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Chapter 3

Genetic architecture of
transcriptomic response to

Pandemrix vaccine

The work presented in this chapter is a collaboration between the Wellcome Sanger Institute,
King’s College London, the Francis Crick Institute, and the Biomedical Research Centre at Guy’s
and St Thomas’ Hospital and King’s College London. I would like to reiterate my thanks to the

people and organisations mentioned at the beginning of Chapter 2.

3.1 Introduction

3.1.1 Host genetic factors affecting influenza vaccine response

Many human traits are heritable and complex—response to vaccination is no exception. Twin
studies have demonstrated approximately 30-90 % heritability of antibody responses to many
vaccines, including smallpox, hepatitis A and B, anthrax, pneumococcal, Haemophilus influenzae
type b (Hib), diphtheria-tetanus-pertussis (DTP), and bacillus Calmette-Guérin (BCG) [252-255].
Candidate gene studies and genome-wide association studies (GWASs) have identified multiple
genetic associations with antibody response [252, 253, 256, 257], including replicated associations
for hepatitis B vaccine in a haplotype block in the human leukocyte antigen (HLA) region
encompassing HLA-DR and BTNL2, and for measles vaccine in an intron of a receptor known to
interact with measles virus, CD/6.

In contrast, Brodin et al. [255] found anti-haemagglutinin (HA) antibody responses to seasonal
influenza vaccine in 105 adult twin pairs (median age 44yr) had no detectable heritability,
alongside a general decrease in heritability of most immune parameters with age. They posited
that the genetic contribution to response was overshadowed by environmental factors such
as previous influenza vaccination or infection in adults, whereas the estimated heritability of
the aforementioned vaccines was substantial because they are vaccines against non-circulating
pathogens, or are childhood vaccines for which heritability was assessed in young children with
shorter immune histories.

Nevertheless, a small number of candidate gene studies have identified genetic variants
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associated with antibody response to influenza vaccines [257]. Gelder et al. [258] (n = 73) identified
associations between HLA alleles in HLA-DRB! and HLA-D@B1 with haemagglutination
inhibition (HAI) seroconversion after trivalent inactivated influenza vaccine (TIV); Moss et al.
[259] (n = 185) also found associations between HLA class II alleles (HLA-DRB1*04:01 and
HLA-DPB1*04:01) and HAI seroconversion after seasonal influenza vaccination. Poland et al.
[260] (n = 184) tested HLA alleles, and single nucleotide polymorphisms (SNPs) in coding and
regulatory regions of cytokine or cytokine receptor genes, for association with post-TIV HAI
titres specific to H1 and H3 subtypes (two of the components of the trivalent vaccine). They
reported nominally significant associations for two HLA-A alleles with H1-specific titres, six
SNP associations with H1-specific titres and ten SNP associations with H3-specific titres. Egli
et al. [261] (n = 196) identified a SNP upstream of IFNLS3 (rs8099917) to be associated with
seroconversion post-TIV, and also found the SNP to be an expression quantitative trait locus
(eQTL) for IFNLS3 expression in HIN1-stimulated peripheral blood mononuclear cells (PBMCs)
in a second cohort (n = 49). Lastly, Avnir et al. [262] focused on a coding variant (rs55891010) in
the part of IGHV1-69 that encodes the complementarity-determining region (CDR) of broadly
neutralising antibodies that bind influenza HA. One month after HSN1 avian influenza vaccination
(n = 85), associations were detected with usage of IGHV1-69 in the antibody repertoire, and
serum antibody binding efficiency to H5N1 HA. The associations listed above have all been found
in small cohorts and have not been validated by subsequent studies, so it remains unknown

whether robust genetic associations with antibody response to influenza vaccines exist.

3.1.2 reQTLs induced by influenza vaccination

Host genetic variation could play a causal role in influenza vaccine response by altering the
expression of genes as eQTLs. As described in Section 1.2.3 and Section 1.2.4, the effect sizes of
eQTLs can be highly context-dependent, and many eQTLs in the immune system are response
expression quantitative trait loci (reQTLs) only detectable after stimulation, not at baseline. One
can map reQTLs considering vaccination as an in vivo immune stimulation. This usually involves
measuring the transcriptome of immune cells before and after vaccination in genotyped individuals,
then testing for genotype-dependent changes in expression. As expression is a key molecular
intermediate between genotype and phenotype, a genotype-dependent change in expression after
vaccination may be a mechanism mediating genotype-dependent antibody responses.

As reviewed in Section 1.2.4, few in vivo reQTL studies have been conducted, and even fewer
studies have been conducted where the in vivo stimulation is vaccination, despite the potential
for learning about genetic regulation of vaccine-induced expression responses. To my knowledge,
there is only one such study: by Franco et al. [94] on response to seasonal inactivated TIV.
Franco et al. [94] enrolled healthy Europeans adults into discovery (n = 119 males) and validation
(n = 128 females) cohorts in two consecutive influenza seasons®. In each cohort, peripheral blood
gene expression was measured by expression array on day 0 (baseline); and on days 1, 3, and 14
post-vaccination. Serum HAT and microneutralisation (MN) titres were measured against each of
the three vaccine components at days 0, 14, and 28. The titre response index (TRI) [153] was

computed from these titres as a single measure of antibody response adjusted for baseline titres.

*Sex-dependence of effects was not addressed.
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Individuals were genotyped by genotyping array.

Cis-eQTL were mapped using a linear mixed model jointly over all four days, with day,
genotype, day-genotype interaction, and a random intercept for individual as predictors; and gene
expression the response variable. At 467 (non-independent) eQTL for 78 genes replicated in both
cohorts, there was both a significant day effect (indicating the gene was differentially expressed
post-vaccination) and a significant genotype effect (indicating the eQTL effect). To call reQTLs,
eQTLs were also mapped separately for each day with a linear model including only genotype
as a predictor, from which the model R? was computed as a rough measure of the variance in
expression explained by the eQTL at each day. Franco et al. [94] then computed delta- R?: the
maximum absolute deviation of the three post-vaccination R2?s from the day 0 R?. Out of the
eQTLs that replicated in both cohorts, 146 eQTLs for 34 genes ranking above the 99th percentile
of the delta-R? distribution were defined as reQTLs. The union of the 78 and 34 genes from the
above analyses (98 genes with differential gene expression (DGE) and an eQTL; or a reQTL)
was enriched for pathways and gene sets related to antigen processing and presentation, CD8* T
cell-mediated apoptosis, dendritic cell (DC) maturation and function, and membrane trafficking.
Lastly, integrating antibody titre data, they filtered down to 20 genes with expression correlated
to TRI at any day, with an eQTL, and with either post-vaccination differential expression or
a reQTL effect. Seven genes out of these 20 were involved in antigen transport, processing, or
presentation in antigen-presenting cells (APCs): NAPSA, Clorf85, GM2A, SNX29, FGD2, TAP2,
and DYNLT1.

Critically, Franco et al. [94] recognised that just assessing overlap of multiple filtering criteria
cannot infer the direction of causal relationships between genetic variation, expression and TRI.
They attempted a model comparison with the CIT [263] method to resolve the directionality
of association between expression and TRI, finding suggestive evidence of causal effect on TRI
mediated by expression at several eQTL. Unfortunately, they also evaluated that the power of
the CIT was only ~60% at their total sample size of n = 247. Nevertheless, the study is proof
of concept that integration of genotype, expression, and antibody response data in an in vivo
reQTL framework can identify genes under genetic regulation likely to be involved in vaccine

response.

3.1.3 Chapter summary

The Human Immune Response Dynamics (HIRD) cohort represents a unique opportunity for
detecting host genetic contributions to influenza vaccine response. Similar to Franco et al. [94],
expression, antibody response, and genotypes are all available for the same individuals. As
Pandemrix is against a pandemic strain that had not been in seasonal circulation for decades
at the time of cohort recruitment, responses will be less driven by individual immune history,
so power to detect genetic associations is expected to be greater. In Chapter 2, I characterised
differential expression induced by Pandemrix, as well as expression associations with antibody
titres. In this chapter—given that HIRD is too small for a direct GWAS of antibody response—I
focus on the genetic contribution to expression response. I apply the in vivo reQTL framework,
aiming to characterise the association of common genetic variants with expression across multiple

timepoints, and pinpoint genes important to Pandemrix response.
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3.2 Methods

3.2.1 Overall strategy for reQTL mapping

A plethora of approaches to mapping eQTLs with linear models exist; each approach has its own
advantages, disadvantages, and assumptions. When the task is also to define reQTL between
multiple conditions, the diversity of possible approaches further multiplies. Here I will discuss
aspects of the data and available methodologies that led to the final modelling strategy adopted
in this chapter.

3.2.1.1 Adjusting for population structure using linear mixed models

Population structure occurs when the samples in a study are not independent, but structured due
to genetic relatedness. Genetic association studies assume that the individuals in a sample are
unrelated (or at least sufficiently distantly related) [264-266]. Relatedness, and thus population
structure, occurs at different scales. Population stratification refers to systematic differences in
allele frequencies and genetic background between human populations due to demographic history.
This represents large-scale structure where individuals are related due to shared ancestry [188,
265]. At a smaller scale, sample individuals can be related due to being in the same family. The
presence of more relatedness in a sample than is assumed is the problem of cryptic relatedness
[264-266]; this can be at any scale, but more often the term refers to recent relatedness.

In the context of eQTL mapping (and genetic association studies in general), where the aim
is to assess the effect of a single genetic variant on expression, there is potential for confounding.
The issue (well-reviewed in [266, 267]) is that we fit a marginal model to estimate the effect of a

single variant x; on the phenotype y:

y=p+Brrr +e (3.1)

where p is the intercept, and € ~ N(0,02I) is the error term that represents environmental and
stochastic sources of variation. The variance-covariance matrix for error term is a scalar matrix,
encoding the classic regression assumptions of homoscedasticity and uncorrelated errors. A more

appropriate data generating model is:
y=p+Brrr+G+e (3.2)

where G =}, Biw; represents the effect of the genetic background at all other variants in the
genome. As many variants can be expected to affect a complex polygenic trait, G has some causal
effect on y. Population structure means there can be a shared cause of G and xj such as ancestry.
This opens a backdoor path zj < ancestry — G — y, confounding the relationship between x
and y. In Eq. (3.1), when one estimates the coefficients, the effects of the omitted variable G
will be attributed to xj, resulting in spurious associations and genomic inflation of test statistics
[188]. Here, G represents exactly the confounding due to genetic background, but there are other
possible confounders, such as shared environmental factors that differ systematically between
populations [268]. A popular approach to avoid confounding is to include genotype principal

components (PCs) as fixed effects in the regression [185, 269], thus blocking the backdoor path
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from zj to y. Genotype PCs represent population stratification effects like ancestry, but also act
to block confounding from genetic background and environmental effects by proxy [268].

Unfortunately, genotype PCs alone cannot account for smaller-scale population structure
[188]. An approach that can explicitly model such population structure is the linear mixed model
(LMM) [188, 267, 269], which expresses the idea that more genetically correlated individuals are
expected to be more phenotypically correlated [268]. A typical model form is:

y=p+Brrrtute (3.3)

where random effect u ~ N (0, agK ) has a variance-covariance matrix proportional to the genetic
correlation between individuals: the kinship matrix K. This improves on Eq. (3.2) by recognising
that the variants in G are correlated. 03 is often called the (genetic) variance component; the
larger it is, the more phenotypic variance is explained by genetic background [267]. Although
LMMs were originally developed in the context of animal breeding, where K is computed from
a known pedigree, it can also be computed from genome-wide SNP data [266, 269]. Unlike
pedigree-based kinships that range from zero (unrelated) to one (self or identical twin), SNP-
based relatedness values represent average correlations of alleles between individuals [270], hence
may be negative or greater than one [271]. This does not affect their usage in LMMs.

The HIRD genotype data has already been filtered such that no pair of individuals are
first-degree relatives or closer (Section 2.2.4), but cryptic relatedness may remain. The multi-
ethnicity of the cohort means there is large-scale population structure from ancestry (Fig. 2.5).
Genotype PCs were computed to represent axes of variation due to ancestry. These were included
as covariates in DGE analyses in Chapter 2 to improve efficiency by explaining some variation in
expression. For eQTL mapping in this chapter, I use both a random effect in an LMM and PC
fixed effects to correct for population structure. This may not be strictly necessary if the random
effect can correct for large-scale structure, but does not seem to impact power or type I error
rate [272], and may have some benefit at SNPs with very different allele distributions between
populations (unusually differentiated) [188].

The performance of various software implementations for kinship estimation from genome-
wide SNP data and LMMs are highly comparable; the specific choice of implementation can
usually be made on the basis of computational efficiency [269]. In this chapter, I use LMMs
implemented in LIMIX [273] with kinship matrices estimated by LDAK [274].

3.2.1.2 Multi-condition models

Since the aim of this chapter is to identify genetic variation that affects expression response
to vaccination, it may seem most direct to model the change in each individual’s expression
after vaccination as the response variable. This approach has been applied for identification of
condition-specific eQTL, typically with the response taking units of log fold change between
conditions (e.g. [275-277]). Although potentially powerful if eQTL effects are small and opposite
between conditions [276], it is analogous to the “change score” approach, which can suffer
from regression to the mean, and increased uncertainty from the variance sum law if effects

between conditions have positive covariance [171, 278]. Instead, I map eQTLs within each of three
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timepoint conditions (day -7/0 pre-vaccination baseline, day 1, and day 7), and find reQTLs
by looking for eQTLs that have different effects between conditions. As in Section 2.2.9.2, day
-7 and day 0 array measurements were treated as repeated measures of the baseline timepoint.
Unlike a test for difference implemented using a genotype-condition interaction term in a joint
regression model, homoscedasticity of errors is not assumed for all conditions [279].

Within each timepoint, the HIRD dataset includes expression measured by both array and
RNA sequencing (RNA-seq). As discussed in Section 2.2.9.3, it is difficult to directly estimate the
between-study heterogeneity when the number of studies is small, thus Bayesian meta-analysis
was preferred for combining array and RNA-seq DGE estimates. That method does not scale
to eQTL analysis, where the number of tests is large, in the order of thousands of tests per
gene, versus the handful DGE contrasts per gene performed in Chapter 2. Instead, I perform a
mega-analysis within each timepoint, first merging array and RNA-seq expression estimates into
a single matrix with ComBat [211]. For comparison purposes, eQTL analyses were also run in
the array and RNA-seq samples separately.

Defining whether an eQTL is shared between conditions can be a tricky business. Naively, after
mapping eQTLs separately in each condition, one can assess the overlap of significant associations
between conditions. This underestimates sharing due to the difficulty of distinguishing true lack
of sharing from missed discoveries as a consequence of incomplete power within each condition
[68, 280]. Condition-by-condition analysis also cannot borrow information across conditions for
mapping shared associations [280-282]. Counterintuitively, a joint multivariate analysis may be
more powerful even when associations are not shared across all conditions [283].

A variety of models have been employed for joint eQTL mapping, including the use of classical
multivariate methods such as multivariate analysis of variance (MANOVA) [80], frequentist
meta-analyses (e.g. Meta-Tissue [284], METASOFT [285]), and Bayesian models (e.g. eQtlBma
[280], MT-HESS [286], MT-eQTL [287]). Joint mapping has repeatedly been demonstrated
to be more powerful than condition-by-condition analysis, and recent joint methods are now
computationally efficient when scaling to large numbers of conditions and variants tested (e.g.
RECOV [288], mashr [281], HT-eQTL [282]). In this chapter, I apply mashr [281] for the joint
estimation of eQTL effects across my three timepoints. The method learns patterns of correlation
among multiple conditions empirically from condition-by-condition summary statistics, then
applies shrinkage to provide improved posterior effect size estimates, and computes measures of

significance per condition.

3.2.1.3 Additional expression preprocessing

There are a number of transformations often applied to expression data before eQTL mapping,
such as the rank-based inverse normal transformation (INT) (e.g. GTEx v8 [54]). INTs work by
matching sample quantiles to quantiles of the standard normal distribution, which conforms often
non-normal expression data to an approximately normal distribution, improving computation
speed in large samples [289] and reducing the impact of expression outliers. In the context of
genetic association studies, the practice of applying rank-based INT to phenotypes has been
criticised for only guaranteeing approximate normality of residuals when effect sizes are small,

and potentially inflating the type I error in linear models that include interaction terms [290].
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More recent simulations suggest that INTs have good power and type I error control across
commonly-encountered distributions of non-normal residuals [289]. Another common transform
is standardising (centering and scaling to zero mean and unit variance e.g. eQTLGen Consortium
[58]), often done so that effects across genes and studies can be comparably interpreted in units
of standard deviation expression [291]. In multi-condition datasets, data transformations are
typically applied within conditions (e.g. within each tissue individually in GTEx v8 [54]).

Simulations were performed to evaluate the effect of the aforementioned transformations on
reQTL detection between a hypothetical day 0 baseline and day 1 post-vaccination condition.
The size of a reQTL effect depends on the scale of the expression data; here I define the size
of a reQTL as the difference in eQTL slopes (betas) for the same variant-gene pair between
conditions with expression measured on the log, scale. The boxed facets in Fig. 3.1 represent
undesirable effects of transformations on reQTL effect sizes. Rank-based INT induces false
shared eQTL effects between conditions in scenarios 4 and 5 (e.g. row “Rank-based INT” in
Fig. 3.1). In general, transformations that scale within condition are not appropriate, as different
variances within conditions contribute to the reQTL effect (e.g. “Scale within day”). Scaling
without separating conditions is also problematic, since the total variance also affects the reQTL
effect size. For example, in “Scale”, scenarios 2 and 4 have the same 1 unit increase in beta
pre-transformation (the same fold-change between conditions), but after scaling-only the beta
increases are 0.75 — 0 = 0.75 and 0.8 — 0.4 = 0.4 respectively—scenario 4 now looks like a reQTL
of weaker effect.

In light of these simulations, I decided that neither rank-based INT nor standardisation were
appropriate. Only the centering-only transformations (e.g. “Center”) avoided both false shared
effects and preserved relative reQTL effect sizes. The simple inclusion of an intercept term in the
eQTL model already achieves this, so no additional expression transformations were applied before
eQTL mapping. Not performing a rank-based transform does lose the advantage of reining in
outliers, but the expression data have already been preprocessed to remove low-expression outliers
in Section 2.2.7. Many other preprocessing steps done prior to this stage in the pipeline (e.g.
variance-stabilisation, ComBat batch effect correction) are also expression transformations, but I
only consider the preservation of reQTL effects defined from expression values post-adjustment

for technical effects to be important, so I did not consider those steps in my simulations.

3.2.2 Genotype phasing and imputation

Genotyping and pre-imputation processing are described in Section 2.2.3 and Section 2.2.4.
Prior to imputation, 213 277 monomorphic variants that provide no information for imputation
were removed. Variant alleles were aligned such that the reference allele matched the GRCh37
reference, and 358 indels were removed, leaving only SNPs. Imputation for the autosomes and X
chromosome was conducted using the Sanger Imputation Service*, which involved pre-phasing
(separate estimation of haplotypes before imputation to improve imputation speed) with EAGLE2
(v2.4) [292] and imputation with PBWT (v3.1) [293] against the Haplotype Reference Consortium
(r1.1) panel [294]. Imputed SNPs were lifted-over from GRCh37 to GRCh38 coordinates using
CrossMap [295]. Poorly-imputed SNPs with imputation information score INFO < 0.4 were

*https://www.sanger.ac.uk/tool/sanger-imputation-service/
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Figure 3.1: Simulating the effect of data transformation on reQTL effects. Expression values on the log
scale were simulated for 200 individuals (100 with each genotype) at a day 0 baseline and day 1 post-vaccination
timepoint. Gene expression is upregulated at day 1 by log, FC = 1. Six scenarios were simulated with different
gene-variant pairs (columns) corresponding to different eQTL and/or reQTL effects between day 1 and day 0; the
size of the reQTL effect (difference in beta between day 1 and day 0) was set to 0, 0, 1, 2, 1, and 3 for the six
scenarios. Gaussian noise with mean = 0 and standard deviation = 0.1 was added. The top row is the ground
truth. In following rows, a different transformation was applied within each row: a rank-based INT (Blom offset
for fractional ranks [289, 290]), standardising (centering and scaling), centering only, or scaling only. Highlighted
pairs of scenario-transform combinations on each row represent false positives or negatives where the size of the
relative reQTL effects are no longer correct.

Genotype
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removed, leaving 40290 981 SNPs measured for the 169 genotyped individuals.

3.2.3 Estimation of kinship matrices

When testing a variant for association using LMMs, the kinship matrix used should not include
that variant to avoid loss of power from “proximal contamination” [296]. A simple way to avoid
this is to compute a leave-one-chromosome-out (LOCO) kinship matrix using all variants except
the ones on the tested variant’s chromosome [297]. I estimated kinship in the HIRD data from
common autosomal variants, using LDAK (v5.0) [274], which computes SNP-based kinship
matrices weighting SNPs by linkage disequilibrium (LD) and accounting for genotype uncertainty.
Filtered pre-imputation sample genotypes from Section 3.2.2 were pruned to MAF > 0.05. A
kinship matrix was computed for each autosome, then combined into a single genome-wide matrix
using LDAK --join-kins. To obtain a LOCO kinship matrix for each autosome, each autosome’s

kinship matrix was then subtracted from this genome-wide matrix (LDAK --sub-grm).

3.2.4 Estimation of cell type abundance from expression

PBMC samples are a mixture of immune cells, and a fixed input of RNA extracted from
that mixture is used to estimate expression, so estimates for genes that have cell type-specific
expression depend on the relative abundances of each cell type in each sample. Sobolev et al.
[162] showed these abundances shift after Pandemrix vaccination. As genotype can be assumed
to stay constant, it is valid to compare the effect size of genotype on expression between multiple
timepoints to call reQTLs, but changes in cell type abundance complicate this by modifying
both expression (i.e. cell type-specific expression) and the effect of genotype on expression (i.e.
cell type-specific eQTL effects). Immune cell abundance also varies naturally between healthy
individuals [109, 255], so it is important to model these effects not only post-vaccination, but
also at baseline.

Cell type abundance directly measured via fluorescence-activated cell sorting (FACS) was only
available for a small subset of HIRD individuals (Section 2.2.1), so I computed cell type abundance
estimates from the expression data as an alternative. In silico estimates have previously been
used as covariates for eQTL analyses in bulk samples where cell type-specific effects are expected
[71, 72, 74, 96]. As the estimates are based on the expression of multiple genes, it is not entirely
circular to use them as covariates in this way for per-gene eQTL models. I selected xCell [298],
which has been shown to outperform other deconvolution methods for cell type-specific eQTL
mapping in blood [74]. xCell computes enrichment scores based on the expression ranks of
approximately 10 000 signature genes derived from purified cell types, works for both array and
RNA-seq expression data, and implements “spillover compensation” that reduces dependency of
estimates between related cell types [298]. xCell was originally developed for tumour samples,
so many of the built-in cell types are not expected to be in PBMCs. Reviewing the literature to
find which broad classes of peripheral blood cell types are commonly expected in the PBMC
compartment [96, 299, 300], I selected 7/64 of the built-in cell types: CD41 T cells, CD8" T
cells, B cells, plasma cells, natural killer (NK) cells, monocytes, and DCs. Array and RNA-seq
data from Section 2.2.8 and Section 2.2.7 were processed separately, as different internal xCell

parameters are used for each platform. The large batch effect present in the array expression was
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first removed using ComBat [211]. Finally, enrichment scores were standardised across timepoints,
so that a score of zero represents the average abundance of that cell type across all timepoints.

As with actual cell type abundances, xCell enrichment scores are correlated (Fig. 3.2).
Imprecise coefficient estimates due to multicollinearity may be a problem when these scores are
included as independent variables in eQTL models*. To select a subset of cell type scores, 1
performed a principal component analysis (PCA) of the cell type scores separately in array and
RNA-seq datasets (to prevent axes reflecting platform rather than cell type), then determined the
number of PCs that exceeded the eigenvalues-greater-than-one rule of thumb [302]. In both array
and RNA-seq datasets, this number of PCs was three. The cumulative percentage of variance
explained by the top three PCs was 81.02% and 74.58 % in the array and RNA-seq datasets
respectively. Since the PCs between the array and RNA-seq are not directly comparable, I selected
three cell types with high contributions to the top three PCs in both datasets: monocytes, NK
cells, and plasma cells (Fig. 3.3)—Sobolev et al. [162] also reported monocytes and plasma cells to
be the cell types with the highest abundance increases at days 1 and 7 respectively. Additionally,
using the actual cell type scores rather than PCs as covariates provides more interpretable
regression coefficients for those terms.

Scores were validated against FACS measurements from Sobolev et al. [162] in the subset
of ~40 individuals that had both expression and FACS data. Depending on each FACS panel’s
gating strategy for each cell subset, the data were in units of either absolute counts or percentage
of the previously gated population. Values were normalised by rank-based INT within each
panel and cell subset (Astle et al. [303] took a similar approach for cell abundance data using a
quantile-based INT). Missing values were then imputed with MissForest [304], a random forest
imputation method suitable for high-dimensional mixed-type data where p > n. The method
establishes an initial guess for missing values using mean- or mode-imputation, then a random
forest is trained on the observed part of the data and used to predict and update the values of
the missing part. The process repeats iteratively until convergence.

Although the increases in xCell score for monocytes at day 1 and plasma cells at day 7
do reflect the increases in those cell types observed by Sobolev et al. [162], overall correlation
between xCell and FACS was poor (Fig. 3.4). Substantial discrepancy is expected, as the cell
types as defined in the xCell signatures do not directly correspond to the combinations of surface
markers used for FACS; the comparison is against the closest match. The FACS gating strategy
also meant that for some cell populations, the only available FACS measure was a proportion
of the previously gated population, whereas xCell attempts to estimate scores that represent
enrichments in the whole mixture. The accuracy of the built-in signatures may also be lower
when applied to the expression matrix for a stimulated state, where an enrichment-based method
may not be able to distinguish per-cell differential expression of signature genes from changes
in cell abundance. A custom signature matrix can be used for xCell, perhaps drawn from an
independent study with similar stimulation conditions as HIRD, such as Franco et al. [94], but

this would not solve the issue of coupled differential expression and cell abundance. Weighing

*High correlation between predictors is not necessary nor sufficient by itself to induce multicollinearity
(predictors being linearly-related), but multiple correlation (how well predictors can be predicted as linear
combinations of other predictors) does have an inverse relationship with the standard error of coefficient estimates
[301].
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Figure 3.2: Correlation matrix of standardised xCell cell type enrichment scores in HIRD array
and RN A-seq datasets. Rows and columns are hierarchically-clustered.
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Array, contributions of each variable
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PC5
PC6
pC7

CD4+T-cells 019 001 023 001 001 031 025

CD8+T-cells 019 001 017 0.07 0 0.01
B-cells 012 021 0.1 0 0 0.03
Plasma cells  0.09 0.3 0.12 0.01 0 0.03
NKcells  0.02 0.32 0.15 0 0 0.12

Monocytes = 0.27  0.02 0 0.06 0 0.09

DC 013 0.06 0.06 0 0.04 0

RNA-seq, contributions of each variable
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B-cells 014 003 | 029 005 017 029 0.03

Plasmacells 0.1 0.03 025 013 011 0.02
NKcells 0.02 0.02 0.02 0.1 0.19 0.03
Monocytes = 0.31 0 0 0.06 0.01 0.01
DC 0.12 0.01 0.16 0.24 0.01 0

Figure 3.3: Contribution of each cell type score to each PC dimension after PCA of standardised
xCell cell type enrichment scores. Contribution is calculated as the squared correlation between a variable
and a PC (cos2), scaled to the sum of cos2 for all variables with that PC. High contributions indicate variables
that are highly correlated with the PC.
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the downsides of having imperfect estimates of cell type abundance against the downsides of not
accounting for abundance, or excluding samples without FACS measurements, I chose to continue
the analysis using the xCell scores. These scores can distinguish large changes in cell abundances
between days, but may not be reliable for distinguishing small differences in abundance between

individuals within a timepoint.

3.2.5 Finding unmeasured covariates using factor analysis

Apart from cell type abundance, a myriad of unmeasured variables contribute to expression
variation. Hidden determinants of expression variation were learnt using PEER [182]. As suggested
by Stegle et al. [182], I used DESeq2: :vst [237] to perform between-sample normalisation and
variance stabilisation on the RNA-seq count data*. ComBat [211] was then applied to merge array
and RNA-seq data into a single log scale expression matrix per timepoint, treating the largest
global effects on expression—the two array batches and three RNA-seq library preparation pools
(Fig. 2.13)—as known batch effects. Given a set of known covariates (intercept, sex, four genotype
PCs from Section 2.2.5 representing ancestry, and the three xCell scores estimated above in
Section 3.2.4), PEER was used to estimate additional hidden factors that explain variation in the
expression matrix. These can be technical (e.g. sample quality/concentration, library preparation
plate/reagents, processing time, lane/flow cell) or biological (e.g. cell type composition, ancestry).
Factors are assumed to be unmeasured covariates that have global effects on a large fraction of
genes, whereas a cis-eQTL will typically only have local effects, so including factors as covariates
should not introduce dependence with the genotype term, but should explain some of the residual
variation, improving power to detect cis-eQTLs. The analysis was run per timepoint, otherwise
global changes in expression between timepoints induced by the vaccine would be recapitulated

as factors.

Correlating the estimated factors to a larger set of known covariates revealed many correlations
with xCell estimates, indicating that cell type abundance does indeed have substantial global
effects on the expression matrix (Fig. 3.5). These factors likely represent additional cell types
with abundances that have a global effect on the expression matrix, and when used as covariates
in combination with the three major cell type scores selected in Section 3.2.4, should improve
overall adjustment for cell composition. There was little correlation with known array or RNA-seq
batch effects, indicating ComBat did an adequate job of removing batch- and platform-dependent
global effects on expression prior to PEER. Note that I did not leave this adjustment for PEER
to perform, as ComBat estimates centering and scaling factors per gene and batch, whereas the
use of PEER factors represents a mean-only per-gene adjustment. Given the severity of the batch
effect in this dataset, especially between platforms, mean-only adjustment may be insufficient
[214], particularly in the context of cis-eQTL mapping where associated variants will only explain

a small fraction of expression variance.

*The count data were taken from Section 2.2.7 before trimmed mean of M-values (TMM) normalisation and
limma: :voom transformation, as PEER cannot use the weights output by those methods for between-sample
normalisation and variance stabilisation as 1imma can.
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Figure 3.4: Comparison of standardised xCell scores with normalised HIRD FACS measurements,
for monocytes, NK cells, and plasma cells. The comparisons are against the most comparable measurements
available in the FACS data of Sobolev et al. [162]: CD14" monocyte count, CD56" NK cell count, and the
proportion of CD197 B cells that were CD19TCD27+tCD24" CD38" plasma cells. Missing FACS values were first
imputed with MissForest after rank-based INT transformation.



3.2 Methods 69

Array and RNA-seq mega-—analysis, baseline

batch_RNAseq_3
batch_RNAseq_2
batch_RNAseq_1
batch_array_2
Sex_M
genotype.PC4
genotype.PC3
genotype.PC2
genotype.PC1
xCell DC

xCell Monocytes
xCell NK cells
xCell Plasma cells
xCell B—cells
xCell CD8+ T-cells
XCell CD4+ T-cells
responder

TRI
MN.titre.day63
MM.titre.day0

HAl titre.day63
HAL titre.day0
Weight. kg.
Height..cm.
Age.at.vaccination..years.
PEER25
PEER24
PEER23
PEER22
PEER21
PEER20
PEER19
PEER18
PEER17
PEER16
PEER15
PEER14
PEER13
PEER12
PEER11
PEER10

PEER9

PEER8

PEER7

PEER6

PEERS

PEER4

PEER3

PEER2

PEER1 Bl |

Corr

N RIS
AR DN N N
ST L L@ RO

Figure 3.5: Correlation of known variables to the first 25 PEER factors estimated from the array
and RNA-seq mega-analysis expression data at baseline. The known factors provided to PEER were sex,
four genotype PCs, and monocyte, NK cell and plasma cell xCell scores. PEER factors are not constrained to be
orthogonal like PCs, so correlations to known factors and other PEER factors are expected. The estimated factors
have zero mean, and PEER implements automatic relevance determination [182], which decreases the variance of
successive estimated factors to zero if they no longer explain additional expression variance. Although there are
extensive correlations between higher numbered factors, these factors have near-zero variance.
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3.2.6 eQTL mapping per timepoint

I mapped eQTLs within each timepoint using LIMIX [273], which implements univariate and
multivariate LMMs with one or more random effects. Imputed genotype probabilities were
converted to continuous alternate allele dosages using bcftools (1.7-1-ge07034a)*. Variants with
sample AC < 15 of the minor allele within each timepoint were excluded, corresponding to a
5-7% MAF depending on sample size (145 at baseline, 105 at day 1, and 107 at day 7). At these
sample sizes, false discovery rate (FDR) cannot be controlled by standard hierarchical FDR
methods without a MAF filter of approximately 5-10 % [305].

At each of 13570 genes, at all cis-variants within within 41 Mbp of the gene transcription
start site (TSS), I fit the following model to map eQTLs:

4 3 k
y=1+sex+» PC;j+)» xCell+ > PEER; + Sz +u+e¢ (3.4)

i=1 =1
where the eQTL effect size is the slope of the genotype fixed effect 8, the average additive
effect of the alternate allele [13]; and u ~ N(0,02K) is a random effect with zero mean and
covariance matrix proportional to the LOCO kinship matrix for variant z. For chromosome
X variants, no LOCO matrix was available from LDAK, so the matrix for chromosome 1 was
used. Known covariates and PEER factors from Section 3.2.5 were included. PEER factors
are automatically weighted such that the variance of factors tends to zero as more factors are
estimated, hence continuing to add more and more factors as covariates will not continue to
improve eQTL detection power, and eventually the model degrees of freedom will be depleted.
To optimise the number of factors k to includef, per-timepoint eQTL mapping was performed
in chromosome 1, iteratively increasing the number of factors until including additional factors
provides no further benefit, and the number of eQTLs detected stabilises. I settled on a final

choice of k = 10 factors for baseline, 5 factors for day 1, and 5 factors for day 7 (Fig. 3.6).

3.2.7 Joint eQTL analysis across timepoints

Joint analysis was conducted with mashr [281] at 40197 618 gene-variant pairs (mean of 2962
tests per gene) for which summary statistics from within timepoint mapping were available
in all three timepoint conditions. For n conditions, the mashr model incorporates multiple
n X n canonical and data-driven covariance matrices to represent patterns of effects across
conditions. Canonical matrices include the identity matrix (representing independent effects
between conditions), singleton matrices (effects only in one condition), a matrix of ones (equal
effects in all conditions), and other patterns of correlations. Data-driven covariance matrices
represent patterns of effect observed empirically, derived from dimension reduction of a strong
subset of tests likely to have an effect in at least one condition. I took the most significant
variants per gene per condition, which ensures strong condition-specific effects are included, then

further filtered to only nominally significant tests, resulting in a strong subset of 45962 tests used

*https://samtools.github.io/bcftools/

T avoid the commonly performed two-stage approach of using PEER residuals as expression phenotypes, as
the degrees of freedom for the eQTL model will be incorrect, which can have a substantial effect on estimates at
this modest sample size.
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Figure 3.6: Number of significant genes with an eQTL detected on chromosome 1 as a function
of the number of PEER factors included as covariates. FDR computed with hierarchical Bonferroni-
Benjamini-Hochberg (BH) [305] with significance threshold set at 0.05. The number of eGenes stabilises since
higher number PEER factors explain less and less variance in expression, thus having less and less influence on the
regression.

to calculate data-driven covariance matrices.

The mashr model was trained on a random subset of 200000 tests, using the exchange-
able Z (EZ) model (assumes effects are independent of their standard errors, which per-
formed better in GTEx data [281]). The correlation of null tests between conditions—critical
to account for due to the repeated measures structure of the data—was estimated using
mashr::estimate_null_correlation, which uses tests from the random subset that have small
absolute z-scores. The fitted model was used as a prior to compute posterior effects and standard
errors for all tests through shrinkage. A condition-specific Bayesian measure of significance is
returned: local false sign rate (LFSR), which gives the probability that the declared sign of
the effect is incorrect [238]. Note that mashr is the multiple-condition extension of ashr [23§],
previously used in Section 2.2.9.7 for computing posterior effects and their significance in DGE

analyses.

3.2.8 Defining shared eQTLs and reQTLs

Many of the tested variants for each gene will be in high LD. To unambiguously select a lead
eQTL variant per gene for comparison across timepoints, I selected the variant with the lowest
LFSR over all conditions. If multiple variants had that same lowest LFSR value, ties were broken
by highest imputation INFO, highest MAF, most upstream of the TSS, and finally genomic
coordinate. Ties were not frequent. Sharing was then evaluated for that gene-variant pair across
all three conditions.

Thresholding on the LFSR is not appropriate for determining sharing, as the difference



72 Genetic architecture of transcriptomic response to Pandemrix vaccine

between significant and non-significant effect estimates in two conditions is not necessarily
significant [306, 307]. Urbut et al. [281] provides a heuristic that two effects are shared by
magnitude if they have the same sign, and are also within a factor of two, but this does not
consider the posterior standard error of the estimates. Between a pair of effects in two conditions
x and y, I computed a z-statistic for the difference in effects:

z= Ba = By (3.5)

\/ 02+ 02 — 204y

This is a common strategy for comparing regression coefficients [279, 306] and has also been
applied to call reQTLs by Kim-Hellmuth et al. [85]. Like Kim-Hellmuth et al. [85], I assume

the posterior pairwise covariance of effects o, is zero. This is conservative if the covariance is

actually positive. A Wald test p-value for the difference can be computed, as under the null
hypothesis of zero difference, asymptotically z ~ N(0,1). I use nominal p < 0.05 as a heuristic
threshold to separate shared and reQTL effects, and also computed the corresponding BH FDR
per timepoint as a formal measure of significance. Note that even a nominal p < 0.05 threshold
is still more stringent than calling sharing using the LFSR = 0.05 as a threshold (e.g. [74, 91]) or
the 2-fold difference in magnitude threshold suggested by Urbut et al. [281].

Another statistic that quantifies the strength of an eQTL is the proportion of variance
explained (PVE) by the variant. This was approximated using the following formula from Shim

et al. [308] for variant X and expression Y:

PVE — B2Var(X)  p2Var(X) B22pq
© Var(Y)  B2Var(X)+02  B22pq + 022Npg

(3.6)

where 3 is the beta from a simple linear regression of Y on X, o? is the residual error, Bp is
the posterior beta from mashr, o), is its posterior standard error from mashr, N is the sample
size, p is the sample MAF, and ¢ = 1 — p. PVE was computed with the intention to allow for
comparison of effect strength between timepoints, which have different sample sizes and different
MAFs. In practice, this turns out to just be a monotonic transformation of the absolute posterior

z-statistic |5p/0p|, with more interpretable units.

3.2.9 Replication of eQTLs in a reference dataset

To validate the mega-analysis approach to eQTL mapping, I estimated the replication of significant
eQTLs in a large independent reference. Due to the lack of large sample size eQTL maps specific
to PBMC, I used the GTEx v8 whole blood dataset as my reference dataset ([54], n = 670, 51 %
eGene rate). For lead variants called as significant at a given LFSR significance threshold in the
HIRD dataset, for those variants that also exist in GTEx, I looked up their nominal p-values
in GTEx. I then used qvalue: :qvalue_truncp (v2.15.0%, implements theory from Storey et al.
[309]) to estimate the proportion of those GTEx nominal p-values that are null (), giving a
measure of replication m; = 1 — my. The higher the 71, the higher the proportion of HIRD eQTLs
at this significance threshold replicating in GTEx. However, the higher the significance threshold,

*https://github.com/StoreyLab/qvalue
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the fewer variants will have p-values meeting this threshold in HIRD, and thus fewer GTEx
p-values will be available for computing 7. More significant p-values in HIRD are also more
likely to come from true eQTLs in general, so the higher the significance threshold, the lower
the maximum nominal p-value from GTEx for those variants is likely to be. The 7 procedure
assumes a well-behaved p-value distribution with values over the full range [0, 1], and reliability
declines if the number of p-values is too small*, or the maximum p-value is much smaller than 1.

The mega-analysis had comparable replication rate to RNA-seq-only analysis for shared
eQTLs at moderately stringent LFSR thresholds up to 107°, and better replication rate for
very stringent LFSR thresholds (Fig. 3.7). The suggests the mega-analysis is not creating false
positives due to technical effects from merging the expression data, and is preferred to either of
the single-platform analyses. A caveat is this approach may be overestimating the replication
rate as it does not take the direction or magnitude of eQTL effects into account. The numbers
of reQTLs were too low to assess their replication using this method, and one might also not
expect them to replicate in a baseline dataset such as GTEx whole blood, especially for those

reQTLs significant only at post-vaccination timepoints.

3.2.10 Genotype interactions with cell type abundance

If the abundance of a particular cell type does truly modify the eQTL effect, then an interaction
term between genotype and cell type abundance is required. As the additivity assumption no
longer holds, a ceteris paribus interpretation does not make sense, as the effect of genotype
holding cell type abundance constant depends on what value of cell type abundance you choose.
One cannot adjust for modification just by including the main effect for cell type abundance;
wrongly omitting a significant interaction term between cell abundance and genotype biases the
estimation of the two main effects’. Given the modest sample size, I used a two-stage approach,
where tests for interaction are only performed at a subset of tests. If the main effect estimates
from main effect-only models (stage one) are used to filter SNPs for second stage testing, and
are also independent from the interaction effect estimates in stage two, then the type I error can
be controlled based on the number of interactions that are actually tested, rather the number of
interactions that could have been tested [68, 311]. It is unclear whether this assumption holds in
practice, as being able to detect a main effect at least implies that gene is sufficiently expressed
for eQTL mapping. Nevertheless, the two-stage approach is often used for eQTL mapping with
an interaction term [68, 71, 85, 96]. As the main purpose of my interaction analyses was scanning
for cell type modification at detected reQTLs, I chose to test for interactions only at the lead
eQTL variant for each gene with a significant main eQTL, controlling the FDR with BH—an
approach used by Peters et al. [68] and Kim-Hellmuth et al. [85].

Models with interactions between genotype and other predictors were fit using 1me4qtl [312].
The model specification was identical to Eq. (3.4), except the addition of three interaction terms

between genotype and each xCell score. Significance was assessed using the likelihood ratio test

*In https://github.com/StoreyLab/qvalue/pull/6#commitcomment-26277751 the developers suggest “you
usually need a few hundred p-values” to reliably compute 7.

fWhen a variable that is the function of another explanatory variable is omitted, this is known as functional
form misspecification in the field of econometrics, a special case of omitted variable bias. Also see Mikucka et al.
[310] for a review of bias caused by omitting significant interaction terms.
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Figure 3.7: Replication rate m; of HIRD eQTLs in GTEx whole blood eQTL reference data. Three
eQTL analyses were run in HIRD: array-only, RNA-seq-only, and a mega-analysis of the two datasets. The top
panel shows 71 replication in each analysis as a function of the significance threshold (LFSR), with the shaded
region showing the 5th—95th percentile range of 1000 bootstraps. Vertical line shows LFSR = 0.05. The middle
panel shows the number of significant HIRD eQTLs present in GTEx; this is the number of p-values available
for computing 7. The computation is more reliable when there are ~1000 or more. The bottom panel shows the
maximum nominal GTEx p-value for those variants use to compute 1. The computation is more reliable when
the maximum is near one. Each panel is stratified into HIRD shared eQTLs and reQTLs.
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(LRT) versus the nested model with no interaction terms. Note that although PEER factors are
correlated with xCell scores (Fig. 3.5), Kim-Hellmuth et al. [74] also used this approach, claiming
that the interaction term between genotype and xCell scores should still be interpretable. I
attribute their claim to the fact that there are no interaction terms between genotype and PEER
factors, so the coefficients for the genotype-xCell score interactions still have their standard
interpretation: 3, + B¢ increase in logy expression per unit of effect allele dosage, where [, is

the main effect of genotype, B.. is the interaction effect, and ¢ is xCell score.

3.2.11 Gene set enrichment analyses

Ranked gene set enrichment analyses with tmod: : tmodCERNOtest were conducted as described in
Section 2.2.10, using blood transcription modules (BTMs) from Li et al. [240] (prefixed “LI”). Gene
set overrepresentation analyses were run with tmod: : tmodHGtest [241], which implements the
hypergeometric test for enrichment in BTMs, controlling the FDR at 0.05 using the BH procedure.
Gene set overrepresentation analyses were also run with gprofiler2::gost [313], which derives
gene sets from Gene Ontology (GO), pathway databases (KEGG, Reactome, WikiPathways),
regulatory motif databases (TRANSFAC, miRTarBase), protein databases (Human Protein Atlas,
CORUM), and phenotype ontologies (HP). The default gprofiler2 g:SCS method was used to
control for multiple testing while accounting for the hierarchical structure of certain gene set
databases like the GO. In both overrepresentation analyses, the 13570 genes assayed by both

array and RNA-seq were used as a custom background set.

3.2.12 Statistical colocalisation

Published GWAS and quantitative trait locus (QTL) summary statistics were downloaded for
statistical colocalisation with per-timepoint HIRD eQTL summary statistics. Clinical blood
count QTL maps generated by Astle et al. [303] in 173 480 European-ancestry participants were
downloaded from ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/hu
man/2017-12-12/hematological_traits/. eQTL maps in fifteen FACS-sorted immune cell
types generated by Schmiedel et al. [88] in a multi-ethnic cohort of 91 donors were downloaded from
the eQTL Catalogue ([314], release 1, January 2020, https://www.ebi.ac.uk/eqtl/). The fifteen
cell types included three naive innate immune cell types: classical monocytes (CD14MCD167),
non-classical monocytes (CD14-CD16%), and NK cells; four naive adaptive immune cell types: B
cells, CD4™ T cells, CD8™ T cells, and regulatory T cells (Treg); CD4™ T cells and CD8" T cells
stimulated with anti-CD3 anti-CD28 for 4 hours; and six CD4" memory T cell subsets: Thl,
Th1/Th17, Th17, Th2, and memory Tregs. Inflammatory bowel disease (IBD) GWAS summary
statistics generated by de Lange et al. [180] in a total of 59957 European ancestry samples
were downloaded from https://www.ebi.ac.uk/gwas/studies/GCST004131. Datasets were
converted to GRCh38 coordinates with rtracklayer: :1ift0Over (v1.46.0) [315] and harmonised
to a standard format, matching variants between studies by genomic position and effect allele.
Multi-trait Bayesian colocalisation was performed using HyPrColoc [316]. HyPrColoc uses
the pattern of per-variant summary statistics (betas and standard errors) from multiple traits in
a locus to partition traits into clusters, where each cluster contains traits that share a causal

variant. This can be seen as a multi-trait extension of pairwise Bayesian colocalisation methods


ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2017-12-12/hematological_traits/
ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/human/2017-12-12/hematological_traits/
https://www.ebi.ac.uk/eqtl/
https://www.ebi.ac.uk/gwas/studies/GCST004131
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such as coloc [317]. Multi-trait colocalisation is more powerful than pairwise colocalisation for
detecting causal variants shared between more than two traits, and large numbers of traits can
be analysed simultaneously in a computationally efficient manner. The method formally assumes
that studies generating the summary statistics for each trait are independent, but performs well
even when there is complete sample overlap between traits [316]. If studies are non-independent,
it is assumed the LD structure is the same across those studies (which holds in the case of
multiple QTL maps generated from the same individuals). Each trait is assumed to have no more
than one causal variant in the locus. Finally, it is assumed the causal variants for each trait are
present in the input.

As with any Bayesian colocalisation method, the choice of priors and other algorithm
parameters is influential. HyPrColoc implements variant-level priors where the prior depends on
the number of traits a variant is causally associated with: prior.1 is the prior probability that a
variant is causal for one trait (default = 1 x 107%), and 1 — prior.2 is the prior probability that
a variant is causal for an additional trait, given it is causal for one trait (default = 0.98). The
prior for a variant being causal for a third trait given it is causal for two traits is 1 — (prior.2)2,
and so on. In the two trait case, the setup is identical to coloc [317]. prior.2 tends to be more
influential than prior.1, as it controls the probability of association with more and more traits.

The posterior probability of colocalisation for a cluster of traits is the product of regional
association and alignment probabilities. The regional association probability is the probability
there is a shared association region within the locus for all the traits in the cluster, containing one
or more causal variants. The alignment probability is the probability that regional association
is due to a single causal variant, rather than one or more variants in strong LD. A branch and
bound algorithm is run, starting with all traits in one cluster, then recursively partitioning
traits into subsets, assessing regional association and alignment probabilities for subsets at each
iteration. The end result is clusters of traits sharing a causal variant, with each cluster having
a distinct causal variant. Only clusters with more than one trait, and regional association and
alignment probabilities above reg.thresh (default = 0.5) and align.thresh (default = 0.5) are
reported.

In sensitivity analyses using the sensitivity.plot function, I fixed the less influential
prior.1 at the default of 1 x 10™%, then iterated over combinations of four choices of prior.2
(0.98, 0.99, 0.995, 0.999), five choices of reg.thresh (0.5, 0.6, 0.7, 0.8, 0.9), and five choices
of align.thresh (0.5, 0.6, 0.7, 0.8, 0.9). Each range starts at the default value and becomes
more stringent, requiring stronger and stronger evidence for clusters of colocalised traits to be
identified.

3.3 Results

3.3.1 Mapping reQTLs in the HIRD cohort

To characterise the effect of common host genetic variation on expression response to Pandemrix, 1
mapped cis-eQTLs for each gene (&1 Mbp of the TSS) within each timepoint condition (baseline,
day 1, and day 7), then conducted joint analysis of all three timepoints with mashr [281] to

obtain per-timepoint posterior effect sizes (betas), posterior standard errors, and measures of
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significance (the LFSR). At LFSR < 0.05, 6887/13 570 genes (50.8 %) were eGenes (genes with a
significant eQTL) in at least one timepoint. The most significant tested variant over all timepoints
was selected as the lead variant for each gene, then reQTLs were defined by comparing the effect
size of this lead variant between each pair of timepoints. This guards against differences in effect
size from differential tagging efficiency (of an assumed single causal variant), a potential issue
if different variants are compared across timepoints. Fig. 3.8 shows patterns of sharing over
timepoints for the lead variant for each of the 13570 genes, illustrating the difference between
calling reQTLs using a significance threshold and a difference in betas method. For example,
there were 85 eQTL-eGene pairs significant only at day 1 post-vaccination (LFSR < 0.05); of
these, only 40/85 were called as reQTLs by the difference in betas method. The difference in
betas method is more strict because calling by significance alone would call a reQTL for an eQTL
with LFSR = 0.049 at baseline and LFSR = 0.051 at day 1, even if the effect sizes are similar.
Shared eQTLs were well-replicated in GTEx whole blood (Fig. 3.7).

The largest number of eGenes was detected at baseline, reflecting the larger sample size
compared to other timepoints. Most eQTLs were shared across timepoints; these were also
the strongest eQTLs in terms of both maximum absolute beta and PVE across timepoints,
highlighting the power advantage for mapping shared effects granted by joint analysis. Based on
difference in effect size between any pair of timepoints (nominal p < 0.05), 1154/6887 (16.8 %)
eQTLs were classified as reQTLs. Of these, 690/1154 were reQTLs between both day 1 vs.
baseline and day 7 vs. baseline, and only 23/1154 were unique to the day 7 vs. day 1 comparison,

indicating most reQTL effects were differences between pre- and post-vaccination (Fig. 3.9).

3.3.2 Characterising reQTLs post-vaccination

To characterise the eGenes associated with post-vaccination reQTLs, I ranked eGenes by the
increase in PVE for their associated reQTLs from baseline to day 1 and baseline to day 7,
then performed ranked gene set enrichments with tmod: : tmodCERNOtest [241]. The same four
modules were significant at both post-vaccination timepoints: “immune activation - generic cluster”
(L1.M37.0, day 1 FDR = 1.28 x 107%, day 7 FDR = 3.39 x 10~°), “enriched in monocytes (II)”
(LL.M11.0, day 1 FDR = 4.69 x 1073, day 7 FDR = 1.88 x 1072), “cytoskeleton/actin (SRF
transcription targets)” (LI.M145.0, day 1 FDR = 2.07 x 1072, day 7 FDR = 2.04 x 1072), and
“MHC-TLR7-TLRS cluster” (L1.M146, day 1 FDR = 2.07 x 1072, day 7 FDR = 2.04 x 1072).
These enrichments are weak, but consistent with immune activation driving post-vaccination
reQTLs. Given that TLR7 and TLRS8 are primarily expressed in monocytes, macrophages, and
DCs [318], and SRF is a regulator of the cytoskeleton in macrophages [319], there is suggestive
evidence reQTLs may be enriched in genes specific to these phagocytotic APCs.

Changes in PVE do not capture changes in allelic direction. I classified post-vaccination
reQTLs into one of three effect types: magnified, where the beta increases after vaccination
but remains the same sign; dampened, where the beta decreases after vaccination but remains
the same sign; and opposite, where the allelic direction changes after vaccination. As LFSR
quantifies uncertainty in the sign of the effect, I did not make this classification for reQTLs
that were not significant both at baseline and post-vaccination—the effect type for these are

unclear. The classifications are shown in Fig. 3.10, plotting all 6887 shared or reQTLs by their
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Figure 3.8: Summary of HIRD eQTL mapping from mega-analysis of array and RN A-seq expression
data, binned by patterns of lead variant significance over the three timepoints. The most significant
variant for each gene over all timepoints was chosen as the lead variant. Significant eQTLs (LFSR < 0.05) were
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Figure 3.9: eGenes where the lead eQTL was a reQTL between a pair of timepoints. reQTLs were
observed for 1154 unique eGenes, defined by a significant difference in beta between timepoints (nominal p < 0.05).

distance relative to the eGene TSS. Shared eQTLs have difference in beta z-statistics close to
zero, and are concentrated close to the T'SS as expected. reQTLs have a distribution of mostly
negative z-statistics clearly separated from the shared eQTLs at both day 1 and 7, and these are
mostly unclear or opposite rather than dampened effect types. Many of these unclear effects may
actually be dampening, but as the sample size is greatest at baseline, dampening effects are hard
to distinguish from drops in power at post-vaccination timepoints, whereas an opposite effect

significant in both timepoints is unambiguous.

Fig. 3.10 also shows that reQTLs tended to be distributed evenly across the entire cis window,
raising the question or whether they are enriched in false positives. A nominal p < 0.05 difference
in betas threshold—although stricter than many other methods (see Section 3.2.8)—may still be
too lax for calling reQTLs, so I applied a stronger BH FDR = 0.2 threshold. At this threshold, the
only remaining reQTL was at day 1 was for ADCY3 (nominal p = 8.68 x 107, FDR = 0.12)—
the next smallest FDR value was 0.65. At day 7, 676 significant reQTLs had FDR < 0.2, of
which 221 were opposite effects. Performing gene set overrepresentation analysis on the set of
221 eGenes to identify a shared biological signature was relatively uninformative, and revealed
only one enrichment for genes PRKACB, PRKACA, SAR1B, and APOF in “Plasma lipoprotein
assembly” (Reactome pathway identifer R-HSA-8963898, set size = 11, adj. p = 0.01). Since
Fairfax et al. [59] found cases of opposite reQTL effects between B cells and monocytes, and
B plasma cells but not monocytes were increased in abundance at HIRD day 7 [162], I also
performed gene set overrepresentation analysis using BTMs to detect if eGenes related to B cells

were enriched at day 7. No significant enrichments were identified.
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3.3.3 Exploring possible mechanisms generating reQTLs
3.3.3.1 Differential expression of genes with reQTLs

As gene set analyses based on the effect sizes of reQTLs at different timepoints had been largely
uninformative, I considered whether reQTLs could be characterised by shared mechanisms. One
mechanism that could generate reQTLs is differential expression, where an eQTL is not detected
at baseline because the eGene is not expressed, and vaccine-stimulated upregulation reveals the
effect post-vaccination.

Fig. 3.10 shows whether each eGene was up or downregulated at the timepoint based on the
DGE analyses in Chapter 2. Visually, a large number of reQTLs occur without corresponding
differential expression. Statistically, compared to genes without reQTLs, genes with reQTLs were
less likely be differentially expressed at day 1 post-vaccination (26.5 % for genes with reQTLs,
42.3 % for genes without reQTLs, Fisher’s test p < 2.20 x 107!6). This was also the case when
restricting the scope to only eGenes (26.5 % for genes with reQTLs, 47.9 % for genes with shared
eQTLs, Fisher’s test p < 2.20 x 10716). At day 7, no significant difference was observed comparing
genes with and without a reQTL (2.2 % for genes with reQTLs, 1.4 % for genes without reQTLs,
Fisher’s test p = 0.05), but compared to genes with shared eQTLs, genes with reQTLs were
more likely to be upregulated (2.2 % for genes with reQTL, 1.1 % for genes with shared eQTLs,
Fisher’s test p = 0.01). Twenty-two genes with both day 7 reQTLs and upregulated expression
were strongly enriched within gene sets related to the cell cycle, such as “mitotic cell cycle” (GO
biological process term GO:0000278, term size = 914, intersection size = 12, gprofiler2: :gost
[313] adj. p = 1.42 x 107%), “cell cycle (I)” (LI1.M4.1, module size = 137, intersection size =
12, tmodHGtest [241] FDR = 1.41 x 10716), and “mitotic cell cycle in stimulated CD4 T cells”
(LI.M4.5, module size = 33, intersection size = 3, tmodHGtest FDR = 1.35 x 10~3). However,
these 22 genes previously appeared in Fig. 3.10 as having reQTL with decreased or opposite
effect at day 7 versus baseline, making it implausible that the generating mechanism is increased
detection power due to upregulation. The enrichment for cell cycle is likely driven by the DGE
signal alone, especially as similar cell cycle gene modules were detected to be strongly upregulated
at day 7 in Section 2.3.1.2.

The presence of reQTLs without DGE is exemplified by the strongest reQTL at each day.
The only significant day 1 reQTL at difference in betas FDR < 0.2 was for ADCY3 (Fig. 3.11).
Computing the PVEs, this reQTL explained 1.9 % of ADCY3 expression variation at baseline,
increasing to 14.1 % at day 1, yet ADCY3 was not differentially expressed from baseline to day
1 (logy FC = 0.10, LFSR = 0.26). The strongest day 7 reQTL was at SH2D4A (difference in
betas FDR = 0.02, Fig. 3.12). Here, the reQTL variant explained similar amounts of expression
variation at baseline (PVE = 8.2%) and day 7 (PVE = 9.0 %), with opposite directions of effect.
Again, there was no differential expression. There is strong evidence that many post-vaccination

reQTLs are generated by mechanisms unrelated to DGE.

3.3.3.2 Genotype by cell type abundance interaction effects

The presence of cell type-specific eQTL effects combined with changes in cell abundance between

timepoints was considered as an alternate explanation generating reQTLs. Even if an eGene is
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Figure 3.11: Expression and lead eQTL of ADCY3 over study timepoints. Normalised array (top-left)
and RNA-seq (top-right) expression before batch effect correction with ComBat and eQTL mapping. Bottom:
eQTL effects at each timepoint condition in the mega-analysis of array and RNA-seq data.

not differentially expressed on average in bulk expression data, the composition of cell types
that are the source of that gene’s transcripts can change. xCell [298] enrichment scores were
used to estimate abundance of seven PBMC cell types from the expression data. After pruning
highly correlated cell types to avoid multicollinearity, standardised scores for monocytes, NK
cells, and plasma cells were tested for interaction with genotype. Within each timepoint, full
eQTL models including genotype main effect, the three cell type abundance main effects, and
three cell type-genotype interaction terms, were fit using lme4qtl [312], then compared to a
nested model excluding the three interaction terms with a LRT. Significant cell type interactions
were detected at 16/1154 reQTL-gene pairs in at least one timepoint (BH FDR < 0.05). Fifteen
were significant in only one timepoint: baseline (SLAMFS8, CSE1L, MAST1, DLGAP1), day 1
(ZNF519, LPAR1, ADCY3, NAA20, EPB/1L5), or day 7 (APOL6, ADAR, ADAM17, UHRF?2,
MST1, CUL1).

For ADCYS at day 1 (full vs. nested FDR = 9.54 x 1079), although the genotype effect was
0.26 (standard error = 0.03) in the nested model; the estimate in the full model was —0.01 (0.07),
with the three cell type-genotype interaction term estimates being 0.21 (0.05) for monocytes,
—0.01 (0.04) for NK cells, and 0.02 (0.07) for plasma cells. The small magnitude of the genotype
main effect in the full model compared to the nested model suggests the eQTL effect is driven
largely by the monocyte score (or a cell type that is highly correlated with monocyte score in
Fig. 3.2). In the case where the monocyte score is zero (representing an average abundance

across samples, as scores were standardised), the effect of increasing genotype dosage on ADCY3
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expression is minimal. Fig. 3.13 and 3.14 illustrate this effect. Monocyte abundance has no effect
on expression at baseline, increases after vaccination, and modifies the effect of genotype on
expression at day 1. It is feasible that the mechanism generating reQTLs at the remainder of
these genes also involve cell type-specific eQTL effects, but unlike at ADCY3, I have not yet

examined which of the three cell abundance scores have the greatest contributions.

3.3.3.3 Colocalisation with external QTL datasets at the ADCYS3 locus

The day 1 ADCY3 reQTL is of particular interest, as reQTLs were also found for ADCYS in
blood approximately 1 day after stimulation with TIV [94], rhinovirus [83], and Mycobacterium
leprae [92]. The locus containing ADCYS has also been implicated in disease risk for immune-
mediated inflammatory diseases (IMIDs) such as IBD [180], and ADCY?S expression in immune
cells in gut mucosa has been suggested to contribute to Crohn’s disease (CD) risk (a subtype
of IBD) [320]. Aside from monocytes, ADCY3 is expressed in a wide range of immune cells:
CD4™ T cells, CD8' T cells, B cells, and NK cells (Fig. 3.15). Identifying cell type-dependent
eQTLs through genotype-cell type abundance interaction terms cannot distinguish between cell
types with highly correlated abundances [74]; the similar contributions to xCell score PC1 by
monocyte, CD4™ T cell, and CD8' T cell scores indicates cell types with ADCYS3 expression are
indeed correlated in HIRD (Fig. 3.3). Given the ADCY?$ locus is associated with response to a
wide range of immune stimuli, and also an IMID, I conducted colocalisation analysis to test if

shared causal variants may be driving these associations, and to determine which among the
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correlated cell types expressing ADCYS3 are mostly likely responsible.

In a £500 Mbp window around the lead reQTL variant rs916485, I performed Bayesian
multi-trait colocalisation (HyPrColoc [316]) of the three per-timepoint ADCY3 eQTL summary
statistics with external summary statistics: ADCY8 eQTL in 15 sorted immune cell populations
from Schmiedel et al. [88], monocyte count QTL from Astle et al. [303], and IBD GWAS from

de Lange et al. [180]. There were 1054 variants present in all 20 sets of summary statistics.

HyPrColoc identifies clusters of traits that colocalise at different causal variants in the locus.
As Bayesian colocalisation can be sensitive to the choice of priors, I performed a sensitivity analysis
iterating over configurations of priors and other algorithm parameters, ranging from default to
more stringent parameter values. Two stable clusters were identified across 100 configurations of
parameters (Fig. 3.16). A set of three traits—ADCY?3 expression at HIRD day 1, and in naive
classical and non-classical monocytes—clustered in ~65 % of tested configurations. A set of nine
traits—IBD, and expression in eight naive and memory CD4™" T cell subsets—clustered in ~90 %
of tested configurations. The remaining traits did not robustly cluster with any other traits over
the tested configurations, except for the rare inclusion of HIRD baseline ADCY?3 expression
into the larger cluster for less stringent configurations. The value of prior.2 (the probability
that a variant associated with at least one trait is not associated with any additional traits)
was subsequently set to 0.99 (default = 0.98) to increase stringency, preventing this inclusion
of baseline HIRD expression into the larger cluster. The values of other priors and algorithm

parameters were left at their defaults, producing the final clustering shown in Fig. 3.17.

Under the final configuration, the posterior probability that all traits in the cluster share
a causal variant was 0.94 for the smaller cluster (HIRD day 1 and monocyte expression), and
0.98 for the larger cluster (CD4" T cell expression and IBD). Distinct candidate causal variants
were proposed for each cluster: for the smaller cluster, rs7567997, an intronic variant 45 kbp
downstream of the canonical ADCYS8 TSS; and for the larger cluster, rs713586, a variant 15 kbp
upstream of the TSS. In both cases, the variant explained all of the posterior probability for the
cluster, but as the analysis was restricted to the 1054 variants present in all datasets, there is
ample chance the true causal variants were not included. When it comes to fine mapping, it would
be more appropriate to perform it using the dataset with the densest genotyping in each cluster.
Nevertheless, the two main clusters being distinct from one another, and from non-colocalising
traits across many configurations, still supports the existence of distinct causal variants, even if
they may be unobserved. For HIRD day 1 expression of ADCY3, the more relevant cell type
appears to be monocytes, not a correlated cell type like CD4" T cells—and vice versa for IBD.
The clustering was robust despite the data containing no stimulated monocyte subsets. This
eQTL effect is readily observable at baseline, and appears to be more significant in naive classical
than non-classical monocytes in the Schmiedel et al. [88] data (Fig. 3.17). No colocalisation with
blood monocyte count was observed, so the reQTL does not appear to affect monocyte abundance
in general. I believe a variant that affects ability to increase monocyte counts post-vaccination
can also be ruled out, as in that case the effect of genotype on expression is entirely mediated
through the effect of genotype on monocyte abundance, so having cell abundance scores as
covariates in the regression should eliminate that effect. Thus I hypothesise that a plausible

mechanism generating the day 1 reQTL signal in HIRD is an increase in abundance of (classical)
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Figure 3.15: Expression of ADCYS3 in sorted immune cell subsets. Figure from Schmiedel et al. [88],
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atabase.org/genes/ADCY3, accessed Nov 2020.
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monocytes at day 1 post-vaccination, increasing the proportion of ADCYS3 transcripts in the
bulk data originating from monocytes, thus making an eQTL specific to monocytes—not just
stimulated monocytes—more readily detectable. This is the scenario where monocyte abundance

modifies the effect of genotype on expression.
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Figure 3.16: Sensitivity analysis for multi-trait colocalisation at the ADCY3 locus. Colocalisation
performed using HyPrColoc [316] in a 500 kbp window around the lead variant for the day 1 ADCY3 reQTL in
HIRD, for trait datasets described in Section 3.2.12. Heatmap shows the proportion of configurations in which two
traits colocalise in the same cluster over 100 configurations of algorithm parameters reg.thresh, align.thresh,
and prior.2 (range of values listed in Section 3.2.12). prior.1 set at 1 x 10™* (default). Rows and columns
hierarchically-clustered.
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Figure 3.17: Multi-trait colocalisation at the ADCY3 locus. Colocalisation performed using HyPrColoc
[316] in a £500 kbp window around the lead variant for the day 1 ADCYS& reQTL in HIRD (vertical grey line).
Traits are monocyte cell count (Astle et al. [303]), ADCY3 expression in sorted immune cell subsets (Schmiedel
et al. [88]), ADCYS expression at HIRD timepoints, and IBD (de Lange et al. [180]). Locus plots show summary
statistics for 1054 variants present in all datasets. Traits in red and green represent two distinct clusters each
hypothesised to be driven by a shared causal variant (vertical red and green lines). Non-colocalising traits are
shown in black. Horizontal dashed lines show nominal p = 0.05. Default values for priors and algorithm parameters
used, except prior.2 = 0.99.
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3.4 Discussion

Just as Pandemrix vaccination was found to induce extensive changes in the transcriptome in
Chapter 2, it also induces changes in the regulatory architecture of gene expression. In a mega-
analysis of array and RNA-seq datasets, cis-eQTL were detected for 50.8 % (6887/13 570) of genes
in at least one timepoint, with the majority replicating in the much larger GTEx whole blood
dataset. This is a substantial eGene rate given the modest per-timepoint sample size in HIRD,
reflecting the gain in effective sample size from joint mapping over multiple conditions. Defining
reQTLs by a significant difference in beta of the same eQTL between two timepoints, 1154 /6887
(16.8 %) of lead eQTLs were classified as reQTLs. This is comparable to estimates of a 3-18 %
reQTL rate between monocytes in different stimulation conditions by Kim-Hellmuth et al. [85],
who also used a beta comparison method. The method is relatively stringent for calling reQTLs,
avoiding both threshold effects where significant and non-significant eQTLs may have very similar
betas, and discovery power biases caused by sample size differences between conditions. Indeed,
had reQTLs been called by significance alone, 1427 reQTLs would have been detected with
effects specific to baseline, the timepoint with the largest sample size in HIRD. There is growing
consensus in the literature that most eQTLs are shared between conditions such as tissue and
cell-type [74, 281, 321, 322], and that high estimates of >50% condition-specificity based on
significance thresholds (e.g. [276]) are overestimated. A counter-argument is that many studies
overestimate sharing by calling condition-specific effects in LD as shared [322]. Here I compared
the same gene-tag SNP pair across timepoints, but distinct causal, condition-specific variants
may be tagged in such a way that the effect size of the tag SNP ends up similar—multi-trait
colocalisation would be required to truly confirm a shared eQTL.

Gene set enrichment analyses to identify shared biological processes among target genes for
reQTLs were generally uninformative. Genes targeted by reQTLs that explained more variation
in expression post-vaccination were enriched for immune activation, with weaker enrichments
related to APCs. This misses the full picture, as many of the strongest reQTLs were those with
opposite sign effects at baseline and post-vaccination, but little change in PVE. Prevalence of
opposite sign effects between pairs of conditions has been previously described in multi-tissue
studies: in Fu et al. [76], the proportion of opposite sign effects among all reQTLs between five
tissues was 4.4 %. In HIRD, I found an unexpectedly high proportion: 39/819 (4.8 %) for day
1 reQTLs, and 211/1002 (21.1%) for day 7 reQTLs (Fig. 3.10). Given the global change in
expression versus baseline was larger at day 1 than at day 7 (as described in Chapter 2), the
larger number of strong reQTLs at day 7 was also unexpected. The genes with these opposite
sign effects were not significantly enriched in any of the gene sets or BTMs I tested.

Post-vaccination DGE was considered as a mechanism that might generate reQTLs. As in
Kim-Hellmuth et al. [85] and Davenport et al. [96], the overlap between differentially expressed
genes and genes with reQTLs in HIRD was poor. Only at day 7 were genes with reQTLs more
likely to be differentially expressed than genes without reQTLs—specifically after excluding genes
without an eQTL from the analysis. The genes with both day 7 reQTLs and day 7 upregulation
were enriched in cell cycle GO terms, but it is unclear how this may lead to generation of opposite
sign effects, and the enrichment may largely have been driven by the DGE signal rather than the

reQTL one. As described in Section 3.1.2, to define genes important to TIV response, Franco
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et al. [94] made heavy use of the overlap of genes with DGE and reQTLs, followed by gene set
enrichment. Unfortunately, their filtering before enrichment selected genes with either DGE or
reQTL, making it difficult to assess which criteria contributed more to the significant enrichments
they observed in the antigen presentation pathway. As noted by Davenport et al. [96] and Cuomo
et al. [323], it may be that DGE and reQTLs are generated by different mechanisms, and focusing

on the overlap is an unnecessarily narrow view.

An unappealing thought is that opposite sign effects are enriched in false positives, especially
as they seem to show no positional enrichment near the TSS. While it is known that stimulation-
specific reQTLs are more distal than baseline eQTLs [79], the HIRD reQTLs are evenly spread
across the cis window. Some reQTLs may be statistical artifacts of the shrinkage of effects
by mashr. Small and opposite effects generated by noise may be frequent enough for mashr to
consider them a “pattern” of effects. This might explain the clear separation of the distribution
of z-statistics for difference in beta between reQTLs and shared eQTLs. Conversely, it may
be that small and opposite effects are more prevalent than expected, and combining mashr
and a difference in betas test is the best framework for detecting them. To confirm either way,
it may be necessary to repeat the reQTL calling without the influence of mashr shrinkage
in a different modelling framework, such as one using a timepoint-genotype interaction term
[96]. A complementary approach for validating these opposite sign reQTLs using the existing
RNA-seq data might be within-individual allele-specific expression (ASE) (e.g. RASQUAL [324],
PLASMA [325]). One would expect a true opposite sign reQTL effect to be recapitulated as
opposite directions of allelic expression imbalance between timepoints. ASE may also provide
more interpretable effect sizes than eQTL betas [326], for purposes such as clustering effect sizes

to determine patterns of effects across timepoints [323].

At least one reQTL signal was plausibly not a false positive. The strongest reQTL detected
at day 1 was for ADCY3, a membrane-bound enzyme that catalyses the conversion of ATP to
the second messenger cAMP [327]. ADCY3 is upregulated after the differentiation of monocytes—
induced by beta-glucan—into macrophages in a state of trained immunity: a state in which
they are more responsive to future immune stimuli [328]. GWASs have implicated the ADCY3
locus in diseases such as obesity [327] and IBD [180]. ADCY3 has also been identified as a
post-stimulation reQTL in other studies involving stimulated blood immune cells: in PBMCs
24 h after in vitro infection with rhinovirus [83], in vivo in whole blood at day 1 after vaccination
with seasonal TIV [94], and in whole blood after in vitro stimulation with M. leprae antigen for
26-32h [92]. Given the diversity of stimulations and tissue types, the effect is likely a consequence

of general immune activation, rather than a Pandemrix-specific response.

The strength of the ADCY3 reQTL at day 1 was found to be modified by xCell estimates
of monocyte abundance. The xCell scores are imperfect. Compared to FACS measurements in a
cohort subset, the xCell scores were only weakly correlated, and the signatures used by xCell
may be less accurate after vaccine stimulation. Fortunately, statistical colocalisation confirmed
that the day 1 ADCY3 reQTL signal is likely to be a monocyte-specific effect—and independent
to the IBD signal in the locus, which colocalises with CD4™ T cell eQTL datasets. The proportion
of monocytes in the PBMC compartment increases at day 1, supported by both FACS [162]

measurements and an increase in monocyte xCell score. Expression of ADCY?S& in HIRD is not
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monocyte-specific: despite the increase in monocyte proportion, no upregulation was observed at
day 1. Colocalisation was also not restricted to stimulated monocytes. The probable mechanism
is an increased proportion of the bulk sample taken up by monocytes at day 1 providing more
monocyte-derived ADCY3 transcripts, rather than an upregulation-driven increase in detection
power, or a vaccine-induced activation of the locus at day 1. Although multi-trait colocalisation
proved to be the crucial piece of evidence suggesting the effect is not related to T cells, only
15 immune cell types were included in the analysis, so it is possible the reQTL is not entirely

monocyte-specific.

Overall, cell type interactions were only detected at 16/1154 reQTLs. Although power to
detect significant interactions is lower than power to detect main effects—not helped by the
unclear reliability of xCell scores—it is still likely that mechanisms other than shifts in cell
abundance underlie a large number of the detected reQTLs. One type of mechanism by which
cis-eQTLs affect expression is through their impact on transcription factor (TF) binding affinity
to motifs in promoters and enhancers [329]. Immune cells, including monocytes, are heavily
regulated by cell type-specific TFs [330]. Cell type-specific expression of TFs has been proposed
as a model for explaining magnifying, dampening, and opposite sign reQTL effects; for example,
opposite sign effects could result from different TFs regulating the same gene via the same
regulatory element, with activating effects in one cell type and suppressive effects in another [76].
There is evidence that TF activity is important for in vivo immune reQTLs: Caligkan et al. [83]
found rhinovirus reQTLs in PBMCs were enriched in ENCODE chromatin immunoprecipitation
sequencing (ChIP-seq) peaks for the TFs STAT1 and STAT?2, and Davenport et al. [96] found
interferon and anti-IL6 drug reQTLs likely disrupt ISRE and IRF/ binding motifs. Rather than
condition-specific expression of the eGene, reQTL effects could be generated by condition-specific
expression of TFs whose activity is affected by the reQTL variant. A genomic feature enrichment
for TF binding sites and other regulatory elements among (fine-mapped) HIRD reQTL variants
could expose shared regulatory factors that explain subsets of the remaining reQTLs. This would

also help evaluate if the even distribution of reQTLs across the cis window is a cause for concern.

Not only are the mechanisms at many detected reQTLs unknown, there may be many more
reQTLs yet to detect in HIRD. Multiple independent eQTLs are present for a large fraction
of eGenes [331]. As a single lead variant for reQTL assessment was chosen per gene to avoid
reQTLs caused by differential tagging efficiency, I could not detect secondary reQTLs masked by
a stronger shared eQTL for the same gene. This is not expected to be uncommon, as the effective
sample size for shared eQTLs is usually large due to borrowing of information across conditions.
Secondary eQTL signals tend to be weaker, more distal to the TSS, more likely to be enriched in
enhancers rather than promoters, and—importantly—more context-specific [55, 85, 332, 333].
The proportion of genes with reQTLs I detect based only on the lead signal likely represents
a lower bound. Stepwise conditional analyses at each lead variant will be required to uncover
secondary associations, which then can be compared across timepoints in the same manner as
the primary associations. These associations, although weaker on average, may actually have
more variable effects between timepoints. I also did not consider trans-eQTLs due to sample size,
which are more likely to be condition specific than cis-eQTLs [56, 59, 79].

Finally, I address the prospect that common genetic variation may explain some variation



94 Genetic architecture of transcriptomic response to Pandemrix vaccine

in antibody response to Pandemrix. I have indirectly demonstrated genotype-dependent effects
on expression response by identifying reQTLs with differing effect size between timepoints, but
have yet to determine resulting genotype-dependent differences in antibody phenotypes. Some
of the identified reQTLs will undoubtedly affect genes whose expression or post-vaccination
expression change correlates with antibody response, but correlation is not transitive [334], so
correlation of genotype with expression and expression with antibody response does not imply a
correlation between genotype and antibody response. Formal tests such as the CIT [263] will
be required to distinguish mediation of genotype-antibody response associations through gene
expression from competing models. Franco et al. [94] realised this, but concluded that they had
insufficient power for the CIT, with a greater sample size and comparable study design to HIRD.
The HIRD cohort is also too small for a direct GWAS of Pandemrix antibody response. An
approach for prioritising reQTLs that contribute to the antibody response to Pandemrix may
need to leverage external genetic associations with similar phenotypes found in larger cohorts;
for example, colocalisation with existing GWAS summary statistics for antibody response to
other vaccines (ideally adjuvanted and inactivated vaccines). However, due to the number of
possible generating mechanisms for bulk reQTLs in vivo, careful interpretation will be required
to glean any insight into the biology of the stimulation in question. Chapter 5 will continue the
discussion on the methodologies, experimental designs, and upcoming technologies required to

complement the in vivo reQTL study design.



