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5.1 Introduction 

In Chapter 4, evidence was obtained of extensive sequence dependent promoter 

activity variation. This agrees with previous studies indicating that promoter sequence 

influences promoter activity in vitro, although the degree of that influence was found 

to be greater in this study. While some promoter sequence polymorphisms have a full 

trail of evidence linking them to in vivo gene expression variation (Rockman and 

Wray 2002; Knight 2005), it is still difficult to predict the effect of particular 

promoter changes in the native genomic context. Despite the association of a number 

of promoter polymorphisms with in vivo effects (Knight 2005), in the majority of 

cases the covariance of in vitro and in vivo expression has not been demonstrated 

conclusively. Indeed, the extent to which the activity of a promoter in vitro is 

indicative of the amount of gene expression level in vivo is still unclear. This is in part 

due to the number of other factors besides promoter strength that influence the 

quantity of mRNA produced, including chromatin state, TF background and upstream 

cis-regulatory elements (see section 1). However, most reporter studies of promoter 

polymorphisms that have gone on to test corresponding function in vivo have done 

this in a different system (e.g. lymphoblastoid cell or primary tissue RNA) to the one 

in which the reporter assays were carried out. This is probably for two main reasons; 

the majority of polymorphisms studied are natural and thus not present in transformed 

cell lines, and studies in primary human tissue carry more clinical interest. In contrast, 

studies of allele-specific expression using transcribed markers are usually carried out 

in primary tissues or lymphoblastoid cell lines, but subsequent in vitro reporter assays 

are often only carried out in specific cases. Rarely has there been any attempt to 

assess the TF complement of the cells in which the experiments, whether in vitro or in 

vivo, have been done. This could prove an important source of information for 

explaining the mechanistic basis of promoter SNPs. For example, a SNP in a putative 

TFBS is less likely to function by disrupting binding at that site if the TF that is 

supposed to bind there is not in fact expressed at all.  

 

Methods for assaying the binding of proteins to DNA are not new, with EMSA being 

a well-established assay and ChIP-chip now becoming one of the most important 

genomics-scale techniques for looking at protein-DNA interactions. While EMSA is 

useful for detecting the binding of any TF to a target sequence, it requires a candidate 
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sequence for use as a probe. Where candidate binding sites are known, these probes 

can be short oligonucleotides that allow an experiment to identify any TFs binding to 

that site. Often, binding sites are not known with any confidence, and in this case 

larger probes are sometimes used (e.g. several hundred bases of a putative promoter). 

In this case, TF binding can still be assayed but the precise locations of the binding 

site is not possible. In contrast, ChIP-chip can be used to discover binding sites 

without prior knowledge of their locations, and can be applied genome-wide 

depending on the design of the array used. These can range from whole genome 

arrays to small custom-made arrays. The major limitation of ChIP-chip is the 

availability of a suitable antibody to the TF of interest. Such antibodies are still 

relatively few, and as such only a small number of factors can be readily analysed in 

this way. The chromatin immunoprecipitation stage of this technique requires large 

amounts of material and is time- and labour-intensive to perform. So while ChIP-chip 

is a high-throughput technique in terms of the DNA-level data produced, it is low-

throughput in terms of the number of TFs that can be put through it, as well as being 

difficult to achieve true binding site-level resultion. With upwards of two thousand 

known and putative TFs in the genome, a complete picture of the TF binding 

landscape in a cell is unfeasible outside of a large consortium.  

 

Despite this, knowledge of the TFs that are present in the cells in which the promoter 

assays were carried out can still be valuable. Where functional promoter SNPs are 

found in putative binding sites, the presence of that TF can be confirmed in that cell 

line. While this would not confirm that the binding site is biologically functional, the 

absence of the TF would rule it out. If the functional SNP in question was only 

functional in a subset of the cell lines, the presence or absence of the TF could explain 

this behaviour. In this chapter, the whole genome expression profiles of the four cell 

lines used for the promoter assays was investigated. This was done using the 

Affymetrix U133 Plus 2.0 oligonucleotide array, which contains 54,120 probe sets 

targeting the majority of known genes in the human genome. This is a rapid way to 

characterise the 4 cell lines in a lot of detail. The expression profiles were used to 

explore several fundamental questions. Firstly, if the promoter of a protein coding 

gene is found to be active in a certain cell using a reporter assay, does this predict 

whether that gene is in fact expressed in the same cell in vivo? This is essentially a 

test for the effect of taking a promoter out of its genomic context, and should produce 
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an interesting overview of the relative importance of the TF complement versus 

upstream regulators and chromatin. A related question is whether variation of 

promoter activities between cell lines is reflected in the differences in TF 

complement? This may reveal a general trend for the importance of control by the 

production of TFs compared to other forms of control not detectable in an expression 

array (such as phosphorylation of TFs). If the former is the main component of 

control in the set of genes under study, one might predict that comparison of TF 

expression would show similar relationships as comparison of the promoter activities. 

 

Secondly, is the level of promoter activity as defined by reporter assays predictive of 

the in vivo expression level? The answer to this question is likely to vary depending 

on gene type. Since the sequence of the promoter is fixed, it is not able to dynamically 

regulate the expression level of a gene. One might predict that the expression level of 

housekeeping genes might be governed mainly by their promoters, whereas other 

genes under dynamic regulation might have their expression level governed by 

upstream elements under the control of post-translationally modified TFs, or by 

epigenetic control such as chromatin modification. 

 

In the last chapter, no enrichment of functional SNPs in known TF binding sites 

(TFBSs) was detected. This is either because they caused a functional difference by 

some other method (e.g. a change in DNA flexibility) or they are in a binding site that 

is not currently known. The latter explanation is not unlikely, given that many of the 

binding sites in TRANSFAC and similar databases are based on the study of a 

relatively small number of natural binding sites, and that the activity of binding sites 

may be cell-type specific and only active under certain conditions. It has been 

proposed that the sum total of unknown binding sites is likely to consist of a larger 

number of rare sites rather than a smaller number of common ones (Buckland 2006). 

If that is the case, it is possible that more success will be had in finding an explanation 

for the functional SNPs discovered in this project if motifs important to the regulation 

of the genes in these particular cell lines are discovered de novo and investigated. The 

whole genome expression data for the cells will be used to try and discover regulatory 

motifs. This will be done by comparing the expression profile of each of the genes 

whose promoters were cloned with the profile of the other genes on the array across 

all 4 cell lines. For each cloned promoter gene, a list of other genes whose expression 
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profiles are closely correlated will be constructed. The promoters from these genes 

will then be recovered from the genome and subjected to a motif discovery algorithm. 

In theory, this should discover motifs important in the cell-specific expression 

differences of these genes. These motifs would then be checked to see if they are 

enriched for the presence of functional promoter SNPs discovered in the previous 

chapter. This method has been successfully applied in yeast (Roth et al. 1998; 

Spellman et al. 1998), although application in higher eukaryotes is sometimes more 

problematic due to the potential dispersion of regulatory elements at large distances 

from the TSS. 

 

The aim of the work described in this chapter is essentially to gain some information 

on the relevance of proximal promoter strength, as defined by the reporter assays 

carried out in the last chapter, to in vivo expression of a gene from the same promoter 

but in the context of upstream regulatory inputs in addition to TF complement. 
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5.2 Results 

5.2.1 Preparation and hybridisation of RNA samples from cell lines 

In order to analyse the whole genome expression profiles of the cell lines used for the 

promoter assays, and be able to mine them for information on TF background and in 

vivo expression of genes downstream of cloned promoters, suitable RNA samples 

needed to be extracted from the cells. Ideally, the RNA to be used for the whole 

genome array experiments would be prepared from the same batch of cells as that 

used for the transfection experiments in chapter 4. This would minimise any 

biological differences between the cells in which the promoter constructs were 

transfected and the cells whose expression profiles were assessed. For logistical 

reasons, this was not possible, and RNA was prepared from different batches of cells 

at the same passage number. The cells from which RNA was prepared were grown to 

between passages 3 and 6 after thawing from liquid N2, the same stage as those used 

for transfection experiments. After harvesting, RNA was prepared using the 

commercially-available RNeasy mini kit (QIAgen) recommended by Affymetrix for 

preparations that are compatible with the expression array platform. 3 different 

batches of each cell line were grown in separate flasks prior to RNA preparation. The 

corresponding 3 biological replicate RNA preparations were produced from 

independent cultures thawed from frozen stock on different days. RNA was prepared 

by following the recommended protocol from QIagen, and the purity of the samples 

was confirmed by OD260. 

 

The gene expression profiles of the cell lines were interrogated by hybridising the 

RNA to the Affymetrix U133 Plus 2.0 arrays. The prepared RNA samples were 

converted to cDNA by reverse-transcription, and then to biotin-labelled cRNA 

following all recommended protocols. This was then fragmented prior to 

hybridisation on the arrays. Each labelled cRNA sample was hybridised overnight on 

a separate array. Signal was developed by applying the fluorescent dye phycoerythrin 

linked to streptavidin (in order to bind the biotin in the hybridised cRNA). The signal 

was then amplified by applying biotin-coated anti-streptavidin antibody followed by 

further streptavidin-phycoerythrin.  
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5.2.2 Normalisation of expression data 

The raw data from the U133 Plus 2.0 arrays consists of a fluorescence intensity value 

for each of the 50,000+ probes on the array. This alone is not informative, and must 

be transformed into a data set that gives one expression value per transcript per array, 

and these values should be comparable across arrays. Two main normalisation axes 

are involved in this transformation; the integration of data from individual probes into 

a single value for a probe set (and hence a transcript) and normalisation of these 

integrated intensity values across multiple arrays and/or experimental conditions, such 

that arrays are directly comparable. A wide variety of statistical methods have been 

developed to achieve this, each based on different assumptions and exploiting 

different properties on the arrays (Shedden et al. 2005). The choice of normalisation 

method is important, as this can have an effect at least as great as experimental or 

biological variation across arrays (Hoffmann, Seidl, and Dugas 2002).  

 

The method used here is GC-content Robust Multi-array Analysis, or GCRMA (Wu 

et al. 2004). It was chosen because it is one of the best-performing methods currently 

available for normalising Affymetrix data (Irizarry, Wu, and Jaffee 2006). It performs 

significantly better than the mas5.0 algorithm provided by Affymetrix with the array 

platform (Harr and Schlotterer 2006). Full details of the method are available from 

(Wu et al. 2004). Briefly, there are three steps to the procedure; background 

correction, normalisation across arrays and combination of individual probe data to 

produce probe set-level values. Background correction is carried out using a linear 

model, and accounts for the sequence composition of individual probes. Crucially, it 

does not make use of the perfect-match and mismatched probe pairs that the 

Affymetrix proprietary method relies on. The intensity levels between arrays are then 

normalised using a quantile normalisation procedure. This normalises the peaks and 

widths of the distributions of the intensities in each array, rather than using a simple 

normalisation factor.  Finally, the data from multiple probes are combined to produce 

a single value per probe set using a method called median polish (Wu et al. 2004).  

 

5.2.3 Quality control of scanned arrays 

The first step in the analysis of array data was to assess the quality of the arrays 

themselves. This included the quality of the samples and of the hybridisation 
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procedure. Appreciable differences in either of these factors could preclude the 

comparison of arrays. The data used to assess the quality and comparability of the 

arrays was put through the background correction and quantile normalisation steps of 

the GCRMA method, but was then analysed at individual probe level rather than 

probe set level. These analyses were carried out in collaboration with Juanma 

Vaquerizas at the European Bioinformatics Institute. 

 

The OD260 characteristics of the original and fragmented samples give information on 

the presence of contaminants, but not on the integrity of the RNA itself. RNA is prone 

to degradation during preparation, manipulation and storage, particularly if samples 

are contaminated with RNAses from the laboratory environment. RNA integrity can 

be assessed pre-hybridisation using a bioanalyzer, but this device was not available. 

The degree of degradation was therefore assessed post-hybridisation by examining the 

mean intensities of the individual probes in each probe set on the array as a function 

of their location along the length of the transcript. The reverse transcription reaction 

that generates the cDNA during sample preparation is primed with an oligo-dT primer 

from the 3’ end of the transcript. It would therefore be expected that the 3’-most 

probes would on average have the highest relative intensities, and that the intensity 

would decay towards the 5’ end as a function of the degree of RNA degradation. This 

was the case of 11 of the 12 arrays analysed (Figure 35a). The first replicate of 

HEK293FT showed a far greater degree of degradation, as evidenced by a flat 

intensity profile across probes.  

 

The arrays were also tested for hybridisation anomalies by comparing the 

distributions of the logarithms of the intensities. A well-hybridised array should have 

a smooth, tight profile with a single peak. Bimodal or multi-modal distributions are 

indicative of non-uniform hybridisation on the arrays, and can preclude cross-array 

comparison. All arrays hybridised showed the expected histogram shape. However, 

the peak for the first replicate of HEK293FT was shifted noticeably to the right 

compared to the other arrays, which were all tightly clustered (Figure 35b). This 

shows that the array for HEK293FT replicate 1 is brighter than the other arrays. This 

would be caused by a variety of factors including too much RNA loading on the array 

or a difference in the labelling efficiency of the sample, although in this case it may 
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be related to the evidence of poor sample quality seen in the degradation plot (Figure 

35a).  

 

The relative log expression (RLE) of each array was then analysed. This is a measure 

of the intensity distribution relative to the median peak of all the arrays in the 

experiment. RLE was visualised with a box plot showing the median and interquantile 

range (the range of intensities between the 25th and 75th percentile) of each array 

(Figure 35c). Again, the first HEK293FT replicate was anomalous, showing an 

intensity distribution that was biased relative to the median. All other arrays had 

similar distributions, as evidenced by the closeness of the medians to 0 and the small 

inter-quantile ranges. 

 

Finally, the normalised unscaled standard error (NUSE) for each array was plotted in 

a similar box-plot. NUSE is a measure of the standard error during the background 

correction process (Figure 35d). HEK293FT replicate 1 had a higher error associated 

with background correction, suggesting that the signal-noise ratio is lower than the 

other arrays. It also had a higher degree of variation associated with that error, as 

evidenced by the larger interquantile range.   

 

Following these quality assessments, it was decided that the first replicate of the 

HEK293FT cell line would not be used in the analysis. This is because of evidence 

that the RNA sample used suffered degradation as well as marked differences in the 

distribution of signal intensities and NUSE that suggest this array is not directly 

comparable to the others in this set. Including this array could result in spurious gene 

expression changes being detected that are caused by these non-biological factors.  
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Figure 35. Affymetrix array quality control
assessments. Each of the 12 arrays hybridised
is represented on the quality assessment plots.
The anomalous HEK293FT replicate 1 array is
represented in red. A) RNA degradation plot. 
B) Distribution of log2 signal intensities. C) 
Relative log expression (RLE). D) Normalised
unscaled standard error (NUSE). 
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5.2.4 Comparison of endogenous gene expression with cloned promoter 

activity 

As the U133 Plus 2.0 arrays cover the whole genome, the majority of the genes whose 

promoters have been analysed in reporter assays are likely to be represented on the 

array. The expression level of the genes could therefore be compared to the activity of 

the promoters in the same cell lines. This would give some information about the 

degree to which in vitro promoter activity is predictive of in vivo gene expression. 

The probe sets associated with each gene for which a promoter had been cloned were 

identified using Ensembl BioMart. At least one probe set was identified for 77 of the 

84 genes. 

 

In the last chapter, a 7x threshold over background activity was used to determine 

whether a promoter was active or not. In order to make a comparison with in vivo 

gene expression, a similar yes/no expression call was required for the array data. The 

most common method has been the proprietary mas-P/A method developed by 

Affymetrix. This subtracts the mismatch probe signal from each corresponding 

perfect match probe, and then uses statistics based on the t-test to determine whether 

the transcript represented by that probe set is present or absent. In practice, these calls 

are highly unreliable as the mismatch probe signals are often above the true 

background level. A second method called PANP was used in this study (Warren et 

al. 2006). Instead of the mismatch probes, this method exploits a group of probes that 

has been identified by Affymetrix as being designed from transcripts that were 

incorrectly annotated on the reverse strand to the one from which they are really 

transcribed. As such, they are antisense to any known transcripts and should in theory 

give a true representation of background signal. The GCRMA-normalised expression 

from the 11 arrays that passed the quality control steps were subjected to the PANP 

algorithm. This returned a single call per probe set per array that designated that 

transcript as either present, marginal or absent. These calls were produced by 

computing a gene expression level above which a probe set could be designated 

marginal or present at p-values of 0.02 and 0.01 respectively. These thresholds were 

specific to each array. Where a gene was represented by multiple probe sets, a single 

call was ascertained by applying the thresholds to the median of all probe sets. The 
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calls from the replicate arrays for each cell line were combined by simply accepting 

the call that was most frequent in the set of arrays.  

 

The expression status of each gene was compared to the activity of the equivalent 

promoter in the luciferase reporter assays. The two data sources were deemed to 

match if the promoter was inactive and the gene was called absent, or the promoter 

was active and the gene was called present. Marginal calls were deemed to be 

compatible with both active and inactive promoters, and were thus called as matches 

regardless of promoter state. Using these criteria, 240/308 (78%) of the gene 

expression calls matched the activity designation of the respective promoters (Table 

12). Of the 68 that did not match, 44 were instances of active promoters whose genes 

were called absent in the arrays, and 24 were of inactive promoters whose genes were 

called as present.  
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 HT1080 TE671 HEK293FT  HeLa  
 
 

Luc Affy Luc Affy Luc Affy Luc Affy 

XKR3         
SLC25A18         
BCL2L13         
PEX26         
DGCR2         
TSSK2         
DGCR14         
UFD1L         
CDC45L         
CLDN5         
TBX1         
GNB1L         
COMT         
RANBP1         
OTTHUMG00000030620         
ZNF74         
PCQAP         
PIK4CA         
UBE2L3         
PPM1F         
VPREB1         
SUHW1         
SMARCB1         
OTTHUMG00000030257         
CRYBB3         
SRR1L         
HPS4         
MN1         
OTTHUMG00000030143         
RR22_HUMAN         
AP1B1         
NEFH         
NIPSNAP1         
ZMAT5         
HORMAD2         
LIMK2         
DEPDC5         
HSPC117         
OTTHUMG00000058273         
FBXO7         
HMG2L1         
TOM1         
MYH9         
NCF4         
CSF2RB         
OTTHUMG00000030172         
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 HT1080 TE671 HEK293FT  HeLa  
 
 

Luc Affy Luc Affy Luc Affy Luc Affy 

MPST         
PSCD4         
OTTHUMG00000030683         
MFNG         
PDXP         
GALR3         
PRKCABP         
C22orf5         
PGEA1         
GTPBP1         
APOBEC3B         
OTTHUMG00000030194         
PHF5A         
OTTHUMG00000030205         
MEI1         
OTTHUMG00000030087         
SREBF2         
OTTHUMG00000030498         
NAGA         
OTTHUMG00000030175         
OTTHUMG00000030384         
SERHL         
POLDIP3         
OTTHUMG00000030962         
MPPED1         
PNPLA5         
SAMM50         
PARVG         
NUP50         
UPK3A         
C22orf8         
RIBC2         
SMC1L2         
OTTHUMG00000030109         
OTTHUMG00000030672         
PKDREJ         
TBC1D22A         
AK057318             

 
Table 12. Concordance of promoter activity and gene expression for tested promoters in 4 cell 
lines. Active and inactive promoters in each cell line are designated by green and red shading 
respectively. The consensus gene expression call is shown next to the promoter activity information in 
a slightly different colour scheme (P = dark green, M = yellow, A = pale red). Where a gene had no 
probes on the array, no shading is shown. Promoters are listed in the order of their occurrence along 
chromosome 22 from centromeric to telomeric ends of the q arm. 
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The effect of changing the 7x promoter activity threshold on the correlation with gene 

expression was examined. The numbers of matching calls between the two data 

sources was counted for activity thresholds between 5x and 9x, and the mismatches 

further classified into active promoters called absent and inactive promoters called 

present. While there is some fluctuation in the number of mismatches, changing the 

activity threshold does not seem to affect this in a linear way (Figure 36). As would 

be expected, there is a small but observable increase in the number of present/inactive 

mismatches and a corresponding decrease in the absent/active mismatches as the 

activity threshold is raised. These changes are small, with only 7 mismatches 

difference between the highest and smallest number in both categories, just 2.2% of 

the total number of gene/promoter pairs. This suggests that the mismatches are caused 

by a disregulation of the cloned promoters as a result of being taken out of their in 

vivo environment, rather than an artefact of the placement of the activity threshold.  
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Figure 36. Relationship of promoter activity threshold to the number and type of mismatched 
calls between the luciferase and expression data. The number of instances where the presence, 
marginal or absent calls matched what would be expected from the promoter activity (y axis) was 
examined as a function of the promoter activity threshold (x axis) 
 

 

In vivo expression of the genes was also compared to the level of promoter activity 

rather than a binary active/inactive call. The luciferase value for the highest activity 

haplotype in each cell line was plotted against the median expression level of all 
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probe sets in the arrays for the same cell line (Figure 37a). In theory, given that 

promoter strength is positively correlated with gene expression, one would expect a 

linear relationship to be visible on the plot. Such a relationship is not immediately 

apparent, with a wide range of promoter activities being found at all gene expression 

levels. However, there is a higher frequency of low luciferase values the lower the 

expression level of the gene. This is visible as a distinct peak at the low end of the 

distribution of luciferase activities for genes called as absent, with much smaller 

peaks for the marginal and present genes (Figure 37b). The median promoter activity 

for absent genes is 2.96, well below the 7x activity threshold. In contrast, expressed 

genes had a median promoter activity of 30.8 (Figure 37c). This is difference is highly 

significant (p < 2.2 x 10-16 by Mann-Whitney test). Interestingly, the equivalent value 

for genes called as marginal in the arrays was 60.2, twice as high as the value for 

present genes (Figure 37). The difference between the present and marginal promoter 

activities is also significant (p = 3.76 x 10-6 by Mann-Whitney test). Whether this 

observation is biologically relevant is not immediately clear, as there are relatively 

few marginal calls compared to present and absent. It can be hypothesised that more 

of this set of genes are regulated by negative upstream or trans-acting regulatory 

elements in vivo than by positive elements. This may also explain the high number of 

absent genes with active promoters compared to present genes with inactive 

promoters. 
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Figure 37. Correlation of luciferase reporter activity and endogenous gene
expression. A) A plot of luciferase activity against gene expression level for promoters 
of genes called absent (blue), marginal (pink) or present (yellow). Each biological 
replicate of the luciferase experiments is plotted as a separate point. There does not 
seem to be a quantitative linear correlation between the magnitude of promoter activity 
and the amount of gene expression, although a qualitative association between active 
promoters (above 7x background, black line) and expressed genes is clear. B) 
Distribution of luciferase activities as a proportion of the total number of calls in each
category. An extreme bias for genes called absent in the arrays to have very low 
promoter activities is visible, whereas genes that are marginally or definitively 
expressed have much broader distributions with a relatively small proportion falling
under the 7x cutoff. C) As A, but only for the first 100 RLU of luciferase activity. This 
more clearly shows that the average promoter activity of marginally expressed genes 
(pink line) is twice that of definitively expressed genes (yellow line), and this
difference was statistically significant. Both averages were significantly above that for 
non-expressed gene promoter activity (blue line).  
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5.2.5 Correlation of binding sites at functional SNPs with transcription 

factor expression 

26 of the functional promoter SNPs discovered in chapter 4 were located within a 

putative TFBS, whether defined by TRANSFAC or JASPAR. While this suggested 

that they functioned by interfering with the binding of the associated TF, this could 

not be confirmed without separate experiments such as EMSA or ChIP-chip. The 

opportunity to do these studies for the 26 SNPs did not arise over the course of this 

project. However, with whole genome array data for the cell lines available, it was at 

least possible to determine whether the TFs in question were expressed, and whether 

differential expression in these factors could in any way account for any cell-type 

specific functional differences in these SNPs. The first step was to generate presence / 

marginal / absence calls for all TFs in the genome, and then determine whether they 

are differentially expressed in the cell lines. The calls were generated with the same 

PANP algorithm as was used above (Warren et al. 2006). Differential expression was 

analysed by applying the LIMMA linear modelling algorithm included in the 

Bioconductor analysis package on the GCRMA-normalised data for the whole 

genome arrays. This integrated the expression levels from the replicate arrays for each 

cell line into a single expression measurement, assessed the significance of expression 

differences for each probe set between pairs of cell lines, and generated a p-value for 

each probe set following correction for multiple testing using the false discovery rate 

method (Benjamini and Hochberg 1995).  

 

Four of the functional SNPs were in TFs for which probes on the Affymetrix array 

could not be located, and they were therefore discarded from this analysis. The 

remaining 22 SNPs were found in a total of 39 putative binding sites, with 13 SNPs in 

multiple binding sites. The probe sets that mapped to the genes for the TFs with 

binding sites around the SNPs were identified using the Ensembl BioMart tool. Any 

probe sets with a _x_ designation, signifying potential cross-hybridisation to multiple 

genes were discarded. The exception was the ELK1 TF gene, for which the only two 

available probe sets carried that designation. Both P/M/A calls (grey vs. white 

shading) and differential expression (as calculated by the LIMMA algorithm) were 

plotted together in order to better visualise the behaviour of TFs for which putative 

binding sites were found (Table 13). 
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Five SNPs were in binding sites for TFs that were called as absent in all four cell 

lines, suggesting that for those SNPs, the binding site was not biologically functional. 

One of these five SNPs was also in another binding site for a factor that was 

expressed. A sixth SNP was in a binding site defined by a weight matrix for the cEBP 

TF, of which probe sets for 3 isoforms were present on the array. One of these, 

cEBPE, was called absent across all cell lines, whereas the other two, cEBPB and 

cEBPG were both present. For the purposes of this analysis, cEBPB was used as the 

probe, as it was the only one differentially expressed.  

 

These 21 SNPs were in a total of 28 putative binding sites, with 7 polymorphisms 

found in binding sites for two different TFs. Overall, there were 8 instances were the 

TF was expressed at least in all cells in which the polymorphism was functional. This 

evidence would be consistent with a role for that TF in the mechanism of the 

polymorphism, although it is not conclusive evidence on its own. For 14 binding sites, 

the TF was called absent in at least one cell for which a functional effect was 

observed, apparently ruling out TF binding as the mechanism for the polymorphism. 

In the final 6 cases, there was a degree of ambiguity due to the presence of multiple 

probe sets, where one showed consistency and another did not. Nothing could be said 

about consistency in these cases.  

 

14 SNPs were in binding sites for which the TF was differentially expressed in at least 

one pair of cell lines (Table 13). This included one SNP that was in two binding sites 

for which the factors were differentially expressed. Of these, however, only two TFs 

had an expression profile that could account for the function of the SNP. These were a 

C/G SNP in the CDC45L promoter that was located in a REL binding site, and a C/A 

SNP in the RBIC2 promoter that was within a CREB binding site.  
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Promoter 
 

SNP Alleles Motif Probe Set HT1080 TE671 HEK293T HeLa 

DGCR14 295 C/T ZNF42_5-13 40569_at    F 
DGCR14 300 T/A ZNF42_5-13 40569_at    F 
DGCR14 300 T/A Mycn 209756_s_at    F 
DGCR14 300 T/A Mycn 209757_s_at    F 
CDC45L 381 C/G REL 206036_s_at    F 
OTTHUMG00000030620 184 G/A ZNF42_5-13 40569_at  F   
SUHW1 471 A/T cEBPB 212501_at    F 
NIPSNAP1 259 T/G Mycn 209756_s_at  F F F 
NIPSNAP1 259 T/G Mycn 209757_s_at  F F F 
DEPDC5 305 G/C ELK1 203617_x_at    F 
DEPDC5 305 G/C ELK1 210376_x_at    F 
FBXO7 172 C/- SP1 214732_at F F F F 
FBXO7 172 C/- SP1 224754_at F F F F 
FBXO7 172 C/- REL 206036_s_at F F F F 
PSCD4 419 [GTTT]n FOXI1 208006_at  F   
PSCD4 419 [GTTT]n Foxa2 40284_at  F   
PSCD4 419 [GTTT]n Foxa2 210103_s_at  F   
PGEA1 8 C/T ELK1 203617_x_at    F 
PGEA1 8 C/T ELK1 210376_x_at    F 
GTPBP1 136 C/G Fos 209189_at  F F F 
GTPBP1 150 C/T ELK1 203617_x_at  F F F 
GTPBP1 150 C/T Myb 204798_at  F F F 
GTPBP1 150 C/T ELK1 210376_x_at  F F F 
APOBEC3B 521 T/C RORA 240951_at F F F F 
APOBEC3B 521 T/C RORA 210479_s_at F F F F 
OTTHUMG00000030087 602 C/G ELK1 203617_x_at F F F F 
OTTHUMG00000030087 602 C/G ELK1 210376_x_at F F F F 
OTTHUMG00000030087 602 C/G Myb 204798_at F F F F 



 163

Promoter 
 

SNP Alleles Motif Probe Set HT1080 TE671 HEK293T HeLa 

SERHL 45 G/A SP1 214732_at F F F F 
SERHL 45 G/A SP1 224754_at F F F F 
POLDIP3 78 G/A Fos 209189_at F    
POLDIP3 78 G/A V$PAX6_01 235795_at F    
NUP50 371 G/C MAX 209332_s_at F F F F 
NUP50 371 G/C USF1 231768_at F F F F 
C22orf8 77 A/T HAND1-TCF3 220138_at F F F F 
SMC1L2 422 G/T CREB1 237289_at  F F  
RIBC2 554 C/A CREB1 237289_at F F F  
OTTHUMG00000030109 528 C/T ELK1 203617_x_at  F F F 
OTTHUMG00000030109 528 C/T ELK1 210376_x_at  F F F 

 
Table 13. Differential expression of transcription factors with binding sites around functional SNPs. Each instance of a SNP within a binding site for which a probe set 
was available on the Affymetrix array is shown as a separate line. Where a TF is represented by more than one probe set, each one is included as a separate line. Grey shading 
indicates that the probe set was called absent, whereas unshaded cells are where probe sets were called present. Green shading indicates that the probe set was upregulated in 
that cell line, whereas red shading indicates downregulation of a probe set that was called present. The latter two designations are based on pairwise comparisons of all cell 
lines using GCRMA-normalised data processed through the LIMMA linear modelling algorithm. “F” indicates that the SNP was functional in that cell line. Cells lacking an 
“F” show cell lines where the SNP was not functional. Note that one of the ELK1 probe sets was called absent in TE671 despite no statistically significant differential 
expression versus any other cell line.  This is because in all other cells the call was marginal rather than present, indicating that the difference was small. 
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5.2.6 Classification of cell lines by promoter activity and gene expression 

Comparing the binary active/inactive promoter calls across the cell lines, there is a 

high degree of agreement across all 4 lines. In order to determine how different the 

cells are in the way they respond to the cloned promoter library, the correlation 

coefficient was calculated between all luciferase values for each possible pair of cell 

lines (Table 14). The median value between the two biological replicates was used for 

these calculations. This showed that HT1080 was the cell line that was most different 

from all the others, with correlations between 0.14 and 0.18. HEK293FT was 

approximately as different from HeLa as from TE671, but the latter two cell lines 

were more diverged from each other than either was to HEK293FT. The two 

biological replicate datasets for each cell line were also correlated with each other. In 

3 out of 4 cell lines, the two replicates were more closely correlated than the median 

of the two replicates was to any of the other cell lines. In HeLa cells, the two 

biological replicates were less well-correlated with each other than to HEK293FT, 

suggesting that there is more noise in the HeLa data.  

 

HT1080 0.83    

TE671 0.14 0.80   

HEK293FT 0.15 0.68 0.70  

HeLa 0.18 0.49 0.62 0.55 

 HT1080 TE671 HEK293FT HeLa 
 
Table 14. Correlation between promoter activities in the 4 cell lines. Correlations within cell lines 
were calculated between the two biological replicates. For between-cell line correlation, the medians of 
the two biological replicates for each haplotype were used. 
 

 

If the activity of the transfected promoter constructs was purely a function of the TF 

complement of the transfected cells, one could hypothesise that the overall differences 

in the behaviour of the cloned promoters will be proportional to the differences in the 

TFs present in each cell. The differences between cell lines were evaluated globally 

using the correlations calculated above. In order to compare these with the 

corresponding differences between the cell lines in terms of the expression of TFs, the 

cells were classified according to how different the TF expression profiles were from 
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each other, using the array data to assess TF expression. Genes were identified as TFs 

according to a manually refined and curated list of the contents of the DBD TF 

database (Kummerfeld and Teichmann 2006). Overall correlation coefficients 

between cell line pairs were calculated based on the GCRMA-normalised expression 

values for the cloned promoter genes and for all TFs separately. The Affymetrix probe 

sets on the U133 Plus 2.0 array that corresponded to TF genes and to cloned promoter 

genes were extracted from Ensembl using the BioMart tool. Any probes that cross-

hybridised to multiple transcripts (designated by a _x_ code in the probe name) were 

removed. This analysis showed much smaller distances between the cell lines than 

suggested by the correlations between the in vitro promoter activities (Figure 38). In 

addition, HT1080 was not significantly more different than any other cell lines, as 

was found using the promoter activities.  
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Figure 38. Distances between the 4 cell lines according to the overall activity / expression profiles 
of cloned promoter constructs (blue), transcription factors (pink) and cloned promoter genes 
(yellow). Each of the four panels compares one cell line (in bold) to the three others, showing how 
close it is to each of them. Distances between cell lines are plotted as the reciprocal of the correlation 
coefficient for each cell line pair for promoter activities (Table 14), endogenous expression of the 
cloned promoter genes and expression of TFs. The latter two correlations were computed from the 
GCRMA-normalised microarray data in Bioconductor. 
 

5.2.7 Search for regulatory elements active across the 4 cell lines 

It was previously shown in chapter 4 that current models of regulatory elements are 

poor predictors of functional promoter sequence variation. In terms of TFBSs, one of 

the reasons for this poor performance may be that many of the motifs in the various 

TFBS databases are constructed from relatively few sequences tested in a limited 

range of conditions. It is possible that better results would be obtained by carrying out 

de novo motif prediction for any set of conditions for which regulatory variation is to 

be predicted. The whole genome expression data can be exploited for this purpose by 

HeLa 

TE671 HT1080 

HEK293FT
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identifying genes whose expression profile across the 4 cell lines closely correlates 

with that of the genes whose promoters were tested. The hypothesis is that if a set of 

genes have similar expression profiles in a set of multiple conditions, this is because 

they are reacting in the same manner to the TF complements they are being placed in. 

Therefore they might share common regulatory elements to which these factors bind. 

The idea behind this method is relatively well-established, and has been used 

previously to look for regulatory elements in co-regulated genes in yeast (see section 

5.1).  

 

The clustering of the expression data and identification of co-regulated genes was 

carried out by Robert Andrews and Gregory Lefebvre at the Sanger Institute. The 

GCRMA-normalised whole genome data was processed through LIMMA to integrate 

the biological replicates into one value per cell line, and the data was then clustered 

into a tree using XCluster (Gavin Sherlock). This uses the hierarchical clustering 

method Average Linkage (Eisen et al. 1998), which builds a single tree of all the 

genes by calculating the distance between each possible pair of genes, and iteratively 

joining the closest pair at a node. The concordance between the expression profiles of 

the cloned promoter genes and each of the remaining genes on the array was assessed 

independently and assigned a score. This was done by successively partitioning the 

tree 1000 times using the R statistical package, starting at the root of the tree and 

moving down. The number of partitions where the cloned promoter gene and the 

probe set being compared to it segregate together was counted and assigned as the 

concordance score. The number of partitions before the two are separated on the tree 

was assigned as the score. This process is explained diagrammatically in Figure 39. 
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Figure 39. Simplified tree showing the scoring system used to identify co-regulated genes. For a 
particular gene of interest, the co-expression of each other gene on the array is calculated as the number 
of partitions on the tree for which the two genes segregate together. 4 genes are highlighted on this tree 
with the scores they would be assigned in each case. Gene D segregates with the gene of interest 
through 3 partitions, and is thus given a score of three. Genes C, B and A all separate from the gene of 
interest earlier, and are assigned scores accordingly.  
 

For each probe set representing one of the cloned promoter genes, all other probe sets 

with scores above 500 (i.e. which segregated together for at least 500 partitionings of 

the tree) were considered to be co-regulated. Where the cloned genes were 

represented by multiple probe sets, the union of these sets was taken as the co-

regulated cluster. The genes mapped to the probe sets in each cluster were identified 

through Ensembl using the BioMart tool. At this stage, around 50% of all probe sets 

in the clusters failed to match an Ensembl gene. This is because Ensembl apply more 

stringent criteria for mapping Affymetrix probes to the genome than Affymetrix 

themselves, and many probe sets were not considered reliable enough to map to a 

gene. Of the 77 promoters with at least one Affymetrix probe set, 5 did not cluster 

with any other genes at a score above the threshold, and were therefore discarded 

from the analysis. The majority of the remaining cloned promoter genes clustered 

with between 50 and 125 other genes (Figure 40). 
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Figure 40. Number of genes clustered with the cloned promoters. The majority of cloned promoter 
genes clustered with between 50 and 125 other genes. 
 

 

The sequences between 600 base pairs upstream and 100 base pairs downstream of 

the TSS’s of the genes in each cluster were extracted from Ensembl using BioMart. 

The program nestedMICA (Down and Hubbard 2005) was used to look for motifs 

within each cluster separately. nestedMICA functions by analysing each set of 

sequences in terms of a model of significant motifs in a background of noise, and 

essentially outputs significantly overrepresented motifs in the form of a position 

weight matrix. In total, 320 motifs were discovered by nestedMICA. However, not all 

the motifs necessarily occurred in the tested promoters, as there is no requirement for 

a motif to be present in all genes in a cluster. The cloned promoters were therefore 

scanned for the presence of the motifs using the program MotifScanner (Aerts et al. 

2003). 167/320 motifs were found to match the 72 cloned promoters in a total of 359 

separate sites. These sites were then tested using the same method as in section 4.2.15 

to see whether there is an enrichment of functional SNPs within these novel motifs. 

161 of the 228 cloned polymorphisms were present in the promoters for which motifs 

were generated, including 45 of the functional polymorphisms discovered in chapter 

4. 20/161 (12%) of all cloned polymorphisms were present in at least one of the 

generated motifs compared to 5/45 (11%) of functional polymorphisms. There is thus 
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no enrichment for functional SNPs in these motifs, in line with similar analyses in 

known TFBS and other putative regulatory elements (see section 4.2.15). 

 

The novel motifs were also compared to known TFBS weight matrices using the 

MotifExplorer tool (Down et al, unpublished) to run a comparison with a downloaded 

copy of the JASPAR database. Using a threshold score 2 or under (the scoring system 

in MotifExplorer uses a distance metric to score the cumulative difference between 

the motifs at each base, with lower scores indicating more similarity than higher 

scores), 101 of the motifs showed similarity to 23 JASPAR binding site matrix, and 

these groups of motifs could be visualised using the BioLayout network visualisation 

tool (Enright and Ouzounis 2001) (Figure 41a). 6 TFs matched only one motif from 

one gene cluster (Arnt, En1, FOXI1, IRF1, MAX, YY1 and ZNF42_5-13), while 

others matched a number of motifs from different clusters. The highest number of 

occurrences were for motifs resembling RUSH1-alfa (9 matches), SPI1 (9 matches), 

SP1 (11 matches) and c-ETS (14 matches). The fact that 32% of motifs showed 

similarity to known binding sites suggests that the process was generally producing 

meaningful motifs. In order to discover whether there were novel motifs that were 

recurring across multiple clusters, MotifExplorer was again used to compare all novel 

motifs with each other. Initially, all pairs of motifs that matched with a score of 2 or 

below were calculated, and the results plotted as a network of similarities using 

BioLayout. This showed no structure at all, with all motifs contained within one very 

large amorphous cluster and no obvious subclusters of motifs emerging. If the 

threshold is made more stringent, some clustering started to emerge. With a highly 

restrictive threshold of 0.6, several distinct clusters of motifs were detectable (Figure 

41b). This included one major cluster composed almost entirely of motifs that 

matched the SP1 weight matrix in JASPAR, as well as a smaller cluster of 5 motifs 

including 4 that match JASPAR matrices. This suggests that the other clusters may 

also consist of meaningful motifs that have a role in regulating multiple genes in the 

cloned set. In total 173 motifs, slightly over half of the total, were either similar to a 

known binding site or highly similar to at least one other novel motif.   
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Figure 41. Comparative analysis of the motifs discovered in the clusters of co-regulated genes. 
Motifs are shown as green nodes joined by lines showing similarity matches. A) Motifs matching 
TFBS weight matrices in JASPAR with a threshold of 2 or under. 23 different weight matrices were 
matched to at least one of the novel motifs, with the number of occurrences varying between 1 and 14. 
The central nodes of each cluster are the JASPAR motifs, and they are marked with a number that links 
to the adjacent table containing the number of de novo motifs that are similar. B) Comparison of all 
motifs against each other with a threshold of 0.6 or under. Several clusters are visible, including one 
made up of motifs matching the SP1 weight matrix in A (circled in red). Other motifs outside the SP1 
cluster that also matched a JASPAR weight matrix are labelled with the name of the TFBS. These 
figures were plotted using BioLayout.  
 

A 

B 
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5.3 Conclusion 

The experiments described in this chapter demonstrate that promoter activity, as 

measured by luciferase reporter assay, is well-correlated with endogenous gene 

expression in a qualitative manner. 80% of the promoter activity calls matched the 

present/marginal/absent calls from the array data. Accepting marginal calls from the 

array data as confirming expression changed this figure negligibly, with the vast 

majority of them having active promoters. This confirmed the importance of the 

promoter sequence to the integration of regulatory inputs, as they largely continued 

functioning even when taken out of their genomic context. However, this correlation 

only held for yes/no designations of expression and promoter activity. The correlation 

between absolute promoter activity and the level of gene expression was much poorer. 

This contrasts with previous work on the promoters in the ENCODE regions, which 

showed a moderate but still highly significant quantitative correlation of 0.53 between 

promoter activity and gene expression, although in this case expression was measured 

by RT-PCR rather than arrays (Cooper et al. 2006). The difference may reflect the 

relative abilities of Affymetrix arrays and RT-PCR to accurately determine the gene 

expression level of a gene, with RT-PCR being the more accurate of the two methods.  

Another consideration is that this project tested multiple sequences per promoter that 

often had different promoter activities, whereas the ENCODE study only used a 

single sequence. This is bound to decrease the amount of correlation given the degree 

of difference observed in the activities of different promoter haplotypes, making it 

necessary to decide how to convert these to a single value (in this case, the highest-

expressing haplotyope was used).  

 

Where the qualitative promoter and expression calls did not match, there were two 

possible kinds of discrepancy; promoters active in the reporter assays that were not 

expressed endogenously, and promoters not active in the reporter assays that were 

expressed endogenously. The number of discrepancies in the former category 

outnumbered the latter by a factor of ~2. This suggests that inhibitory regulatory 

inputs into promoters, such as upstream silencer elements and repressive chromatin, 

are more common that stimulatory ones, such as upstream enhancers, in modulating 

the activity of a promoter in vivo. Indeed, the difference seen here might well be an 

underestimate, as the use of differentially regulated alternative promoters in vivo may 
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mask occurrences of cloned and active promoters that are inactive in the cell. This is 

because the majority of probe sets on the Affymetrix array are unable to distinguish 

between transcripts with different first exons, as they tend to be biased towards the 3’ 

end where such transcripts would share sequence. There is extensive evidence for 

widespread use of alternative promoters in humans from ChIP-chip studies of RNA 

Pol II localisation (Kim et al. 2005b). 22% of promoters in the ENCODE regions 

contain at least one alternative promoter (Cooper et al. 2006). In contrast, some of the 

promoters inactive in the luciferase assays may have been due to the real TSS being 

too far downstream of the annotated TSS for it to be cloned optimally (see section 

4.2.11). This effect was relatively minor and could not account for the difference 

between the two categories. 

 

There are several potential sources of inhibitory inputs into a promoter;  

• Transcriptional repressor proteins that inhibit TFs and/or the basal 

transcription machinery via protein-protein interactions with stimulatory TFs 

or the pre-initiation complex 

• Transcriptional repressor proteins that inhibit TFs and/or the basal 

transcription machinery by competing for the same binding sites. The 

inhibition is effected by sterically blocking the action of stimulatory factors at 

promoters rather than by direct protein-protein interaction  

• Epigenetic factors such as histone modifications leading to condensed 

chromatin, or promoter methylation, causing transcriptional silencing 

• Upstream cis-acting transcriptional silencer elements that function either by 

blocking the action of an enhancer or by recruiting transcriptional repressor 

proteins that then interact with and inhibit proteins on the core and proximal 

promoters 

 

As both the cloned and endogenous promoters were exposed to the same TF 

background (within the margins of biological variation between different cultures of 

each cell line), the first two inhibitory inputs cannot be responsible for the effect 

observed. This is because they would be expected to act equally on both versions of 

the promoter. The overrepresentation of negative inputs is thus likely to be caused by 

a combination of epigenetic repression and upstream transcriptional silencer elements, 
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as these will affect the endogenous promoter but not the cloned one. The distinction 

between the two processes is not necessarily clear-cut, as DNA elements can 

themselves recruit histone modification enzymes that then exert epigenetic effects 

(Rezai-Zadeh et al. 2003). There is evidence that many promoters have activating 

elements within the first 500 bases upstream of the TSS, but inhibitory elements 

between 500 and 1000 bases upstream (Cooper et al. 2006). This was discovered by 

making serial deletions in a set of cloned promoters from the ENCODE regions. This 

suggests a significant role for upstream silencing elements in the discrepancy between 

cloned promoters and endogenous expression, particularly as the fragments cloned in 

this study only extended to around 600 bases. Interestingly, genes that were only 

marginally expressed on the array had a median promoter activity twice as high as 

that of genes that are definitively expressed. This ties in well with the 

overrepresentation of non-expressed active promoters discussed above, and together 

these pieces of evidence suggest a prominent role for inhibitory relative to stimulatory 

inputs. One way to investigate these possibilities is to measure the methylation state 

of the promoters by bisulphite sequencing or use ChIP-chip to look at the histone 

modification state of the chromatin around the promoters. These technologies would 

reveal the extent of the epigenetic component of this possible effect. The presence of 

upstream silencer elements would be more difficult to prove, as their positional 

relationship to the promoters is usually unknown. The cloning of larger promoter 

fragments into luciferase vectors followed by serial deletions and reporter assays 

could reveal the presence of repressive elements nearby (Cooper et al. 2006). 

 

Analysis of the expression of TFs that had binding sites around functional SNPs 

seemed to re-iterate the fact that some of these motifs may not be biologically 

functional regardless of how well they may match known optimal binding sites. In 

only 8 of 28 instances of a polymorphism in a TFBS was the expression data 

consistent with a role for the TF. This included the somewhat ambiguous cEBP motif 

that could have been targeted by any of three isoforms of cEBP, one of which was 

universally absent and two which were universally present (cEBPB probe set was 

differentially expressed but was not correlated with the functionality of the SNP).  In 

14 instances of a binding site around a functional SNP, the expression pattern of the 

TF seemed to definitively rule out a role in the mechanism behind the functional SNP, 

as it was not expressed in all the cells in which the function was observed. In only two 
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cases did differential TF expression correlate with cell-specific SNP function, 

although it must be stressed that this is not a conclusive piece of evidence. The 

conclusion to be drawn from this analysis is that the presence of binding sites does not 

necessarily equate with function, and that the proportion of cases where causality was 

eliminated on the basis of lack of expression of the factor suggests that using TFBS as 

predictive entities would unavoidably cause an substantial false positive rate.  

 

Attempts to classify the cell lines according to the profile of their promoter activities 

seemed to yield very different results to similar classification based on TF expression 

or the expression of the endogenous genes whose promoters had been cloned. The 

latter two, in contrast, gave very similar results, and suggested that the cell lines were 

about equally different from each other. This discrepancy may be due to stochastic or 

experimental factors influencing the absolute activities of the promoters in each 

experiment. The fact that patterns of expression between haplotypes within a 

promoter were more reproducible than the absolute values themselves seems to 

suggest that the promoter activities on their own are not necessarily definitive. It is 

also possible that when a promoter is in its correct genomic context it can be more 

tightly controlled and will thus not be as susceptible to stochastic variation or small 

differences in experimental conditions. 

 

The novel motifs generated by aligning the promoters of genes with similar 

expression profiles across the 4 cell lines failed to improve on the performance of 

previously known motifs. This was disappointing, but not entirely unexpected given 

the performance of other putative regulatory motifs. While it was hoped that they 

would perform at least as well as the motifs from other sources, they showed even less 

enrichment than many of these classes of elements (see section 4.2.15). Several 

reasons may have contributed to this. Firstly, the number of cell lines was relatively 

small, and it was possible that this might have led to the alignment of promoters that 

were not meaningfully co-regulated in vivo. This would bias the motif finding 

algorithm of nestedMICA away from the real signal. However, other studies that have 

used co-regulation to infer regulatory elements have used as few as two conditions for 

any single comparison (Roth et al. 1998). The fact that all 4 cell lines were well-

established transformed lines may have led to a convergence of expression profiles 

relative to what would be expected if the tissues of origin (in this case skin, medulla, 
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embryonic kidney and cervix) were compared. While there is no published 

information on these particular cell lines and their original tissues, expression 

profiling of cancer cell lines has shown that they cluster principally according to 

tissue of origin (Ross et al. 2000), suggesting that this is unlikely to be a factor in this 

case. The fact that around half of the motifs either matched a known TFBS or 

clustered with other motifs under stringent conditions indicated that a substantial 

fraction of these motifs might be real, although manual inspection of some of the 

motifs did show a substantial number with poor and discontiguous information 

profiles suggesting that they may not have been biologically meaningful. Perhaps the 

differences in expression in the set of genes under study were not substantial enough 

across these four cell lines to reliably cluster them without spuriously including genes 

that were not really co-regulated, hence giving rise to uninformative motifs. 

 


