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Abstract

Streptococcus pneumoniae is a commensal bacterium asymptomatically carried in the 

nasopharynx of healthy individuals. However, if the bacterium escapes from its 

natural habitat to other anatomical loci, it can cause a range of invasive pneumococcal 

diseases, which make it a killer of over one million children annually. Despite high 

casualties, both treatment and prevention through vaccines have become more 

difficult as the bacteria rapidly develop antibiotic resistance and vaccine escape 

serotypes. To understand how this happens, one needs to look at evolution during 

carriage, a phase where exchange of genetic determinants for antibiotic resistance, 

virulence, and vaccine escape occurs via the process called “recombination”. 

This thesis summarises findings from a collection of 3,085 genome sequences of 

pneumococcal isolates from a rural community in Thailand called “Maela”. This 

highly dense sampling gave an opportunity to investigate patterns of recombination 

and gene flows within the population, as well as changes in evolutionary patterns 

according to changes in selection pressure, especially the use of antibiotics over time. 

The non-encapsulated isolates, which are less invasive and unaffected by currently 

licensed vaccines, have a higher rate of both acceptance and donation of DNA via

homologous recombination than encapsulated pneumococci. Highly exchanged genes 

include those associated with antibiotic resistance, implying that the non-encapsulates 

may act as a reservoir of resistance that can be passed to pathogenic strains and thus 

enhance the threat posed by antibiotic resistance. 

However, the view from the Maela community may not be directly applicable to the 

population elsewhere, as different population structures may result in a different 

capacity for adaption. I therefore compared pneumococcal lineages detected in Maela 

with other contemporaneous carriage collections from the USA, UK, Gambia and 

Kenya based on multilocus sequence typing. The results showed that while the USA 

and UK share a lot of common lineages, large proportions of pneumococci detected in 

Gambia, Kenya and Thailand are unique to each location. Therefore, the propensity 

for genetic exchange may vary geographically and temporally. 

The next part of the thesis identifies genetic determinants of resistance to beta-



lactams, a group of antibiotics frequently prescribed for upper respiratory infections. 

Here I performed a genome-wide association study - a technique commonly used in 

human genetics but difficult in bacteria due to their clonal population structure. 

Nevertheless, the large sample size and highly recombinogenic nature of S.

pneumoniae allowed me to identify potential sources of resistance with improved 

resolution from “mosaic” genes described in the literature to several discrete causative 

sites, some of which are novel. The non-uniform distribution of these alleles in both 

vaccine-targeted and non-vaccine targeted lineages also highlights the limitations of 

vaccine in the control of spread of antibiotic resistance. 

Together, this snapshot of the evolution of pneumococci and their interactions during 

carriage highlights the speed at which S. pneumoniae can adapt to new challenges, 

including antibiotics, while informing limitations in current health control policy. 
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