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Chapter 2 - Materials and Methods 

Experimental procedures 

Experiments associated with the data presented in this thesis were performed by Roser Vento-Tormo 

with help from Margherita Turco, Rachel Botting, Jongeun Park, and Rebecca Payne, and are described 

in Appendix 1. 

 

Data analysis 

I performed all analyses described in the following sections with the exception of the work described 

under “Single-cell RNA-sequencing data analysis,” which was performed by Mirjana Efremova. 

 

Single-cell RNA-sequencing data analysis 

Droplet-based scRNA-seq data was aligned and quantified using the Cell Ranger Single-Cell Software 

Suite (v.2.0)110 against the GRCh38 human reference genome. Cells with fewer than 500 detected 

genes or more than 20% mitochondrial gene content were removed. Genes expressed in fewer than 3 

cells were also removed. SmartSeq2 sequencing data was aligned with HISAT2112 using the same 

genome reference and annotation as the droplet-based data. Gene-specific read counts were 

calculated using HTSeq-count113. Cells with fewer than 1,000 detected genes or more than 20% 

mitochondrial gene content were removed. Genes expressed in fewer than 3 cells were also removed. 

Downstream analyses such as gene expression log-normalization, k-nearest neighbor graph clustering, 

differential expression analyses (Wilcoxon rank-sum test), and visualization using the t-SNE 

algorithm114 were performed using the R package Seurat v.2.1.0115. t-SNE analyses were performed 

using a perplexity of 30. Clusters were annotated based on expression of canonical cell type markers 

listed in Appendix 2. We further removed cells we did not gate for (most likely maternal blood B cells 

and fetal brain tissue), clusters for which the top markers were genes associated with dissociation-

induced effects116, or mitochondrial genes, and a fibroblast cluster with high expression of hemoglobin 

genes due to background contamination of cell-free RNA.  

 

Maternal-fetal single-cell genotyping 

Whole-genome sequencing alignment and variant calling: 
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Maternal and fetal whole-genome sequencing data were mapped to the GRCh37.p13 reference 

genome using BWA-MEM v.0.7.15117. The SAMtools118 fixmate utility v.1.5 was used to update read 

pairing information and mate-related flags. Reads near known indels from the Mills119 and 1000G120 

gold standard reference set for GRCh37/hg19 were locally realigned using GATK IndelRealigner 

v.3.7121 (-model KNOWNS_ONLY -LOD 0.4). Base calling assessment and base quality scores were 

adjusted with GATK BaseRecalibrator and PrintReads v.3.7121. PCR duplicates were identified and 

removed using Picard MarkDuplicates v.2.14.1121,122. Finally, bcftools mpileup and call v.1.6123 were 

used to produce genotype likelihoods and output called variants at all known biallelic SNP sites 

overlapping protein-coding genes, compiled from NCBI dbSNP build 138 (GRCh37/hg19)124. For each 

sample, variants called with phred-scale quality score (QUAL) ≥ 200, at least 20 supporting reads (DP 

≥ 20), and mapping quality (MQ) ≥ 60 were retained as high-quality variants. 

Inferring maternal/fetal genetic origin of single cells from droplet-based scRNA-seq using whole-

genome sequencing variant calls: 

To match the processing of the whole-genome sequencing datasets, droplet-based sequencing data 

from decidua and placenta samples were realigned and quantified against the GRCh37 human 

reference genome using the Cell Ranger Single-Cell Software Suite (v.2.0)110. The fetal or maternal 

origin of each barcoded cell was then determined using the tool demuxlet125. Briefly, demuxlet can be 

used to deconvolute droplet-based scRNA-seq experiments in which cells are pooled from multiple, 

genetically distinct individuals. Given a set of genotypes corresponding to these individuals, demuxlet 

infers the most likely genetic identity of each droplet by evaluating scRNA-seq reads from the droplet 

which overlap known SNPs. Demuxlet inferred the identities of cells in this study by analyzing each Cell 

Ranger-aligned BAM file from decidua or placenta in conjunction with a VCF containing the high-quality 

variant calls from the corresponding WGS of maternal and fetal DNA (--field GT). Each droplet was 

assigned to be maternal, fetal, or unknown in origin (ambiguous or potential doublet), and these 

identities were then linked with the transcriptome-based cell clustering data to confirm the maternal and 

fetal identity of each annotated cell type. 

Inferring maternal/fetal genetic origin of single cells from droplet-based scRNA-seq read data alone: 

10x Chromium droplet-based sequencing data from decidua and placenta samples were realigned and 

quantified against the GRCh37 human reference genome using STAR v.2.2.1126 with the following 

parameters: --alignSJoverhangMin 8, --alignSJDBoverhangMin 1, --alignIntronMin 20 --alignIntronMax 
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1000000, --alignMatesGapMax 1000000, --sjdbScore 2, --outFilterType BySJout,         --

outFilterMultimapNmax 20, --outFilterMismatchNmax 999, --outFilterMismatchNoverLmax 0.04, --

outFilterScoreMinOverLread 0.33, --outFilterMatchNminOverLread 0.33, --outSAMstrandField 

intronMotif, --outFilterIntronMotifs RemoveNoncanonical, --outSAMattributes NH HI NM MD AS XS, --

outSAMunmapped Within,  --twopassMode Basic.   

Reads near known indels from the Mills119 and 1000G120 gold standard reference set for GRCh37/hg19 

were locally realigned using GATK IndelRealigner v.3.7121 (-model KNOWNS_ONLY -LOD 0.4). Base 

calling assessment and base quality scores were adjusted with GATK BaseRecalibrator and PrintReads 

v.3.7121. Next, reads in each sample BAM file were split by Chromium cellular barcode to produce a 

separate BAM file for each single cell from the sample. For each single-cell BAM file, PCR duplicates 

were identified and removed using Picard MarkDuplicates v.2.14.1121,122. Finally, GATK HaplotypeCaller 

v.3.7121 was used to produce genotype likelihoods and output called variants for each cell based on 

reads containing known biallelic SNP sites from NCBI dbSNP build 138 (GRCh37/hg19)124 overlapping 

the top 1000 genes most highly expressed in placental and endometrium RNA-seq data deposited in 

the Human Protein Atlas127,128.  

The vcf files from decidual and placental single cells were merged and the R/Bioconductor package 

vcfR v.1.6.0129 was used to import the merged vcf into R as a sparse matrix. We performed filtering on 

the SNPs so that only SNPs called in more than one cell and with non-zero variance were retained for 

downstream analysis. Next, using the R/Bioconductor package pcaMethods v.1.68.0130, we performed 

a probabilistic PCA (“ppca”) on the SNP data with unit variance scaling (“uv”) on two principal 

components and visualized the resulting projections using ggplot2, colored by tissue of origin or 

previously inferred cell identities. 

 

Decidua bulk RNA-sequencing processing and heat shock protein expression analysis 

Reads from five decidua bulk RNA-seq samples were mapped and quantified against the GRCh38 

(release 88) human reference transcriptome using the lightweight-alignment (SMEM-based) mode in 

Salmon v.0.8.1131. The R/Bioconductor package tximport v.1.4.0132 was used to aggregate the 

transcript-level abundances into gene-level expression estimates (TPM) with Ensembl gene IDs 

(GRCh38) as the primary identifier. Ensembl IDs were then mapped to HGNC gene symbols using 

R/Bioconductor package biomaRt v.2.32.1133. We specifically examined the expression of heat shock 
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protein-related genes HSPA6, DNAJB1, HSPH1, DNAJA4, HSP90AA1, HSPA1A, HSPA1B, HSPD1, 

DNAJA1, HSPA8, and HSPB1 in the bulk RNA-seq datasets. These were among the most highly 

upregulated genes in the T3 T cell cluster identified from analysis of the decidua plate-based scRNA-

seq data. HSPB1, HSPA1A, and HSPA1B were also among the genes previously found to be induced 

by single-cell dissociation protocols109. 

 

FACS and SmartSeq2 data analysis 

FACS data were gated and compensated in FlowJo and exported as FCS files. Gating identities coupled 

with plate locations from index sorting were then imported into R using the Bioconductor package 

flowCore v.1.42.3134 and linked to the metadata for each corresponding cell generated from Seurat 

analyses of decidua and peripheral blood SmartSeq2 data (as performed in “Single-cell RNA-

sequencing data analysis”). This facilitated superimposition of the gated identities of cells onto the t-

SNE projections defined by single-cell transcriptomes. Differential expression analysis between the 

dMP1 and dMP2 subsets was performed using the Seurat FindMarkers function (Wilcoxon rank-sum, 

among genes expressed in at least 10% of cells). 

 

CyTOF data analysis 

Populations of interest were manually gated in FlowJo and exported as FCS files. Subsequent analyses 

were conducted with the Bioconductor package cytofkit v.1.8.4135. First, signal intensities for each 

marker were transformed using the negative value pruned inverse hyperbolic sine transformation 

(cytofAsinh). To obtain two-dimensional visualizations of the CyTOF data, the t-SNE algorithm114 was 

applied to 10,000 randomly selected cells from each dataset and plotted using the R package ggplot2. 

Marker expression was visualized on the t-SNE plots, with maximum intensity designated as marker 

expression intensities in the 99th percentile or higher.  

 

Gene Ontology and Reactome term enrichment analysis 

Genes significantly upregulated (log2(fold-change) ≥ 0.5, adjusted p < 0.05, Wilcoxon rank-sum) in each 

of the mononuclear phagocyte populations relative to other cell types at the maternal-fetal interface 

were functionally annotated using gene ontology (GO)136 and Reactome137 pathway terms. We used 

the R/Bioconductor package gProfileR v.0.6.4138 to map gene lists ordered by decreasing log2(fold-
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change) (ordered_query = T) to biological pathway (BP) and molecular function (MF) GO terms and 

Reactome pathway annotations. Through gProfileR we then performed statistical enrichment analysis 

to identify and output overrepresented terms with strong hierarchical filtering (hier_filtering = “strong”). 

All p-values were corrected for multiple testing using the gProfileR gSCS algorithm138. 

 

Intersection of M1/M2 gene signatures with maternal mononuclear phagocyte subset markers 

We obtained a list of canonical M1 macrophage and M2 macrophage marker genes139 and used 

biomaRt v.2.32.1133 to map the gene symbols to corresponding Ensembl gene IDs. We then intersected 

this gene list with our lists of upregulated genes (adjusted p < 0.05, Wilcoxon rank-sum) from each of 

the mononuclear phagocyte populations relative to other decidual and placental cell types. Heatmaps 

showing single cell-level expression of the M1/M2 genes were plotted using the DoHeatmap function in 

Seurat, with genes presented in decreasing log2(fold-change), grouped by the mononuclear phagocyte 

population in which they were significantly upregulated. If a gene was upregulated in multiple 

mononuclear phagocyte subsets, it was grouped with the subset in which it exhibited the highest 

log2(fold-change) relative to other cell types. 

 

Identification of placenta- and endometrium-specific genes and intersection with maternal 

resident immune cell population markers 

Tissue-level RNA-seq data were downloaded from the Human Protein Atlas 

(www.proteinatlas.org)127,128. We obtained gene expression data (in tpm) for 37 human tissues sourced 

from 122 individuals; the associated experiment accession for this dataset in the ArrayExpress 

database is E-MTAB-2836. 

To identify genes specifically enriched in the placenta and endometrium relative to other tissues, we 

employed the tissue specificity metric Tau140, which was determined to be among the most robust 

methods for determining tissue-specific gene expression patterns in a recent comparative analysis141 

with other approaches, including expression enrichment (EE)142, Hg (Shannon entropy)143, tissue-

specificity index (TSI)144, and z-score145. For each gene, we calculated Tau using the following formula: 
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where xi is the expression of gene in tissue i and n is the total number of tissues. Genes with Tau ≥ 

0.8141 and tissue of highest level of expression being placenta or endometrium were determined to be 

significantly enriched in these tissues. A list of the 410 placenta- and endometrium-enriched genes is 

located in Appendix 5.  

We then intersected this gene list with our lists of upregulated genes (adjusted p < 0.05, Wilcoxon rank-

sum) from each of the maternal resident immune cell populations (T cells, NK cells, mononuclear 

phagocytes) relative to other decidual and placental cell types. Heatmaps showing single cell-level 

expression of the placenta- and endometrium-enriched genes were plotted using the DoHeatmap 

function in Seurat v.2.1.0, with genes presented in decreasing log2(fold-change), grouped by the 

maternal resident immune cell type in which they were significantly upregulated. If a gene was 

determined to be upregulated in maternal resident immune cell subsets, it was grouped with the 

population in which it exhibited the highest log2(fold-change) relative to other cell types. 

 

Curation of genes associated with fertility or complications of pregnancy and analysis of cell-

type specific expression at the maternal-fetal interface 

Genes associated with abnormal birth weight or fetal growth, endometriosis/ovarian disease, 

gestational trophoblastic disorder/hydatidiform mole, preeclampsia, age of menopause or menstrual 

onset, preterm birth, recurrent miscarriage, placental abruption, and placenta accreta were curated from 

studies deposited in the NHGRI/EBI GWAS Catalog146, OMIM database147, and from literature 

searches. All genes selected from literature were linked with increased mutation or with alterations in 

expression or epigenetic regulation in studies of a particular condition in humans or human tissues. A 

full table of compiled genes, along with their associated conditions and their literature or database 

sources, is provided in Appendix 6.  

We first intersected our curated gene list with our lists of upregulated genes (adjusted p < 0.05, Wilcoxon 

rank-sum) from each of the cell populations at the maternal-fetal interface relative to other decidual and 

placental cell types. Heatmaps showing cell type-averaged expression of the disease- or fertility-

associated genes were plotted using the heatmap function in R, with genes presented in decreasing 

log2(fold-change), grouped with the cell type in which they were significantly upregulated. If a gene was 

determined to be upregulated in multiple cell types, it was grouped with the cell type in which it exhibited 

the highest log2(fold-change) relative to other cell populations. For our maternal- and fetal-specific 
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analyses, we first determined which genes were significantly upregulated (adjusted p < 0.05) in each 

maternal cell type relative to other maternal cell types, or in each fetal cell type relative to other fetal 

cell types, using the Seurat FindMarkers function (Wilcoxon rank-sum, among genes expressed in at 

least 10% of cells). We then intersected our curated gene lists with these maternal- and fetal-specific 

upregulated gene lists and plotted cell type-averaged gene expression using the heatmap function in R 

as previously described. 

  


