
Chapter 2

Assessment of Mascot and

X!Tandem and development of the

Adjusted Mascot Threshold

2.1 Introduction

In the general introduction I have discussed the concept of sequence database

searching, that is commonly used to assign sequence information to MS/MS spectra

(section 1.1.1). This chapter focusses on the scoring schemes of database search

algorithms, which are required to provide sound peptide assignment significance

measures in order to minimising incorrect and maximising correct identification.

Many different techniques have been applied in the past, from manual heuristic

rules to machine learning algorithms that discriminate between correct and incorrect

identifications (Anderson et al., 2003; Jones et al., 2009; Resing et al., 2004; Ulintz

et al., 2006). The most popular database search engines to date, including Mascot

(Perkins et al., 1999) and X!Tandem (Craig and Beavis, 2004), provide theoretically

or empirically derived statistical thresholds to help assess the significance of peptide

identifications.
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Figure 2.1: Exemplary survival functions from X!Tandem for two spectrum queries
A and B. Although the number of peptide candidates for both queries is similar,
there are apparent differences in the actual peptide score distributions. The survival
functions were extrapolated for a score of 40 that corresponds to a probability of
approximately 3 × 10−6 and 2 × 10−10 for query A and B respectively. Given the
number of peptides scored were 1 × 105, the expectation value of the former would
be 0.3 while the expectation value of the latter would be 2 × 10−5 (for a detailed
explanation on how the survival function and expectation values are calculated, refer
to Fenyo and Beavis, 2003). Therefore, at a significance level of 0.05 the same score
would have been considered highly significant for query B, but not for query A.
In contrast, the MIT is inferred from the number of peptide candidates only, resulting
in very similar thresholds of 44 and 42 for both queries. A hypothetical Mascot score
of 40 would not have been considered significant for either query.
On the other hand, the empirically derived MHT was 41 for query A and 18 for
query B, thus classifying the peptide hit for query B as significant which agrees with
the X!Tandem extrapolation example. It should be noted that the absolute scores
and threshold values of X!Tandem and Mascot are not directly comparable.
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2.1 Introduction

Mascot reports a probability-based Mascot Identity Threshold (MIT) for each

individual spectrum query. A Mascot score above MIT is considered to be a significant

peptide assignment. The MIT is defined as −10 × log10(20 × p× n), where p is the

probability of a random peptide match and n corresponds to the actual number of

peptide candidates. For example, if a 1 in 20 chance of obtaining a false positive is

acceptable (p = 0.05) and there are 10000, 1000, 100 and 10 peptide candidates for

a given mass window in the sequence database, the MIT would be 40, 30, 20 and

10 respectively. For a peptide match with a score that equals the MIT (p = 0.05),

the expectation value (E-value) of this hit is also 0.05, but if the score exceeds

the MIT by e.g. 10, the E-value drops to 0.005. The E-value in Mascot is defined

as p × 10(MIT−score)/10 and corresponds to the number of times one would expect

this score by chance alone (http://www.matrixscience.com/pdf/2005WKSHP4.pdf).

Therefore the MIT only reflects changes in search space, defined by the number of

peptide candidates, and would be affected by various factors such as the maximum

mass deviation (MMD) settings, the number of allowed missed cleavages, enzyme

specificity and variable modifications.

Mascot also reports an empirical Mascot Homology Threshold (MHT). A Mascot

score exceeding this threshold can be considered a significant outlier from the

distribution of all candidate peptide-spectrum match scores, but an exact definition

of the MHT was not published. Similarly, X!Tandem employs score distributions, but

extrapolates empirical E-values to assess the significance of a peptide match (Craig

and Beavis, 2004; Fenyo and Beavis, 2003). It is important to note that the E-values

derived by Mascot and X!Tandem are based on completely different assumptions

and may therefore lead to significantly different scoring results even for the same

peptide spectrum match; as described above, the Mascot E-value is based on a

theoretical statistical model, whereas the X!Tandem E-value is an empirical outlier

determination. In figure 2.1 I illustrate the similarities and differences between the

X!Tandem, MHT and MIT scoring scheme.
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2.1 Introduction

With high accuracy MMD settings the search space can decrease significantly

leading to insufficient data points of the score distributions to reliably extrapolate

E-values. To compensate for this, X!Tandem uses cyclic permutations of all peptide

candidates that are scored and used to pad the score distribution (optional). In gen-

eral, empirical scoring schemes that utilise the peptide candidate score distributions

for thresholding or E-value extrapolation are more robust to changing MS/MS data

quality such as signal to noise, mass accuracy or fragmentation quality.

It is anticipated that reducing the search space should improve the performance of

algorithms for peptide identification (Zubarev and Mann, 2007). For example, with

high mass accuracy data in the range of a few ppm, the search space can be reduced

by orders of magnitude in comparison to low accuracy data acquired typically on ion

trap instruments (Elias and Gygi, 2007).

Established database search algorithms, and in particular their scoring schemes,

were not specifically developed for high mass accuracy data. Rudnick et al. (2005)

evaluated the effects of MMD settings on Mascot performance and proposed an empir-

ical Mass Accuracy based THreshold (MATH) that provided improved sensitivity at a

user-defined false discovery rate (FDR). They applied a range of global cut-off thresh-

olds and determined the associated FDRs. A linear regression over the logarithms

of these FDRs and the cut-off values enabled an empirical threshold extrapolation

at a predefined FDR. However, the Mascot evaluation was exclusively limited to

the MIT. Savitski et al. (2005) have developed a database size independent scoring

scheme for high accuracy data. This work is based on complementary fragmentation

techniques, and cannot be applied solely on standard collision induced dissociation

data (Biemann, 1988; Roepstorff and Fohlman, 1984). Gygi and co-workers proposed

to exploit high accuracy MS data by searching at relaxed mass tolerance settings

followed by mass accuracy filtering (Beausoleil et al., 2006; Everley et al., 2006).

Combined with a moderate threshold on peptide-spectrum correlation scores, they

found this strategy to serve as a good discriminator between correct and incorrect
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Figure 2.2: Distribution of all peptide matches obtained from a 1 Da MMD target
and decoy database search of sample 1, showing the Mascot score and the mass
deviations in ppm for a small window of ±100 ppm. Most mass deviations of high
scoring peptide-spectra matches fell within the experimental mass errors that have
been reported previously, 99% fell within ±20 ppm and 90% fell within ±5 ppm.
The mass outliers between -5 and -20 ppm seem to be an experimental artefact for
this particular sample.

peptide assignments. The rationale behind this is that the chance of finding a strong

peptide match in a relaxed mass window with many peptide candidates is greater

than for a very stringent mass window with only a few peptide candidates. A correct

and strong match is likely to remain the same, regardless of the size of the search

space. On the other hand, it is more likely for a weak match arising from a poor
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spectra or from an incorrect peptide correlation to find a better alternative in a

larger search space. A subsequent mass accuracy filtering step, which limits the

matches to the experimental mass deviations, serves as useful discriminator between

correct and incorrect matches. This is further illustrated in Figure 2.2 using the data

of this study. Overall, these studies indicate that a more detailed evaluation and

optimisation of established search algorithms for high accuracy mass spectrometry is

still required.

In this chapter I have investigated the performance of Mascot and X!Tandem for

varying MMD settings common for low and high accuracy MS. I show that the MIT

is highly dependent on the search space and affects false discovery and identification

rates. I also show that the empirical scoring scheme in X!Tandem is more robust

across different mass tolerance settings. The Mascot equivalent empirical MHT

outperforms X!Tandem for ion trap data, but is not comprehensively applicable for

very stringent MMD settings. I demonstrate that searching high accuracy data at

relaxed MMD windows followed by peptide mass accuracy filtering serves as a good

discriminator between correct and incorrect assignments. I propose an alternative

empirical Adjusted Mascot Threshold (AMT1), applicable to low accuracy data and,

in combination with peptide mass accuracy filtering, also to high accuracy data.

In addition, the AMT enables the user to freely select the best trade-off between

sensitivity and specificity by defining the actual FDR.

Parts of this chapter were published in Molecular Cellular Proteomics (Brosch

et al., 2008) by the author of this thesis (Markus Brosch) and my supervisors (Tim

Hubbard, Jyoti Choudhary) as well as by Sajani Swamy, who introduced me to the

field of computational proteomics. Markus Brosch performed the work and wrote

the manuscript. Lu Yu (acknowledgements) run the mass spectrometry experiments

(specifically indicated in the relevant sections).

1Same abbreviation used for the accurate mass and time tag approach (Pasa-Tolic et al., 2004)
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2.2 Experimental Procedures

2.2.1 Sample preparation

Sample 1: A nuclear protein extract of murine embryonic stem cells (2 mg/mL) was

reduced with 1 mM dithiothreitol (Sigma) at 70 C for 10 min, followed by alkylation

with 20 mM iodoacetamide (Sigma) at room temperature for 30 min. 10 µg of

total protein was separated on a NuPAGE Novex 4-12% Bis-Tris polyacrylamide

gel (Invitrogen). The gel was stained with colloidal Coomassie Blue (Sigma). The

entire gel lane was excised into 48 bands, de-stained with 50% acetonitrile and

subsequently digested with sequencing grade trypsin (Roche) overnight. Peptides

were extracted with 5% formic acid / 50% acetonitrile twice and vacuum dried in a

SpeedVac (Thermo Fisher Scientific). Peptides were redissolved in 0.5% formic acid

and subjected to LC-MS/MS. This work was carried out as part of my two month

web-lab rotation and was guided by Mercedes Pardo (Team 17 at the Wellcome Trust

Sanger Institute).

Sample 2: A standard protein set of 48 human proteins (Sigma, Universal

Proteomics Standard Set UPS1) was reduced with Tris(2-carboxyethyl)phosphine

hydrochloride (TCEP), alkylated with iodoacetamide as above, followed by digestion

in solution with sequencing grade trypsin (Roche Applied Science) overnight. To

minimise the chance of detection of low abundance contaminants in the protein

standard sample, a very low concentration of 10 fmol (per protein) was directly

subjected to the LC-MS/MS. This work was carried out by Lu Yu (Team 17, Wellcome

Trust Sanger Institute).

2.2.2 LC-MS/MS analysis

Peptides were analysed with on-line nanoLC-MS/MS on a LTQ FT (Thermo Fisher

Scientific), a hybrid linear ion trap and a 7 Tesla Fourier transform ion cyclotron

resonance mass spectrometer, coupled with an Ultimate 3000 Nano/Capillary LC

40



2.2 Experimental Procedures

System (Dionex).

Samples were first loaded and desalted on a trap (0.3 mm id x 5 mm) at 20

µL/min with 0.1% formic acid for 5 min then separated on an analytical column (75

µm id x 15 cm) (both PepMap C18, LC Packings) over a 30 min linear gradient of

4-40% CH3CN/0.1% formic acid. The flow rate through the column was 300 nL/min.

The LTQ FT mass spectrometer was operated in standard data dependent mode

controlled by Xcalibur 1.4 software. The survey scans (m/z 400-2000) were acquired

on the FT-ICR at a resolution of 100,000 at m/z 400 and one microscan was acquired

per spectrum. The top three (top five for sample 2) most abundant multiply charged

ions with a minimal intensity at 1000 counts were subject to MS/MS in the linear

ion trap at an isolation width of 3 Th.

Precursor activation was performed with an activation time of 30 msec and the

activation Q was set at 0.25. The normalised collision energy was set at 35%. The

dynamic exclusion width was set at ±5 ppm with 2 repeats and a duration of 30

sec. To achieve high mass accuracy, the automatic gain control (AGC) target value

was regulated at 4E5 for FT and 1E4 for the ion trap, with a maximum injection

time of 1000 ms for FT, and 100 msec for ion trap respectively. The instrument was

externally calibrated using the standard calibration mixture of caffeine, MRFA and

Ultramark 1600.

All LC and MS related work was carried out by Lu Yu (Team 17, Wellcome

Trust Sanger Institute) and was used to introduce me to the basics of practical mass

spectrometry during my wet-lab rotation project.

2.2.3 Raw data processing

LTQ FT MS raw data files were processed to peak lists with BioWorks 3.2 (Thermo

Fisher Scientific). Parameters were as follows: precursor masses were set to 800-4500

Da, grouping was enabled allowing 50 intermediate scans, and a precursor mass

tolerance setting of 10 ppm in BioWorks was applied. The number of minimum scans
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per group was set to 1. For sample 2 grouping was disabled.

RAW data, peak lists (with and without mass error correction) and Mascot

results for both samples are available through ftp under the address: ftp://ftp.

sanger.ac.uk/pub/mb8/mcp2008/

2.2.4 Database search parameters

Sample 1: Mascot 2.1 (Matrix Science, London, UK) and X!Tandem 2007.07.01

(The Global Proteome Machine Organization) were used for analysing the data.

Parameters used in Mascot and X!Tandem searches were: enzyme = trypsin; vari-

able modifications = carbamidomethylation of cysteine, oxidation of methionine;

maximum missed cleavages = 1; peptide mass tolerance settings/windows were as

indicated in the individual experiments (between 2 Da and 5 ppm); product mass

tolerance = 0.5 Da. Probability p of random matches for MIT calculations in Mascot

was set to the default value of 0.05.

Specific X!Tandem parameters were: spectrum dynamic range was set to 1000,

refinement was disabled, maximum valid E-value for reported peptides was set to

100 (E-values were limited in the data analysis steps) and cyclic permutations to

compensate for small search spaces was enabled, with remaining parameters at

default.

The protein sequence database used by Mascot and X!Tandem was built from an

non-identical superset of Ensembl peptides, UniProtKB and RefSeq sequences for

Mus musculus, including common external contaminants from cRAP (a maintained

list of contaminants, laboratory proteins and protein standards provided through the

Global Proteome Machine Organization, http://www.thegpm.org/crap/index.html)

and contains 94,524 sequences and 42,765,694 residues. For false positive discovery

assessment, a separate decoy database was generated from the target database using

the Perl decoy.pl script provided by MatrixScience. This script randomises each

entry, but retains the average amino acid composition and length of the entries. 0.1%
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2.2 Experimental Procedures

of sequences were common in both target and decoy database, including K/Q and

L/I isoforms that are indistinguishable above 0.04 Da MMD.

Peak lists of sample 2 (8,190 spectra) were searched with Mascot and X!Tandem

against human IPI (June 2007, 68,322 sequences, 28,806,780 residues) including

common external contaminants from cRAP. To minimise unexpected contaminants

from the protein standard set (Klimek et al., 2007), a very low concentration of

10 fmol was used. Parameters used: enzyme = trypsin; variable modifications

= carbamidomethylation of cysteine, oxidation of methionine and deamidation of

aspargine and glutamine; maximum missed cleavages = 2; peptide mass tolerance

= 1 Da; product mass tolerance = 0.5 Da. A random and a reversed version of the

sequence database was generated and searched under the same conditions.

2.2.5 Data analysis

Mascot results (p < 1.0) were exported to pepXML using the Mascot export tool

and X!Tandem results (E-value < 100) were stored as X!Tandem XML. An in-house

Java tool was used for the data analysis. Results from Mascot and X!Tandem were

imported and filters on score thresholds and mass tolerances were applied. Only

doubly and triply charged ions and the first hit rank per spectrum were considered

for analysis.

For FDR estimation I chose to search the target and decoy database separately

to avoid affecting the MIT scoring by changing database size. The decoy database

used was a randomised version of the target database, which was found to be the

best approximation based on evaluations of sample 2 (see figure 2.3). All estimated

FDRs in this work were calculated using the same target/decoy approach, enabling

consistent comparison of results.

Estimated FDRs were calculated by counting all peptide assignments obtained

from the decoy database (proxy for false positives, FP), divided by the number of

peptide assignments that were obtained from the target database (TP+FP), given
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Figure 2.3: An experimental FDR, based on the known proteins of the set, can be
determined as follows: any peptide hit that did not match against any of the 48
standard proteins or any of the external contaminants was considered a false positive
hit. The FDR rates were determined for a range of Mascot score cutoffs (10-50).
Similarly, the estimated FDRs based on target/decoy searching were determined for
both the randomised and reversed database. This enabled a comparison of actual
FDRs with estimated FDRs, which is interesting since there is no consensus in the
proteomics community concerning the different decoy strategies (discussed in section
1.1.2.3). Nevertheless, both decoy strategies (randomized/reversed) tested in this
work show a linear relationship between the FDR determined by the protein standard
and the target/decoy estimation, validating the target/decoy approach. However,
the FDRs derived by the random database were closer to what was reported by the
protein standard, which let me to chose the random database as a decoy database
for this study. The linear regression of the random database (R2 = 0.99) indicates a
small offset of 1.5% which can be explained by unexpected contaminations in the
protein standard.
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2.3 Results and discussion

the same parameter and threshold settings. The estimated number of true positive

hits (TP) was calculated by counting the number of all peptide hits against the

target database minus all hits against the decoy database search. FDR assessment

was limited to the peptide level only, since I was interested in the quality of matching

individual spectra to peptide sequences. Furthermore it avoids comparison of protein

inference strategies (Nesvizhskii and Aebersold, 2004), which is a separate issue.

2.2.6 Correction of systematic mass error

Data from sample 1 was searched in a first pass with Mascot at 100 ppm MMD in

order to determine the mass accuracy for the experiment. Only peptide hits with a

Mascot score greater than 30 were used for the mass accuracy assessment (10634

queries) to exclude mass deviations of incorrect matches. 99% of hits had mass

deviations within a (3±20) ppm mass window (systematic mass error ± peptide

mass error), while 90% of mass deviations fell within (3±5) ppm. In order to allow

the best possible mass tolerance settings of (0±5) ppm in Mascot and X!Tandem,

the precursor masses were corrected by 3 ppm (figure 2.4a). A similar mass error

correction method was described by Zubarev and Mann (2007). The mass outliers

between -5 and -20 ppm seem to be an experimental artefact for this particular

sample. For this study I deliberately accepted a loss of identifications for 5 ppm

MMD settings in order to study the effects of stringent mass settings on Mascot and

X!Tandem. Mass error correction was applied in the same way to sample 2, where

the peptide masses were corrected by 5 ppm (figure 2.4b).

2.3 Results and discussion

If not stated otherwise, all subsequent results are based on sample 1, which is a large

complex dataset and representative of typical proteomics experiments.
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(b) Sample 2

Figure 2.4: Mass error determination and correction of systematic mass errors.
Left: the original mass deviations of all highly significant peptide matches. Centre:
Systematic mass error correction that maximises the peptide assignments within a 5
ppm mass window. Right: After correction of the systematic mass error.
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Figure 2.5: (a) Cumulative MIT distributions for different peptide mass tolerance
settings. Only MITs from queries with a peptide assignment across all searches were
used to enable comparison. With more stringent MMD settings, the MIT tends to
decrease, accommodating for the smaller search space. Vice versa it increases for
more relaxed MMD windows. (b) Cumulative MHT distributions over the range
of MMD settings. The MHT is not reported for every query. All MHTs exceeding
the MIT are omitted by Mascot and reported as 0 in the HTML and XML result
files (personal communication, John Cottrell, Matrix Science). The minimum MHT
reported by Mascot is 13 and the maximum MHT is limited by the corresponding
MIT.

2.3.1 Performance of the Mascot Identity Threshold

Mass error corrected spectra were submitted to Mascot and searched at 2 Da, 1 Da,

100 ppm, 50 ppm, 20 ppm and 5 ppm MMD settings, while all other parameters

were fixed.

Spectra that were assigned across all searches (23,080 out of 38,058 queries) were

used to draw the MIT distribution for each MMD setting (Figure 2.5a). From this

analysis the median MIT values for relaxed MMD settings were 42 at 2 Da MMD and

39 at 1 Da MMD with an inter-quartile range of 1. Under more stringent settings (5

ppm) the MIT median decreased to 24 while the inter-quartile range increased to 2.

These results suggest that the MIT adapts with changing search space and performs

more like a global cut-off based on the narrow variation in thresholds.

To evaluate the effects of MIT adaptions on the peptide identifications performance

at different MMD settings, the rates of incorrect and correct peptide-spectrum
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Figure 2.6: Comparative evaluation of Mascot and X!Tandem performance. Mascot
and X!Tandem searches were performed against a target and decoy database at
different MMD settings. The total number of identifications is reported, the estimated
number of true identifications is indicated in grey, while the estimated number of
incorrect assignments is highlighted in red.

matches were determined by target/decoy FDR estimations, under identical search

and threshold parameters for all spectra (Figure 2.6, Mascot). Using the MIT as

a score cut-off, 10,909 and 6,661 estimated TP peptide identifications were made

at 2 Da and 5 ppm MMD settings respectively. Relative to the 5 ppm search, this

suggests 4,248 (39%) false negative peptide assignments for the 2 Da search. For the

same MMD settings, the FDR increased from 0.9% to 4.6% respectively, failing to

maintain the specified (5%) rate of random (incorrect) assignments.

The MIT is based on a probabilistic model that attempts to maintain a constant

rate of random (false) identifications and hence is dependent on search space. However,

I found a correlation between FDRs and MMD settings, indicating that the MIT

does not adhere to the predefined FDR. This trend is also mirrored in the number

of correct identifications. At relaxed mass tolerances (large search space) used for

ion trap data, the MIT tends to become very conservative resulting in excellent

specificity but hindering sensitivity. With more stringent mass tolerances (smaller

search space) sensitivity increases at the cost of specificity. The results reported

48



2.3 Results and discussion

here represent a snapshot of many possible combinations of search parameters that

directly affect the search space, for example: sequence database size, allowed variable

modifications, allowed missed cleavages and enzyme specificity. This highlights the

necessity to individually assess the FDR via a target/decoy database search.

2.3.2 Performance of the X!Tandem scoring scheme

Spectra were searched in X!Tandem using MMD settings as described in the previous

section. FDRs were calculated on the basis of target and decoy database searches

using identical search parameters.

Using an E-value cut-off value of 0.05, which is in-line with that used for the

MIT evaluation discussed above, only moderate changes (9%) in sensitivity over all

MMD settings were detected, varying between 9,982 TPs at 2 Da and up to 10,927

TP at 20 ppm (Figure 2.6, X!Tandem). A constant FDR for varying MMD settings

was not delivered by X!Tandem. The FDRs increased from 4.3% to 5.9% between

the 2 Da and 100 ppm MMD, and an inverse trend was observed below 100 ppm,

with a minimum of 2.6% FDR at 5 ppm MMD. FDRs show no clear correlation with

mass tolerance settings, suggesting no direct dependency. The E-Value distributions

of these searches were very similar over the whole range, further supporting the

robustness of the X!Tandem scoring (figure 2.7).

Overall, X!Tandem appears to maintain sensitive peptide identification at varying

MMD settings. The FDRs were close to the defined E-Values, but were not constant

over changing mass tolerance settings. However, there appears to be no direct

correlation between the FDRs and search space. These results indicate that the

empirical X!Tandem scoring, based on peptide-spectra match score distributions, is

more robust over the search space dependent probabilistic scoring model of the MIT.
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Figure 2.7: Spectra were searched with X!Tandem at 2 Da, 1 Da, 100 ppm, 50
ppm, 20 ppm and 5 ppm MMD settings, while all other parameters were fixed.
For each search the E-value distribution was drawn, indicating that the X!Tandem
scoring is very robust over changes in search space. The E-values 0.01 and 0.05 are
highlighted. The plot is in concordance with the ROC curve presented in the paper.
Personal communication with Dr David Fenyo (The Rockefeller University) explained
the robustness of the E-value distributions: Each E-value depends on the survival
function and on the number of sequences scored (Fenyo and Beavis (2003), equation
2). For X!Tandem in its current format, the term ”number of sequences scored” refers
to the whole sequence database, regardless of the peptide mass tolerance setting and
hence all variations seen in the E-values are the result of the slight differences in
survival functions only.
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2.3.3 Performance of the Mascot Homology Threshold

Similarly to X!Tandem, the empirical MHT also utilises peptide-spectra match score

distributions. Using the results from the above Mascot searches, I plotted MHT

distributions at different MMD settings (Figure 2.5b). Only spectra that were

assigned across all searches (23,080 out of 38,058 queries) were used for comparison.

As stated earlier, the MHT is not always reported. A MHT value was reported

for about 95% of the considered queries at relaxed MMD settings of 1 or 2 Da. For

stringent MMD settings (5 ppm), MHTs were only reported for less than 60% of

queries, limiting its applicability. The MHT median for a 1 Da MMD setting was 24,

compared with a MIT median of 39 for the same setting, while the inter-quartile

ranges were 9 and 1, respectively. The wide MHT variation observed would be

reflective of a query specific thresholding.

Using the MHT as a cut-off score for a 1 Da MMD search, 11,315 TPs were

identified at the given FDR of 3.1%. This corresponds to 51% more TP identifications

than using the MIT at the given 1.5% FDR and 12% more TP identifications than

X!Tandem at the given FDR of 4.7%.

Overall, I observe the MHT to be significantly more sensitive than the MIT

and X!Tandem at the given FDRs. However, the FDR is pre-imposed and does not

allow the user to select a fixed rate. Furthermore, Mascot omits any MHT which

exceeds the MIT to prevent conservative thresholds that arise, for example from

score distributions with insufficient data points. This effect is further compounded

since the MIT values decrease for a smaller search space. Sufficient search space

is required for the MHT to be comprehensively applicable, for example a larger or

smaller database would need a more or less restrictive MMD setting to compensate

for this effect.
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2.3.4 Peptide mass accuracy filtering

An alternative approach for using high mass accuracy for peptide identification is to

search under relaxed mass tolerance settings and subsequently apply mass accuracy

filters. To evaluate this approach, data was searched with Mascot at a 1 Da MMD

setting against the target and decoy databases, where approximately 95% of queries

obtained a MHT.

As shown in figure 2.2, peptide-spectrum matches with high scores mostly lie

within the experimental mass errors discussed previously, while low scoring matches

were distributed evenly across the whole mass window. Mass accuracy filtering

of the 1 Da search using 50, 20 and 5 ppm cut-offs, without imposing any other

constraints such as MIT or MHT, limits the FDRs to 65%, 35% and 12% respectively.

This clearly indicates that mass accuracy based filtering alone can reduce incorrect

sequence assignments. However, the effectiveness of this discriminator is confined by

experimentally derived mass error deviations. Significantly, 13,273 TP were identified

with a 5 ppm mass filter, more than obtained by any method tested here, showing

this to be a very sensitive approach for peptide identification with high accuracy

data.

The 12% FDR observed at 5 ppm mass accuracy filtering suggests that even

higher mass accuracy would be required for lower FDRs. An extrapolation from a

regression over 10 data points ranging from 5 to 50 ppm (r2 = 0.99) suggests a 5%

FDR for 1.5 ppm, however this prediction would need to be verified experimentally.

It should be noted that the use of ultra high mass accuracies cannot further improve

FDR once mass accuracies resolve elemental compositions.

If mass accuracies cannot be achieved at this stringent level, an alternative would

be to introduce a moderate thresholding on the peptide-spectrum match scores. I

therefore tested mass accuracy filtering in combination with the MHT score cut-off.

For this, data was searched at 1 Da MMD, then filtered at 5 ppm to exclude all

peptide assignments with a larger mass deviation, and subsequently constrained by
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the MHT. In instances where the MHT was not reported, the MIT was used. This

two-step filtering identified 10,338 TP peptide assignments and reduced the FDR to

only 0.2%, which is a 60-fold improvement over the mass accuracy filtering alone,

although the TPs were reduced significantly (22%). In comparison with the Mascot

search using 5 ppm MMD setting with the MIT score cut-off, where a FDR of 4.8%

and 10,909 TP was previously reported, the two-step filtering improved the FDR by

23-fold, while the TPs were reduced by only 6%.

These results suggest that mass accuracy filtering on its own might be a valuable

and very sensitive approach, however sub-ppm mass errors would be needed for

highly specific identification. Alternatively, a combination with a threshold such

as the MHT serves as a very strong discriminator between correct and incorrect

peptide assignments. In comparison with a direct high accuracy Mascot search, the

two-step filtering strategy leads to highly specific identifications without significantly

compromising sensitivity. A less restrictive and adjustable thresholding would

increase sensitivity for peptide identification from high accuracy data.

2.3.5 The Adjusted Mascot Threshold (AMT)

Applying either the MIT, MHT or the two-step filtering provides pre-imposed FDRs

that are not directly adjustable by the user. However, it is often desirable to be able

to select and fix the FDR.

To achieve this I have implemented the Adjusted Mascot Threshold (AMT). This

is a similar strategy to the MATH threshold introduced by Rudnick et al. (2005),

which uses a global threshold that defines a cut-off value for all queries. However,

I favour the use of individual query specific thresholds based on the MHT, since I

have found it to be very sensitive in my above evaluations. The AMT is defined as

the sum of the query specific MHT and a global offset value. FDRs are determined

for a range of offset values that are used to calculate a linear regression in order to

approximate an offset value for a user defined FDR (Figure 2.8).
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Figure 2.8: Regression for extrapolating the AMT thresholds. Data was searched at
a 1 Da MMD setting against the target and decoy database. A range of offset values
was applied that were added to the MHT and used as cut-off thresholds. For each
new threshold the associated FDR was determined. A linear regression between the
logarithm of the FDR and the offset values was calculated (r2=0.99). The method
was also applied to the mass accuracy filtered dataset (5 ppm). A new Adjusted
Mascot Threshold can be extrapolated based on a user defined FDR for each dataset.
The AMT adapts for the preceding mass accuracy filtering. The offset values for a
FDR value of 1% and 5% are indicated as dashed lines.
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For the 1 Da search, described in the previous section, the regression was calculated

for an offset range of -12 to +10, indicating a strong linear correlation between the

logarithm of FDRs and the offset values with a correlation coefficient of r2 = 0.99.

For the 5 ppm mass filtered dataset, a second regression was calculated (r2 = 0.99).

Offset values of 4.7 and -1.3 were reported for a target FDR of 1% and 5% using the

1 Da search data and for the 5 ppm mass accuracy filtered dataset these values were

-4.5 and -10.2 respectively. The slope of both regressions was found to be very similar,

but the difference between the offsets was approximately -9, which compensates for

the inherent specificity of the mass accuracy filtered dataset by moderating these

offset values.

Our proposed AMT is an adjustable and query specific cut-off value. It is

calculated based on the MHT and a global offset value, the latter is derived from

FDR estimates through target/decoy database searching and thus is no longer

dependent on search parameters affecting search space. AMT can be extrapolated

for either low or high accuracy (using mass filtered data), and combines the benefits

of a highly sensitive MHT with a user defined FDR.

2.3.6 Comparison of the AMT with MIT, MHT, MATH

and X!Tandem

I then tested the performance of the AMT. Search results obtained by application

of AMT were compared to those from MIT, MHT, X!Tandem and MATH using a

receiver operator characteristic (ROC) representing the number of true identifications

at various FDRs. ROC curves (Figure 2.9) were calculated using varying thresholds

of MATH (global cut-off value), X!Tandem (E-values) and AMT (offset values relative

to MHT). Since the MIT and MHT are not variable, they define a single point in

the diagram.

For low accuracy MMD settings (Figure 2.9a) applying the MIT identified 7,494
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Figure 2.9: MIT, MHT, MATH, X!Tandem and AMT comparison for low and high
accuracy mass tolerance settings. A 1 Da search (a), a 5 ppm search (b, dashed
lines) and a 1 Da search with subsequent peptide mass accuracy filtering at 5 ppm
(b, solid lines) were performed. The estimated number of TPs was determined as a
function of the FDRs, represented in the receiver operator curve, enabling the user
to choose where the best trade-off between sensitivity (TPs) and specificity (FDR).

TP with an inherent 1.5% FDR. MIT variation for these mass tolerance settings

effectively acts as a global cut-off, hence MATH also identified a similar number

at the same FDR. MATH however allows the user to freely select the target FDR,

and at a 5% FDR it identified about 20% more TP peptides than at 1.5% FDR.

X!Tandem empirical scoring outperformed both MIT (13% more TP at the same

FDR of 1.5%) and MATH (between 10-15% more TP over the whole range of FDRs).

The most striking observation is the MHT performance, identifying 11,315 TPs at

the inherent FDR of 3.1%, improving correct identifications by 18% and 35% over

X!Tandem and MATH at the same FDR. The AMT extends application of the MHT

over the whole range of FDRs, improving the TP assignments by 18%, 39% and

42% over X!Tandem, MIT and MATH at 1.5% FDR, and by 16% and 30% over
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X!Tandem and MATH at 5% FDR.

For the analysis of high accuracy data I have evaluated two strategies (I) searching

high accuracy data at stringent mass tolerance settings (5 ppm) followed by peptide

score thresholding (Figure 2.9b, dashed lines), and (II) searching high accuracy data

at a relaxed mass window (1 Da) with subsequent peptide mass accuracy filtering (5

ppm) followed by peptide score thresholding (Figure 2.9b, solid lines).

(I) Using direct high mass accuracy searching at 5 ppm MMD setting, the number

of expected true peptide identifications was similar, approximately 11,000, for MIT,

X!Tandem and MATH at around 4.5% FDR. However, X!Tandem performed better

for lower FDRs, e.g. at 1% X!Tandem identified about 1,000 more TPs than MATH.

MHT was not assessed at these mass tolerance settings since it was absent for 40%

of queries.

(II) The alternative mass filtering approach returned very conservative FDRs

below 0.2% and identified 6,798 and 10,338 TP hits for the MIT and MHT respectively.

Mass filtered X!Tandem results identified approximately 25% more peptides than

the MIT and 18% less TP hits than with the MHT, at the corresponding FDRs. By

relaxing the E-values of X!Tandem, 10,611 TP at 1% FDR and 12,100 TP at 5%

FDR were identified. Using MATH, 6,821 TP assignments were made at the 0.2%

FDR, which is again similar to MIT and significantly worse than X!Tandem or MHT.

At a 1% FDR about 18% fewer identifications were made using MATH as compared

to X!Tandem, while they performed similarly at 5% FDR. Significantly, the AMT

identified 11,893 TP assignments at 1%, outperforming both MATH and X!Tandem

by 35% and 12% at the same FDR.

Compared to the direct 5 ppm search strategy in (I), the mass accuracy filter

approach in (II) was generally more sensitive, e.g. MATH and X!Tandem with mass

filtering identified about 8-9% more TPs at 5% FDR than without mass filtering. The

improvement of performance with X!Tandem can be seen throughout the whole range

of FDRs, whereas for MATH sensitivity is only gained above a 1% FDR. By far the
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most sensitive approach at any given FDR was provided by mass accuracy filtering

combined with the AMT. Against a direct 5 ppm search using MIT, MATH and

X!Tandem, about 18-20% more TPs at a FDR of 4.6% were made, which corresponds

to approximately 1,500 more unique peptides identifications.

In summary, application of MIT or MHT always results in a fixed pre-imposed

FDR, while X!Tandem together with a target/decoy database search enables FDR

adjustment using an appropriate E-value cut-off. MATH and AMT implement this

target/decoy FDR estimation and directly deliver the defined FDRs. For low accuracy

MS, MHT performed best at a fixed FDR, whilst this performance was extended to

the whole FDR range by AMT. X!Tandem was significantly less sensitive than AMT,

and MATH together with the MIT were the least sensitive thresholds. For direct

high mass accuracy searching, MIT, MATH and X!Tandem performance was very

similar and overall sensitivity improved over the low accuracy search. Exploiting

high mass accuracy via mass filtering was the most sensitive search strategy at the

corresponding FDRs. For this approach, AMT significantly outperformed X!Tandem,

followed by MATH and MIT.

2.3.7 Validation with independent dataset

To validate the findings and the AMT performance, a standard mixture of 48 proteins

(sample 2) was analysed in the same way as sample 1. First, data were searched

against a 50 ppm peptide mass tolerance to identify any systematic mass error

(Figure 2.4b), which was corrected (-5 ppm) subsequently.

Next, data were searched at 2 Da, 1 Da, 100 ppm, 50 ppm, 20 ppm and 5 ppm

peptide mass tolerances and the FDRs were determined accordingly (figure 2.10a).

The same FDR trends as for sample 1 (figure 2.5) were observed: using the MIT

resulted in the FDR being dependent on the search parameters used, rising from

2.8% to over 10% when the mass tolerance window was narrowed from 2 Da to 5

ppm. However, X!Tandem was shown to be quite robust again, indicating little
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(a) Comparative evaluation of Mascot and X!Tandem performance and FDR robustness for sample 2.
Compare with figure 2.6.
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sample 2. Compare with figure 2.9. The vertical dashed lines correspond to commonly used 1% and
5% FDR values.

Figure 2.10: Validation of results on an independent protein standard dataset.
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dependance of the search space on the scoring scheme.

ROC curves were compiled to enable comparison (Figure 2.10b) of the AMT and

the standard Mascot thresholds as well as the X!Tandem performance. Again, the

MHT was shown to be significantly more sensitive than the MIT, but the AMT

scoring method clearly outperformed the MIT and MHT as well as X!Tandem,

validating the findings of sample 1.

2.4 Conclusion

In this chapter I have investigated how MMD settings affect peptide identification

using Mascot and X!Tandem and presented an alternative search strategy and an

Adjusted Mascot Threshold (AMT) to enable sensitive identification of high accuracy

data with Mascot.

I have demonstrated the correlation between the MIT and search space, which

is for example affected by MMD settings. I have shown that the MIT can be very

conservative for MMD settings commonly used for ion trap data, leading to very

specific identifications at the expense of sensitivity, while it tends to become more

optimistic for stringent MMD settings used for high accuracy data. The MHT was

found to be significantly more sensitive for ion trap data, but is not comprehensively

applicable to very stringent MMD settings commonly used for high accuracy data.

However, the actual FDRs for both MIT and MHT are pre-imposed and deviate from

the theoretically defined rate. Furthermore, my results indicate that X!Tandem is

more robust than the MIT and MHT when faced with MMD changes and is equally

applicable to both low and high accuracy MS data with a sensitivity that was better

than using the MIT but worse than using the MHT.

I also investigated the use of mass accuracy filtering as the sole discriminator

between correct and incorrect peptide assignments. Mass accuracy filtering served

as a highly sensitive discriminator with limited specificity and sub-ppm mass errors
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would be needed for more specific identifications. Alternatively, a two-step filtering

strategy can be employed. I first searched the data at relaxed MMD settings, followed

by applying mass accuracy filtering. The results demonstrate that combining peptide

mass accuracy filtering with the MHT serves as a very strong discriminator, efficiently

eliminating incorrect peptide assignments, although sensitivity was limited. To regain

sensitivity I propose an Adjusted Mascot Threshold (AMT) that allows the user to

freely select the best trade-off between sensitivity and specificity by having full control

over the actual FDR. The AMT can easily be applied on top of any Mascot search

where target/decoy searching is amenable. It is independent of search parameters

affecting the search space and is expected to adjust with MS/MS data quality. AMT

outperforms MIT and MHT, as well as MATH and X!Tandem for both low and high

accuracy MS data.

61




