
Chapter 1

Introduction

Current functional genomics relies on known and characterised genes, but despite

significant efforts in the field of genome annotation, accurate identification and

elucidation of protein coding gene structures remains challenging. Methods are

limited to computational predictions and transcript-level experimental evidence,

hence translation cannot be verified. Proteomic mass spectrometry is a method that

enables sequencing of gene product fragments, enabling the validation and refinement

of existing gene annotation as well as the elucidation of novel protein coding regions.

However, the application of proteomics data to genome annotation is hindered

by the lack of suitable tools and methods to achieve automatic data processing and

genome mapping at high accuracy and throughput. The main objective of this work

is to address these issues and to demonstrate its applicability in a pilot study that

validates and refines annotation of Mus musculus.

This introduction presents the foundations of the work described in this thesis.

Section 1.1 is an introduction to the field of protein mass spectrometry and focusses

on the importance of reliable peptide identification methods. Section 1.2 describes

available genome annotation strategies with a focus on in-house systems such as

Ensembl or Vega. A brief history of using proteomics data for genome annotation is

presented in section 1.3. Finally, the outline of my work is described in section 1.4.
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1.1 Protein mass spectrometry

1.1 Protein mass spectrometry

Mass spectrometry (MS) has become the method of choice for protein identification

and quantification (Aebersold and Mann, 2003; Foster et al., 2006; Patterson and

Aebersold, 2003; Washburn et al., 2001). The main reasons for this success include the

availability of high-throughput technology coupled with high sensitivity, specificity

and a good dynamic range (de Godoy et al., 2006). These advantages are achieved by

various separation techniques coupled with high performance MS instrumentation.

In a modern bottom-up LC-MS/MS proteomics experiment (Hunt et al., 1992;

McCormack et al., 1997), a complex protein mixture is often separated via gel

electrophoresis first to simplify the sample (Shevchenko et al., 1996). Subsequently,

proteins are digested with a specific enzyme such as trypsin, generating peptides

that are amenable for subsequent MS analysis. To further reduce sample complexity,

peptides are separated by liquid chromatographic (LC) systems (Wolters et al.,

2001), allowing direct analysis without the need for further fractionation: eluents are

ionised, separated by their mass over charge ratios and subsequently registered by

the detector. In a tandem MS experiment (MS/MS), low energy collision-induced

dissociation is used to fragment the precursor ions, usually along the peptide bonds.

Product fragments are measured as mass over charge ratios, which commonly reflect

the primary structure of the peptide ion (Biemann, 1988; Roepstorff and Fohlman,

1984). This simplified process is illustrated in figure 1.1.

Today this technology allows researchers to identify complex protein mixtures and

enables them to build protein expression landscapes of any biological material (Foster

et al., 2006). However, protein sequence coverage varies largely (de Godoy et al.,

2006; Simpson et al., 2000) while protein inference can be challenging if identified

sequences are shared between different proteins (Nesvizhskii and Aebersold, 2004;

Nesvizhskii et al., 2003).

The alternative top-down MS approach allows us to identify and sequence intact
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Figure 1.1: Schematic of a generic bottom-up proteomics MS experiment. (a) Sample
preparation and fractionation, (b) protein separation via gel-electrophoresis, (c)
protein extraction, (d) enzymatic protein digestion, (e) separation of peptides in
one or multiple steps of liquid chromatography, followed by ionisation of eluents
and (f) tandem mass spectrometry analysis. Here, the mass to charge ratios of the
intact peptides are measured, selected peptide ions are fragmented and mass to
charge ratios of the product ions are measured. The resulting spectra are recorded
accordingly (MS, MS/MS) allowing peptide identification. Adapted from Figure 1 in
Aebersold and Mann (2003).

proteins directly and does not limit the analysis to the fraction of detectable enzyme

digests (Parks et al., 2007; Roth et al., 2008). However, this method is currently

not applicable to complex protein samples in a high throughput fashion. Firstly,

there is an insufficiency of efficient whole protein separation techniques and secondly

commercially available MS instruments are either limited by efficient fragmentation

or by molecular weight restrictions of the analytes (Han et al., 2006).
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The most widely used instruments are ion trap mass spectrometers (Douglas

et al., 2005), which offer a high data acquisition rate and have generated an enormous

amount of data, some of which are available in public repositories (Desiere et al.,

2006; Jones et al., 2008; Martens et al., 2005a). Ion trap data is of low resolution and

low mass accuracy and therefore the typical rate of confident sequence assignments

is low (10-15%) (Elias et al., 2005; Peng et al., 2003).

The recent availability of hybrid-FT mass spectrometers (Hu et al., 2005; Syka

et al., 2004) enables high mass resolution (30k-500k) together with very high mass

accuracy (in the range of a few parts per million, ppm). On these instruments,

throughput and sensitivity is maximised by collecting MS data at a high resolution

and accuracy, and MS/MS data is recorded at high speed with low resolution

and accuracy (Haas et al., 2006). High resolution spectra enable charge state

determination of the precursor ion (Chernushevich et al., 2001; Heeren et al., 2004)

and highly restrictive mass tolerance settings lead in database search algorithms

to fewer possible peptide candidates because of the limited number of amino acid

compositions that fall into a given mass window (see next section). It is expected

that the discrimination power of database search engines improves with high accuracy

MS data (Clauser et al., 1999; Zubarev, 2006). In chapter 2 of this work I test this

hypothesis by evaluating the scoring scheme of two common database search engines

with high accuracy data and in chapter 3 I further utilise the discrimination power

of these data. For an outline of my work, please refer to section 1.4.

1.1.1 Peptide identification

A large number of computational tools have been developed to support high-

throughput peptide and protein identification by automatically assigning sequences

to tandem MS spectra (Nesvizhskii et al. (2007), table 1). Three types of approaches

are used: (a) de novo sequencing, (b) database searching and (c) hybrid approaches.
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1.1 Protein mass spectrometry

1.1.1.1 De novo and hybrid algorithms

De novo algorithms infer the primary sequence directly from the MS/MS spectrum by

matching the mass differences between peaks to the masses of corresponding amino

acids (Dancik et al., 1999; Taylor and Johnson, 1997). These algorithms do not need

a priori sequence information and hence can potentially identify protein sequences

that are not available in a protein database. However, de novo implementations do

not yet reach the overall performance of database search algorithms and often only

a part of the whole peptide sequence is reliably identified (Mann and Wilm, 1994;

Pitzer et al., 2007; Tabb et al., 2003).

High accuracy mass spectrometry circumvents many sequence ambiguities, and

de novo methods can reach new levels of performance (Frank et al., 2007). Moreover,

hybrid algorithms become more important, which build upon the de novo algorithms,

but compare the generated lists of potential peptides (Bern et al., 2007; Frank and

Pevzner, 2005; Kim et al., 2009) or short sequence tags (Tanner et al., 2005) with

available protein sequence databases to limit and refine the search results.

With the constant advances in instrument technology and improved algorithms,

de novo and hybrid methods may have a more important role in the future, however

database searching remains the most widely used method for peptide identification.

1.1.1.2 Sequence database search algorithms

Sequence database search algorithms resemble the experimental steps in silico (figure

1.2): a protein sequence database is digested into peptides with the same enzyme that

is used in the actual experiment, most often trypsin that cuts very specifically after

Arginine (R) and Lysine (K) (Olsen et al., 2004; Rodriguez et al., 2007). All peptide

sequences (candidates) that match the experimental peptide mass within an allowed

maximum mass deviation (MMD) are selected from this in silico digested protein

sequence database. Each candidate is then further investigated at the MS/MS level

by correlating the experimental with the theoretical peptide fragmentation patterns

5



1.1 Protein mass spectrometry

Protein 

sequence 

database

Protein sample

Proteolytic 

digestion

In silico 

enzymatic 

digestion

MS analysis

Peptide 

selection based 

on mass

Fragmentation
In silico 

fragmentation

MS/MS analysis

Compare in 

silico and 

experimental 

MS/MS  

Bottom-up MS experiment Sequence database search

Modifications

Enzyme definition

Peptide m/z

Fragmentation type

Fragment m/z

Figure 1.2: Concept of sequence database searching resembles a generic bottom-up
MS experiment, as for each stage of the experiment, an in silico equivalent component
is available.

and scoring the correlation quality (Eng et al., 1994; Kapp et al., 2005; Perkins et al.,

1999). It should be noted that the sequence database is usually supplemented with

expected experimental contaminant proteins. This avoids spectra that originate from

contaminant proteins to incorrectly match to other proteins.

1.1.2 Scoring of peptide identifications

Most of these database search algorithms provide one or more peptide-spectrum match

(PSM) scores that correlate with the quality of the match, but are typically hard to

interpret and are not associated with any valid statistical meaning. Researchers face

the problem of computing identification error rates or PSM significance measures and

need to deal with post-processing software that converts search scores into meaningful

statistical measures. Therefore, the following sections are focussed on scoring and
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assessment of database search results, providing a brief overview of common methods,

their advantages and disadvantages.

1.1.2.1 Peptide-spectrum match scores and common thresholds

Sequest (Eng et al., 1994) was the first sequence database search algorithm for tandem

MS data and is today, together with Mascot (Perkins et al., 1999) one of the most

widely used tools for peptide and protein identification. These are representative

of the numerous database search algorithms that report for every PSM, a score

that reflects the quality of the cross correlation between the experimental and the

computed theoretical peptide spectrum. Although Sequest and Mascot scores are

fundamentally different in their calculation, they facilitate good relative PSM ranking:

all peptide candidates that were matched against an experimental spectrum are

ranked according to the PSM score and only the best matches are reported.

Often only the top hit is considered for further investigation and some search

engines like X!Tandem (Craig and Beavis, 2004) exclusively report that very best

match. However, not all these identifications are correct. Sorting all top hit PSMs

(absolute ranking) according to their score enables the selective investigation of

the very best matched PSMs. This approach was initially used to aid manual

interpretation and validation. As the field of MS-based proteomics moved towards

high-throughput methods, researchers started to define empirical score thresholds.

PSMs scoring above these thresholds were accepted and assumed to be correct,

while anything else was classified as incorrect. Depending on how well the underlying

PSM score discriminates, the correct and incorrect scores overlap significantly (figure

1.3) and therefore thresholding is always a trade-off between sensitivity (fraction

of true positive identifications) and the acceptable error rate (fraction of incorrect

identifications). Low score thresholds will accept more PSMs at the cost of a higher

error rate and on the other hand a high score threshold reduces the error rate at the

cost of sensitivity.
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Many groups also apply heuristic rules that combine the score threshold with

some other validation properties such as charge state, the difference in score to

the second best hit, amongst others. The problem with these methods is that the

actual error rate remains unknown and the decision of accepting assignments is only

based on judgement of an expert. Moreover, results between laboratories or even

between experiments cannot be reliably compared, since different search algorithms,

protein databases, search parameters, instrumentation and sample complexity require

adaptation of acceptance criteria. A recent HUPO study (States et al., 2006)

investigated the reproducibility between laboratories. Amongst the 18 laboratories,

each had their own criteria of what was considered a high and low confidence protein

identification, which were mostly based on simple heuristic rules and score thresholds

(States et al. (2006), supplementary table 1). It was found that the number of high

confidence assignments between two different laboratories could vary by as much as

50%, despite being based on the same data. As a result, many proteomic journals

require the validation and assessment of score thresholds, ideally with significance

measures such as presented below.

1.1.2.2 Statistical significance measures

The expected error rates associated with individual or sets of PSMs can be reported

as standard statistical significance measures. This allows transformation of specific

scoring schemes into generic and unified measures, enabling comparability across

any experiment in a consistent and easy to interpret format. In this section I discuss

and explain commonly used statistical measures that ideally are reported by every

database search algorithm or post-processing software; focusing on the false discovery

rate (FDR), its derived q-value and the Posterior Error Probability (PEP), also

sometimes referred to as local FDR.
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Figure 1.3: A score distribution (black) typically consists of a mixture of two
underlying distributions, one representing the correct PSMs (green) and one the
incorrect PSMs (red). Above a chosen score threshold (dashed line) the shaded blue
area (A) represents all PSMs that were accepted, while the solid red filled area (B)
represents the fraction of incorrectly identified PSMs with the chosen acceptance
criteria. B together with B’ sum up all incorrect PSMs for the whole dataset. The
false positive rate (FPR) and the false discovery rate (FDR) can be calculated when
the numbers of PSMs in B, B’ and A are counted using the presented formulas.
The posterior error probability (PEP) can be calculated from the height of the
distributions at a given score threshold.

p-values, false discovery rates and q-values

The p-value is a widely used statistical measure for testing the significance of results

in the scientific literature. The definition of the p-value in the context of MS database

search scores is the probability of observing an incorrect PSM with a given score

or higher by chance, hence a low p-value indicates that the probability is small of

observing an incorrect PSM. The p-value can be derived from the false positive rate

(FPR), which is calculated as the proportion of incorrect PSMs above a certain score
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1.1 Protein mass spectrometry

threshold over all incorrect PSMs (figure 1.3). The simple calculation of the p-value

however is misguiding when this calculation is performed for a large set of PSMs. In

this case, we would expect to observe a certain proportion of small p-values simply by

chance alone. An example: given 10,000 PSMs at a score threshold that is associated

with a p-value of 0.05, we expect 0.05 × 10, 000 = 500 incorrect PSMs simply by

chance. This leads to the well known concept of multiple testing correction, which

can be found in its simplest, but conservative, form in the Bonferroni correction

(Bonferroni, 1935; Shaffer, 1995). Bonferroni suggested to correct the p-value by the

number of tests performed, leading to a p-value of 5 × 10−5 in our example above.

However, we have only corrected for the number of spectra, but not for the number

of candidate peptides the spectrum was compared against. A correction taking into

account both factors leads to extremely conservative score thresholds. However, an

alternative well established method for multiple testing correction for large-scale

data such as genomics and proteomics is to calculate the false discovery rate (FDR)

(Benjamini and Hochberg, 1995).

The FDR is defined as the expected proportion of incorrect predictions amongst

a selected set of predictions. Applied to MS, this corresponds to the fraction of

incorrect PSMs within a selected set of PSMs above a given score threshold (figure

1.3). As an example, say 1,000 PSMs score above a pre-arranged score threshold,

and 100 PSMs were found to be incorrect, the resulting FDR would be 10%. On

the other hand, the FDR can be used to direct the trade-off between sensitivity and

error rate, depending on the experimental prerequisites. If, for example, a 1% FDR

were required, the score threshold can be adapted accordingly.

To uniquely map each score and PSM with its associated FDR, the notion of

q-values can be used. This is because two or more different scores may lead to the

same FDR, indicating that the FDR is not a function of the underlying score (figure

1.4). Storey and Tibshirani (Storey and Tibshirani, 2003) have therefore proposed a

new metric, the q-value, which was introduced into the field of MS proteomics by
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(i.e, many of the PSMs are correct), the accepted method for
multiple testing correction is to estimate thefalse discovery rate
(FDR).10,11 Storey and Tibshirani12 provide a description of FDR
methods that is accessible to nonstatisticians and that includes
more recent developments. In our case, the FDR associated
with a particular score threshold is defined as the expected
percentage of accepted PSMs that are incorrect, where an
“accepted PSM” is one that scores above the threshold (Many
proteomics papers incorrectly refer to this quantity as the “false
positive rate.”) However, other scientific fields define the false
positive rate as the fraction of true null tests that are called
significant,13–17 whereas the false discovery rate is defined as
the fraction of true null tests among all of those that are called
significant). For example, at an FDR of 1%, if we accept 500
PSMs, then we expect five of those matches to be incorrect.

The simplest way to calculate the FDR is analogous to the
calculation of p-values, above. For a given score threshold, we
count the number of decoy PSMs above the threshold and the
number of target PSMs above the threshold. We can now
estimate the FDR by simply computing the ratio of these two
values. For example, at a score threshold of 3.0, we observe
3849 accepted target PSMs and 219 accepted decoy PSMs,
yielding an estimated FDR of 5.7%. Figure 4 plots the number
of accepted PSMs as a function of the estimated FDR, and the
series labeled “Simple FDR” was computed using the ratio of
accepted decoys versus accepted targets.

Estimating the Percentage of Incorrect Target PSMs
A slightly more sophisticated method for calculating the FDR

takes into account the observation that, whereas all decoy PSMs
are incorrect by construction, not all target PSMs are correct.
Ideally, the presence of these incorrect target PSMs should be
factored into the FDR calculation. For example, suppose that
among 10 000 target PSMs, 8000 are incorrect and 2000 are
correct. We would like to know the 8000 quantity so that we
can adjust our FDR estimates.

Figure 2 shows that the distributions of scores assigned to
target and decoy PSMs are similar, except that the target PSM
score distribution has a heavier tail to the right. This tail arises
because the set of target PSMs is comprised of a mixture of
correct and incorrect PSMs. Figure 5 shows simulated distribu-

tions that illustrate the underlying phenomenon. For this
simulation, we assume that our PSM score function follows a
normal distribution, and we set the standard deviation to 0.7
(The assumption of normality is for the purposes of illustration
only; the methods we describe here do not require any
particular form of distribution, nor do we assume that XCorr
is normally distributed). For incorrect PSMs, we set the mean
of the distribution to 1.0, and for correct PSMs, we change the
mean to 3.0. Our simulated data set contains 10 000 decoy
PSMs, 8000 incorrect target PSMs, and 2000 correct target
PSMs. The figure shows the resulting decoy score distribution
(black line), the target score distribution (blue line), and its two
component distributions (dotted and dashed blue lines). In this
simulated data set, the percentage of incorrect targets (PIT) is
80%. This PIT is equivalent to the ratio of the area under the
dotted blue line (the incorrect target PSMs) to the area under
the solid black line (the decoy PSMs).

The PIT is important because it allows us to reduce the
estimated FDR associated with a given set of accepted target
PSMs. In our simulation, if we acceptX decoy PSMs with scores
above a certain threshold, then we expect to find 0.8X incorrect
target PSMs above the same theshold. A more accurate estimate
of the FDR, therefore, is to multiply the previous estimate—the

Figure 4. Mapping from the number of identified PSMs to the estimated false discovery rate. (A) The figure plots the number of PSMs
above the threshold as a function of the estimated false discovery rate. Two different methods for computing the FDR are plotted, with
and without an estimate of the percentage of incorrect target PSMs (PIT). The vertical line corresponds to an XCorr of 3.0. (B) A zoomed-
in version of panel A, with the estimated FDR shown as a dotted line and the q-value shown as a solid line.

Figure 5. Simulated target and decoy PSM score distributions.

Assigning Significance to Peptides perspectives

Journal of Proteome Research • Vol. xxx, No. xx, XXXX C

 π 0

Figure 1.4: FDR compared with q-value: two or more different scores may lead
to the same FDR, whereas the q-value is defined as the minimal FDR threshold
at which a PSM is accepted, allowing to associate every PSM score with a specific
q-value. Adapted from Käll et al. (2008a), figure 4b.

Käll et al. (2008a,b). In simple terms, the q-value can be understood as the minimal

FDR threshold at which a PSM is accepted, thereby transforming the FDR into a

monotone function: increasing the score threshold will always lower the FDR and

vice versa. This property enables the mapping of scores to specific q-values. In

Figure 1.5 the q-value is shown for a Mascot search on a high accuracy dataset. At

a Mascot Ionscore of 10, 20 and 30 the corresponding q-values were 0.26, 0.04, 0.005

with 19967, 14608, 10879 PSM identifications respectively. It is important to note

that for other datasets, instruments and parameter setting, the q-value could be

significantly different for the same score and hence the q-value analysis should be

performed for any individual search.
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Figure 1.5: Mascot PSM scores were transformed into q-values and posterior error
probabilities (PEP) using Qvality (see section 1.1.2.3). A score cut-off of 30 demon-
strates the fundamental difference of the two significance measures: the q-value would
have reported about 0.5% of all the PSMs as incorrect above that score threshold,
whereas the PEP would have reported a 4% chance of a PSM being incorrect at this
specific score threshold. Note: The maximum q-value for this dataset is 0.5, since
only half of the PSMs are incorrectly assigned even without any score threshold
applied due to the use of high quality and high mass accuracy data stemming from
an LTQ-FT Ultra instrument. This factor (π0) is discussed in more detail in figure
1.6.

Posterior Error Probability

The q-value is associated with individual PSM scores, although this measure is

always a result of all PSMs in a dataset. For illustration, imagine we remove from a

large dataset half of the spectra that were incorrectly matched above a given score

threshold; after spectral removal the q-value for this same score threshold would be

only about 50% of its original value, even though the underlying spectrum and PSM

has not changed. Moreover, in an extreme case, a q-value of 1% could be taken to

mean that 99 PSMs are perfectly correct and 1 PSM is incorrect. More likely the
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majority of these PSMs are good, but not perfect matches and a few are weaker

matches. Clearly, when the focus of an experiment is based on individual peptide

identifications (for example in biomarker discovery, genome annotation, or follow-up

research of a key peptide), then it would be useful to compute spectrum specific

significance measures that can be represented as the posterior error probability

(PEP).

The global FDR or q-value reflects the error rate which is associated with a set

of PSMs, whereas the PEP (or sometimes referred to as local FDR) measures the

significance of a single spectrum assignment with a specific PSM score (Käll et al.,

2008b,c). The PEP is simply the probability of the PSM being incorrect, thus a PEP

of 0.01 means that there is 1% chance of that PSM being incorrect. For the previous

example where 100 PSMs resulted in a q-value of 1%, the PEPs would have reflected

the stronger and weaker matches.

Unlike the FDR and q-value calculations that require minimal distributional

assumptions, the PEP can only be calculated with knowledge of the underlying score

distributions representing the correct and incorrect PSM identifications (see next

section), since the PEP is inferred from the height of the distributions at a given

PSM score. Figure 1.3 illustrates again that the PEP is specific to one PSM score,

whereas the FDR accounts for the whole set of PSMs that scored at least as good as

the PSM at hand. This leads to the fact that the sum of the PEPs above a chosen

score threshold divided by the number of selected PSMs results in an alternative way

of computing the FDR (Keller et al., 2002).

Figure 1.5 shows the results of the PEP as well as the q-value calculations for

a high mass accuracy dataset that was searched with Mascot. For a PSM score

threshold of 10, 20 and 30, the associated q-values were 0.26, 0.04 and 0.005 whereas

the PEPs were 1.0, 0.39 and 0.04, respectively. This clearly demonstrates the

difference between the significance measures: whereas a Mascot score threshold of

30 (this is all PSMs with Mascot scores of 30 and above) led to only 0.5% incorrect
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PSMs in this dataset, the individual Mascot score of 30 was associated with a 4%

chance of being incorrect.

1.1.2.3 Computing statistical significance measures

Some database search algorithms report statistical measures, but these should be

carefully validated and fully understood before being used and interpreted since their

significance calculations are often based on pseudo statistical principles (see chapter

2). It is however very easy to obtain well founded significance measures with free

post-processing software packages and methods as briefly described below. Finally,

the well known effect of ”garbage-in/garbage-out” is also true for MS data analysis,

but when tools and methods are applied sensibly, they can be extremely valuable

and represent some of the latest developments in shotgun proteomics.

Target/Decoy database searching

A crucial step forward in assessing the reliability of reported PSMs was the introduc-

tion of the target/decoy search strategy pioneered by Moore et al. (2002): data is not

only searched against the standard sequence database (target), but also against a

reversed (Moore et al., 2002), randomised (Colinge et al., 2003), or shuffled (Klammer

and MacCoss, 2006) database (decoy).

The idea is that PSMs obtained from the decoy database can be used to estimate

the number of incorrect target PSMs for any given criteria such as score thresholds

or heuristic methods. This enables the calculation of the FDR by simply counting the

number of decoy and target PSMs that meet the chosen acceptance criteria (figure

1.3, FDR formula for separate target/decoy searches). A more accurate FDR can be

obtained when the fraction of incorrect PSMs (π0) matching the target database can

be estimated and incorporated (figure 1.6). π0 is equivalent to the ratio of the area

under the curve of incorrect target PSMs (figure 1.3, red line) to the area under the

curve of all target PSMs (figure 1.3, black line). This ratio can be estimated when
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Figure 1.6: Score distributions of a target and decoy search with and without
accounting for π0 (pi0, percentage of target PSMs that are incorrect). Generally, the
target score distribution (black) is a mixture of correct (green) and incorrect (red)
peptide-spectrum matches, while the decoy matches are meant to be a “proxy” for
the incorrect peptide matches obtained in the target run.
When no score thresholds are applied, all matches from the decoy search are counted
as incorrect identifications. However, this is not a good proxy for the incorrect target
matches, because a certain fraction of target matches are always correct, regardless
of the score threshold. This becomes more important for recent data that is obtained
from modern hybrid instruments such as the Orbitrap or LTQ-FT (Thermo Fisher
Scientific), where even 50% of the peptide assignments can be correct as shown in
this illustration. In fact, not accounting for this would mean that the estimated
number of true identifications (target minus decoy hits) would become negative (left
figure, green). However, incorporating the estimated fraction of peptides that are
incorrect (π0) in the target run, results in a much improved estimate of incorrect
(red) and correct (green) peptide identifications (right figure).
This illustration is based on real data from sample 1 of section 2 of this thesis.
Spline fits of score distributions were generated with the “smooth.spline” function of
the R-project software (http://www.r-project.org) using default parameters and
setting the degrees of freedom to 15.

15

http://www.r-project.org
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decoy and target PSMs are counted for the score intervals [0, n], where 0 is the lowest

score and n increases from the lowest to the highest score for each interval. Scores

close to zero comprise mostly incorrect target PSMs and therefore the larger the

interval the more conservative the π0 estimate becomes with the variance decreasing

(Käll et al., 2008a). Various methods exist to average across these intervals (Hsueh

et al., 2003; Jin and Cai, 2006; Meinshausen and Rice, 2006; Storey, 2002; Storey and

Tibshirani, 2003), but in the simplest form a straight line is fitted across the different

interval ratios to yield a π0 estimate (Käll et al., 2008a). A formal description of the

π0 estimation procedure used in Percolator and Qvality is discussed in detail in Käll

et al. (2008c)

It should be noted that there are two accepted concepts of target/decoy database

searching and different groups favour one or the other method: either data is searched

against a concatenated target/decoy database or data is separately searched against

the target and decoy database (Bianco et al., 2009; Elias and Gygi, 2007; Fitzgibbon

et al., 2007). A clear consensus as to which method is best is still to be established.

Qvality

Qvality (Käll et al., 2008c) is a software tool that builds upon separate target/decoy

database searching together with nonparametric logistic regression, where decoy

PSM scores are used as an estimate “proxy” of the underlying null score distribution.

It thereby enables transformation of raw and arbitrary PSM scores into meaningful q-

values and PEPs. Since no explicit assumptions of the type of the score distributions

are made, the method was shown to be robust for many scoring systems and hence

is not limited to one specific database search algorithm. Qvality incorporates pi0

estimates into the FDR calculation and is therefore expected to produce more

accurate significance metrics than standard target/decoy FDR calculation.

Application of Qvality is straightforward; it only expects two disjoint sets of raw

PSM scores as input, one stemming from the target and one from the decoy database.
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Figure 1.7: Distributions of Mascot and Percolator scores were generated from a
high accuracy LTQ-FT Ultra dataset (left). This illustrates the bi-modal nature
of PSM matching scores as simulated in figure 1.3 and further demonstrates the
discrimination performance improvement between correct and incorrect PSMs for
post-processing tools such as Percolator over Mascot. Note: these scores are not on
the same scale, but have been normalised and scaled for this illustration.

Data for figure 1.5 was computed with Qvality using the target and decoy Mascot

ion scores. Qvality is a small stand-alone command-line application without any

external dependencies and is readily applicable http://noble.gs.washington.edu/

proj/qvality/. Qvality was used for parts of the analysis in chapter 3.

PeptideProphet and Percolator

PeptideProphet and Percolator not only provide meaningful statistics, but also

attempt to improve the discrimination performance between correct and incorrect

PSMs (figure 1.7) by employing an ensemble of features, several of which are used

by experts for manually validating PSMs.

”PeptideProphet” developed by Keller, Nesvizhskii, Kolker, and Aebersold (2002),

was the first software that reported spectrum specific probabilities (P), akin to

the PEP, as well as FDRs. In order to improve the discrimination performance

between correct and incorrect PSMs, PeptideProphet learns from a training dataset

a discriminant score which is a function of Sequest specific scores such as XCorr,
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deltaCn, Sp amongst others. PeptideProphet makes extensive use of the fact that

PSM scores, as well as discriminant scores, represent a mixture distribution from the

underlying superimposed correct and incorrect score distributions (figure 1.3, 1.6).

The original PeptideProphet algorithm is based on the assumption that the

type of these distributions remain the same across experiments and hence were

determined from training datasets. However, using an Expectation Maximisation

algorithm (Dempster et al., 1977), the parameters of these distributions are adapted

for each dataset individually, enabling calculation of the corresponding FDR and P

significance measures.

Recent versions of PeptideProphet supplemented this parametric model with a

variable component mixture model and a semi-parametric model that incorporate

decoy database search results (Choi and Nesvizhskii, 2008; Choi et al., 2008). The

rational of this was to provide more robust models for a greater variety of analytical

platforms where the type of distribution may vary. PeptideProphet is a widely

used and accepted method to compute confidence measures and is available at

http://tools.proteomecenter.org. However, I have not used this tool in this work,

since the Mascot implementation (the algorithm that is installed on our compute

farm) does not improve discrimination and only uses the raw Mascot scores (personal

communication, Alexey I. Nesvizhskii 2007).

Percolator (Käll et al., 2007) is an alternative post-processing software relying on

target/decoy database search results rather than on distributional assumptions to

infer the q-value and PEP. This system employs a semi-supervised machine learning

method for improving the discrimination performance between correct and incorrect

PSMs. In the following the Percolator algorithm is outlined before its use in this

work is discussed in more detail.

Target and decoy search results from Sequest (see section 1.1.1.2 and 1.1.2.3)

are used as an input dataset for Percolator. In a first step, a vector of 20 features

is calculated for every target and decoy PSM from these data, which remain fixed

18
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FDR 

FilterTarget
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Initial scoring

function
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Figure 1.8: Schematic of the iterative learning process as implemented by Percolator

throughout the algorithm execution. Every feature, in isolation or in combination

with other features, is reflective of some aspects that relate to the quality of the PSM

at hand. The complete list of features is described in Käll et al. (2007) (supplementary

table 1), which includes PSM scores, score difference between top hit and second

best hit, enzyme specificity, peptide properties amongst others.

In the next step, a user defined feature that is known to discriminate well between

correct and incorrect PSMs, such as the XCorr Sequest score, is used as an initial

scoring function; a FDR filter can utilise this initial scoring function to select all

target PSMs at a predefined low FDR. Given that at a 1% FDR setting 99% target

PSMs can be assumed to be correct, this PSM subset serves as a positive training

dataset, whereas the total set of decoy PSMs, which are known to be incorrect, are

used as a negative training set (figure 1.8). Using the pre-calculated features of these

training data, a linear support vector machine (SVM) (Ben-Hur et al., 2008) learns

to discriminate between the positive and negative training set.

The resulting SVM classifier is then used to re-score the target and decoy PSMs.

The FDR filter is applied in another iteration to select all target PSMs at a low

FDR, which together with all decoy PSMs are used for SVM training. The algorithm

continues this cycle for a few iteration, and in Käll et al. (2007) it was shown that
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after a few iterations the system converges and results in a robust classifier that is

then used in a last step to re-score each PSM in the dataset. It should be noted

that a three-fold cross validation is performed at each iteration to avoid overtraining,

resulting in biased scoring. The combination of features results in significantly better

discrimination between correct and incorrect PSMs when compared to raw PSM

scores (figure 1.7).

For every PSM, the associated q-value as well as the PEP are reported (Käll

et al., 2008b,c). The whole process is fully automated and does not require any

expert-driven or subjective decisions, thereby eliminating any artificial biases. The

learnt classifier is specific and unique to each dataset, thus adapting to variations in

data quality, protocols and instrumentation. This was demonstrated in Käll et al.

(2007) (supplementary figure 2), where feature weights were used as a measure of the

importance of individual features. However, it should be noted that feature weights

of a SVM are difficult to interpret, since multiple features may be correlated and

hence feature weights are divided arbitrary between those. Alternatively, relative

importance of a feature could be measured by removing it from the set, but again,

correlating feature complicate the interpretation.

Percolator is available under http://noble.gs.washington.edu/proj/percolator/

and similar to Qvality does not depend on any external dependencies and hence

can be readily used. It offers a simple command line interface that requires Sequest

results as input and outputs the q-value, PEP, as well as the peptide and associated

protein(s) information for each spectrum.

I have developed upon Percolator a Mascot module that uses an extended feature

set, including Mascot specific features as well as intensity and ion-series information.

This work is discussed in detail in chapter 3. It is available for download under

http://www.sanger.ac.uk/resources/software/mascotpercolator/ and is currently

integrated into the official Mascot 2.3 release (see http://www.matrixscience.com/

workshop_2009.html for more information).
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1.2 Genome annotation

1.2.1 Fundamentals of gene transcription and translation

The genomic sequence encodes the blueprint of an organism. The instruction sets are

encoded in protein coding and non-coding genes, which are defined stretches of DNA

sequence that contain the information required to construct proteins and functional

RNA molecules respectively. The realisation of genes is initiated by transcription,

whereby genomic DNA is transcribed into RNA.

This premature RNA sequence comprises two different types of segments in

eukaryotes, exons and introns, the latter of which is removed during splicing. This

process enables the construction of alternative products (alternative splicing) by

varying the joining of exons: these can be extended at the 5’ donor or 3’ acceptor

site, one or multiple exons can be skipped or rarely introns can be retained.

Products that are derived from non-coding RNA genes, code for RNA molecules

and are not further translated into proteins. These non-coding molecules have been

studied extensively in the last decade and are involved in many cellular processes,

although the function is unknown for some of these elements (Carninci et al., 2005;

Clamp et al., 2007; Claverie, 2005; Washietl et al., 2007). However, the focus of this

introduction are the main functional players in a cell: proteins.

Spliced RNA sequence that was derived from protein coding genes is referred

to as messenger RNA (mRNA). Mature mRNA comprises the open reading frame

(ORF) that codes for the protein and the untranslated sequences (5’ UTR upstream

and 3’ UTR downstream of the ORF). During protein translation, three nucleotides

are read at a time (codons) and specific transfer RNAs (tRNA) match these codons

with three unpaired complementary bases (anticodon). Each anticodon defines a

specific amino acid that is bound to the tRNA, which upon binding of mRNA and

tRNA is ligated to the growing polypeptide chain.

The newly synthesised protein must fold to its active three-dimensional structure
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Figure 1.9: Illustration of gene transcription and translation according to the standard
model. The figure was adapted from Wikipedia (http://en.wikipedia.org/wiki/
File:Gene2-plain.svg)

before it can carry out its function. This simplified standard model describing

the unfolding of genomic sequence, also known as the “central dogma of molecular

biology” (Crick, 1958, 1970), is further illustrated in figure 1.9.

1.2.2 Genome sequencing

Sequencing efforts in the last decade generated a large amount of raw genomic DNA

sequence data. To date there are 118 complete eukaryotic genomes sequenced (Liolios

et al., 2009) and more sophisticated sequencing technologies will even speed up this

data collection process. A project to sequence 10,000 vertebrate species has just

been proposed, even though technology is not yet up to it (Pennisi, 2009). Genomes

can be large, for example the human genome comprises approximately 3.2 × 109
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base pairs, yet only about 1-2% of its DNA codes for proteins (Birney et al., 2007;

Claverie, 2005).

1.2.3 Definition of genome annotation

Genome annotation can be defined as augmenting these raw DNA sequences with

additional layers of information (Brent, 2005; Stein, 2001). It can be distinguished

between structural and functional annotation. The former is the process of identifying

important genomic elements such as genes, the precise localisation of genes within

the genome and the elucidation of exon/intron structures, while the latter deals with

the biological function, regulation and expression analysis of these elements. For

clarification, when the term “genome annotation” is used in the remainder of this

work, it refers to structural annotation only.

The task of accurately annotating the complete set of protein coding genes and

their alternative splice forms is considered one of the hardest and yet most important

steps towards understanding a genome, since proteins are central to virtually every

biological process in a cell. However, the difficulty of gene identification and gene

structure elucidation is determined by the complexity of the underlying genome: for

example, identification of ORFs in bacteria, which are not discussed in this work, is

relatively easy due to the lack of alternative splicing and a compact genome; simpler

eukaryotes, such as yeast with limited splicing and short intronic regions are much

easier to annotate than vertebrates, since extensive alternative splicing, long introns

and intergenic regions further complicate sensitive and specific annotation.

1.2.4 Genome annotation strategies

With the ever increasing availability of sequenced genomes, automatic genome

annotation is an active area of research. Figure 1.10 provides an overview of the

different available annotation strategies, which will be briefly discussed.
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http://genomebiology.com/2009/10/1/201 Genome BBiioollooggyy 2009, Volume 10, Issue 1, Article 201 Harrow et al. 201.2

Genome BBiioollooggyy  2009, 1100::201

FFiigguurree  11
Gene-finding strategies. Given a genome DNA sequence, information on the location of genes and transcripts can be obtained from different sources:
conservation with one or more informant genomes (1); intrinsic signals involved in gene specification, such as start and stop codons and splice sites (2);
the statistical properties of coding sequences (3); and, most importantly, known transcript sequences (either full-length cDNAs or partial ESTs) and
protein sequences (4). Over the past two decades, a plethora of programs and strategies has been developed to combine these sources of information to
obtain reliable gene predictions. The ‘intrinsic’ evidence from sequence signals and statistical bias can be combined (using a variety of frameworks often
related to hidden Markov models [59]), to produce gene predictions (6). These programs are often referred to as ab initio or de novo gene finders. They
are the programs of choice in the absence of known transcript or protein sequences or phylogenetically related genomes. If related genome sequences
are available, the intrinsic information can be combined with patterns of genomic sequence conservation using programs often referred to as comparative
(or dual- or multi-genome) gene finders (5). With these programs, maximum resolution is achieved when the compared genomes are at a phylogenetic
distance such that there is maximum separation between the conservation in coding and noncoding regions. To increase resolution, programs have been
developed that use multiple informant genomes. The most sophisticated use an underlying phylogenetic tree to appropriately weight sequence
conservation depending on evolutionary distance. If cDNA and EST sequences are available, these often take priority over other sources of information.
The initial map of the transcript or protein sequences onto the genome, which can be obtained using a variety of tools, including sequence-similarity
searches, is refined using more sophisticated ‘splice alignment’ algorithms, whose explicit splice-site models allow more precise alignment across gaps
corresponding to introns (8). Alternatively, cDNA and protein information can be fed into an ab initio gene-finder algorithm to give information on the
exons included in the prediction (7). Often, cDNA and protein evidence is only partial; in such cases, the initial reliable gene and transcript set may be
extended with more hypothetical models derived from ab initio or comparative gene finders, or from the genome mapping of cDNA and protein
sequences from other species. Pipelines have been derived that automate this multi-step process (9). More recently, programs have been developed that
combine the output of many individual gene finders (10). The underlying assumption in these ‘combiners’ is that consensus across programs increases the
likelihood of the predictions. Thus, predictions are weighted according to the particular features of the program producing them. The most general
frameworks allow the integration of a great variety of types of predictions - not only gene predictions, but also predictions of individual sites and exons.
Despite all the developments in computational gene finding, the most reliable and complete gene annotations are still obtained after the initial alignments
of cDNA and proteins onto the genome sequence are inspected manually to establish the exon boundaries of genes and transcripts (11). This is the task
carried out by the HAVANA team at the Sanger Institute. The initial manual annotation can be refined even further by subsequent experimental
verification of those transcript models lacking sufficiently strong evidence, as in the GENCODE project (12). Examples of gene-prediction programs (with
references and URLs) corresponding to each strategy outlined here are provided in Additional data file 1.
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Figure 1.10: Overview of the different gene-finding strategies. Figure was adapted
from Harrow et al. 2009, figure 1.

The most reliable gene-finding systems are based on experimental evidence where

available complementary DNA (cDNA) (Furuno et al., 2003; Imanishi et al., 2004),

expressed sequence tags (EST) (Adams et al., 1991; Parkinson and Blaxter, 2009)

and protein sequences are aligned to the genomic sequence by algorithms that can

account for splicing, such as GeneWise (Birney and Durbin, 1997; Birney et al.,

2004) or Exonerate (Slater and Birney, 2005). However, this approach requires

extensive mRNA or protein sequence coverage and since only a fraction of genes are

transcribed at any given time for any given cell, complete coverage is hard to achieve.

Moreover, the quality of these data is often low, for example the intrinsically short

EST sequences contain up to 5% sequencing errors or include contaminant sequences

and “full-length” cDNAs can be truncated, which together with SNPs can result in

ambiguous or incorrect alignments (Nagaraj et al., 2007).

An additional strategy is the comparative genomics approach. It is known that
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functional elements undergo mutation at a slower rate and hence regions that are

found to be conserved between related genomes such as human and mouse can

indicate functional genes (Alexandersson et al., 2003; Korf et al., 2001; Parra et al.,

2003). However, many non-coding functional elements are also conserved (Claverie,

2005) and species specific genes can be missed (Knowles and McLysaght, 2009),

limiting the approach when used in isolation.

Ab initio gene predictors detect protein coding signals from DNA sequence alone.

These signals are either specific sequences that indicate the presence of a nearby

gene (e.g. regulatory regions such as promoters), or statistical properties of the

protein-coding sequence itself (e.g. GC content). Genscan (Burge and Karlin, 1997),

GeneID (Parra et al., 2000) and Augustus (Stanke and Waack, 2003) are popular ab

initio gene-finders. Inferring annotation from genomic sequence alone is an extremely

challenging task, resulting in low sensitivity and specificity and hence is not used

directly for annotation but rather for the generation of candidate transcripts. Some

of these predictors optionally allow the incorporation of additional extrinsic evidence

such as cDNA, EST, protein or sequence conservation data to improve prediction

accuracy.

1.2.5 Ensembl and Vega

With the availability of the human genome draft sequence in 2001 (Lander et al.,

2001; Venter et al., 2001), Ensembl was developed with the aim of providing a

robust and high quality automated annotation system yielding reliable information

(Hubbard et al., 2002). Ensembl leverages experimental evidence (see previous

section), whereby species specific cDNAs and protein data are aligned onto the

genome to derive annotation. However, ESTs are not considered in the Ensembl

gene build process due to their variable quality and the implied ambiguities. The

automatic Ensembl annotation system is described in detail by Curwen et al. (2004).

Ensembl now expanded to more than 41 vertebrates (Hubbard et al., 2009) as well
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as to plants, fungi, parasites and bacteria (Kersey et al., 2009).

Moreover, Ensembl offers a stable and rich resource for researchers. It provides a

web application that enables researchers to explore the genome of interest with a

web browser (figure 1.11), optionally allowing to integrate external annotation data.

Lastly, it provides a robust and extensive Perl application programming interface

that enables more advanced analysis of the underlying data.

When the first draft of the human genome sequence was published, the number

of protein-coding genes was estimated to be around 30,000 to 40,000 (Lander et al.,

2001; Venter et al., 2001). Over the years the number of predicted protein coding

genes decreased (International Human Genome Sequencing Consortium, 2004) and

even today the exact number remains uncertain and is estimated to be between 20,000

and 25,000 (Clamp et al., 2007), with Ensembl release 56 (November 2009) predicting

23,621 protein coding genes. The ENCyclopedia Of DNA Elements (ENCODE)

community experiment aims at identifying all functional elements in the human

genome with high-throughput methods (The ENCODE Project Consortium, 2004),

with the pilot study being completed in 2007, where 1% of the human genome was

investigated (Birney et al., 2007).

The GENCODE project produced a high quality “reference” annotation of protein

coding genes for these regions through a combination of computational, experimental

and manual annotation efforts (Harrow et al., 2006). Based on a reference annotation

set produced by GENCODE, the ENCODE Genome Annotation Assessment Project

(EGASP) evaluated the accuracy of automatic gene prediction methods, including

Ensembl (Guigo et al., 2006). The results confirmed the high quality GENCODE

annotation, but also illustrated that automated annotation cannot produce the same

level of accuracy: in 30% of the cases, the best predicted transcript per gene did not

reproduce the GENCODE reference annotation and accuracy dropped significantly

when alternative isoforms were to be considered by Ensembl.

This illustrates that manual analysis still plays a significant role for high quality
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1.3 Proteogenomics

annotation. The HAVANA group at the Wellcome Trust Sanger Institute manually

annotates sequences on a clone by clone basis, using a combination of extrinsic

evidence, most notably cDNAs/ESTs and protein sequence alignments combined

with ab initio gene predictions (Genscan, Augustus) and comparative analysis.

Thereby the team manually annotates genes by supporting evidence only. The

Vertebrate Genome Annotation (Vega) database is a publicly accessible repository

for these manually annotated genome sequences (Ashurst et al., 2005; Wilming et al.,

2008). Moreover, full length HAVANA transcripts are also merged into Ensembl

(Hubbard et al., 2009).

Future work will continue to improve genome annotation quality. For example,

experimental validation will continue as part of the GENCODE scale-up project

(http://www.sanger.ac.uk/encode/), which builds on the success of the GENCODE

pilot project (Harrow et al., 2006), but is limited to the human genome. The CCDS

(Consensus Coding Sequence, Pruitt et al. 2009) project defines a stable set of protein

coding gene structures for human and mouse by identifying agreeing annotation

between Ensembl/Vega, RefSeq (Pruitt et al., 2006) and UCSC (Kuhn et al., 2009).

Lastly, as technology evolves, new and revolutionary methods will be identified that

can further aid the genome annotation efforts, such as the recent introduction of

next-generation sequencing methods (Fullwood et al., 2009; Wang et al., 2009).

1.3 Proteogenomics

The automatic Ensembl pipeline and the HAVANA manual curation pipeline incor-

porate protein data from the UniProtKB database (Bairoch and Apweiler, 1997;

Wu et al., 2006), where more than 99% of the protein sequences are derived from

genomic translations and cDNA sequences, but only 13% are supported by protein

level evidence such as mass spectrometry identification (UniProt release notes 15.11,

http://www.uniprot.org/news/2009/11/24/release). Proteins that are detected by
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1.3 Proteogenomics

mass spectrometry provide direct experimental evidence for gene translation, which

cDNA data cannot offer. Therefore high-throughput tandem mass spectrometry

can aid genome annotation efforts on a genome scale, by validating and refining

annotated coding sequences and detection of novel ORF. Efforts to combine genome

annotation with protein mass spectrometry led to the establishment of a new field,

proteogenomics, a term coined by Jaffe et al. (2004).

Yates et al. (1995) demonstrated the concept of searching MS/MS data directly

against a six-frame translation of the genome, but it was Kuster et al. (2001) and

Choudhary et al. (2001a,b) that applied this approach to eukaryotic genomes with

the purpose of validating and refining gene annotation as well as the identification of

novel genes. In these studies a six-frame translation was used as a search database,

however in higher eukaryotes this is problematic: only 1-2% of the human genome

encodes proteins (Birney et al., 2007; Claverie, 2005), therefore most of the six-frame

translation is essentially random sequence. The inflated search space increases the

likelihood of false positive identifications and therefore sensitivity decreases at a

constant FDR. In addition, six-frame translation does not account for alternative

splicing, which can affect the majority of genes (Wang et al., 2008), and 20-28% of

tryptic peptides, depending on the number of allowed missed cleavages, span a splice

site.

The Peptide Atlas project (Desiere et al., 2005, 2006), the first large-scale pro-

teogenomics pipeline and MS/MS peak lists and raw data repository, employs the

standard International Protein Index (IPI) database (Kersey et al., 2004) as an

alternative approach to six-frame translation. IPI provides a minimally redundant

yet maximally complete sets of protein sequences from Ensembl, Vega, RefSeq

and UniProtKB. Later versions of Peptide Atlas complement the IPI database

with protein isoforms from Ensembl. Peptide Atlas comprises an analysis pipeline

to processes MS data with Sequest and PeptideProphet and provides access to

these peptide identifications, which are persisted in a comprehensive relational
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1.3 Proteogenomics

database. As an additional feature, Peptide Atlas maps peptide identifications

to the genome using the sequence alignment tool BLAST (Altschul et al., 1990).

These mappings are made available with a distributed annotation server (DAS)

(Dowell et al., 2001), allowing peptide identification results to be integrated into

various genome browsers, such as Ensembl. The currently available DAS source

(http://www.peptideatlas.org/setup_genome_browser.php) does not provide meta-

information of the uniqueness of the peptide within the genome, limiting the direct

use for annotation, since the peptide could match multiple different genomic loci.

The system is not available for download, providing little flexibility for required

changes or extensions, such as support of Mascot and Mascot Percolator or different

search databases.

The Genome Annotating Proteomic Pipeline (GAPP), developed by Shadforth

et al. (2006), is an alternative proteogenomic pipeline that unlike PeptideAtlas

relies on Ensembl translations for peptide identification, guaranteeing a perfect

genomic match of every identified peptide. Another significant difference compared

to Peptide Atlas is the peptide scoring scheme: GAPP accepts Mascot, Sequest

and X!Tandem peptide identification results, which are subsequently post-processed

with the advanced average peptide score (Shadforth et al., 2005), where peptides

are given extra credibility when they share a protein that was obtained from within

the same experiment (Chepanoske et al., 2005). However, this approach does not

provide a significance measure for an individual peptide match, which is required

when peptide identifications are used for genome annotation. Moreover, the inherent

peptide-protein apportioning further increases scoring complexity (Nesvizhskii and

Aebersold, 2004; Nesvizhskii et al., 2003), in particular in respect to target/decoy

FDR estimation. The target/decoy approach is extensively tested for peptide level

FDR estimation, but when protein level information is incorporated, it requires

the decoy database to resemble the target database in terms of peptide-protein

composition in order to provide a valid null model. Otherwise the number of protein
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1.3 Proteogenomics

identifications in the decoy database may deviate from the actual number of incorrect

protein identifications.

Although Peptide Atlas and GAPP are the only available high-throughput pro-

teogenomic systems, the following studies are representative of alternative analytical

strategies that are employed in this field of research. Tanner et al. (2007) developed

an exon splice graph database that is build by combining all pairs of predicted

exons with subsequent cDNA and EST filtering data to limit the search space. This

method is implemented as an extension of the Inspect peptide identification algo-

rithm (Tanner et al., 2005), a peptide sequence tag based approach (Mann and Wilm,

1994). The associated proteogenomics study of Tanner et al. (2005) remains the most

comprehensive proteogenomics study to date. They searched a corpus of 18.5 million

tandem MS spectra (human), enabling the validation of 39,000 exons, 11,000 splice

sites (introns) and confirmed 40 alternative splice events. Tress et al. (2008) focussed

specifically on the analysis of alternative splicing and identified multiple alternative

gene products for over a hundred Drosophila genes. Castellana et al. (2008) has

combined the splice graph approach with a six-frame translation and the currently

annotated proteome of Arabidopsis thaliana and found the majority of peptides to

map to existing annotation, although 13% novel peptides were identified.

Further improvements can be expected in the field of proteogenomics when

experimental and computational methods integrate. For example, Sevinsky et al.

(2008) leveraged peptide isoelectric focusing and accurate peptide mass to greatly

reduce the peptide search space, enabling highly sensitive peptide identification even

on a large six-frame translation of human. Brunner et al. (2007) has combined sample

diversity, multidimensional fractionation and analysis-driven feedback loops to guide

data collection, resulting in unprecedented gene coverage in Drosophila melanogaster.

Proteogenomics studies can be focussed on particular problems, as demonstrated

by Schandorff et al. (2007) and Bunger et al. (2007) who validated non-synonymous

SNPs, Wright et al. (2009) who used proteogenomics on newly sequenced genomes as
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1.4 Thesis outline

well as by (Gupta et al., 2008) who introduced comparative proteogenomic studies.

Although proteogenomics is still a relatively novel field of research, the growing

interest from both sides, the proteomics and genomics community is apparent. This

is facilitated by the readily available proteomics data that provides inherently strong

experimental evidence of translated gene products, something that cannot be achieved

with transcriptional data.

1.4 Thesis outline

The objectives of my work are to build on and improve the methods introduced in

section 1.3 to enable reliable high-throughput proteogenomic data analysis.

In the first results chapter, I evaluate the peptide identification software “Mascot”

that is routinely used at the Wellcome Trust Sanger Institute and elsewhere. Since

peptide-spectrum matching is a difficult problem, wrong peptide identifications

are expected. To address this Mascot provides a scoring scheme with probability

thresholds. I have evaluated these for low and high mass accuracy data and showed

that they are not sufficiently accurate. I developed an alternative scoring scheme

that provides more sensitive peptide identification specifically for high accuracy data,

while allowing the user to fix the false discovery rate.

I utilise the machine learning algorithm “Percolator” in the following chapter

to further extend my Mascot scoring scheme with a large set of orthogonal scoring

features that contribute to the discrimination performance between correct and

incorrect peptide-spectrum matches. I demonstrate that this method provides very

good sensitivity, while producing reliable and robust significance measures that were

validated with protein standard datasets. Sound scoring statistics avoid propagation

of wrong peptide identifications into genome annotation pipelines.

My genome annotation pipeline, introduced in chapter 4, closes the gap between

high throughput peptide identification and large scale genome annotation analysis. At
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1.4 Thesis outline

the core of this pipeline is a comprehensive database, enabling the efficient mapping

of known and predicted peptides to their genomic loci, each of which is associated

with supplemental annotation information such as gene and transcript identifiers.

Software scripts allow the creation of automated genome annotation analysis reports.

In the last results chapter, the pipeline is tested with a large mouse MS dataset. I

show the value and the level of coverage that can be achieved for validating genes and

gene structures, while also highlighting the limitations of this technique. Moreover, I

show where peptide identifications facilitated the correction of existing annotation,

such as re-defining the translated regions or splice boundaries. Lastly, I propose a set

of novel genes that are identified by the MS analysis pipeline with high confidence,

but currently lack transcription or conservational evidence.
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