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Abstract 

 

The most common lymphoma in adults, Diffuse Large B Cell Lymphoma (DLBCL) 

accounts for 30-35% of all non-Hodgkin lymphoma (NHL) cases. Even though DLBCL is 

curable in advanced stages, up to one-third of patients will not achieve a cure with their initial 

therapy. Today, there is no effective way to predict which patients will or will not be cured 

by first-line chemotherapeutic treatment. Patients who are not initially cured relapse, develop 

chemoresistance, and ultimately die of their disease. 

Current classification and prognostication schemes do not account for much of the 

genetic and molecular heterogeneity of DLBCL. Indeed, the gold standard WHO 

classification uses clinical data, morphology, phenotype, cytogenetics, and molecular 

characteristics to demarcate DLBCL subtypes. However, it does not incorporate many of the 

genetic lesions that both cause DLBCL and make it heterogeneous. As a result, the most 

common WHO subtype of DLBCL – DLBCL, not otherwise specified (DLBCL NOS)–likely 

encapsulates multiple disease subtypes for which conventional diagnostic approaches have 

not yet yielded clear methods of discrimination.  

The prognostication and treatment guidelines for DLBCL are similarly uniform, again 

not reflecting the heterogeneity inherent to DLBCL. The gold standard clinical prognostic 

tool, the Revised International Prognostic Index (R-IPI), sorts patients into three risk groups 

based on factors such as age and whether their lactate dehydrogenase level is elevated. None 

of the R-IPI factors, however, accounts for the genetic basis of DLBCL and cannot therefore 

incorporate prognostic information from genetic variability between patients within the same 

risk group. Virtually all DLBCL patients receive the same first-line therapy, R-CHOP, 

despite the probability that the genetic and biological heterogeneity will result in 

heterogeneous response to the potential treatments available. Up to one third of patients will 

not be cured by R-CHOP and their prognosis suffers significantly in the case of relapse.  

In this study, we propose a novel, purely genomic classification for DLBCL and other 

B-cell non-Hodgkin lymphoma (B-NHLs) that incorporates the genetic heterogeneity 

inherent to the disease. By analysing the genetic lesions of 1607 B-NHL patients over 15 

years and then performing a machine-learning based clustering, we identify seven distinct 

classes with characteristic genetic lesions and patterns of co-mutation. These classes aptly 

distinguish Follicular Lymphoma (FL) and Burkitt Lymphoma (BL) samples from DLBCL 

samples while simultaneously resolving the heterogeneity of DLBCL. Class 5, for example, 

shows hallmark mutations of Splenic Marginal Zone Lymphoma (NOTCH2, BCL10, SPEN), 
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suggesting these DLBCL patients represent transformed lymphomas. Such a conclusion 

could not have been drawn from histology alone and importantly, suggests these patients may 

respond differently to novel therapies compared to other DLBCL subtypes. We also present a 

genomic landscape analysis more complete and powerful than prior work since our study is 

nearly 10X larger than the largest prior B-NHL genetics study. We present mutation profiles 

at the gene level for nearly 200 genes implicated in lymphoma, identifying previously 

unreported mutations such as the aberrant splicing of a single exon in SGK1. Future work 

adding copy number, gene expression, and translocation data will enhance the robustness and 

resolution of our classification scheme and landscape analysis. 
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Figure 1 Overview of Study. (a) Process Overview. Targeted Sequencing of 292 genes was 

conducted on 1607 lymphoma samples. Subsequently, variants were called, filtered into 

somatic mutations, and annotated as drivers or passengers. Finally, three analyses were 

conducted investigating the genomic landscape of B-NHLs, examining the mutation profiles 

of crucial lymphoma genes, and creating the first ever purely genetic classification of B-

NHLs and DLBCL in particular. (b) Patient Cohort Overview.  

 

Figure 2 B-Cell Lymphomagenesis originates in the Germinal Centres. (a) B-NHLs 

correspond to dysregulation of different stages of B-Cell development. Each carry hallmark 

mutations disrupting a specific transition. (b) Transcriptional activity drives normal B cell 

development with gene expression driving transitions between stages. (c) Transcriptional 

networks work jointly to create major transitions such as GC initiation and GC exit, with 

BCL6 as a master regulator. Adapted from Basso et al. 2015. 

 

Figure 3 The driver annotation pipeline. The driver annotation pipeline annotates drivers 

from sequencing variants in three stages. 

 

Figure 4 B-NHLs exhibit 3-4 driver mutations/patient. Average number of somatic driver 

mutation per patient across different diagnostic subtypes in this study. (a) Boxplot. Line 

represents median; hinges represents first and third quartile; whiskers represent furthest data 

point from quartile within 1.5X the interquartile range. Individual points represent outliers 

beyond that range. (b) Violin plot.  

 

Figure 5 B-NHL Diagnostic subtypes comprise distinct genomic landscapes. (a) Driver 

mutations identified in all B-NHL subtypes, coloured by diagnostic subtype in which they are 

identified. (b) Driver mutations identified in all B-NHL subtypes, coloured by effect of 

mutation. (c) Driver mutations identified in DLBCL NOS, coloured by effect of mutation. (d) 

Driver mutations identified in FL, coloured by effect of mutation. (e) Driver mutations 

identified in BL, coloured by effect of mutation.  

 

Figure 6 Gene-level analysis demonstrates tumour suppressor gene mutational profiles 

and reveals recurrent disruptive mutations. Each gene plot shows driver mutations found 
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in the coding sequence, (2) protein domains from UniProtKB, and (3) bubbles. Bottom half 

of plots show bubbles sized according to the number of mutations found in COSMIC. (a) 

Tumour suppressor genes exhibit disrupting mutations spread throughout the coding 

sequence of the gene. ARID1A is shown as a representative example. (b) Highly recurrent 

missense mutations may disrupt a key residue. SOCS1 is shown as a representative example. 

(c, d) TNFRSF14 and BTG2 exhibited recurrent nonsense, frameshift, and nonstop mutations.  

 

Figure 7 Gene-level analysis demonstrates known and novel oncogene hot spots. (a) 

Oncogenes exhibit missense hot spots. XPO1 is shown as a representative example. (b) We 

additionally identified novel hotspots in known oncogenes. CARD11 is shown as a 

representative example. (c) We created the mutational profile for STAT3, a known but 

uncharacterized oncogene.  

 

Figure 8 Gene-level analysis shows the potential for genes to serve as both tumour 

suppressors and oncogenes. TP53 is shown as a representative example.  

 

Figure 9 Gene-level analysis shows patterns of aberrant somatic hypermutation. B2M is 

shown as a representative example.  

 

Figure 10 Gene-level analysis reveals disrupting mutations clustered in highly specific 

domains. (a) BCL10, (b) IRF8, (c) FAS, (d) ARID1B, (e) NOTCH1, (f) NOTCH2, (g) KLF2, 

(h) TCF3, (i) SMARCB1. 

 

Figure 11 Co-mutation and mutual exclusivity patterns generate eight distinct classes in 

FL, BL, and DLBCL. Lower triangle depicts pairwise association between lesions in genetic 

classes. The colour of each tile corresponds to the odds ratio for each pair, with brown 

representing mutual exclusivity and blue indicating co-mutation. Odds ratios are computed 

by observed co-mutation rates compared to expected co-mutation based on each lesion’s gene 

frequency. Coloured tiles represent significant relationships (p < 0.05), asterisks show 

significant family wise error rates (FWER < 0.05), boxes show false discovery rates < 0.1 

(FDR < 0.1). Upper triangle depicts absolute occurrences of co-mutation for each pair, 

coloured on a gradient.  
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Figure 12 Each class shows a distinct mutational signature profile. (a) Number of driver 

mutations across all classes, coloured by proposed class assignment for patient with that 

mutation. (b-i) Mutational signature of each class. Numbers next to class show number and 

fraction of patients assigned to that class. Each bar shows the median posterior probability of 

a given lesion with error bars corresponding to the 2.5 and 97.5 quantiles.  

 

Figure 13 Classes show distinct subtype compositions and survival outlooks. (a, b) 

Patient assignment to WHO diagnostic groups or subtypes compared to patient assignment to 

proposed classes. (c) Kaplan-Meier plot for proposed classes. 
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Nomenclature 
 
ABC-DLBCL: Activated B Cell-Like Diffuse Large B-Cell Lymphoma 

BCL, Int.: B-cell lymphoma, intermediate between DLBCL and classical HL 

BL: Burkitt Lymphoma 

B-NHL: B Cell non-Hodgkin Lymphoma 

DLBCL: Diffuse Large B Cell Lymphoma 

FL: Follicular Lymphoma 

FL-LC: Follicular lymphoma, large cell 

GC: Germinal Centre 

GCB-DLBCL: Germinal Centre B Cell-Like Diffuse Large B-Cell Lymphoma 

GZL: B-cell lymphoma, intermediate between DLBCL and classical HL 

IV-LBCL: Intravascular large B-cell lymphoma 

PB-LBCL: Plasmablastic large B-cell lymphoma 

SMZL: Splenic marginal zone lymphoma 

THR-LBCL: T-cell/histiocyte-rich large B-cell lymphoma 
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