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Abstract

Genomic profiling of response to in vivo immune perturbations

Benjamin Yu Hang Bai

The human immune system plays a central role in defense against infection, but its dys-
regulation is implicated in immune-mediated diseases. The past decade has seen increasing
application of high-throughput technologies to profile, predict, and understand immune response
to perturbation. The ability to measure immune gene expression at scale has led to the identifi-
cation of transcriptomic signatures that predict clinical phenotypes such as antibody response to
vaccines. It has also been recognised that both expression and phenotypic responses are traits
with complex genetic architectures. This thesis examines the longitudinal transcriptomic response
to immune perturbations, and its association with clinical response phenotypes and common
genetic variation.

Chapter 2 explores transcriptomic response to pandemic influenza vaccine in a multi-ethnic
cohort of healthy adults: the Human Immune Response Dynamics (HIRD) cohort. The success
of vaccination in controlling influenza is indisputable, but it is incompletely understood why
some individuals fail to mount protective antibody responses. I meta-analysed blood microarray
and RNA sequencing (RNA-seq) datasets, identifying a distinct transition from innate immune
response at day 1 after vaccination to adaptive immune response at day 7. Heterogeneity between
measurement platforms made it difficult to identify single-gene transcriptomic associations
with antibody response. Using a gene set approach, I found expression modules related to the
inflammatory response, the cell cycle, CD4" T cells, and plasma cells to be associated with
vaccine-induced antibody response.

In Chapter 3, I map response expression quantitative trait loci (reQTLs) in the HIRD cohort
to investigate regulation of transcriptomic response by common genetic variants. Rather than
driving differential expression post-vaccination, the strongest reQTLs appeared to be explained
by changes in cell composition revealing cell type-specific expression quantitative trait locus
(eQTL) effects. For example, a reQTL identified for ADCY3 specific to day 1 may be explained
largely by high monocyte proportions at day 1 compared to other timepoints. Changes in cell
composition present a significant challenge to interpreting reQTLs found through bulk sequencing
of heterogeneous tissues.

Finally, Chapter 4 applies an analogous longitudinal study design to explore drug response in
the Personalised Anti-TNF Therapy in Crohn’s Disease (PANTS) cohort: a cohort of Crohn’s

disease (CD) patients treated with the anti-tumour necrosis factor (TNF) drugs, infliximab
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and adalimumab. Anti-TNF treatment has revolutionised patient care for CD, but 20-40 % of
patients show primary non-response soon after starting treatment. I identified baseline expression
modules associated with primary non-response, but also found significant heterogeneity of
associations between the two drugs. Expression changes post-treatment in non-responders were
largely magnified in responders, suggesting there may be a continuum of response. Distinct
expression trajectories identified for responders and non-responders revealed sustained expression
differences during the first year of treatment. Sets of interferon-related genes were regulated in
opposing directions in responders and non-responders, presenting an attractive target for future

studies of the biological mechanisms underlying non-response.
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A little learning is a dangerous thing;
Drink deep, or taste not the Pierian spring:
There shallow draughts intoxicate the brain,

And drinking largely sobers us again.

Alexander Pope, An FEssay on Criticism
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