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Chapter 2

Transcriptomic response to

Pandemrix vaccine
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and St Thomas’ Hospital and King’s College London. I would like to thank Adrian Hayday, for
kindly extending the opportunity to collaborate on the HIRD cohort; Efstathios Theodoridis, for
performing the RNA and DNA extractions; Sean O’Farrell and Anna Lorenc, for providing the
HIRD clinical, FACS, and antibody titre data, and for providing advice on the data formats;
and the Wellcome Sanger Institute Sample Management and Pipelines teams, for performing the

RNA-seq library preparation and sequencing, and the array genotyping.

2.1 Introduction

2.1.1 Influenza

Influenza is an infectious respiratory disease caused by the influenza virus family (Orthomyzoviri-
dae) in a variety of vertebrate hosts. Of the four virus types (A, B, C, D) defined by antigenic
specificity of the viral nucleoprotein, human infections are primarily caused by influenza A and
influenza B. Each year, seasonal epidemics result in ~1 billion infections and 300 000—-500 000
deaths worldwide. Peak seasonality is defined by low humidity, low temperature, and other
climate factors. Risk factors for severe illness and death include extremes of age (infants <1yr,
elderly >65yr), pregnancy, obesity, chronic illness, and host genetics (e.g. mutations in IFITM3
and IRF7) [114, 115].

Influenza viruses are enveloped viruses with a negative-sense single-stranded RNA genome
divided into segments (eight segments in influenza A and B), each encoding one or more viral
proteins. Two glycoproteins occurring on the surface of the viral envelope are the main antigens
targeted by the host immune system. Haemagglutinin (HA), with its characteristic head-stalk
structure, facilitates viral entry by binding sialic acid-containing surface receptors on host cells.
Neuraminidase (NA) facilitates viral release, cleaving sialic acids to prevent newly-synthesised
viruses aggregating to each other—viral proteins can be sialylated post-translation—and to the

dying host cell in the final stages of the viral life cycle. The gradual accumulation of mutations
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in these surface protein genes is known as antigenic drift, and can lead to evasion of antibody-
mediated immunity acquired during previous exposures. As the virus type with the greatest
prevalence, host range, and genetic diversity, influenza A is classified into a number of subtypes
based on the antigenic properties of its HA and NA. At least 18 HA subtypes and 11 NA subtypes
exist [116]. Although these HA and NA subtypes are all antigenically-dissimilar, there can still
be cross-reactivity between subtypes, and considerable antigenic drift within subtypes [117].
Influenza B viruses are less diverse, classified into two antigenically-distinct lineages: Victoria-like
and Yamagata-like [114].

On occasion, reassortment of genome segments between viruses infecting the same cell can
quickly generate new strains (antigenic shift). Antigenic shifts are associated with pandemics
due to lack of pre-existing population immunity [114]. Pandemics have occurred four times in
modern history: 1918 (“Spanish”), 1957 (“Asian”), 1968 (“Hong Kong”), and 2009 (“swine”).
Each was caused by influenza A, involving either reassortment of human and animal strains or
zoonotic transmission of animal strains [118]. For instance, the 2009 pandemic was due to an
influenza A strain with HA subtype 1 and NA subtype 1 gene segments of swine origin [119]:
A(HIN1)pdm09*. Pandemic strains tend to enter seasonal circulation post-outbreak, potentially
replacing previously-circulating strains; A(HIN1)pdm09-like strains are now the predominant
seasonal A(HIN1) strain [114].

2.1.2 Seasonal influenza vaccines

Vaccination is the primary method for prevention and control of influenza. Antigenic drift
and decline of vaccine-induced immunity over time means annual vaccination is recommended.
Seasonal vaccines are multivalent, usually formulated against three (trivalent) or four (quadri-
valent) influenza strains anticipated to circulate in upcoming influenza seasons. The World
Health Organization (WHO)-run Global Influenza Surveillance Response System (GISRS) makes
recommendations on the most representative strains for the Northern and Southern hemispheres
each year, about six months before the start of the respective seasons.

There are three classes of licensed vaccines against seasonal influenza: inactivated influenza
vaccines (IIVs), live attenuated influenza vaccines (LAIVs), and recombinant HA vaccines
[116, 121]. IIVs can be split virion, containing virions disrupted with detergent, or subunit,
containing further purified HA protein. LAIVs contain low-virulence, cold-adapted viruses that
replicate well only in the cool upper respiratory tract. Recombinant HA vaccines contain purified
recombinant HA expressed in insect cell lines rather than relying on traditional viral propagation
in embryonated chicken eggs; cell-based IIVs are also available. Cell-based vaccines are faster to
manufacture in pandemic situations, not dependent on egg supply, and avoids egg-adaptation:
mismatches between vaccine and circulating strains caused by adaptation to growth in eggs.

Licensed seasonal vaccines are effective and well-tolerated in healthy adults, but particular
subclasses of vaccine are recommended for different demographics [122-125]. LAIVs are delivered
via nasal spray and are more effective than ITVs at mitigating transmission. They are recommended

for children—the major drivers of transmission due to high viral loads and prolonged shedding [114,

*The suffix “pdm09” distinguishes the 2009 pandemic strain from the circulating seasonal A(H1N1) strains at
that time [120].
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122]—but are contraindicated in young children <2 yr due to increased risk of wheezing, and also
in immunocompromised individuals. Trials suggest LAIV has superior efficacy compared to 11Vs
in children. High-dose and adjuvanted ITV vaccines are recommended to enhance immunogenicity
in the elderly. Cell-based and egg-free vaccines are suitable for people with egg allergies. No
vaccines are licensed for use in infants <6 mo, but passive immunity can be conferred through
vaccinating the mother.

Point estimates of seasonal vaccine efficacy range from 50-90 % in healthy adults in controlled
trials. Real-world effectiveness can be as low as 10 %, depending greatly on vaccine class, choice
of endpoint, the match between vaccine and circulating strains, and various host factors [115,
126]. In general, efficacy is comparable or better in children versus young adults, and lowest in the
elderly due to immunosenescence. Females mount higher antibody responses than males to IIVs
regardless of age, potentially mediated by sex steroid levels [115, 127]. Immune history has a major
impact on vaccine response due to immune memory. Adults primed by past exposures to seasonal
influenza strains have qualitatively different responses to unprimed adults or influenza-naive
children. For example, influenza-naive children mount much higher serum antibody responses to
seasonal LAIV than primed adults [123]; and antibody responses to IIV peak later in unprimed
individuals, requiring two doses to generate optimal concentrations [122]. Immune history also
affects response via antigenic seniority (a.k.a. immune imprinting), where the antibody response
is biased towards recall against strains encountered in early childhood over generation of a de
novo response. This is beneficial if strains with the same epitopes come back into circulation,
and harmful against strains still similar enough to trigger immune memory, but with drifted
epitopes [115, 128]. Finally, host genetic variation in cytokine genes, immunoglobulin genes, and
the human leukocyte antigen (HLA) region are associated with antibody responses—reviewed in
Section 3.1.1.

2.1.3 Quantifying immune response to influenza vaccines

The efficacy of IIVs is mostly mediated by induction of strain-specific anti-HA antibodies,
although other antibodies (e.g. anti-NA) may also contribute in the case of non-purified vaccines.
Antibody-secreting cells (ASCs) in peripheral blood peak around one week after vaccination, and
serum antibodies peak around two to four weeks after vaccination. Antibody-mediated protection
may last up to a year in healthy adults [122, 129]. The immunodominance of the HA head over
the stalk means most anti-HA antibodies have epitopes in the head domain. Unsurprisingly,
the resulting immune selection pressure concentrates antigenic drift in the head domain. The
stalk domain is relatively conserved, hence anti-stalk antibodies are more likely to be broadly
neutralising antibodies effective against multiple virus subtypes (heterosubtypic immunity) [130].

The haemagglutination inhibition (HAI) assay is an inexpensive method for quantifying
serum anti-HA antibody concentrations. A serial dilution of serum is created and mixed with
standardised concentrations of red blood cells (RBCs) and influenza virus. Without the presence
of antibodies, the receptor site on the HA head binds to membrane-bound sialic acid on RBCs,
agglutinating them into a lattice that appears as a cloudy red solution. Anti-HA antibodies
inhibit agglutination, allowing the RBCs to settle, creating a clear solution with a dark red pellet.

The titre value comes from the most dilute concentration of serum that completely inhibits
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agglutination [131]. The value is relative to the concentrations of reagents, requiring standardised
protocols for comparability. A standardised HAT titre of 40 (1:40 dilution) is deemed seroprotective,
and is an accepted correlate of protection for IIVs, representing 50 % clinical protection rate
against infection [122, 132]. Reliable correlates of protection are useful in vaccine trials to reduce
resource requirements (e.g. time, sample size, cost) compared to disease or infection-based
endpoints like clinical protection [133]. For seasonal IIVs, regulatory agencies define target criteria
based on the minimum proportion of individuals achieving HAI seroprotection (> 40 titre) and
seroconversion (> 4-fold increase in titre after vaccination, indicating the vaccine is immunogenic)
[116, 130, 132].

An alternative method is the microneutralisation (MN) assay, which quantifies concentrations
of serum antibodies capable of neutralising viral infectivity. Neutralising antibodies may be
anti-HA antibodies quantifiable by HAI, but may also be anti-HA stalk antibodies or antibodies
with non-HA targets not detectable by HAI [116]. The assay again involves a serial dilution of
serum, which is incubated with standardised concentrations of virus. The serum-virus mixtures
are inoculated into host cells in vitro. After incubation, virus-infected cells are quantified (e.g.
enzyme-linked immunosorbent assay (ELISA) using antibodies against viral proteins), the lack
of which indicates neutralising activity sufficient to suppress viral replication [131]. A MN assay
value of 160 (1:160 dilution) is considered equivalent to the seroprotective HAI value of 40 [122].

IIVs primarily induce serum antibodies of the IgG isotype. The cellular response has not
been extensively studied, but the induction of CD8' T cells by unadjuvanted subunit IIVs is
considered poor [122, 134]. In contrast, LAIVs can induce serum IgG, but also efficiently induce
mucosal IgA and T cell responses [123]. Protection may also have greater duration than that
afforded by IIVs, although the longevity still pales in comparison to natural infection, which can
grant strain-specific protection that is lifelong [116, 121-123]. Different facets of response play
different roles in immunity: serum IgG is important for limiting severity of systemic infection,
mucosal IgA in the upper respiratory tract inhibits initial infection and transmission, CD8™ T
cells promote viral clearance and recovery, and CD4" T cells help induce the humoral and CD8"
T cell responses [114, 122, 130, 135]. Correlates of protection for LATV have not yet been defined;
licensed LAIVs have all been licensed on the basis of clinical protection. Their comparable efficacy
to IIVs in adults despite low HAT titres and seroconversion rates are presumed to be mediated by
mucosal and cell-mediated immunity [116, 123]. Clearly, a broader view of immunity than granted
by serological antibody assays is needed to understand the mechanisms leading to efficacious

influenza vaccine responses.

2.1.4 Systems vaccinology of seasonal influenza vaccines

Vaccinology has historically been driven by the “isolate-inactivate-inject” paradigm [136]. Many
vaccines have been developed and licensed through expensive, large-scale, and largely empiri-
cal trials that deliver highly effective vaccines, but little understanding of the immunological
mechanisms of protection. In response, the last decade has seen the rise of systems vaccinology,
a subfield of systems immunology dedicated to the analysis of high-throughput data measured
at multiple levels of the immune system to characterise response to vaccination [133, 137-143].

Traditional serological assays (e.g. HAI, MN) are complemented with a raft of other technologies
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to give a broader view of immune response [137-139, 142, 143]. Flow (e.g. fluorescence-activated
cell sorting (FACS)) and mass cytometry (e.g. cytometry by time-of-flight (CyTOF)) are used to
quantify immune cell subpopulations by their surface markers using fluorescent and heavy metal
tags. These technologies can also be used to quantify intracellular markers (e.g. cytokines) by
cell staining. Frequencies of cells secreting specific proteins (e.g. cytokines or antibodies) can also
be quantified (e.g. enzyme-linked immune absorbent spot (ELISPOT)), useful for monitoring
activated cell populations involved in both humoral and cell-mediated immunity. The transcrip-
tome of peripheral blood is extremely popular to assay (e.g. expression array, RNA sequencing
(RNA-seq)), providing an accessible, global measure of gene expression in dozens of immune cell
subtypes without the need to select specific genes of interest in advance. Recently, there has been
a growing interest in targeted sequencing of B cell and T cell repertoires, responsible for the
specificity of the adaptive immune system. Serum proteins can be quantified in a low-throughput
(e.g. ELISA) or multiplex manner (e.g. Luminex). Modern proteomics platforms also embrace a
global philosophy, simultaneously quantifying thousands of proteins (e.g. SOMAscan). Finally,
although not often considered due to small cohort sizes, host genetic variation can be accurately

measured by genotyping arrays and sequencing.

Longitudinal study design is key, not only to profile different stages of innate and adaptive
immunity, but also for determining correlates of protection. Correlates are known for some but
not all established vaccines [144, 145]. For novel and emerging diseases, there may be no prior
knowledge of correlates for use in vaccine development. The term “molecular signature” was
coined to refer to transcriptomic responses induced early after vaccination that correlate with,
and importantly, are predictive of later immune phenotypes (e.g. antibody titres) [133], although
non-transcriptomic data types can also be used to form signatures. The ultimate goal is baseline
prediction, where the immune state immediately prior to vaccination predicts response, and could
potentially be modulated to enhance response in a similar manner to adjuvanting the vaccine
itself [146].

Work in the field has thus far focused on established vaccines. One can learn from the success
of highly-efficacious vaccines like yellow fever vaccine (YF-17D); where interferon, complement,
and inflammasome expression signatures measured 3-7 days post-vaccination predict CD8T T
cell and neutralising antibody responses 60 days post-vaccination [138, 147]. Much has also been
learnt from the study of vaccines with suboptimal efficacy in challenging populations: infants
and the elderly, pregnant women, immunocompromised patients, ethnically-diverse populations,
developing countries [148]. The field has not yet identified completely novel correlates for many
vaccines, partially because protection itself can be difficult to measure. One promising system is the
human challenge trial, applied by Vahey et al. [149] to identify genes in the immunoproteasome
pathway associated with protection from malaria challenge after adjuvanted RTS,S malaria
vaccination. If correlates for novel vaccine candidates could be routinely established based on
shared immune mechanisms leading to efficacy and long-lasting protection derived from multiple
successful vaccines, there is enormous potential for optimising trials to be fast and cost-effective
[133, 150], and informing rational, mechanism-based design for diseases that have thus far proved
intractable to empirically-designed vaccines (e.g. HIV, malaria, non-childhood tuberculosis) [136,
140, 143, 150].
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Seasonal influenza vaccines have been well-studied by systems approaches. One of the earliest
studies by Zhu et al. [151] found that expression of type I interferon-modulated genes at day
7 was more prominent for LAIV than trivalent inactivated influenza vaccine (TIV) in children
(total cohort size n = 85). A subsequent study found that both LAIV and TIV could induce
interferon-related genes in children (n = 37), but much earlier in TIV (day 1) than in LAIV (day
7) [152]. As serum antibody titres are an established correlate for TIV, studies have been carried
out to identify its molecular basis. Bucasas et al. [153] (n = 119) reported a 494-gene expression
signature (including STAT1, CD74, and E2F2) measured at day 1 and 3 that correlated with
serum antibody titres measured 14 and 28 days after vaccination. Signatures including day 3
kinase CaMKIV expression were found to predict day 28 HAI antibody titres in independent
trials over three consecutive influenza seasons (n = 67) [154]. Expression of gene sets related to
B cell proliferation at day 7 were likewise predictive of day 28 HAI (n = 15) [155]. Work has also
been conducted to understand the heterogeneity in response due to host factors like sex [127]
and age [156-159].

Signatures can be derived from predictors measured pre-vaccination [146]. A gene module
enriched in apoptosis-related genes measured at baseline was found to predict day 28 HAI
response (n = 89) [160]. Tsang et al. [161] used not gene expression, but FACS measurements
to establish signatures for day 70 neutralising antibody titres (n = 63). Frequencies of several
B cell, myeloid dendritic cell (DC), CD4" memory T cell, and a number of other activated T
cell populations were not only predictive, but also stable over a period of two months. Nakaya
et al. [157] used data collected over five consecutive seasons (n = 212) to identify associations
between day 28 HAI and baseline expression modules annotated to B cells (positive association),
T cells (positive association), and monocytes (negative association). They were able to replicate
these associations using published data from Franco et al. [94] and Furman et al. [160]. Another
multi-cohort, multi-season study (n > 500) by the Human Immunology Project Consortium
(HIPC) [159] found baseline expression of genes (RAB24, GRB2, DPP3, ACTB, MVP, DPP7,
ARPCY, PLEKHB2, ARRB1) and gene modules to be associated with antibody response in
young individuals. Again, the authors were able to validate the associations in an independent
cohort.

To conclude, it must be noted that the utility of molecular signature for predicting response
to influenza or other vaccines in clinical trials has not yet been validated, and it is difficult to
draw causal insights from studies that are largely descriptive or predictive. The existence of

temporally-stable and replicable signatures is, however, encouraging.

2.1.5 The Human Immune Response Dynamics (HIRD) cohort

For studies of seasonal influenza vaccines in adults, responses are heavily influenced by im-
munological memory built by past vaccination or infection with antigenically-similar strains
[137, 162]. Dependence on exposure is reflected in high variability of baseline vaccine-specific
antibody titres and memory B cell numbers [161]. There have also been few systems vaccinology
studies of adjuvanted influenza vaccines, known to have greater immunogenicity and efficacy
than non-adjuvanted vaccines in children and the elderly [158, 163, 164]. The Human Immune

Response Dynamics (HIRD) study conducted by Sobolev et al. [162] was conceived as a unique
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opportunity to study response to an adjuvanted pandemic influenza vaccine (Pandemrix), where
responses are more likely to be primary than recall, and variability due to prior exposure is
minimised.

Pandemrix was one of several vaccines rapidly developed and licensed in response to the
2009 influenza pandemic [165]. It is a monovalent split-virion ITV against the pandemic influenza
A /California/07/2009 (HIN1)pdm09 strain* developed by GlaxoSmithKline, containing 3.75 pg
HA and adjuvant AS03 (oil-in-water emulsion containing DL-a-tocopherol, squalene, polysorbate
80). Subsequent studies estimated its effectiveness to be ~80 % after a single dose [166]. As the
HIN1 subtype had not circulated since the 1918 pandemic, the majority of the population was
expected to be immunologically-naive at the time of study sampling (March 2010 to August
2011).

The study was a longitudinal, prospective cohort study. A total of 178 healthy adults in
the UK were vaccinated with a single dose of Pandemrix. Clinical, transcriptomic, immune cell
frequency, cytokine level, antibody titre, and adverse event phenotypes were collected. Genes
associated with both myeloid and lymphoid effector functions had increased expression at day 1
versus baseline, most prominently for genes associated with the interferon response. Day 1 gene
expression was impacted by age; significant global differences were observed in individuals older
than 30-40yr, considerably earlier than usually considered in studies of immunosenescence in old
age. The early myeloid responses—increase in blood monocyte levels and cytokines associated
with innate activation e.g. CCL4—were overall consistent with studies of unadjuvanted seasonal
influenza vaccines. However, the early lymphoid responses—driven by a five-fold increase in
serum interferon gamma levels at day 1—were unique to this adjuvanted pandemic influenza
vaccine.

Vaccine (antibody) response was defined as a >4-fold increase in either HAT or MN titres
after vaccination. Genes related to plasma cell development and antibody production were more
highly expressed in 23 responders compared to 18 non-responders at day 7 post-vaccination.
However, due to high variability among the vaccine non-responders in expression trajectory over
time, a predictive model that segregated the two groups could not be built, even considering
other predictors such as frequencies of immune cell subsets, and serum cytokine levels. There
appeared to be many “routes to failure” [162], rather than any single determining factor leading

to poor antibody response.

2.1.6 Chapter summary

Transcriptomic measurements in the original HIRD study were restricted to a relatively small
number of individuals (n = 46), limiting power to detect expression associated with antibody
response. In addition, the binary responder versus non-responder definition used does not account
for variation in baseline titres, and dichotomisation of a continuous variable loses information
and implies a discontinuity in response at the cutoff.

In this chapter, I combine the existing array data with newly generated RNA-seq data (n = 75)

*The WHO nomenclature for isolates specifies influenza type (A, B, C, D), host of origin (human if omitted),
geographical origin, strain number, year of isolation, and isolate subtype (combination of HA and NA subtypes)
[117].
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on additional individuals from the HIRD cohort using Bayesian random-effects meta-analysis
to account for between-platform heterogeneity. I also compute a baseline-adjusted, continuous
phenotype of antibody response to vaccination, the titre response index (TRI) [153]. Leveraging
the greater sample size, more statistically efficient definition of vaccine response, and greater
sensitivity of rank-based gene set enrichment analysis over per-gene analysis, I identify gene
expression modules associated with magnitude of antibody response. The strongest associations

are seen at day 7, but significant module associations are also observed at baseline.

2.2 Methods

2.2.1 Existing HIRD data and additional data generation

The design of the HIRD study is described fully in Sobolev et al. [162]. In brief, blood samples
were collected from each individual on each of six visits: two pre-vaccination (days -7 and 0),
and four post-vaccination (days 1, 7, 14 and 63). A single Pandemrix dose was administered
after blood sampling on day 0. Serum antibodies were measured for all individuals (n = 178) on
days -7 and 63 using both HAI and MN assays. peripheral blood mononuclear cell (PBMC) gene
expression was profiled for 46 individuals by expression array on days -7, 0, 1 and 7.

In addition to this existing data, PBMC RNA-seq data was generated for 75 individuals at
days 0, 1, and 7; and 169 individuals were genotyped. The sets of individuals with gene expression
assayed by array and RNA-seq are disjoint, as no biological material for RNA extraction remained

for the array individuals. An overview of datasets is shown in Fig. 2.1.

2.2.2 Computing baseline-adjusted measures of antibody response

There were 166/178 individuals with HAT and MN titres available at both baseline (day -7)
and post-vaccination (day 63). Sobolev et al. [162] defined Pandemrix vaccine responders as
individuals with >4-fold titre increases from day -7 to day 63 in either the HAI or MN assays.
This is a typical threshold for HAI and MN seroconversion used to assess the immunogenicity
of seasonal ITVs [116], and has also been recommended for pandemic IIVs [167]. However, they
noted there was “a complete spectrum” of baseline titres of non-responders, citing “glass ceiling”
non-responders whose high baseline titres made “enhancements by >4-fold harder to achieve”.
This may be referring to the dynamic range of the assays. In the full data, the range of HAI
titres is 8-4096, and the range of MN titres is 10-5120 (Fig. 2.2a, Fig. 2.2b). In just the day -7
baseline titres, the range of HAI titres is 8-512, and the range of MN titres is 10-5120*. It is
impossible for an individual with higher than 1280 MN at day -7 to achieve a 4-fold increase
in MN after vaccination if the maximum MN value is 5120. This ceiling effect can been seen in
Fig. 2.2d, where for a given baseline MN titre, there is a limit to the maximum observable fold
change.

Another perspective is to consider that day 63/day -7 fold change is a change score on the log

scale. It is well-known that change scores are usually negatively correlated to baseline. This can

*This indicates some individuals likely do have pre-existing antibodies to the pandemic strain (or cross-reactive
antibodies), although the mean of the baseline titre distribution would still be expected to be higher if this were a
seasonal vaccine.
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Pandemrix® adaptive
influenza A/California/7/2009 F 00 =
(HIN1), split virion, inactivated,
ﬁ?:;:;g:f;tﬁsezgn daly -7 daY 0 da\l/ +1 day +7 day +14 daY +63
Serum cytokines (n=139) * * * *
Immune cell counts (n=60) * * * * * *
HAI/MN antibody titres (n=178) * *
Array gene expression (n=46) * * * *
RNA-seq (n=75) * * *
Array genotyping (n=169) *

Figure 2.1: Overview of HIRD study data. The total cohort size was 178 individuals. Serum cytokines
were quantified by 16-plex Luminex panel. Immune cell subsets were quantified by FACS. Serum antibodies
were quantified by both HAT and MN assays. Array and RNA-seq gene expression were quantified in the PBMC
compartment.

be due to individual-level regression to the mean*, the tendency for extreme observations to be
followed by less extreme ones in the same individual [168], but is also due to the mathematical
relationship between change score and baseline (“mathematical coupling” [170]). The correlation
between change score and baseline is likely to be negative when the variance of the post-test
score is much larger than the variance of the baseline and the correlation between baseline and
post-test score is less than one [170, 171]. The negative correlation of titre fold change and
baseline is visible in the HIRD data (Fig. 2.2c, Fig. 2.2d).

Additionally, dichotomisation of continuous variables can result in loss of information [172-175].
Cohen [172] presents a classic example where dichotomising a continuous independent variable
reduces statistical power akin to throwing away a third of the samples—this being the optimal
case when the cutpoint is the mean. A discontinuous cutpoint is also biologically implausible,
implying that a 4.01-fold antibody titre change would be dramatically more protective than a
3.99-fold change.

To address these concerns, I computed the TRI as defined in Bucasas et al. [153]. For each
assay, a linear regression was fit with the log, day 63/day -7 titre fold change as the response,
and the log, day -7 baseline titre as the predictor. The residuals from the two regressions were
each standardised to zero mean and unit variance, then averaged with equal weight. The TRI
is a single variable that expresses a continuous measure of change in antibody titres averaged
across both assays post-vaccination, compared to individuals with a similar baseline titre. It is
no longer correlated with baseline (Fig. 2.2e, Fig. 2.2f), and remains qualitatively comparable to
the original binary definition (Fig. 2.2g, Fig. 2.2h).

Descriptive statistics for the 114 individuals with both gene expression and antibody titre
data are presented in Table 2.1. Although the proportion of responders between array (32/44)
and RNA-seq (59/70) individuals is similar (p = 0.16, Fisher’s exact test), the variance of TRI in
array individuals is higher (p = 2.10 x 1074, Levene’s test), suggesting more extreme antibody

response phenotypes are present (Fig. 2.3). The cause of this is unknown—there is a possibility

* Cf. group-level regression to the mean, which is prominent if the baseline measurement is used as a selection
criteria for follow-up [168, 169].
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Figure 2.2: Antibody titre data and responder definitions. Titre values are on the log, scale. Individuals
are colored by binary responder status: >4-fold increase in either HAI or MN titres from baseline (day -7) to
post-vaccination (day 63). Dashed lines show the >4-fold thresholds. (a, b) HAI and MN titres are correlated
at baseline (a) and post-vaccination (b). (c, d) Baseline titres are negatively correlated to fold change. (e, f)
TRI is computed from the standardised residuals from ¢ and d, adjusting for baseline titre. (g, h) TRI remains

comparable in ordering to binary response status.
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that individuals with more extreme phenotypes were prioritised for array transcriptomics in the
original HIRD study™.

2.2.3 Genotype data generation

DNA was extracted from frozen blood using the Blood and Tissue DNeasy kit (Qiagen), and
genotyping was performed using on the Infinium CoreExome-24 BeadChip array (Illumina). In
total, 192 samples from 176 individuals in the HIRD cohort—replicate samples were submitted for
individuals where extracted DNA concentrations were initially low—were genotyped at 550 601

markers

2.2.4 Genotype data preprocessing

Using PLINK (v1.90b3w) [176], genotype data underwent the following quality control filters to

remove poorly genotyped samples and markers:
o maximum marker missingness across samples <5 %;
o maximum sample missingness across markers <1% (Fig. 2.4);

 sample heterozygosity rate within 3 standard deviations of the mean of all samples (threshold

selected visually to exclude outliers, Fig. 2.4);

o sample sex mismatches based on X chromosome marker heterozygosity (--check-sex

option);

o and marker deviation from Hardy-Weinberg equilibrium (HWE), an indication of genotyping

or genotype calling errors [177-179] (-—hwe option, p-value <1 x 107%)f.

To exclude closely-related individuals and deduplicate samples from the same individual,
pairwise kinship coefficients were computed using KING (v1.4) [181]. As rare variation is not
generally required to determine relatedness, markers were filtered to minor allele frequency (MAF)
>0.05 for computational efficiency. For each pair of samples with pairwise kinship coefficient
>0.18 (first-degree relatives or closer), the sample with lower marker missingness was selected.
After all filters, 169/176 samples and 549 414/550 601 markers remained.

2.2.5 Computing genotype principal components as covariates for ancestry

As shown in Table 2.1, the HIRD cohort is multi-ethnic. Large-scale population structure explains
variation in gene expression [182, 183], so including genotype principal components (PCs) that
reflect that structure as covariates can increase statistical efficiency for detecting associations
with expression. I used HapMap 3 samples [184] as a reference population of unrelated individuals

where the major axes of variation in genotypes are ancestry. Genotypes were first linkage

“Personal communication with Sobolev et al. [162] authors.

TA wide range of thresholds for the HWE marker filter in controls between 1.00 x 1072 and 5.70 x 10™7 are
reported in the literature [178]. The HWE threshold used here is from de Lange et al. [180]; since the HIRD
cohort is two orders of magnitude smaller in size, this represents a relaxed threshold, so additional vigilance for
genotyping errors downstream is required. In principle, it may be possible to select an appropriate threshold from
the empirical distribution of HWE p-values [177].
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Table 2.1: Descriptive statistics for HIRD individuals with both expression and antibody data.
Values are count and percentage for categorical variables; mean and standard deviation for continuous variables.

Platform
Total Array RNA-seq
n=114 n=44 n="70
Gender
F 72 (63.2%) 27 (61.4%) 45 (64.3%)
M 42 (36.8%) 17 (38.6%) 25 (35.7%)

Age at vaccination (years)
20.2 (11.8) 32.9 (14.1)  26.8 (9.4)
Ancestry (self-reported)

Asian 14 (12.3%) 5 (11.4%) 9 (12.9%)
Black/African 9 (7.9%) 4 (9.1%) 5 (7.1%)
Caucasian 82 (71.9%) 33 (75%) 49 (70%)
Latin American 2 (1.8%) 1(2.3%) 1 (1.4%)
Mixed 5(4.4%)  1(2.3%) 4 (5.7%)
Other - Arab 1(0.9%)  0(0%) 1 (1.4%)
White Other 1 (0.9%) 0 (0%) 1 (1.4%)

log2 day -7 HAI

44 (1.8)  4.2(1.6) 4.5 (1.9)
log2 day 63 HAI

7.6 (1.8) 74 (22) 7.6 (L5)
log2 HAI fold change

32(1.9)  3.2(24)  3.1(16)
log2 day -7 MN

6.2 (2.8) 54(24) 6.6 (3.0)
log2 day 63 MIN

10.4 (2.0) 9.5 (2.2) 10.9 (1.6)
log2 MN fold change

4.2 (2.3) 4.1 (2.6) 4.3 (2.1)
Responder (binary definition)

FALSE 23 (20.2%) 12 (27.3%) 11 (15.7%)
TRUE 91 (79.8%) 32 (72.7%) 59 (84.3%)
TRI

0.0 (0.9) -02(1.2)  0.1(0.7)
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disequilibrium (LD)-pruned (PLINK --indep-pairwise 50 5 0.2 i.e. in a sliding window of
50kbp, with a step size of 5 variants, remove variants at each step until no pair of variants has
LD >0.2), to avoid regions with many redundant markers being overrepresented in the resulting
PCs [185, 186]. Eighteen genomic regions with especially strong and/or long-range LD that
contain many highly correlated markers were excluded, otherwise some PCs may reflect those just
regions rather than genome-wide ancestry [185, 187]. Principal component analysis (PCA) was
performed using smartpca (v8000) [185], then HIRD sample PCs were computed by projection
onto the HapMap 3 PCA eigenvectors. A projection was used instead of in-sample PCA, as
cryptic relatedness in HIRD may be reflected in the resulting PCs instead of ancestry [188]. For
non-genotyped individuals with expression data, PC values were imputed as the mean value for
all genotyped individuals with the same self-reported ancestry. The top PCs indeed separate
HIRD samples by ancestry (Fig. 2.5). Significant PCs with large eigenvalues unlikely to be due to
sampling noise were selected by Tracy-Widom test [189]. The fourth PC had an eigenvalue of 1.01

(p = 0.02), so the top four PCs were retained as continuous covariates for ancestry downstream.

2.2.6 RNA-seq data generation

Total RNA was extracted from PBMCs using the Qiagen RNeasy Mini kit, with on-column
DNase treatment. RNA integrity was checked on the Agilent Bioanalyzer and mRNA libraries
were prepared with the KAPA Stranded mRNA-Seq Kit (KK8421), which uses poly(A) selection.
To avoid confounding of timepoint and technical effects from library preparation and sequencing,
samples were pooled by library preparation plate (three pools) ensuring libraries from all
timepoints of an individual were in the same pool, then sequenced across multiple lanes as
technical replicates (HiSeq 4000, 75 bp paired-end).

RNA-seq quality metrics were assessed using FastQC* and Qualimap [190], then visualised
with MultiQC [191]. Sequence quality was high, as measured by mean per-base Phred scores
across sample reads (Fig. 2.6). The unimodal GC-content distribution suggested negligible levels

of non-human contamination (Fig. 2.7).

2.2.7 RNA-seq quantification and preprocessing

Reads were quantified against the Ensembl reference transcriptome (GRCh38.p15) using Salmon
[192] in quasi-mapping-based mode, which internally corrects for transcript length and GC
composition by computing an effective length for each transcript. Relative transcript abundances
were summarised to Ensembl (release 90) gene-level count estimates using tximport (scaledTPM
method, which scales Salmon transcripts per million (TPM) values up to the library size [193,
194]) to improve statistical robustness and interpretability [193]. To combine technical replicates,
as the sum of Poisson distributions remains Poisson-distributed, counts for technical replicates
were summed for each sample. The mean number of mapped read pairs per sample after summing
was 27.09 million read pairs (range 20.24-39.14 million), representing a mean mapping rate of
80.73 % (range 75.57-90.10 %). These meet sequencing depth recommendations for differential

gene expression (DGE) experiments (e.g. diminishing returns after 10 million single-end reads

*https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

30 Transcriptomic response to Pandemrix vaccine

© Populations
g — i Hm CEU
" B CHB
B JPT
H YRI
8 | @ HIRD
o
<
C)_ —]
o
N AN
O o 4
a o
o
o
o
(o] .o
S #
< 2
o 0
S %

I I I I I I I
-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04

PC1

Figure 2.5: HIRD samples projected onto PC axes defined by PCA of HapMap 3 samples. The first
two PCs separate individuals of European (CEU, upper-right) from Asian (CHB and JPT, lower-right) and African
(YRI, lower-left).
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Figure 2.6: FastQC per-base sequence quality (Phred scores) versus read position for RNA-seq
samples. Visualised with MultiQC [191].
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Figure 2.7: FastQC per-read GC distributions for RN A-seq samples. Visualised with MultiQC [191].
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[195]) and mapping rate expectations (e.g. 70-90 % [196]).

Genes with short non-coding RNA (ncRNA) biotypes™ were filtered out. These are generally
not polyadenylated, depleted by size selection during library preparation, and shorter than the
75 bp read length, so expression estimates for these genes can reflect misassignment of counts
from overlapping protein-coding or long ncRNA genes [197]. Globin genes, which are highly
expressed in RBCs and reticulocytes—cell types expected to be depleted in PBMC [198]—were
also filtered out. Given the proportion of removed counts at this stage was low for most samples
(Fig. 2.8), poly(A) selection and PBMC isolation were deemed to have been efficient.

Many of the genes in the reference transcriptome were not detectably expressed in PBMC
(Fig. 2.9), and many genes were expressed at counts too low for statistical analysis of DGE. Genes
were filtered to require a minimum of 0.5 counts per million (CPM) in at least 20 % of samples.
The 0.5 CPM threshold was chosen to correspond to approximately 10 counts in the smallest
library, where 10-15 counts is a rule of thumb for considering a gene to be robustly expressed
[199, 200]. Genes were further filtered to require detection (non-zero expression) in at least 95 %
of samples to lessen the impact of low-expression outliers. The change in the distributions of gene
expression among samples before and after filtering shows a substantial number of low expression
genes are removed (Fig. 2.10).

RNA-seq produces compositional data due to sequencing a fixed number of reads per library;
if one gene’s expression goes up in a library, another’s must go down. In order for expression values
to be comparable between different libraries (samples), it is important to account for composition
bias: the dependence of expression estimates on the expression properties of other genes in each
library [201]. Effective library sizes were computed as between-sample normalisation factors using
the trimmed mean of M-values (TMM) method [201, 202] from edgeR: : calcNormFactors [203].
Precision weights for each (gene by sample) observation were computed with limma: :voom [204]
to account for the mean-variance relationship in RNA-seq data; limma: : voom also transforms
expression values to the logy CPM scale using effective library sizes.

Finally, 15 samples were excluded for having missing HAI or MN data. After the application
of all filters, expression values were available for 21 626 genes over 208 samples (70/75 individuals
on day 0, 68/75 on day 1, and 70/75 on day 7).

2.2.8 Array data preprocessing

Single-channel Agilent 4x44K expression array data (G4112F, 60-mer oligonucleotide probes) for
173 samples from Sobolev et al. [162] were downloaded from ArrayExpress (https://www.ebi.
ac.uk/arrayexpress/experiments/E-MTAB-2313/). These arrays were originally processed in
two batches, the effect of which can be seen in the raw foreground intensities (Fig. 2.11).

VSN: :normalizeVSN [205] was used for simultaneous background correction, between-array
normalisation (affine transformation, centers and scales each array to control for systematic
experimental factors), and variance-stabilisation of intensity values (generalised logarithm, similar
to log, with better performance for small values), resulting in expression values on a log, scale.

As systematic experimental factors might differ between batches, requiring different centering

*miRNA, miRNA_ pseudogene, miscRNA, miscRNA pseudogene, Mt rRNA, Mt tRNA, rRNA, scRNA, snlRNA,
snoRNA, snRNA, tRNA, tRNA_ pseudogene. List from https://www.ensembl.org/Help/Faq?id=468


https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2313/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2313/
https://www.ensembl.org/Help/Faq?id=468
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Figure 2.8: Distributions of removed short ncRNA and globin counts as a proportion of total counts
in RN A-seq samples.
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Figure 2.9: Distribution of the proportion of samples in which genes were detected (non-zero
expression). Many genes are not detected in any samples (left-hand side). Vertical line shows 5 % threshold below
which genes were discarded.
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Figure 2.10: Distributions of gene expression for RNA-seq samples before and after filtering low
expression and non-detected genes. Vertical line shows CPM = 0.5 threshold.
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and scaling factors, normalisation was performed per-batch, then the two batches were merged.

Probes were matched to genes using hgug4112a.db*. Most genes were targeted by multiple
array probes; 31 208 probes were collapsed into 18 216 Ensembl genes using by selecting the probe
with the highest mean intensity for each gene (WGCNA: :collapseRows (method = "MaxMean"),
recommended for probe to gene collapsing by Miller et al. [206]). While it would be optimal to
select a collapsing method to maximise the concordance between array and RNA-seq expression
values, there were no samples assayed by both platforms in the HIRD dataset. The final
normalised log, intensity values for these 18 216 genes over 173 samples is shown in Fig. 2.12.
Finally, limma: :arrayWeightsQuick [207] was used to compute per-sample quality weights used

to downweight unreliable arrays (samples) in the DGE analyses.

2.2.9 Differential gene expression (DGE)
2.2.9.1 Platform and batch effects

Combining the normalised array and RNA-seq data resulted in expression values for 13593
genes assayed in both platforms for a total of 374 samples. PCA revealed that although samples
separate by experimental timepoint along PC3 (Fig. 2.13¢), measurement platform is by far the
largest source of variation (Fig. 2.13a). Normalisation was also not able to completely remove
the batch effect within the array data (Fig. 2.13a). The large platform effect likely stems from
systematic technological differences in how each platform measures expression. RNA-seq has a
higher dynamic range, resulting less bias at low expression levels, but estimates are more sensitive
to changes in depth than array estimates are to changes in intensity [208]. Agreement between
the two platforms is poor at extremes of expression [209, 210]. The preprocessing steps for the
two platforms (Sections 2.2.7 and 2.2.8) were also vastly different.

Despite the potential shortcomings of array data detailed above, the array dataset contains
individuals with more extreme antibody response phenotypes (Fig. 2.3), and hence should not be
excluded. Given the magnitude of the platform effect, I concluded that the appropriate approach
was a two-stage approach that meta-analyses per-platform DGE effect estimates while explicitly
accounting for between-platform heterogeneity.

Regarding the batch effect within the array data, a popular adjustment method is ComBat
[211], which estimates per-gene, per-batch centering and scaling parameters, which are shrunk
towards the per-batch mean parameters over all genes using empirical Bayes to improve robustness.
ComBat was the method used by Sobolev et al. [162]. In comparisons of array batch effect
adjustment methods, ComBat performed favourably (versus five other adjustment packages)
[212] or comparably (versus fitting batch as a fixed or random effect in the linear model, which
are centering-only corrections) [213]. However, where batches are unbalanced in terms of sample
size [214] or distribution of study groups that have an impact on expression [215], ComBat can
overcorrect batch differences or bias estimates of group differences respectively. In our data,
sample size and timepoint groups are fairly balanced between the two array batches (Table 2.2).
The proportion of responders is not, but response status does not have as prominent an impact

on global expression as timepoint (Fig. 2.13). For the DGE analyses in this chapter, I chose to

*https://bioconductor.org/packages/release/data/annotation/html/hgugd112a.db.html


https://bioconductor.org/packages/release/data/annotation/html/hgug4112a.db.html
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model batches (array batch and RNA-seq pool) as fixed effects rather than pre-adjusting with
ComBat in a separate step, ensuring the degrees of freedom (df) in the DGE model were correct.
In practice, results from the analyses were not substantially affected by the choice of whether to

use a ComBat pre-adjustment or a fixed effect.

2.2.9.2 Per-platform DGE model

As a meta-analysis was performed, DGE analyses were restricted to the 13593 genes assayed
by both the array and RNA-seq platforms. Linear models were fit using 1imma [216], which is
computationally fast, performs well for sufficiently large (n > 3 per group) sample sizes [217], and
internally considers the precision weights computed for RNA-seq observations in Section 2.2.7,
and the array quality weights computed for array samples in Section 2.2.8. As Sobolev et al.
[162] already found there was no global dissimilarity in array expression between day -7 and
day 0, for the DGE analyses in this chapter, array day -7 and day 0 are treated as repeated
measurements taken at a single “baseline” timepoint.

For each gene and platform, I fit a model (model 1) with expression as the response vari-
able; with an intercept, timepoint (baseline, day 1, day 7), TRI, array batch/RNA-seq pool,
sex, age, and the first 4 genotype PCs as fixed-effect predictors; and individual as a random-
effect predictor. Within-individual correlations for the random effect were estimated using
limma::duplicateCorrelation. A second model (model 2) was also fit, the only difference
being two additional predictors for the multiplicative interactions between day 1 and day 7 with
TRI. Model 1 was used for testing differences in expression between pairs of timepoints, and for
testing association between TRI and expression with timepoints pooled. Model 2 was used for
testing association between TRI and expression at specific timepoints.

Contrasts were defined, testing if linear combinations of estimated model coefficients are
different from zero. From model 1, I defined contrasts for day 1 vs. baseline, day 7 vs. baseline, day
7 vs. day 1, TRI, sex, and age. For example, to test for association between TRI and expression,
I used a contrast where the weight for the TRI coefficient was 1, with all other coeflicient weights
set to 0; to test for differences between day 7 vs. day 1, I used a contrast where the weight for the
day 7 coefficient was 1, the weight for the day 1 coefficient was -1, and all other coefficient weights
were 0. From model 2, I defined contrasts for the TRI, TRI-day 1, and TRI-day 7 interaction
terms, which respectively test for association between TRI and expression at specifically at
baseline, day 1, and day 7. Corresponding coefficients and standard errors for the contrasts were
extracted from the limma models, which represent effect size in units of log, expression fold

change per unit change in predictor value.

2.2.9.3 Choice of DGE meta-analysis method

Two popular frameworks for effect size meta-analysis are fixed-effect and random-effects [218,
219]. The fixed-effect model assumes a single true effect size § common to all studies. Given
k studies (i = 1,...,k), the observed effect size in the ith study is commonly assumed to be
yi ~ N(0,02), where observed variation is explained only by within-study sampling error o;. In
meta-analysis, the effects are combined with some weighting, commonly the inverse variance

(precision) 1/02.



2.2 Methods 39

Table 2.2: Distribution of HIRD samples among timepoint and responder groups in the array
batches and RN A-seq pools. Values are count and percentage for categorical variables; mean and standard
deviation for continuous variables.

Array batch/RNA-seq pool

Total Array 1 Array 2 RNA-seq 1 RNA-seq 2 RNA-seq 3
n = 374 n = 87 n=79 n =70 n = 69 n = 69
Day
-7 40 (10.7%) 20 (23%) 20 (25.3%) 0 (0%) 0 (0%) 0 (0%)
0 114 (30.5%) 24 (27.6%) 20 (25.3%) 24 (34.3%) 23 (33.3%) 23 (33.3%)
1 109 (29.1%) 21 (24.1%) 20 (25.3%) 22 (31.4%) 23 (33.3%) 23 (33.3%)
7 111 (29.7%) 22 (25.3%) 19 (24.1%) 24 (34.3%) 23 (33.3%) 23 (33.3%)
Responder

FALSE 80 (21.4%) 12 (13.8%) 36 (45.6%) 11 (15.7%) 9 (13%) 12 (17.4%)
TRUE 294 (78.6%) 75 (86.2%) 43 (54.4%) 59 (84.3%) 60 (87%) 57 (82.6%)

TRI
0.1 (1.0) -01(1.0) -04(14) 01(0.6) -00(08)  0.2(0.6)

The random-effects model assumes a distribution of true effects centered around a common
mean p. Each of the k studies estimates its own study-specific true effect size 6;. These are
distributed around g with variance 72 (standard deviation 7), representing an additional source
of variation: the between-study heterogeneity. Then we have y; ~ N(6;,02) for the first level of
variation, 0; ~ N (u, 72) for the second level of variation, and assuming these distributions, we have
a normal-normal multilevel model [220]. Study weights include both within- and between-study

variance 1/(0? + 72), reducing to the fixed-effect model when 7 = 0.

The choice of fixed or random effects depends on whether it is tenable to assume studies
are identical enough that they all estimate a common effect*. In the HIRD data, there are
k = 2 studies: array and RNA-seq. The between-platform differences described in Section 2.2.9.1
represent considerable sources of between-study heterogeneity. For DGE effect sizes, arrays also
suffer from ratio compression of fold change estimates due to cross-hybridisation and probe
saturation [210, 222, 223|. The assumption of 7 = 0 is unrealistic, so a random-effects model is

more appropriate.

Unfortunately, there is no optimal solution for directly estimating 7 in random-effects meta-
analyses with small k [224], and especially in the case of k = 2 [225]. Many estimators are available
[226], but lack of information with small k causes estimation to be imprecise, and often results in
boundary values of 7 = 0 that are incompatible with the assumed positive heterogeneity [227,
228]. In such circumstances, the most sensible approach may be to incorporate prior information
about hyperparameters 1 and 7 in a Bayesian random-effects framework [226-229]. For this

study, I used the implementation in bayesmeta [220)].

*A common misinterpretation is that random-effects meta-analysis assumes studies themselves are sampled
from a population of studies. This is rarely appropriate since the design of new studies is influenced by existing
studies [221]. The required assumption is exchangeability of study effects, which informally states effects are neither
completely identical nor completely independent, but “similar” [221].
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2.2.9.4 Prior for between-study heterogeneity

The choice of prior for between-study heterogeneity 7 is influential when k is small [229]. Gelman
[230] considers the case of k = 3, showing that a flat prior places too much weight on implausibly
large estimates of 7, and recommends a weakly informative prior that acts to regularise the
posterior distribution, constraining it away from implausible values. Since I assumed zero estimates
for 7 are unrealistic, I used a weakly informative gamma prior, as recommended by Chung et al.
[227], which has zero density at 7 = 0 but increases gently as 7 increases (a positive constant
derivative at zero). This constrains 7 to be positive, but still permits estimates close to zero if
the data support it. This is in contrast to priors used in other studies from the log-normal (e.g
[231, 232]) or inverse-gamma (e.g. [233]) families that have zero density at zero and derivatives of
zero close to zero, ruling out small values of 7 no matter what the data suggest; and in contrast
to half-¢ family priors (e.g. [229, 230]), which have their mode at zero, and do not rule out 7 = 0.

Instead of constraining the value of 7 for a gene’s effect size to be a single unreliable estimate
from k = 2 data points, assuming a prior distribution recognises that other genes may be
informative of the range of plausible values for between-platform heterogeneity. To estimate the
appropriate shape and scale parameters for the gamma empirically, a frequentist random-effects
model using the restricted maximum likelihood (REML) estimator for 7 (recommended for
continuous effects [226]) was fit for each gene using metafor: :rma.uni [234]. Depending on
the contrast, over half of resulting per-gene 7T estimates were boundary values of zero. Small
estimates of 7 < 0.01 were excluded, and a gamma distribution fit to the remaining estimates

using fitdistrplus [235].

2.2.9.5 Prior for effect size

While the choice of prior on 7 is influential when k is small, there is usually enough data to
estimate the effect size u such that any reasonable non-informative prior can be used [228, 230].
bayesmeta implements both flat and normal priors for . Assuming that most genes are not
differentially expressed with effect sizes distributed randomly around zero, I selected a normal
prior with N(u = 0,0?), over a flat prior. As in the section above, to determine an appropriate
scale, a normal distribution with mean p = 0 was fit to the distribution of effect sizes from the
per-gene frequentist models to empirically estimate o.

Heavy-tailed Cauchy priors have been proposed for effect size distributions in DGE experiments
to avoid over-shrinkage of true large effects in the tails [236]. Since bayesmeta does not implement
a Cauchy prior, to avoid over-shrinkage, I flatten the normal prior considerably by scaling up
the standard deviation by a factor of 10: N (0, (100)2?). This places a 95% prior probability
that effects are less extreme than approximately 20 times the observed o, sufficient to allow for

extreme fold-changes.

2.2.9.6 Example of priors

An example of the empirically estimated hyperparameters for the priors for the day 1 vs. baseline
contrast are shown in Fig. 2.14 (for 7) and Fig. 2.15 (for p). For 7, the final prior used was

Gamma(shape = 1.57,scale = 0.06). This is comparable to the default recommendation from
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Chung et al. [227] of a Gamma(shape = 2,scale = \) prior where A is small. For 4, the final prior
used was N (0, (0.324 x 10)2). The tails of the non-scaled normal fit (black) are light compared
to the Cauchy fit (red), which may lead to over-shrinkage, especially since there are many genes

with high positive fold changes for the day 1 vs. baseline effect.

2.2.9.7 Multiple testing correction

For per-platform DGE, false discovery rate (FDR) was controlled with limma::decideTests
using the Benjamini-Hochberg (BH) procedure. For the frequentist random-effects meta-analysis,
nominal per-gene p-values were converted to FDR estimates using p.adjust (method = "BH")
in R. For the Bayesian random-effects meta-analysis, the effect sizes and standard errors from
the per-gene meta-analysis output from bayesmeta were supplied to ashr [238], which models
the distribution of effects under the assumption of unimodality. ashr applies empirical Bayes
shrinkage to improve the accuracy of effect estimation (e.g. against winner’s curse), returning
posterior effect sizes, posterior standard errors, and their significance (local false sign rate (LFSR)).
LFSR is analogous to FDR, but quantifies the probability, given the data, of calling the wrong
sign for an effect, rather than the confidence of a non-zero effect [238]. Unless otherwise stated,
FDR and LFSR were controlled at the 5% level separately for each contrast, as control is for the

proportion of positives expected to be false positives, which is scalable to multiple contrasts.

2.2.10 Ranked gene set enrichment using blood transcription modules

The gene sets used were blood transcription modules (BTMs) from Chaussabel et al. [239]
(prefixed “DC”) and Li et al. [240] (prefixed “LI”). Modules are sets of genes with transcriptional
and functional similarities across a variety of healthy, diseased, and stimulated conditions. The 260
modules from Chaussabel et al. [239] were constructed by unsupervised clustering of 239 PBMC
transcriptomes from multiple disease datasets, then annotated by data mining of gene names in
PubMed abstracts. The 334 modules from Li et al. [240] were constructed from coexpression
analysis of approximately 30000 blood transcriptomes, then annotated making use of Gene
Ontology (GO) terms, cell type-specific markers, pathway databases, and manual literature
searches. These datasets are particularly suitable for systems vaccinology studies, given their
focus on the blood transcriptome. Li et al. [240] modules are better annotated in general, and
were used for the majority of gene set enrichments in this chapter.

Gene set enrichment analyses were conducted using tmod: :tmodCERNOtest [241], which
assesses the enrichment of small ranks within specific sets of genes compared to all genes, after
the genes are ranked by some metric—here I used effect sizes from bayesmeta. The CERNO

statistic for a gene set is:

—23 2k~ y3(2n) (2.1)
i=1 N

where n is the number of genes in the set, N is the number of measured genes in the experiment,
and r; € 1,2,..., N is the rank of the ith gene in the set among all measured genes. CERNO
is relatively robust to the ranking metric [242]. FDR control for the number of gene sets
tested was performed using BH, again separately for each contrast. The x? test is one-sided, so

tmod: : tmodCERNOtest only considers enrichment of small ranks when computing significance.
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Figure 2.14: Gamma prior for 7 (blue) used for bayesmeta analyses of the day 1 versus baseline
effect, compared to the empirical distribution of per-gene frequentist metafor::rma.uni estimates
for 7. Genes with small estimates of 7 < 0.01 were excluded before distribution fitting. Empirical log-normal fit
also shown (red). Distribution parameters are listed.

tau > 0.01 only;

black: normal(mean=0.0195, sd=0.3240, sd.DESeq2.method=0.3154)
blue: normal(0.0000, 0.3240*10.0000)
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Figure 2.15: Normal prior for u (blue) used for bayesmeta analyses of the day 1 versus baseline DGE
effect, compared to the empirical distribution of per-gene frequentist metafor::rma.uni estimates
for 7. Genes with small estimates of 7 < 0.01 were excluded before distribution fitting. The original non-scaled
normal fit is shown (black), as well as a Cauchy fit (red). Distribution parameters are listed. An alternative
estimate of the Normal standard deviation more robust to outliers using a quantile matching method from DESeq2
[237] is also given. In this case, it was comparable to the maximum likelihood (ML) estimate from fitdistrplus.
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As genes can be down or upregulated, separate tests were performed sorting genes in ascending
and descending order, and the more significant result was used to determine the overall direction
of effect for each gene set. As the approach is rank-based and considers all measured genes, no
filters based on the ranking metric were necessary.

The effect size of a gene set enrichment can be quantified with the area under the curve
(AUC), computed from U, the test statistic from a Mann-Whitney U test (also known as the

Wilcoxon rank-sum test):

U:n(N—n)+n(n2+1)—Zri (2.2)
i=1

This is a non-parametric test for whether genes in the set have smaller ranks than genes not
in the set on average. Then AUC = U/(n(N — n)), which takes values from 0 to 1. Significant
results from the one-sided tmod: : tmodCERNOtest will always have AUC > 0.5.

2.3 Results

2.3.1 Extensive global changes in expression after vaccination

To gain an overview of how the transcriptome changes after vaccination, linear models were fit to
identify genes differentially expressed at day 1 or day 7 compared to baseline (day -7 and day 0)
in the HIRD array and RNA-seq expression data, accounting for covariates such as batch effects,
sex, age, TRI, and ancestry. At the 13593 genes with expression measured by both platforms,
models were fit within each platform. A frequentist random-effects meta-analysis was initially
run to generate plausible values for DGE effect size and between-platform heterogeneity. These
were used to form empirical priors for a Bayesian random-effects meta-analysis, producing final
posterior estimates of effect size and standard errors.

Vaccination induced changes in a large proportion of the PBMC transcriptome; 6257/13 593
genes were differentially expressed between any pair of timepoints (LFSR < 0.05). Applying
an absolute FC > 1.5 cutoff identified 857 genes with the strongest effects. Their expression
clustered into three general patterns: upregulation from baseline to day 1, then downregulation
from day 1 to day 7 back to baseline levels; upregulation from baseline to day 1, sustained at
day 7; and downregulation from baseline to day 1, then upregulation from day 1 to day 7 back
to baseline levels (Fig. 2.16).

2.3.1.1 Innate immune response at day 1 post-vaccination

Consistent with global expression at day 1 being markedly different from expression at other
timepoints (Fig. 2.13), the highest numbers of differentially expressed genes were observed at
day 1, with 644 genes differentially expressed vs. baseline. The majority of these (580/644) were
upregulated. The gene with the highest FC increase at day 1 compared to baseline was ANKRD22
(logy FC = 4.49), an interferon-induced gene in monocytes and DCs involved in antiviral innate
immune pathways [243]. Other key genes in the interferon signalling pathway [244] such as STAT1
(logy FC = 2.17), STAT2 (logy, FC = 0.95), and IRF'9 (logy FC = 0.82) were also upregulated

at day 1. Rank-based gene set enrichment analysis using tmod [241] revealed that genes with
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Figure 2.16: Normalised gene expression for 857 genes differentially expressed between any pair
of timepoints (Ifsr < 0.05, [FC| > 1.5). Rows are genes; columns are samples. Genes were standardised
within-platform, then hierarchically-clustered by Manhattan distance. Baseline timepoints are days -7 and 0. Row
annotations show DGE between pairs of timepoints. Column annotations show sample platform and timepoint.
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the large FC increases at day 1 were enriched in modules associated with interferon, activated
DCs, monocytes, and toll-like receptors (TLRs) and inflammatory signalling (Fig. 2.17). Sobolev
et al. [162] reported only a 1.6-fold (log, 1.6 = 0.68) increase in blood monocytes from baseline
to day 1, as measured by FACS, so these changes reflect active, per-cell upregulation as well as
proliferation.

Sixty-four genes were downregulated at day 1, enriched in modules associated with T cells
and natural killer (NK) cells. The largest absolute fold change was observed for FGFBP2
(logy FC = —0.91), which encodes Ksp37, a secretory protein unique to CD8' T cells and NK
cells [245]. Again, the fold changes in expression were of greater magnitude than observed for the
abundance of these cell types, suggesting active downregulation Sobolev et al. [162].

As can be seen in Fig. 2.16, there was a general tendency for expression to return to baseline
levels by day 7. This was the case for 566,/644 upregulated genes and 44/64 downregulated genes,

indicating the innate phase of response likely peaks in the first few days.

2.3.1.2 Adaptive immune response at day 7 post-vaccination

Fifty-nine genes were differentially expressed at day 7 vs. baseline. The genes with the highest
upregulation were genes associated with B cell differentiation and maturation: TNFRSF17
(marginal zone B and B1 cell specific protein, logy FC = 1.75) and MZB1 (B-cell maturation
antigen, logy FC = 1.74). Genes specific to plasma cells, including SDC1 (which encodes CD138,
required for plasma cell maturation [246]) (logy FC = 1.37) and ELL2 (which mediates antibody
secretion [247]) (logy FC = 0.87) were also prominently upregulated. This matches an almost
5-fold increase in plasma cell abundance at day 7 compared to baseline [162]. Strongly enriched
modules at day 7 were related to mitosis and cell proliferation, particularly in CD4™ T cells
(Fig. 2.17). Both the CD4™ T cell and plasma cell response are indications of a shift toward an

adaptive and primarily humoral immune response by day 7.

2.3.2 Expression associations with antibody response

2.3.2.1 Between-platform heterogeneity hinders detection of gene-level associa-

tions

Using only array expression data, Sobolev et al. [162] identified a set of 62 genes with day 7
expression associated with antibody response, where response was defined as a binary phenotype
based on 4-fold increases in HAI or MN titres from day -7 to day 63. Many of these genes were
related to plasma cell development and antibody production. I aimed to find genes similarly
associated with antibody response in the meta-analysis of array and RNA-seq expression data,
and assess the replication of the 58 /62 genes that fell into the set of 13593 genes measured by
both platforms.

I computed a baseline-adjusted, continuous measure of antibody response, the TRI [153]. The
TRI is comparable to the binary definition in ranking (Fig. 2.2g, Fig. 2.2h), but as a continuous
phenotype, it improves statistical efficiency to detect associations. Within just the array data,
51/58 genes were replicated (FDR < 0.05), confirming TRI and the binary response phenotype
were comparable. However, using only the RNA-seq data replicated 0/58 genes.
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Figure 2.17: Transcriptomic modules up or downregulated between pairs of timepoints. The top ten
most significant modules for each contrast are shown. Size of circle indicates absolute effect size (AUC). Color of
circle indicates significance (FDR < 0.05) and direction of effect (red = upregulation, blue = downregulation).
Absence of circle indicates non-significance.
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In the initial frequentist random-effects meta-analysis, with a significance threshold of
FDR < 0.05, 6 genes had expression associated with TRI at baseline (Fig. 2.18f), 55 at day
7 (Fig. 2.18h), and 11 pooling samples over all timepoints (Fig. 2.18e). Of the day 7-specific
associations reported by Sobolev et al. [162] (circled in Fig. 2.18h), 15/58 replicated, all with the
same positive direction of effect (high expression with high TRI). However, almost all significant
results displayed higher effect sizes in the array compared to RNA-seq (13/15 genes). This was in
contrast to the associations identified with timepoint, where significant genes had more consistent
effects between platforms along the diagonal (Fig. 2.18b—d). The likely cause is the presence of
more extreme antibody response phenotypes (higher TRI range) in the array versus the RNA-seq
dataset (Fig. 2.3). This represents an additional source of between-platform variation not due to
technical factors, but inherent to the samples themselves.

The Bayesian meta-analysis pipeline more robustly models between-study heterogeneity due
to platform and sample-specific effects. Due to shrinkage of effects, few genes with effects closer
to the dense center of the effect distribution were called as significant, and significant genes
tended to have outlying effect sizes in both platforms (compare Fig. 2.18b—d with Fig. 2.19b—d).
No single gene was detected as significantly associated with TRI at LESR < 0.05 for any contrast:
not at any single timepoint, nor when pooling samples across all timepoints (Fig. 2.19e-h). The
frequentist meta-analysis is likely to use poor estimates of the between-platform heterogeneity,
as there are only two data points to estimate it from. Indeed, all 15 significant genes with day 7
expression associated with TRI in the frequentist meta-analysis had unrealistic between-platform

heterogeneity estimates of exactly zero (Fig. 2.20).

2.3.2.2 Module-level associations with antibody response

Using effect sizes from the Bayesian meta-analysis, significant enrichments were detectable at the
gene set level. The strongest effects were seen at day 7, where expression of modules related to
the cell cycle, CD4™" T cells, and plasma cells were positively associated with TRI—*“cell cycle (I)”
(LI.M4.1, FDR = 6.81 x 107°), “Plasma cell surface signature” (LI1.S3, FDR = 1.78 x 10712),
and “cell division stimulated CD4+ T cells” (L1.M46, FDR = 5.54 x 10~10) (Fig. 2.21).

Associations with TRI were also detected at baseline. A diverse set of set of modules had pos-
itive associations, including “chemokines and inflammatory molecules in myeloid cells” (LI.M86.0,
FDR = 2.25 x 10~!1), “platelet activation - actin binding” (LI.M196, FDR = 1.71 x 107%),
“enriched in B cells (I)” (LI.M47.0, FDR = 2.40 x 10~7), “cell adhesion” (LL.M51, FDR =
1.22 x 10710), “myeloid, dendritic cell activation via NFkB (I)” (L1.M43.0, FDR = 4.68 x 1077),
and “proinflammatory dendritic cell, myeloid cell response” (LI.M86.1, FDR = 4.11 x 10~7).
Monocyte modules “enriched in monocytes (IT)” (LI.M11.0, FDR = 3.53 x 10~*) and “Monocyte
surface signature” (L1.S4, FDR = 1.17 x 10~3) were negatively association with TRI. Negative as-
sociations for these same modules were also maintained at day 1 (LIL.M11.0, FDR = 1.41 x 10710;
L1.S4, FDR = 1.74 x 107%) and at day 7 (LL.M11.0, FDR = 5.54 x 10~19) (Fig. 2.21).
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Frequentist random—effects model (rma.uni BH FDR < 0.05)

(a) Age (b) Day 1 vs. Baseline
0.050 - ®
4 -
0.025- 3-
2 -
0.000 -
1 -
-0.025 - 0-
l L 1 1 1
—O 03 . 0 2 4
(c) Day 7 vs. Baseline (d) Day 7 vs. Day 1
_2 5 -
This study
[0
N
n -05- . S
E significant
“; (e) TRI, All timepoints (f) TRI, Baseline—only
o Sobolev et al.
<
o significant
—0.4- -0.3-
—10 —05 . —10 —05 OO .
(9) TRI, Day 1 only (h) TRI, Day 7 only
0.6
0.4
0.2
0.0
0.2~ -0.3-
-0.4- -0.6-

10 -05 00 05 10 1.0 -05 00 05 1.0
RNA-seq effect size

Figure 2.18: DGE effect sizes (log, FC) estimated in array versus RNA-seq samples, colored by
significance in frequentist random effects meta-analysis using rma.uni at BH FDR < 0.05. Genes with
day 7 expression associated with binary responder/non-responder status in Sobolev et al. [162] are circled for that
contrast.
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Bayesian random-effects model (ashr Ifsr < 0.05)
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Figure 2.19: DGE effect sizes (log, FC) estimated in array versus RNA-seq samples, colored by
significance in Bayesian random effects meta-analysis using bayesmeta at ashr LFSR < 0.05. Genes
with day 7 expression associated with binary responder/non-responder status in Sobolev et al. [162] are circled for
that contrast.
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Figure 2.20: Estimates of between-platform heterogeneity 7 from frequentist and Bayesian meta-
analysis, for the 58 genes with a significant association between day 7 expression and binary
responder /non-responder status in Sobolev et al. [162]. Dashed line is the identity line. Estimates from
the frequentist method cover a wide range and can be zero. For this contrast testing association between day 7
expression and TRI, 8563/13 593 of per-gene 7 estimates are zero, including all 15/58 significant results (right)

Significant results are array-driven, with 13/15 having higher effects in array than RNA-seq (54/58 genes overall).
Estimates of 7 from the Bayesian method are in a narrower range and constrained away from zero by the prior.
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Figure 2.21: Gene expression modules associated with antibody response (TRI). Enrichments were
performed with all timepoints pooled, and at each timepoint specifically. The top ten most significant modules for
each contrast are shown. Size of circle indicates absolute effect size (AUC). Color of circle indicates significance
(FDR < 0.05) and direction of effect (red = expression positively correlated with TRI, blue = negatively correlated).
Absence of circle indicates non-significance.
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2.4 Discussion

A meta-analysis of array and RNA-seq data revealed extensive transcriptomic response to
Pandemrix vaccination in the HIRD cohort. At day 1, there was upregulation of genes and modules
related to monocytes, interferon signalling, and the inflammatory response; and downregulation of
T cell and NK cell genes and gene modules. Concordant changes in these gene modules were also
reported by Nakaya et al. [158] at day 1 after MF59-adjuvanted seasonal TIV in young children,
but changes in these modules were not as consistent in children who received non-adjuvanted
TIV. The AS03 adjuvant in Pandemrix is thought to act by promoting chemokine secretion,
predominantly targeting monocytes and macrophages [163, 248], which concurs with the strong
upregulation of monocyte and DC modules observed at day 1 after Pandemrix. A large component
of the expression response at day 1 may reflect response to the adjuvant. Most genes differentially
expressed at day 1 returned to baseline expression by day 7. Nakaya et al. [158] saw a similar
trend comparing day 0 and day 3 for MF59-adjuvanted TIV. Unadjuvanted seasonal TIV also
causes peak transcriptomic induction at day 1 [153]. Although the timepoint resolution here is
coarse, the early innate response to Pandemrix is transient, peaking less than 7 days, and likely
less than 3 days post-vaccination. Upregulation of cell cycle, proliferating CD4" T cell, and B
(plasma) cell genes and modules were detected at day 7. This indicates a shift to the adaptive
immune response, likely involving CD4" T cell-supported differentiation and proliferation of
ASCs.

Both day 1 and day 7 expression module changes were concordant with changes in cell
populations seen in the HIRD FACS data. The greater magnitude of expression fold change
of individual genes compared to cell abundance fold changes suggests the influence of both
mechanisms [162]. Statistical adjustment for measured or estimated cell composition is one
possibility; I explore these methods in Chapter 3 and Chapter 4. An experimental approach
would be in vitro stimulation of PBMCs with vaccine, ruling out cell migration, but not shifts in
cell subtype composition [249].

The overall patterns of expression over time were consistent between array and RNA-seq,
with the meta-analysis identifying genes with outlying effects in both platforms. In contrast, I was
not able to replicate the 58 gene-level associations reported by Sobolev et al. [162] between day 7
expression and antibody response that were assessable in my meta-analysis. The difference was not
wholly due to response definitions, as within the array data alone, switching from binary response
status to TRI still replicated the majority of reported associations, but using either binary
response status or TRI in the RNA-seq data alone found no significant associations. Initially,
15/58 signals replicated using frequentist random-effects meta-analysis to combine per-platform
estimates. I do not consider these hits as robust, as the estimated between-platform heterogeneity
was zero for all 15 of these signals. None of these signals replicated in the Bayesian random-
effects meta-analysis, where prior information about 7 could be incorporated, discouraging
unrealistic estimates of zero heterogeneity. The Bayesian meta-analysis was in general more
conservative, calling fewer differentially expressed genes compared to the frequentist analysis
for all contrasts. Most of the 58 genes also had larger effects in the array dataset than in the
RNA-seq dataset, possibly because the array data contains more extreme TRIs. At a single-gene

level, significant associations with timepoint are robustly detectable, but associations with TRI
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have effects too modest relative to the noise introduced by platform-dependent technical effects

and dataset-dependent phenotype distributions.

Expression associations with antibody response were, however, observed at the gene set level,
at modules associated with TRI as a whole. The strongest effects were observed at day 7, where
modules related to adaptive immunity (cell cycle, stimulated CD4% cells, plasma cells) were
positively associated with TRI. These same modules were upregulated at day 7 compared to
baseline; it seems that those individuals with the greatest antibody response to vaccination are

most able to induce these modules by day 7 post-vaccination.

Module associations with TRI were also observed pre-vaccination with both positive (e.g.
chemokines, proinflammatory DCs, B cells, platelet activation) and negative (e.g. monocytes)
directions of effect, suggesting baseline immune state has influence on long-term antibody response
to Pandemrix. Some of the positive associations have been previously reported for unadjuvanted
seasonal influenza vaccines in multiple independent cohorts. The same B cell modules were
reported by Nakaya et al. [157], and similar DC, inflammatory, and platelet activation modules
were found to be predictive of antibody response in young adults [159]. The negative association
of monocyte modules with antibody response at baseline was also reported by Nakaya et al. [157].
Interestingly, I detected the same negative associations at day 1 and day 7. Monocyte modules
were one of the most upregulated modules at day 1, and although the module annotations do
not separate monocyte subsets, abundance of CD16" inflammatory monocytes was particularly
increased at day 1 in the FACS data [162]. This lends some support to the hypothesis that
chronic baseline inflammation or excessive/prolonged post-vaccination inflammation—specifically

driven by monocytes—can be detrimental to the humoral response [157, 250, 251].

There are several caveats to consider when drawing comparisons to the systems vaccinology
literature. Most studies are of unadjuvanted multivalent seasonal vaccines; HIRD used an
adjuvanted monovalent pandemic vaccine. Most studies measure post-vaccination antibody
response around the expected peak of day 28; HIRD measured later at day 63, which may
attenuate the signal. The specific genes within modules driving associations may also differ
between studies. Nevertheless, the ability to observe module-level associations with TRI also
reported in previous studies with diverse populations, measurement platforms, influenza seasons,
and analysis pipelines, is a stark contrast to difficulty of replicating single-gene associations even
within the HIRD cohort itself. When the effect of individual genes on phenotype is expected to

be subtle, module-level analyses are not only more sensitive, but appear to be more generalisable.

The next step is to explore the utility of the identified associations for prediction. Although I
have identified highly significant associations between expression modules and antibody response,
that does not imply the ability to accurately predict response from expression [161]—that
is, the existence of molecular signatures. Some exploration can be done within HIRD using
cross-validation, or by setting aside a subset (e.g. the array data) as a test set, but having an
independent test set is especially important for prediction to guard against overfitting. Matched
expression and antibody data are rare for adjuvanted and pandemic vaccines, so an initial
effort would likely draw on published seasonal vaccine datasets (e.g. [157, 159]), with the aim of

identifying shared molecular signatures.

The fundamental question of why gene expression and antibody responses vary between
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HIRD individuals also remains. Which genes, if their expression were to be modulated, would
lead to a change in antibody response? This is a critical question in the move from identifying
correlates of protection and molecular signatures, towards targeted interventions to improve
vaccine outcomes [146]. The descriptive design of the HIRD study does not lend itself to exploring
causation between expression and antibody titres without a causal anchor. Interindividual genetic
variation could play such a role; Chapter 3 will examine the impact of common host genetic

variants on expression response in the HIRD cohort.



