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6. Discussion 

 

Here, we have provided the largest sequencing study on B-NHLs to date, proposing a 

novel genetics-based classification and profiling the mutational landscapes of FL, BL, and 

DLBCL with greater resolution than previously described. 

 

6.1. Genomic Landscape and Gene Level Analysis 

Our genomic landscape analysis for DLBCL NOS, FL, and BL was largely consistent 

with literature expectations but provided additional resolution due to the size and depth of our 

study. DLBCL NOS, FL, and BL all exhibited classic long tail distributions although DLBCL 

NOS in particular showed the greatest heterogeneity: the most recurrently mutated genes in 

DLBCL NOS accounted for a lower fraction of the overall mutations than those in FL and 

BL. Such a result was consistent with our later classification finding in which Class 5 

contained 85 distinguishing genes all rarely mutated, indicating high heterogeneity. Because 

of the scope of our study, we also identified a variety of novel driver mutations, some rare, 

occurring across the 292 genes in our study.  

Additionally, our landscape analysis found a small number of genes that showed a 

high mutation frequency across DLBCL NOS, FL, and BL (i.e. KMT2D, CREBBP, 

TNFRSF14, TP53, SOCS1, B2M, ARID1A, CCND3, TNFAIP3, IRF8). These mutational 

similarities initially pointed to the need for similar pathway dysregulations for B-NHLs to 

progress. By contrast, however, the only gene that was commonly mutated across all classes 

in our classification analysis was TP53. The difference in these results demonstrates that 

genetic classification can more accurately distinguish classes than histology; and importantly, 

can resolve pathway differences that demarcate patients into classes that have consistent 

pathway mutations that are largely non-overlapping.  

Our mutation analysis demonstrated that patients, regardless of B-NHL condition, 

generally have 3-4 driver mutations. This insight, combined with the later classification 

description of co-mutation within classes, shows that multiple pathways tend to be 

dysregulated within B-NHLs and DLBCL. As a result, oncogenic cooperation may be 

occurring to, for example, increase proliferation while also evading the immune system. The 

presence of multiple driver mutations increases the complexity of pathogenesis and also 

classification. Rather than single genes demarcating novel classes, combinations of genetic 

mutations distinguish patients. As a result, far more possibilities exist and heterogeneity 

similarly increases.  
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At the gene level, we found genes broadly falling into oncogenic and tumour 

suppressor mutation profiles as expected and identified the presence of expected mutational 

processes such as aberrant somatic hypermutation. More interestingly, we identified clusters 

of disrupting mutations in specific gene domains that we suspect caused gains in function and 

thus allowed oncogenic activity. The specific mechanisms and mutations had not, to our 

knowledge, been previously reported for B-NHLs. For example, we observed a high 

proportion of frameshift and missense mutations in the death domain of the FAS gene, which 

generally initiates a caspase cascade leading to apoptosis. We suspect the inactivation of the 

FAS domain improves tumour cell survival. Similarly, we found a high number of frameshift 

and nonsense mutations in the SMAD/FHA domain of IRF8 which we suspect could cause a 

gain in function that prevents apoptosis. In SGK1, we found a series of essential splice site 

mutations affecting a single exon, causing a likely gain in function and flagging that exon’s 

importance in SGK1 regulation. None of the above mechanisms, to our knowledge, had been 

previously reported in the context of DLBCL or B-NHLs.  

 

6.2. Classification 

Our classification system resolved seven distinct categories of B-NHLs, successfully 

separating FL, BL, and DLBCL while simultaneously highlighting the inherent heterogeneity 

of DLBCL. Compared to the WHO classification, we demonstrated significant heterogeneity 

and potential for further resolution within given subtypes. Indeed, patients marked as DLBCL 

NOS patients by the WHO classification were present in all seven classes identified here, 

indicating the necessity for further resolution.  

We cannot directly compare our work to the cell of origin classification due to the 

absence of gene expression data from our dataset, however, Class 2 shared genetic 

characteristics largely consistent with ABC-DLBCL. The future addition of gene expression 

data to our study will allow us to directly compare our classification with the cell of origin 

classification. Crucially, we will be able to answer whether or not cell of origin can be 

distinguished on the basis of genetic mutations alone. If so, our approach could become an 

important surrogate for gene expression profiling as a way of determining cell of origin, 

which has already shown clinical relevance with the ABC-DLBCL group responding 

differently to targeted treatments than the GCB-DLBCL group.  

Overall, DLBCL shows a high heterogeneity compared to other cancers. Unlike 

similar genetic classification schemes, such as that for AML, DLBCL presented a category 

with a larger number of rarely mutated genes (Class 6). The separation of these rarely 
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mutated genes into their own class rather than their presence within other classes points to the 

increased heterogeneity of DLBCL compared to other cancers. Indeed, the large number of 

potential driver lesions that can cause cancer within this category point to the potential for 

pathogenesis in a variety of different ways. Each likely follow distinct mechanisms and 

effective resolution of this class would require substantially higher sample sizes in order to 

create additional subcategories. Such heterogeneity reinforces the distinct clinical responses 

to treatments and the need for classification to resolve such differences.  

Our classification approach additionally demonstrated its ability to resolve patients 

who had likely transformed. The first example was the identification of Class 1 patients, a 

class with hallmark mutations for FL, that were diagnosed by our clinicians as having 

DLBCL. Since the transformation of FL into DLBCL is well documented, such a result was 

expected and consistent with the literature. More surprising, however, was the fact that Class 

5, consisting primarily of DLBCL and BCL, Int. patients demonstrated hallmark mutations of 

SMZL, likely corresponding to patients that had transformed from SMZL. Crucially, only a 

genetic classification approach of this sort – not histology alone – could identify the root 

disease from which DLBCL had transformed. Biologically, our result reinforces the 

possibility of SMZL to transform into DLBCL, which had been previously reported but 

rarely185. Clinically, it could suggest that Class 5 Patients have a distinct pathogenesis and 

thus may respond differently to novel treatments compared to other DLBCL subtypes.  

Overall for aggressive diseases such as DLBCL which often transform from indolent 

cancers, the ability to distinguish the original genetic mutations that led to cancer could 

substantially affect patient outcomes. We expect our approach, therefore, to generalize across 

other cancers, identify additional indolent diseases and their transformation pathways, and 

flag patients which may respond more effectively to distinct regimens.  

Our classification is based on causal genetic changes, and as a result, is likely to be 

durable, reproducible, and clinically relevant. We note that while treatments and clinical 

practices may change over time, improving the survival of DLBCL and B-NHL patients, the 

underlying genomic changes causing B-NHLs will remain consistent. Therefore, our 

classification represents fundamentally different pathogenesis mechanisms inherent to 

DLBCL and captures lasting biological information. With the addition of translocation, copy 

number, and gene expression data in a follow up study, this classification will additionally 

gain resolution, accuracy, reproducibility, and clinical relevance.  

 

6.3. Comparison to Recent Large Scale DLBCL Genomics Study 
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Recently, Reddy et al. published an integrative analysis of 1,001 DLBCL samples that 

complements the results of this manuscript15. Whole exome sequencing, transcriptomics, 

copy number analysis, and FISH tests were conducted . Additionally, 400 of the samples had 

paired normals. In comparison, our study conducted targeted sequencing, transcriptomics, 

copy number analysis, and FISH tests on 962 DLBCL samples without paired normals. The 

targeted sequencing has been completed, and the outcomes of the remaining analyses are 

being processed by collaborators. The complementarities between our studies enable 

synergies to refine genomic analysis and classification of DLBCL.   

First, Reddy et al.’s genomic analysis is generally consistent with this work. The genes in 

our study with the highest number of driver mutations were generally consistent with Reddy 

et al.’s list of frequently mutated genes with a few exceptions discussed in Section 4.1.2. A 

few other notable differences exist. Reddy et al. conducted whole exome sequencing rather 

than targeted sequencing of genes. Whole Exome Sequencing allows Reddy et al. to identify 

driver genes with previously unreported pattern of mutations, something not possible through 

our targeted study. Indeed, a few of the 150 genes identified as drivers are not present within 

our bait set (DUSP2, ZNF608, and BIRC6) and we thus do not report variants in these genes. 

Conversely, our targeted sequencing study also uncovered genes and specific mutations not 

present in Reddy et al.’s study. For example, we found splicing errors in SGK1 which were 

not reported by Reddy et al.’s work. Therefore, we see these studies as complementary. A 

meta-analysis involving both sets of variants would prove helpful to fully understanding the 

genomic changes underlying DLBCL.  

Second, Reddy et al. take a distinct approach to DLBCL classification. Reddy et al. 

classify patients on the basis of gene expression patterns. As a result, they can identify 

functional signatures based on gene expression such as the Monti Host Response signature. 

Conversely, our study classifies DLBCL on the basis of genetic lesions. Therefore, we can 

identify patterns at the genetic level such as our Class 5 which is suspected to contain SMZL 

patients. Ultimately, future work could seek to simultaneously incorporate both gene 

expression patterns and genetic lesions as the basis for classification. Therefore, both types of 

findings could be drawn out from the clusters. Note that this is distinct from Reddy et al.’s 

work which first generated a classification based on gene expression and subsequently 

identified the genetic alterations associated with each cluster.  

In spite of the distinct approach to classification, some commonalities were observed. 

Namely, our genetic classification identified MYD88 and CDKN2A as defining Class 2 which 

we suspect to be primarily composed of ABC-DLBCL. Both of these genes had more 
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genomic alterations in the ABC-DLBCL expression cluster of Reddy et al.’s work than in 

other clusters.  

Third, Reddy et al.’s study also conducted a functional CRISPR screen and created a 

prognostication model with implications for our study. First, the CRISPR screen only 

identified 35 of the 150 driver genes Reddy et al. had initially flagged as having functional 

relevant to DLBCL cell lines. This result reinforces the need to biologically validate the 

driver variants we have discovered. Second, Reddy et al. created a prognostication model that 

outperformed the R-IPI by using only genetic and molecular features. The prognostication 

first enumerates all combinations involving up to 4 distinct genetic and molecular features 

and affecting at least 20 patients. These 313 combinatorial features are then fed into an 

Elastic regression. We hope to make two improvements when developing a similar 

prognostication model for our dataset. First, we hope to use a more robust feature selection 

method such as bootstrapping or stepwise regression. Second, we hope to include additional 

clinical characteristics into the set of regression features. Indeed prior work for AML143 has 

shown that clinical variables often have even more predictive power than genetics143,186. A 

regression model incorporating both may provide more accurate classification.  

Finally, the union of these works could provide validation for both studies. 

Comparison of genomic variants could validate pipelines and drivers in both studies. Testing 

whether Reddy et al.’s cohort classifies into similar genetic clusters as ours could validate our 

genetic classification. Finally, testing Reddy et al.’s prognostication tool on our cohort could 

validate its generalizability. 

 

6.4. Future Work 

While the aforementioned project describes the genetic landscape and provides a genetic 

classification of various B-NHL malignancies, substantial additional potential exists.  

 

6.4.1. Incorporating Copy Number Analysis, Gene Expression, and Translocation Data 

First, the incorporation of copy number analysis, gene expression, and translocation 

information will add to both the pathogenesis insights derived from this project as well as the 

resolution of classification. Crucially, both copy number amplifications/deletions and 

translocations are well known to affect progression of B-NHLs while also providing subtype-

differentiating lesions. Current work is underway implementing a custom algorithm to extract 

copy number from this targeted, unmatched dataset. Similarly, translocation data from 

collaborators is currently being processed and will be added. Once incorporated, our study 



 112 

will be one of the two largest and most complete genetic analyses of B-NHL, and DLBCL in 

particular, ever conducted, thereby enabling new insights regarding causality, molecular 

progression, and differentiating feature of each disease. Moreover because specific copy 

number and translocation changes are known to predominantly present in specific subtypes 

(i.e. MYC translocation in BL), the incorporation of such data will draw sharper divisions 

between classes of our classification and potentially define entirely new classes.  

Second, the incorporation of gene expression data in particular will allow us to 

compare our classification to the cell-of-origin classification currently leading the literature. 

By providing additional differentiating information (i.e. genetic mutations, copy number 

changes, and translocations), our dataset will be able to refine the cell-of-origin categories 

currently based purely on gene expression. Importantly, our study may also be able to define 

whether ABC and GCB DLBCL are indeed distinct entities or whether information inherent 

to genetic mutations rather than gene expression provide more convincing differentiation 

among DLBCL subtypes. Finally, by adding additional genetic information to the samples 

classified via the cell-of-origin classification, our analysis will provide mechanistic insight 

into the pathogenesis of GCB-DLBCL in particular whose pathogenesis is presently 

unknown19.  

 

6.4.2. Survival Analysis for Classification 

Only a preliminary survival analysis was conducted to understand the distinct clinical 

courses of the identified classes within this study. A full survival analysis would additionally 

correct here for age, date of diagnosis, centre, treatment, and a variety of other variables. 

Such corrections are especially critical because our study incorporates samples taken over 15 

years. The introduction of CHOP and subsequently R-CHOP therefore occurred within the 

time window of our study and the substantially improved outcomes for patients receiving 

these treatments versus previous ones must be accounted for. Similarly, improvement in 

general clinical treatment must also be accounted for.  

Such a survival analysis could generate crucial clinical insights. By distinguishing 

which subclasses of DLBCL and the other B-NHL malignancies presented here both (1) 

exhibit the worst clinical course and (2) are the least likely to respond to treatment, we may 

be able to identify the subset of patients which should be moved toward more aggressive 

treatments such as stem cell transplantations and considered for experimental therapies. 

Moreover, by specifically conducting this analysis on the subset of DLBCL patients that 

respond poorly to an R-CHOP regimen vs. those that respond well to an R-CHOP regimen, 
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we will hopefully be able to delineate the causative genetic and molecular differences that 

prevent cure in 30% of DLBCL cases. If we are able to sufficiently distinguish these patients, 

additional studies could then fully characterize their distinct pathogenesis, leading to 

suggestions for new treatments and therapies that will help them. Additionally, such a 

survival analysis could be coupled with a survival analysis for the specific genetic lesions 

that are most deleterious. By identifying such lesions, both within given classes and across all 

classes, we would be able to more effectively identify the patients with the most aggressive 

clinical course and subsequently shift them onto more intensive therapies and potentially 

experimental clinical trials.  

 

6.4.3. Validation of M7-FLIPI Prognostication Tool for FL 

Our dataset could validate the M7-FLIPI prognostication tool for FL. M7-FLIPI seeks 

to risk stratify FL patients receiving first-line immunochemotherapy by considering their 

mutations in seven genes (EZH2, ARID1A, MEF2B, EP300, CREBBP, and CARD11), their 

Follicular Lymphoma International Prognostic Index (FLIPI), and their Eastern Cooperative 

Oncology Group performance status (ECOG)187,188. Our dataset contains 337 FL patients 

which were treated and 222 which were placed under a “watch and wait” regimen (Figure 

1b). All samples were diagnostic biopsies, and all of these FL patients have the relevant 

genetic, clinical, and survival data required to utilize the M7-FLIPI prognostication tool. 

Once the appropriate clinical data is processed to subset treated patients based on the 

treatments they receive, we believe our dataset will be sufficiently large to validate the M7-

FLIPI prognostication tool. 

 

6.4.4. Prediction of Treatment Outcomes Based on Genetics 

Finally, future work will focus on providing a machine learning based approach to 

improve the prognostication of DLBCL patients. The gold standard clinical prognostic tool, 

the Revised International Prognostic Index (R-IPI), sorts patients into three risk groups based 

on factors such as age and whether their lactate dehydrogenase level is elevated.14 None of 

the R-IPI factors, however, account for the genetic basis of DLBCL and cannot therefore 

incorporate prognostic information from genetic variability between patients within the same 

risk group. Virtually all DLBCL patients receive the same first-line therapy, R-CHOP, 

despite the probability that the genetic and biological heterogeneity will result in 

heterogeneous response to the potential treatments available.189 By utilizing a machine 

learning based approach that considers all possible lesions as well as clinical variables, we 
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may be able to more effectively predict which patients are likely to respond well to R-CHOP 

and which are not. If such an identification is possible, the patients at greater risk may be 

moved toward more aggressive treatments or experimental therapies. 
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