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Summary

While there has been an opulence of data and studies surrounding the study of
the developing pancreas in mammals and other vertebrates, the focus has largely
been in mice. The paucity of research in the development of the human pancreas has
led to diminished knowledge in the area, compared to other species. Recent
discoveries provide growing evidence for discrepancies between mouse and human
pancreatic development and diseases and highlight the fact that developmental
studies of the pancreas in humans are imperative. The need to develop therapies for
diabetes, a growing and one of the leading health problems worldwide, further
compels more exploration in this area to deepen our understanding in the different

aspects of diabetes in humans and its underlying causes.

Research involving modelling human diseases in vitro enables the investigation
of the cellular and molecular mechanisms underlying these diseases as well as the
development of therapies for treating them. The availability of hPSCs brings with it the
advantage of overcoming the limitations of animal models for certain disorders such as
pancreatic agenesis, the focus of my project. The use of site-specific nucleases such as
TALENSs for such a purpose represents a paradigm shift in disease modelling, where
TALENSs are capable of directly correcting disease-causing mutations, therefore
permanently eliminating the symptoms with precise genome modifications.
Alternatively, TALENs can also be used to inactivate specific genes by inducing site-

specific mutations.

Using these tools, | found that GATAG is required for the formation of the
definitive endoderm and pancreas in humans; hPSCs harbouring homozygous GATA6
mutations fail to form the definitive endoderm, and consequently the pancreas,
whereas hPSCs harbouring heterozygous GATA6 mutations exhibited impairment in
definitive endoderm development, although it remains unclear if this is a protocol-
dependent defect. At the pancreatic stage, heterozygous GATA6 mutations
consistently compromised pancreas formation regardless of protocol used. | also

found that GATAG transcriptionally activates the development of the definitive

Vii



endoderm and pancreatic endoderm, and possibly represses the development of
mesoderm. Furthermore, | also established that GATAG6 directly interacts with key

definitive endoderm markers CXCR4 and SOX17, and pancreatic marker PDX1.

Taken together, the work herein demonstrates the successful use of hPSCs
coupled with the TALEN genome editing technology as a unique in vitro system for
disease modelling. These findings also establish two developmental windows, the DE
and pancreatic progenitor stages, where GATA6 haploinsufficiency can result in the
impairment of pancreatic development leading to pancreatic hypoplasia observed in
human GATAG6 heterozygous patients. Lastly, my work also provides the molecular

mechanism by which GATAG6 regulates pancreatic development.

Overall, this study provided new insights in the role of GATA6 during
development of the human pancreas. These results will be important in developing
new methods of differentiation for hPSCs and understanding the interconnection

between early organogenesis and late onset of diabetes.
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