variant subset as the 1000G PCA projections. Inclusion of relatives and duplicates may bias
the results of the association tests. While techniques for correcting for familial structure exist
(typically based on linear mixed models, see [60]), the cohort did not have enough related
individuals to justify this increase in the analysis complexity. Using the Hail implementation
of the kinship estimation technique first devised for the PLINK software, 254 sample pairs
with PI-HAT > 0.1 were identified. This is lower than the 0.185 exclusion threshold often
used for GWAS (middle point between second- and third-degree relatives, 186 pairs), but the
enrichment of distantly related individuals might cause spurious rare variant associations. In
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Figure 4.5 The first four principal components of the 1000G cohort, alongside the 15x cohort

samples projected onto them. The absolute majority of the 15x cluster together with the

European population of 1000G. The majority of the outliers were IBD samples.
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Figure 4.7 The first four principal components of the European subset of the 1000G cohort,

alongside the 15x cohort samples projected onto them (zoomed in, discarding distant outliers).

Blue (IBD) and orange (INTERVAL) dots pass the MAD-based filter. Opaque X’s are too far

removed from the 1000G EUR median and fail the filter.



4.2 Methods 95

15x_IBD 15x_INTERVAL
Cohort

14

16

18

20

22

24

PC
 sc

or
e

PC = pc1_1kg

15x_IBD 15x_INTERVAL
Cohort

34

36

38

40

42

PC = pc2_1kg

15x_IBD 15x_INTERVAL
Cohort

2

4

6

8

10

12
PC = pc3_1kg

15x_IBD 15x_INTERVAL
Cohort

16

15

14

13

12

11

10

9

8
PC = pc4_1kg

15x_IBD 15x_INTERVAL
Cohort

4

2

0

2

4
PC = pc5_1kg

15x_IBD 15x_INTERVAL
Cohort

10

5

0

5

10

PC
 sc

or
e

PC = pc6_1kg

15x_IBD 15x_INTERVAL
Cohort

4

2

0

2

4
PC = pc7_1kg

15x_IBD 15x_INTERVAL
Cohort

4

2

0

2

4
PC = pc8_1kg

15x_IBD 15x_INTERVAL
Cohort

6

4

2

0

2

4

PC = pc9_1kg

15x_IBD 15x_INTERVAL
Cohort

2

0

2

4

6

PC = pc10_1kg

Figure 4.8 Violin plot comparing the distributions of the projected 1000G PC scores for

IBD and INTERVAL samples that pass the ancestry filters. No major distribution differences

across the first ten principal components are present, suggesting a good ancestry mixture

between cases and controls in the 15x study.
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total, 113 cases and 129 controls were removed, keeping a total of 18,165 individuals in the
cohort.

Within-cohort principal component analysis

After removing the samples that failed the quality control procedures, related samples,
and those outside the European population cluster, a Hardy-Weinberg-normalised principal
component analysis was performed on the IBD and INTERVAL cohorts.

The 17,000 SNP subset was further filtered to include only high-quality common genetic
variants (call rate > 99%, PHWE > 1x10−10) and LD-pruned (r2 = 0.2). In addition, regions
with high LD and those harbouring known IBD associations (+/- 500 kb) were removed,
retaining a total of 14,617 variants.

Ten first principal components were calculated. Principal component eigenvalues demon-
strated that the first PC explained almost double the variance of PC2 (12.6 versus 6.31).
Principal components 3 to 10 all had similar eigenvalues between 5.37 and 5.72.

Manual inspection of the principal component plots indicated that the samples were
reasonably-well mixed between cases and controls (Figure 4.9 shows the first four PCs). A
few hundred outlier samples were visible on PC1, however they did not appear to cluster
with any specific sample QC metric, sequencing batch or a handful of variants that would be
driving the separation.

A median absolute deviation filter, similar to the one described in the 1000G PCA section
above, was applied. The MAD distance threshold was increased to four, the median and the
MAD were calculated from the within-cohort PC scores rather than 1KG EUR samples. A
total of 892 samples failed this filter, with the majority falling outside the MAD thresholds on
PC1 and PC2. The majority of failed samples did not overlap between different PCs (Figure
4.10).

It is not entirely clear whether such a substantial number of samples should be excluded
from further association studies. Firstly, the calculated principal component scores will be
used as covariates for the genome-wide logistic regressions, correcting for some of the cohort
heterogeneity. Secondly, I have identified that the variation on PC1 is almost entirely driven
by the Southern European ancestry of some of the individuals in the cohort, captured by PC6
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Figure 4.9 The first four principal components of 15x cohort samples. Orange dots – IBD

samples, blue dots – INTERVAL samples.



98 Quality control and the initial analysis of the IBD 15x cohort

Failed pc1_pass
Failed pc2_pass
Failed pc5_pass
Failed pc3_pass

Failed pc10_pass
Failed pc4_pass
Failed pc9_pass
Failed pc8_pass
Failed pc7_pass
Failed pc6_pass

0500

618
243

74
29

4
3
2
2
0
0

0

200

400

In
te

rs
ec

tio
n 

siz
e 538

237

29 4 2 2 5
71

1 1 2

Figure 4.10 Set intersection plot of the samples failing different within-cohort PC filters.

Left bars – number of samples failing individual PC filters. Dots – set overlaps. Top bars –

the number of samples overlapping between the sets. First six bars (single dots) – number of

samples failing only one PC.
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Figure 4.11 PC1 scores correlate (0.7, Pearson) with the PC61000G scores from the 1000G

projection PCA. This suggests that the PC1 outliers are driven by Southern European genetic

ancestry.

of the 1000G analysis (Iberian and Tuscan cohorts) (Figure 4.11). Distribution of PC1 scores
matched closely for IBD and INTERVAL samples, suggesting a good mixture of cases and
controls (Figure 4.12). I could not identify the source of variance that drives the PC2 outliers,
but, once again, the distributions of the PC scores between IBD and INTERVAL samples
were very similar (Figure 4.12). PC2, overall, does not explain a lot of variance and can be
corrected via covariates. I did not observe any substantial decrease in the p-value inflation in
case-control association tests when the outlier samples were excluded, rather than corrected
for.

Unfortunately, I was unable to calculate the PCs for a larger set of variants and including
lower frequency variation (MAF > 1%, rather than 5%) due to some technical issues with
the cluster. It is curious that the PCR versus PCR-free separation present during the QC
score-based PCA was not observed here. It is possible that calculating the the PCs based on a
small and well-genotyped subset of SNPs masked the variation between the two sequencing
protocols. I am planning to repeat the within-cohort PCA analyses immediately once the
technical issues are resolved or a workaround is found.
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Figure 4.12 Violin plot comparing the distributions of the projected PC scores for IBD and

INTERVAL (without outlier removal). No major distribution differences across the first ten

principal components are present, suggesting a good case-control mixture.
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4.2.8 Variant and site quality control

In addition to the manual variant filtering (described in individual sections above), I have
used the VQSR method to identify poorly genotyped sites. When used in conjunction with
manual filtering, VQSR does not have much effect on the common variants (the absolute
majority of which pass this filter). However, the VQSR filter will be used in the future
genome-wide rare variant association tests.3

VQSLOD (variant quality score log-odds) scores were calculated for the final set of
genotype calls (separately, for SNPs and INDELs) via the VQSR method. VQSR is a
machine learning based method that uses Gaussian mixture models to estimate the likelihood
of a variant being true. It requires a set of variants that are considered to be ‘real’ (e.g., taken
from a high-quality population sequencing study, such as the 1000 Genomes). VQSR then
builds a model based on the distribution of the quality scores of these variants (e.g., depth at
site, mapping quality rank sum, strand odds ratio). The model is then used to score the full
set of variants, evaluating how close their quality scores are to the scores of the true variant
set.

The final stage requires selecting the VQSLOD score cutoff. This is done using the
tranche sensitivity (e.g., a VQSLOD score of 5.0 leads to the detection of 99.50% of true
positive variants, compared to the VQSLOD of 3.0 that allows the detection of 99.99%
of true variants4). For SNPs, one usually looks at how the chosen tranche influences the
transition-transversion ratio (Ti/Tv), which is expected to be ∼2.0–2.1 for whole-genome
datasets and ∼3.0–3.3 for whole-exome datasets (the latter will vary depending on the exome
capture kit used). A good practice is to choose the highest tranche where the Ti/Tv is close
to the target value, yet does not strongly differ from the Ti/Tv of the previous value (i.e., is
at the rightmost side of the distribution plateau). For INDELs, the threshold choice cannot
be motivated by the Ti/Tv ratio and is therefore done based on the number of novel variants
each extra tranche brings (e.g., if going from the 99.8% tranche to the 99.9% tranche brings
an increase of 80% percent of novel INDELs, one should be cautious about false-positives
and consider picking 99.8%).

3Parameters and the follow up analysis performed by me. Computation set up by Allan Daly due to the
availability of computing resources.

4VQSLOD to truth sensitivity scores mappings are provided as an example, real mappings will vary across
different datasets
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VQSR was performed with the parameters described in the Broad Institute’s ‘generic
germline short variant joint genotyping’ pipeline. Briefly, for SNPs I fitted 6 Gaussians and
used the following fields to train the model:

• QD – QUAL score normalised by allele depth

• MQRankSum – rank sum test for mapping qualities of reads supporting REF versus
reads supporting ALT

• ReadPosRankSum – rank sum test for position within reads supporting REF versus
position within reads supporting ALT

• FS – Fisher’s exact test for strand bias

• MQ – mapping quality

• SOR – symmetric odds ratio test

• DP – depth

For INDELs, I fitted 4 Gaussians (reduced from 6 due to a smaller set of variants
and the danger of overfitting) and used the following annotations: FS, ReadPosRankSum,
MQRankSum, QD, SOR, DP.

The following resource sets were used for training:

SNP True sites training resource: HapMap, Omni. Non-true sites training resource:
1000G. Known sites resource, not used in training: dbSNP.

INDEL True sites training resource: Mills. Non-true sites training resource: axiomPoly.
Known sites resource, not used in training: dbSNP.

All training and testing resources were obtained from the GATK Resource Bundle. The
outputs from the VQSR calibration are shown on Figure 4.13.
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Figure 4.13 VQSR calibration results for IBD & INTERVAL 15x cohorts. a) Target truth

sensitivity (x-axis) influences the number of novel SNP variants (blue curve and left y-axis)

and their transition/transversion ratio (red curve and right y-axis). 99.7% was selected as the

tranche for further filtering (i.e, in our filtered call set 99.7% of the overlapping sites present

in the truth set can be detected). The tranche was selected based on the point where the Ti/Tv

curve overlaps with the number of novel sites curve in order to maximise the true-positive

variant. I have also verified that the Ti/Tv ratio for the tranche (Ti/Tvnovel = 1.9) closely

matches the expected ∼2.0–2.1. b) Target truth sensitivity (y-axis) influences the number of

novel INDEL variants. 99.5% tranche was selected for further filtering.
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4.3 Results

4.3.1 Evaluating the sequencing depth and the statistical power trade-
off for WGS association studies

Optimal sequencing depth for case-control experiments

I simulated power to detect rare SNP variants present in 0.25% of cases and 0.05% (OR =
5) given two experimental scenarios: unlimited budget, fixed number of samples (25,000
cases and 25,000 controls); limited budget (sufficient for sequencing 50,000 samples at 30x,
1:1 case-control ratio) with an unlimited number of cases and controls to choose from. The
simulation takes into account the sensitivity of the variant calling presented in Figure 4.2 and
a realistic cost estimate (cost per ‘x’ * depth + fixed cost per sample)5. Reflecting the pricing
back in 2017, the cost per ‘x’ of depth (9Gbs) was set to 10.8; fixed cost per sample (e.g.,
library prep, labour) was set to 18.84.
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Figure 4.14 Power to discover rare SNP variants in a case-control experiment setup. Blue

line simulates the scenario with a limited budget and an unlimited number of available

samples, while the green line shows the unlimited budget/limited cohort scenario.

5Original simulation by Dr Jeff Barrett. Re-implementation and extension to support quantitative trait
simulations by the author. Updated sensitivity and cost values.
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In the fixed sample size scenario, the power plateaus around the 15x sequencing depth. In
the fixed cost scenario, the maximal power is achieved when sequencing the largest number
of samples at a minimal depth.

Realistically, the IBD 15x project was constrained by both the number of available
samples and the budget. For the fixed sample size scenario, the power plateaus around the
15x-17.5x mark, which is close to the median depth of the IBD 15x and the INTERVAL
datasets. Sequencing at an even lower depth (say, 10x) might have increased the power to
detect SNP associations, but would have led to a severe reduction in the INDEL sensitivity
and hindered future projects like structural variant calling.

Choice of sequencing depth for biobank-scale projects

I performed simulations for national biobank-scale studies (e.g. the UK Biobank, which has
enrolled 500,000 participants) to see whether 15x remains the optimal sequencing depth.
Statistical power to discover associations using burden tests, for a set of rare variants (Figure
4.15) at different biobank sizes (50,000 to 500,000) was estimated.

In 2018, plans to sequence the first 50,000 individuals from the UK Biobank cohort at
30x depth were announced [172] (the ‘Vanguard’ project). I used this model to evaluate the
power to discover rare variant associations in Vanguard versus the full UK Biobank (Figure
4.16). In September 2019, plans to whole-genome sequence the whole UK Biobank were
announced.

The power to detect rare variants is driven by sample size, rather than by sequencing
depth. For all study sizes, except n=500,000, the power plateaus around 15x. For a (realistic)
scenario, where the budget for sequencing is fixed (dotted blue line: budget sufficient for
sequencing 50,000 samples at 30x), sequencing more samples is preferable to sequencing at
a higher depth.

Overall, although in retrospect, I believe that sequencing at 15x depth was the right design
choice for the Crohn’s whole-genome sequencing association study. Considering the limited
budget and the limited number of available samples, it maximised the ability to detect rare
variants. For SNPs and INDELs, the sensitivity benefit of sequencing samples at a higher
depth is modest, while the cost would grow semi-linearly, thus reducing the cohort size and
the overall power for association studies.
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Figure 4.15 Power to discover associations using burden tests for a set of rare variants with a

cumulative frequency of 5∗10−4 in a gene, assuming β = 0.5 s.d. and α = 1x10−6. The blue

dotted line shows the trade-off between depth, cost and power: sequencing 50,000 samples

at 30x would result in power around 1%, while sequencing 100,000 at around 14x would

provide 8% power (while keeping the cost the same, taking into account fixed costs and cost

per depth).
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Figure 4.16 Power to discover associations by aggregated rare variants in the UK Biobank (α

= 1x10−9). Pilot release (‘Vanguard’ project, left, n=50,000): near perfect power to discover

associations for variants with a cumulative β greater than 0.6 SD and frequency of 6 : 1,000.

Full UKBB WGS (right, n=500,000): near perfect power to discover associations for variants

with a cumulative β greater than 0.6 SD and frequency of 4 : 10,000. Simulation by me, plot

refined by Dr Klaudia Walter.
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However, this simulation has several drawbacks. Lower sequencing depth leads to a
higher error rate and requires much more stringent QC in order to avoid false associations
(e.g., [116]). The ability to detect INDELs and CNVs, which require higher sequencing depth
for accurate genotyping, should also be considered. For high-quality CNV genotyping, other
techniques like long-read PacBio or Nanopore sequencing may be more appropriate, and the
simulation is not currently suited for estimating the statistical power for those sequencing
types.

The conclusions of my simulations match those from the work of Rashkin et al. [152],
who conclude 15–20x to be the optimal depth for studies of rare variants in complex disease.

4.3.2 Index misassignment impacts multiplexed sequencing

Multiplexing allows simultaneous sequencing of several libraries during the same sequencing
run. This is achieved by adding unique index sequences (‘tags’, ‘barcodes’) to DNA frag-
ments during the library preparation stage. Multiplexing is routinely used in multi-sample
studies to increase the throughput, reduce the expenses on the reagents, and, in theory, to in-
crease the quality of the data via read group averaging. Multiplexing adds an additional level
of complexity to the sequencing process, as the individual reads have to be computationally
assigned to the correct target sample (demultiplexed). Reads for the same sample obtained
from a single sequencing run are called a read group.

In certain cases, indexes get misassigned to the wrong read or multiple conflicting indices
get attached to the same read (‘chimeric’ indices). The index misassignment is sometimes
referred to as ‘index hopping’. Reads with misassigned indexes ultimately result in low-level
cross-contamination of the samples and reduce the quality of the variant calling. The exact
rate of index hopping is hard to measure, as it depends on the experiment type, library
preparation protocol, multiplexing factor, and other variables. The manufacturer reports the
expected rates to be 1–2% [83], while some independent studies have claimed to observe
index hopping rates ∼10%. While some protocols are thought to reduce the index hopping
rate [83], it remains present in all current multiplexed studies.

I have attempted to quantify the index hopping rate in the IBD and INTERVAL 15x
cohorts. To quantify the index hopping rate and, ultimately, sample cross-contamination
the FREEMIX metric produced by the VerifyBamID tool [195] was used. Authors suggest
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interpreting samples with FREEMIX > 2–3% as potentially contaminated. The metric is
often used as a sample quality control metric to exclude samples with a high level of DNA
contamination, as it leads to poor genotyping quality. However, the exact threshold varies
across studies. The UK10K consortium excluded samples with FREEMIX > 3% [180]. The
gnomAD genome aggregation database excludes whole-genome and whole-exome samples
with FREEMIX > 5% from the variant callset during the sample quality control stage.

I was particularly interested in batch-specific variations in contamination, given that
INTERVAL Phase 1 was processed using a PCR library prep protocol (thought to lead to
lower index missassignment rates [83]) and IBD Phase 3 used dual indexing. Dual indexing
assigns a unique combination of indices at both ends of the read, therefore reducing the
chances of read missasignment during demultiplexing (reads get discarded if the indexes
mismatch). Dual indexing is planned to be used for a variety of future sequencing studies at
the Sanger Institute (e.g., the IBD WES project), therefore it was important to verify whether
it in fact leads to an increased misassignment rate.

I have calculated the FREEMIX (FM) per each read group (N=111,225) rather than per
sample, as the rate of missasignment varies between the sequencing runs (Figure 4.17). A
two-sample Kolmogorov-Smirnov test (KS) was used to evaluate whether the FM scores for
two 15x batches follow the same distribution. Overall, the median FM score across all read
groups was moderately low: 0.55%. 3.7% of read groups had a FM > 2% (0.36% read groups
above the critically high 5%). Two of the earliest sequencing batches had the highest mean
FM: INTERVAL Phase 1 = 0.96% (PCR) and IBD Phase 1 = 0.82% (PCR-free), suggesting
that, on its own, the PCR-free sequencing did not negatively impact the contamination rate
even at the early stages of the project (KS statistic = 0.08; p=4.59×10−41). IBD Phase 3,
which utilised dual indexing, had the lowest mean FM score across all batches – 0.07% and
was lower than the FM in INTERVAL Phase 3 – 0.48%, which was sequenced around the
same time, but utilising regular single indexing (KS statistic = -102.66; p<1.80×10−308).
Considering the mean FM for each sample, I have identified 61 samples with FM > 5%
(gnomAD threshold, used as a step in sample QC) (Figure 4.18).

I estimated the effects of index missasignment during multiplexed sequencing across
two library preparation protocols (PCR versus PCR-free) and two indexing techniques
(single versus dual indexing) using the FREEMIX metric. Overall, the findings suggest
that only a small fraction of read groups (3.7%) had a contamination level > 2%. I did
not find any evidence to the manufacturer’s claim that PCR-free library preparation leads
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Figure 4.17 FREEMIX scores of 111,225 read groups of samples from the IBD and INTER-

VAL 15x (median of 6 read groups per sample). Read groups are categorised by project

batch. The box plots show the median levels of contamination per batch. Scatter plots and

and density plots indicate the distribution of the scores. Orange dotted line the shows level

of FREEMIX (2%) that indicates potential contamination. Red dotted line shows level of

FREEMIX (5%) that indicates strong contamination.

to higher index hopping [83], though there was only one batch of samples processed with
PCR-including protocol. Dual-indexing appears to reduce the level of contamination by an
order of magnitude and should be considered to be used in future studies. I acknowledge
that FREEMIX might not be an ideal marker of index misassignment, as it will also capture
sample contamination (e.g., during handling). I also noticed that the distribution of FREEMIX
was not identical (although the shift was very small) between batches that followed the same
sequencing protocol (INTERVAL Phase 2 versus INTERVAL Phase 3 – KS statistic = 0.30;
p<1.80×10−308). My initial consultations with the pipelines team did not identify any cause
for this.
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Figure 4.18 Mean FREEMIX for each sample in the INTERVAL and IBD samples. The

absolute majority of the samples (96%) have a FREEMIX below the ‘potential contamination’

level of 2%.

4.3.3 Estimating the impact of the covariates on the power to detect
associations in a case-control setting

Next, I estimated the impact of including batch and principal component covariates on the
power to detect known Crohn’s disease associations. I derived a list of 105 independent
variants associated with CD in de Lange et al. [49]. While the variants pass the genome-wide
significance threshold in those two studies, in 15x, the majority will have a much higher
p-value due to the smaller number of both cases and controls. 253 known UC samples
were excluded, 17,912 samples were retained. Logistic regression using the Firth test was
performed to estimate the p-values. A variety of conditions were tested: not including
any covariates, including 10 principal components, including additional QC metric-based
principal components, explicitly correcting for sequencing batches.

The conditions were compared against the base-case – not including any covariates at
all. Amongst the tested conditions, the strongest p-values were obtained when controlling
for 10 within-cohort PCs, closely followed by the no-covariate setting. Inclusion of the
first QC metric-based PC, which effectively separates the PCR and PCR-free cohorts, had
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Figure 4.19 Influence of the inclusion of different covariate types on the power to identify

known Crohn’s associations in the IBD 15x cohort. X axis – p-values when replicating known

Crohn’s disease associations when performing logistic regression with no covariates. Y axis –

p-values when replicating known Crohn’s disease associations when using a particular set of

covariates.

a smaller detrimental impact on the power than explicitly controlling for PCR via a binary
covariate. Given that the PCR vs PCR-free sequencing seems to be the largest source of
sequencing heterogeneity in the cohort, one should consider including this PC in future
regression analyses. Overall, the batch-based covariates strongly reduced the power, as they
effectively regress out case-control status of the samples in that cohort. In addition, binary
covariates that are only positive in cases or controls require switching from the Wald or the
LRT test to use the more computationally ‘expensive’ Firth test (2x–3x greater execution
time), which should be considered when testing 200 million variants. The betas of known
CD associations from de Lange et al. were compared to the betas estimated in 15x. In all
covariate scenarios the betas were very strongly correlated (Peason r > 0.95). This suggests
the absolute majority of the cases in the IBD 15x were, in fact, Crohn’s disease patients
(Figure 4.20).

In addition, I performed a case-control analysis on the LD-pruned subset of variants, with
IBD-associated regions excluded. The variants were filtered quite stringently (MAF > 5%,
depth > 10, genotyping quality > 10, call rate > 99%). The genetic inflation factor λ was
calculated for each covariate-control scenario described above to estimate the presence of
cryptic population structure and batch effect. Overall, I identified the inflation factor to be
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Figure 4.20 Betas of the known Crohn’s disease associations estimated in the 15x cohort are

strongly concordant to the ones reported in de Lange et al. [49]: minimal Peason r=0.95 (no

covariates), maximal r=0.97 (10 PCs, 10 QC PCs).

between 1.13 (10 PCs, 10 QC PCs) and 1.19 (no covariates and 10 PCs, 1 QC PC). One
notable exception was the scenario where I controlled for the 10 principal components, two
IBD batches and the Interval Phase 1 batch – λ = 1.02. Interpretation of the absolute lambda
values is not entirely straightforward, given that any polygenic trait will have λ > 1.00 and
some published GWAS have λ = 1.42 (although, with many more samples) [193].

I believe there are several potential explanations for this: Perhaps the performed sample
QC was insufficient and the outlier samples or the unidentified batch effects could be
driving the moderate p-value inflation. This will require further investigation. Alternatively,
poorly-genotyped variants could be driving the inflation. However, the rather stringent
variant QC and lack of genome wide significant associations suggest that this is not the case.
Alternatively, while the regions around the known IBD hits were excluded, IBD is thought to
be a highly polygenic trait: Watanabe et al. [189] estimate that 0.06% of SNPs are causally
associated with IBD. Therefore, despite excluding the known IBD variants, the inflation
factor might be capturing some of the unknown causal variants.
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4.3.4 Meta-analysis with the Broad IBD WES results

Our collaborators at the Broad Institute are currently finalising the production of a large multi-
ethnic whole-exome sequencing cohort of IBD patients and matched population controls. The
current data freeze contains around 10,000 non-Finish European cases and 17,000 controls.
In addition, approximately 2,000 African American cases and a similar number of controls;
2,600 Ashkenazi Jewish cases paired with 4,000 controls; 1,500 American Hispanics with
1,000 controls (split into two groups due to admixture); 1,300 Finnish cases and 8000 controls
were exome sequenced as a part of the same project. A number of ‘promising’ rare variants
which reach a lenient significance threshold α=1×10−5 in an internal meta-analysis of all
population cohorts were identified. Several variants have reached genome-wide significance
level in past GWASs (bold in Table 4.1). The variants were annotated as ‘GWAS’ if they
were within close proximity to known IBD associations or ‘novel’ if they fell outside such
regions. Variant effect sizes and p-values calculated for the Crohn’s disease subset of the
Broad WES cohort were considered.

My goal was to meta-analyse the nominally-significant Broad WES results together with
the summary statistics from the 15x study, to verify the feasibility of a future exome-wide
meta-analysis and to evaluate the homogeneity of our results. Fixed effects meta-analysis was
performed to combine the results from the individual WES cohorts with 15x. In addition, the
I2 metric was calculated to evaluate the heterogeneity of effect sizes from the Sanger 15x and
the Broad non-Finnish European cohorts. I2 metric across all populations was also calculated.
As expected, it was marginally higher than the WES NFE vs 15x metric – both due to
additional power to estimate heterogeneity, and, potentially, due to the heterogeneous effect
across populations. Liu et al. demonstrated [111] that the effects of most IBD-associated
variants are not heterogeneous across different global populations. However, this assumption
will need to be revisited for rare-variant associations when the Broad WES dataset is finalised.

The 15x cohort was subsetted to 17,912 Crohn’s disease cases and controls that passed
the previously described sample QC. Logistic regression using the Firth test was performed,
controlling for 10 principal components. Variants that passed the exome-wide significance
threshold (α=4.3×10−7 [176] for coding variants) are listed in Tables 4.1 (GWAS-implicated
regions) and 4.2 (novel).

Amongst the variants within the known IBD regions (Table 4.1), the strongest association
was with the frameshift insertion in NOD2 – rs199883290 (b37_pos: 16:50763778:G:GC,
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OR meta = 3.04; 95% CI meta: 2.84 to 3.26; P meta = 7.25×10−220, I2 EUR = 0; MAF (NFE
gnomAD) = 2.6%; MAF (INTERVAL) = 1.8 %). The variant had p-values lower than 0.05
across all cohorts and had a consistent effect across all ancestry groups I2 = 0. The particular
variant appears to be 3020insC, described by Ogura et al. [136].

Interestingly, some large effect size variants are found in regions that were previously only
known to harbour low effect size variation. For example, a frameshift deletion in TNFRSF6B

– rs54058315 (b37_pos: 20:62328248:CAG:C; OR meta = 2.95; 95% CI meta: 2.03 to 4.28; P
meta = 1.54×10−8) is around 1 Mb away from an intronic variant rs6062496 that has an odds
ratio ∼1.13–1.15 in past GWAS (lead variant in a signal mapped to TNFRSF6B) [111, 49].
This indicates that rare large effect size variants are not limited to the regions with known
common large effect associations (e.g., NOD2).

Finally, four significant associations outside the known IBD regions were identified
(Table 4.2). One of the variants (8:144995964:G:A) was within PLEC – a gene that encodes
plectin, a cytolinker protein which is involved in maintaining cell and tissue integrity [26].
Another missense (14:81972441:T:C) variant was within SEL1L that is thought to be required
for the maintenance of intestinal homeostasis [61].

One of the significant variants is in PKD1 (16:2142083:C:G) – a gene previously impli-
cated in intestinal immune regulation. Administration of the PKRD1 protein is thought to
induce down-regulation of TNF-α expression in macrophages [134]. However, despite the
potential biological relevance, the variant appears to be entirely driven by the signal in the
WES NFE cohort (p = 4.11×10−10). The variant was not even nominally significant in the
15x cohort (p = 0.38) or any WES cohort (apart from NFE). It shows strong heterogeneity
effect between the Sanger 15x and WES NFE cohorts (I2 EUR = 89.11). Therefore, I believe
that the association is false. This underscores the importance of tests for heterogeneity of
effects when performing meta-analysis.

The associations outside of the known IBD regions, despite the smaller sample size
compared to the biggest IBD GWASs, are interesting in light of the recent work by O’Connor
et al. [135] who hypothesise and provide some evidence that the extreme polygenicity of
complex traits is a byproduct of purifying selection that purges high-effect variants from
‘critical’ genes and loci, leaving behind common-variant associations in critical regions of
the genome. However, further work is required to formally evaluate this.
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At this stage, I have only meta-analysed the variants that show some evidence of associa-
tion in the Broad WES cohort. Fifteen rare variant associations across twelve genes were
identified at the exome-wide significance level. Some of these were of extremely low fre-
quency – down to 4 in 10,000 (16:50750810:A:G in NOD2) and not passing the significance
threshold in any of the individual cohorts. This demonstrates the utility of meta-analysis
to increase the statistical power for identifying rare variant associations in IBD and other
complex diseases. Considering that the 15x sample size is comparable to that of the WES
NFE cohort (which drives the majority of associations), the next logical step is to run a
full-meta analysis of the two cohorts.

4.4 Discussion

In this chapter, I described the IBD 15x study – the largest IBD whole-genome sequencing
association study to date. The study will help understand what role rare and low-frequency
variation, largely missed during the GWAS era, plays in the pathogenesis of IBD. Ultimately,
I hope that the uncovered genetic associations will inform potential IBD drug targets, and
perhaps lead to the development of new IBD therapies. In addition, the study includes several
thousand richly-phenotyped individuals from the NIHR IBD BioResource – and will be used
to study the subphenotypes of IBD, and enable the extension of the pharmacogenetics studies
described in the first two research chapters.

The variant calling was completed in July 2019, which meant that the time I was able
to spend on analysing the final dataset was fairly limited. The scale of the WGS dataset,
complexity of the quality control procedures, and the difficulty of differentiating between
false and true positive associations made rapid progress quite difficult. Therefore, I have
decided to concentrate on the sample QC procedures – a step which will be crucial to ensure
the quality of the future association studies that use the 15x cohort.

Overall, post sample-QC, the dataset can be used to finalise the site and variant QC, and,
finally, start running the association studies. After removing the outlier samples, I was able to
replicate 91% of the known CD associations (96 out of 105) to the α = 0.05 significance level
and with variant betas closely matching those described in the largest Crohn’s disease GWAS
(r=0.97). Inevitably, given the iterative nature of the association studies and depending on
the results from the first genome-wide analyses, some of the sample QC thresholds may be
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V MAF Gene OR OR OR 95% CI I2 P P P

INT NFE 15x meta meta EUR NFE 15x meta

16:50763778:G:GC 0.018 NOD2 3.07 2.97 3.04 (2.84, 3.26) 0.00 2.85e-106 1.48e-70 7.25e-220

1:67705958:G:A 0.068 IL23R 0.44 0.43 0.43 (0.40, 0.46) 0.00 4.73e-43 5.44e-55 1.19e-121

16:50745926:C:T 0.047 NOD2 1.91 2.01 1.96 (1.85, 2.07) 0.00 8.23e-54 5.89e-55 1.67e-121

16:50756540:G:C 0.013 NOD2 2.45 2.42 2.42 (2.22, 2.63) 0.00 4.33e-37 1.63e-29 3.41e-89

16:50750842:A:G 0.0013 NOD2 2.76 2.75 2.94 (2.38, 3.62) 0.00 1.08e-04 8.71e-06 1.06e-23

19:10463118:G:C 0.051 TYK2 0.74 0.64 0.69 (0.64, 0.75) 60.19 1.14e-06 8.91e-15 1.18e-20

4:103188709:C:T 0.076 SLC39A8 1.26 1.26 1.24 (1.18, 1.30) 0.00 2.04e-08 3.41e-09 4.12e-17

16:50746086:C:T 0.0043 NOD2 2.08 1.82 2.10 (1.76, 2.49) 0.00 1.70e-09 3.59e-05 7.86e-17

9:139259592:C:G 0.006 CARD9 0.30 0.37 0.37 (0.29, 0.47) 0.00 8.29e-11 1.42e-07 1.15e-16

16:50827518:C:T 0.07 CYLD 1.21 1.16 1.21 (1.15, 1.27) 0.00 4.70e-06 4.66e-04 3.03e-14

19:10469975:A:C 0.095 TYK2 1.15 1.20 1.19 (1.14, 1.25) 0.00 3.08e-04 5.11e-07 6.90e-14

4:3449652:G:A 0.067 HGFAC 1.25 1.13 1.22 (1.15, 1.28) 63.19 2.69e-07 4.29e-03 1.86e-13

12:40740686:A:G 0.017 LRRK2 1.47 1.36 1.39 (1.27, 1.52) 0.00 1.10e-06 1.14e-04 4.17e-13

22:21998280:G:A 0.014 SDF2L1 1.52 1.33 1.46 (1.32, 1.62) 14.49 1.15e-06 1.49e-03 4.50e-13

1:67705900:G:A 0.015 IL23R 0.61 0.70 0.67 (0.59, 0.75) 0.00 2.56e-06 4.53e-04 7.32e-11

19:10464843:G:A 0.0077 TYK2 0.43 0.60 0.53 (0.43, 0.65) 57.24 2.04e-07 5.19e-04 1.62e-09

19:10600418:G:A 0.018 KEAP1 1.35 1.29 1.30 (1.19, 1.42) 0.00 5.72e-05 7.93e-04 2.87e-09

11:65425764:C:T 0.0043 RELA 2.00 1.51 1.74 (1.45, 2.08) 46.88 2.31e-07 6.77e-03 3.38e-09

16:50750810:A:G 0.00047 NOD2 3.34 2.73 2.15 (1.66, 2.78) 0.00 4.72e-03 8.74e-03 5.02e-09

9:139358899:C:T 0.029 SEC16A 0.77 0.78 0.75 (0.69, 0.83) 0.00 3.65e-04 3.03e-04 1.02e-08

20:62328248:CAG:C 0.00068 TNFRSF6B 2.73 2.60 2.95 (2.03, 4.28) 0.00 9.36e-04 3.55e-03 1.54e-08

2:234436069:C:T 0.049 USP40 0.82 0.81 0.82 (0.76, 0.88) 0.00 7.39e-04 1.22e-04 3.37e-08

16:50745929:C:T 0.0048 NOD2 1.54 1.69 1.63 (1.37, 1.95) 0.00 8.07e-04 1.81e-04 3.46e-08

22:21800049:G:A 0.0034 HIC2 1.94 1.43 1.52 (1.30, 1.78) 44.05 1.71e-05 3.52e-02 1.32e-07

1:161496178:G:A 0.097 HSPA6 1.13 1.08 1.13 (1.08, 1.18) 0.00 1.42e-03 4.23e-02 3.29e-07

Table 4.1 Summary statistics for the meta-analysed variants within the known IBD-associated

regions. Only variants that pass the exome-wide significance threshold are shown. Variants

previously reported in other GWAS are highlighted in bold.
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V MAF Gene OR OR OR 95% CI I2 P P P

NFE 15x meta meta EUR NFE 15x meta

1:117122269:GGTC:G 0.008 IGSF3 0.52 0.37 0.38 (0.29, 0.49) 21.60 7.34e-03 1.17e-09 2.91e-13

16:2142083:C:G 0.0015 PKD1 0.25 0.77 0.42 (0.31, 0.57) 89.11 4.11e-10 3.82e-01 3.46e-08

8:144995964:G:A 0.07 PLEC 1.14 1.14 1.15 (1.09, 1.21) 0.00 1.79e-03 1.43e-03 6.41e-08

14:81972441:T:C 0.014 SEL1L 1.42 1.32 1.36 (1.21, 1.53) 0.00 3.82e-05 1.93e-03 1.39e-07

Table 4.2 Summary statistics for the meta-analysed variants outside of the known IBD-

associated regions. Only variants that pass the exome-wide significance threshold are shown.

The variant in PKD1 is likely to be a false association, driven entirely by one of the meta-

analysed cohorts.

adjusted and some extra steps added. However, I believe the implemented QC pipeline works
robustly with WGS data and can be extended fairly easily.

In addition, I have described my earlier work on power modelling for sequencing associ-
ation studies. The modelling results suggest that sequencing more samples at around 15x
to 17x depth provides more statistical power to detect rare, single variant associations in
case-control and quantitative trait settings, compared to sequencing a smaller cohort at full
30x depth. The conclusions match those published by Rashkin et al. [152].

I have provided an overview of the index missassignment issue, widely reported to be
affecting the last two generations of Illumina short read sequencing machines. I confirmed
the presence of cross-sample index missassignment across all 15x batches. However the
results indicate that only a small fraction of read-groups are strongly affected (3.7%). In
addition, I confirmed that dual indexing greatly reduces the missassignment levels and should
be considered for all future WGS and WES studies.

Finally, I have provided early single-variant association results from the 15x cohort by spot
meta-analysing some ‘promising’ variants, found by our collaborators at the Broad Institute
in a large whole-exome sequencing cohort. The majority of the significantly associated rare
variants appear to be harboured in known IBD genes like NOD2, TYK2, and IL23R. Some of
these variants appear to have a much higher effect size than their previously-known common
variant counterparts (for example, rs540583157 in TNFRSF6B. In addition, the meta-analysis
indicates that variants in PLEC, SEL1L, and IGSF3 play a role in the pathogenesis of IBD,
and, to my knowledge, no previous IBD associations have reported variants linked to them.
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The spot meta-analysis will be followed by a full-scale joint association study that combines
more than 35,000 cases and 95,000 controls across several global populations.

Ultimately, while the spot meta-analysis has already provided some interesting results,
this is just the beginning of work on the IBD 15x association study.

Single-variant tests association tests should be performed genome-wide to estimate the
effects and the significance values of individual variants. Almost certainly, during the first
few iterations these results will contain plenty of artefacts – spurious false associations. QC
metric properties of such variants should be observed to refine the variant and site filters to
make them more stringent. In addition, the p-value inflation metric λ and QQ-plots should
be used to validate the absence of population structure, which often leads to an abundance
of marginally significant variants across the entire genome. It is important to get the single
variant association tests done to a good standard, as the spurious associations can negatively
influence the outcome of the gene and noncoding burden tests (described below), where it is
even harder to identify false results driven by false associations.

Separating true and spurious rare variant associations may be nontrivial. When conducting
traditional GWAS, a known heuristic approach is to create a locus zoom plot and observe
neighbouring associations which should have p-values close to the top SNP (due to the
LD). Unfortunately, for many rare variants such an approach is futile – there may be no
neighbouring variants in high LD. However, other techniques can be used to validate rare
variant associations. Firstly, one should verify that the variant is not present in only one of the
sequencing batches, or, ideally that the allele count per batch matches the expected one given
the batch sizes. Secondly, given the presence of the summary statistics from the Broad WES
cohort, an exome-wide meta-analysis could be conducted and used as a QC tool. QC metrics
of variants with high evidence of heterogeneity should be inspected, potentially informing
the filtering thresholds. Thirdly, large-scale frequency databases like gnomAD can be used
to verify that the frequency of the variant closely matches that reported in the database. At
the time of this thesis completion gnomAD was not available for genome build 38 data,
but should be updated for the next release. Lastly, all reported single-variant associations
should be verified by manually inspecting the track plots produced by tools like IGV – these
visualise the reads that went into the variant call, helping to understand whether a calling
error has occurred. Ideally, for the reported associations, targeted Sanger sequencing of a
few carriers should be performed.
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Once the QC is complete, I would expect the absolute majority of the novel rare associa-
tions to be coding. This is expected, as, at the current sample size, we are well-powered to
detect rare variant associations with an odds ratio of around 1.5 and above (∼80% power
to detect rare-variant associations of 1% frequency variants with relative risk of 1.5 and
above). In order to increase the number of novel rare-variant associations even further, the
summary statistics from the single-variant tests will be used to perform the joint coding
region meta-analysis with other cohorts: Broad WES and Sanger WES.

In the initial spot meta-analysis a fixed-effect model was used. Fixed-effect meta-analysis
assumes that the differences in the observed effects are due to sampling errors. This is justified
given the observation that the majority of known common IBD associations have a non-
heterogeneous effect across global populations (Cochran’s Q test for heterogeneity, p > 0.05)
[111]. In the current meta-analysis, some heterogeneity of effects was observed. Therefore,
analysis with a random-effects model should be considered. Mixed-effect models allow for
the true effect size to be different between the groups – accounting for potential ancestry-
specific effects, gene × environment interactions, and for heterogeneity of recruitment. It
is unclear whether one would expect the rare variant associations to have a similar effect
across different ancestry groups: isolate population studies have consistently uncovered
pathogenic variants which have similar effects in both the isolate and the global populations
(see Introduction chapter). However, the heterogeneity of rare variant associations has never
been been studied systematically and warrants further investigation. Additional meta-analysis
techniques, like the Bayesian MCMC-based methods, can be considered.

WGS and WES datasets provide an opportunity to study extremely rare, almost private
genetic variation. However, single variants tests are not sufficiently powered to robustly
associate these variants with the phenotype. To overcome this, techniques that group together
the effects of ultra-rare, typically deleterious, variants (LoFs) exist (see the Introduction
chapter). The variants are usually grouped together on the per-gene (gene-based tests) or a
per-exon level. The burden of the rare variants is compared between cases on controls. Since
less elements are tested, compared to the single-variant association tests, the multiple-testing
significance threshold is adjusted accordingly. Luo et al. [116] used gene-based tests to
detect a burden of very rare, damaging variants in known Crohn’s disease risk genes. It
would be interesting to see whether the burden tests performed on 15x and the WES cohorts
allow us to identify new IBD-associated genes not previously implicated via single variant
tests.
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Burden tests can be used in a more targeted, hypothesis-driven way. Instead of testing
the burden across all genes, one could evaluate groups of genes united by some biologic
function (pathways, groups of genes associated with a disorder, etc.). One of the less explored
questions in IBD genetics is the architecture of the neonatal (‘infantile-onset’) and very early
onset IBD. For neonatal IBD, 60 monogenic defects that cause IBD-like colitis have been
identified [168]. Very few of these overlap with genes implicated in common-variant GWAS.
It is not well-understood whether the phenotypic similarity of neonatal and adult-onset IBD
is underpinned by overlapping biologic mechanisms, though some of the monogenic variants
are in genes involved in epithelial barrier function (e.g., TTC7A [12]). The interest in the
architecture is not just driven by scientific curiosity, but by the fact that monogenic IBD
patients are often refractory to conventional therapies. It would be interesting to see if
the genes involved in neonatal IBD are enriched for a burden of rare, pathogenic variants
in the adult-onset 15x cohort. If this is the case, IBD and neonatal IBD are genetically
overlapping disorders, with some adult IBD patients carrying rare, pathogenic variants within
the neonatal IBD-implicated genes. A lack of burden might suggest that the neonatal IBD
patients are often refractory to conventional treatments, due to these treatments targeting
different biological processes.

Arguably, the most challenging task of the future analysis is uncovering rare associations
within the noncoding regions of the genome. Assuming low or moderate effect size of
such variants, the cohort is not big enough to find many of these during single-variant tests.
Noncoding variants can be grouped together and used for association tests. The significantly
associated groups can be the then examined to identify individual variants that are driving
the signal. A detailed overview of the grouping techniques is provided in the Introduction
chapter. The majority of these approaches either groups the variants in an unbiased way (e.g.,
sliding windows across the genome) or tries to link them to the target gene). Grouping the
noncoding variants to the gene is nontrivial. One of the approaches is to link the noncoding
variants within the enhancers and promoters of that gene. Gene expression data can be used
to refine these groupings. More recently, a variety of methods for in-silico prioritisation
of noncoding regulatory variants have emerged [104], yet their predictive value remains
imperfect [56].

Finally, the rare coding and noncoding variation can be used to improve the predictive
value of the polygenic risk scores (PRS) for IBD. Currently, the predictive value of PRS is
quite low (AUC = 0.633) [97]. The predictive value typically correlates with the percentage of
the explained variance (‘SNP-based heritability’) which is low even in the biggest IBD GWAS
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and does not match the traditional twin-based heritability. The same discrepancy is observed
for the absolute majority of complex traits (the ‘missing heritability’ problem). Recent
work by Wainschtein et al. [184] shows that by including the rare variation from 20,000
whole-genome sequenced individuals, it is possible to to ‘recover’ this missing heritabiliy
for BMI and height. Rare, especially coding, variants in low LD with neighbouring variants
were enriched for heritability. It is unknown whether the same effect holds true for complex
disease, but the IBD 15x cohort provides a great opportunity to study this. If rare variants
are enriched for IBD heritability, a WGS-based polygenic risk score can be derived and
evaluated.

The role of rare variation in IBD pathogenesis remains largely unknown. Uncovering
rare pathogenic variants in known and novel IBD regions will improve the ability to prioritise
drug targets. The 15x study and the adjoining whole-exome datasets will be instrumental in
this task.


