The targets and role of palmitoylation in *Plasmodium* parasites

Chwen Ling Tay (BSc Hons)

Christ's College, University of Cambridge Wellcome Trust Sanger Institute

This dissertation is submitted for the degree of Doctor of Philosophy in Biological Science

This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically stated in the text.

This dissertation does not exceed the word limit of 60000 words for the Degree Committee for the Faculty of Biology.

<u>Abstract</u>

Palmitoylation is the post-translational reversible addition of the acyl moiety, palmitate, to cysteine residues of proteins, and has been shown to be important in regulating protein trafficking, localisation, stability and function. Palmitoylation is wide-spread in all eukaryotes, and recent work revealed the presence of more than 400 palmitoylated proteins in the *Plasmodium falciparum* intraerythrocytic schizont stages, including proteins involved in key aspects of malaria biology and pathogenesis. The work described in this dissertation advances our understanding of protein palmitoylation in *Plasmodium* by developing a novel method to specifically identify palmitoylated cysteines within the *P. falciparum* palmitome, and characterising for the first time, the *Plasmodium* DHHC and MBOAT proteins, which are thought to mediate protein palmitoylation.

In the first section of work, a quantitative mass spectrometry based approach was developed to identify palmitoylation sites, resulting in the identification of over 100 putative palmitoylation sites in the *P. falciparum* schizont palmitome. These potential palmitoylation sites can be used to guide further experiments into the role of palmitoylation in the function of specific proteins. Pilot experiments were also carried out with related parasites, *P. berghei* and *Toxoplasma gondii*, and revealed palmitoylation sites that were conserved across Apicomplexan species.

The *Plasmodium* DHHC protein family was characterised in *P. falciparum* and *P. berghei*, establishing that individual DHHC proteins are localised to distinct organelles, including specialised parasite-specific organelles such as the rhoptries and the IMC. DHHC protein localisation may therefore play some role in substrate specificity. Knock-out studies identified individual DHHC proteins that were essential for blood stage growth, as well as proteins that could be successfully disrupted, suggesting that a subset of DHHCs is functionally redundant. Lastly, an assay was developed to demonstrate the palmitoyl transferase activity of the *Plasmodium* DHHC proteins, confirming for the first time that these proteins are responsible for protein palmitoylation in *Plasmodium* parasites. This assay further revealed that different *P. falciparum* DHHC proteins could palmitoylate the same target protein, further confirming the existence of overlapping functionality for these proteins in *Plasmodium*.

The occurrence of palmitoylation on so many *Plasmodium* proteins, as well as the existence of a repertoire of *Plasmodium* proteins shown to demonstrate palmitoyl transferase activity, indicate that this post-translational modification may have an important role in the normal cellular function of the parasite. Further study of palmitoylation in *Plasmodium* may thus result in the discovery of potential therapeutic drug targets, and the assays developed here could assist in achieving this goal.

Acknowledgements

First and foremost, sincere thanks to Julian Rayner for excellent guidance and supervision during this entire PhD, as well as for careful reading of this dissertation. Special thanks also to Matt Jones for teaching, advice, discussion and assistance in all things. Many thanks also to Mark Collins for all the hard work on the site-ID purification protocol and mass spectrometry. Thanks also to Michel Theron for kind assistance in designing the *P. falciparum* growth assay and for the flow cytometry analysis, as well as to Leyla Bustamente for qPCR analysis. Thanks also to Ellen Bushell for the generation of *P. berghei* transgenic strains and PFGE analysis. All your time and effort is greatly appreciated.

Table of Contents

Abstract	1
Acknowledgements	2
Table of Contents	3
List of Abbreviations	5
List of Figures	8
List of Tables	10
Chapter 1: Introduction	11
1.1. Protein palmitoylation: Definition	11
1.2. Protein acyltransferases (PATs)	12
1.3. Acyl-protein thioesterases	15
1.4. Functions of protein palmitoylation	16
1.5. Types of palmitoylated proteins	19
1.6. Purification of palmitoylated proteins	21
1.7. Malaria: A major global parasitic disease	25
1.8. The life cycle of <i>Plasmodium</i> parasites	26
1.9. The need for new drug targets	29
1.10. Palmitoylation in <i>Plasmodium</i>	29
1.11. Aims and objectives	32
Chapter 2: Materials and Methods	37
2.1. Generation of plasmid constructs	37
2.2. Plasmodium in vitro cell culture and transfection	43
2.3 Genotyping of transgenic parasite strains	47
2.4. Human Embryonic Kidney 293 (HEK293) in vitro cell culture and transfection	50
2.5. Protein detection and analysis	51
2.6. Palmitome purification in <i>P. falciparum</i> parasites and HEK293 cells	53
Chapter 3: The sites of palmitoylation in the <i>Plasmodium falciparum</i> palmitome	58
3.1. Development of the site-identification (ID) palmitome purification method	58
3.2. Analysis of the overlaps between the five trial site-ID palmitome purifications	82
3.3. Trial site-ID palmitome purification from Plasmodium berghei schizonts and	
Toxoplasma gondii tachyzoites	95

Chapter 4: Protein acyltransferases in *Plasmodium berghei*

103

4.1. Repertoire of DHHC-domain-containing proteins in <i>Plasmodium</i>	103
4.2. Expression and localisation of DHHC proteins in Plasmodium berghei	106
4.3. Essentiality of the DHHC proteins in <i>P. berghei</i>	114
Chapter 5: Protein acyltransferases in Plasmodium falciparum	117
5.1. Expression and localisation of DHHC and MBOAT proteins in Plasmodium	
falciparum	117
5.2. Essentiality of DHHC and MBOAT proteins in <i>P. falciparum</i>	128
Chapter 6: Protein acyltransferase activity of <i>Plasmodium falciparum</i> DHHC proteins	142
6.1. PAT activity assay – the method	142
6.2. Expression and localisation of <i>P. falciparum</i> proteins in HEK293 cells	145
6.3. PAT activity assay of PfDHHC proteins with PfSec22 and PfARO	153
6.4. Point mutations of potential palmitoylation sites in PfSec22 and PfARO	160
6.5. Site-directed mutagenesis of the cysteine in the DHHC domain of PfDHHC5	163
Chapter 7: Discussion	169

List of Abbreviations

- 2-BMP 2-bromopalmitate
- 3-HA triple-haemagglutinin
- 5FC 5-fluorocytosine
- 6-FAM 6-carboxyfluorescein
- 17-ODYA 17-octadecynoic acid
- ABE Acyl-biotinyl exchange
- AMPA α -amino-3-hydroxy-5-methyl-4-isoxazole propionate
- APT Acyl-protein thioesterase
- ARO Armadillo repeats-only
- β -ME β -mercaptoethanol
- BSA Bovine serum albumin
- CDPK1 Calcium-dependent protein kinase 1
- CRT Chloroquine resistance transporter
- DGAT Diacylglycerol acyltransferase
- DHHC Aspartate-Histidine-Histidine-Cysteine
- DMSO Dimethyl sulphoxide
- eNOS Endothelial nitric oxide synthase
- ER Endoplasmic reticulum
- FBS Foetal bovine serum
- GAP45 Glideosome-associated protein 45
- GO Gene ontology
- GPI glycosylphophotidylinositol
- HEK293 Human embryonic kidney 293
- Hh Hedgehog
- Hhat Hedgehog acyltransferase

- HRP Horse radish peroxidase
- IAA Iodoacetamide
- IMC Inner membrane complex
- KAHRP Knob-associated histidine-rich protein
- MBOAT Membrane-bound O-acyl transferase
- MESA Mature-parasite-infected erythrocyte surface antigen
- MSP1 Merozoite surface protein 1
- MTIP myosin A tail domain-interacting protein
- MWCO Molecular weight cut-off
- NEM N-ethylmaleimide
- PAT Protein acyl transferase
- PBS Phosphate buffered saline
- PBST PBS with 0.1% Tween-20
- PCR Polymerase chain reaction
- PEI Polyethylenimine
- PfEMP1 P. falciparum erythrocyte membrane protein 1
- PFGE Pulsed field gel electrophoresis
- PPT Protein palmitoylthioesterase
- PSD-95 Post synaptic density protein-95
- PTM Post-translational modification
- RAP1 Rhoptry associated protein 1
- RT-PCR Reverse transcription-PCR
- SDS Sodium dodecyl sulphate
- SDS-PAGE SDS-polyacrylamide gel electrophoresis
- Shh Sonic Hedgehog
- SILAC Stable isotope labelling with amino acids in cell culture
- SNARE Soluble NSF attachment protein receptor

- TBTA Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine
- TCEP Tris(2-carboxyethyl)phosphine
- TCR T cell receptor
- TM Transmembrane

List of Figures

Figure 1.1: Reversible S-palmitoylation compared to irreversible N-palmitoylation	12
Figure 1.2: Structure of DHHC-domain and MBOAT-domain-containing PATs	15
Figure 1.3: Function of palmitoylation on the subcellular trafficking of Ras proteins in	
mammalian cells	17
Figure 1.4: Schematic of the acyl-biotinyl exchange (ABE) method of purifying	
palmitoyl-proteins	23
Figure 1.5: Schematic of the metabolic labelling and click chemistry method of purifying	
palmitoyl-proteins	24
Figure 1.6: Schematic of the Plasmodium parasite's life cycle	28
Figure 2.1: Schematic of the P. falciparum and HEK293E expression plasmid constructs	41
Figure 3.1: Trial 1 site-ID palmitome purification by ABE	63
Figure 3.2: Trial 2 site-ID palmitome purification by ABE	68
Figure 3.3: Trial 3A site-ID palmitome purification by ABE	71
Figure 3.4: Trial 3B site-ID palmitome purification by ABE	74
Figure 3.5: Trial 4 site-ID palmitome purification by ABE	77
Figure 3.6: Overlaps between the different trial site-ID palmitome purifications and the	
total palmitome	83
Figure 3.7: Gene ontology (GO) term analysis of enriched proteins in the overlapping trial	
site-ID purification datasets	86
Figure 3.8: Over-represented sequence motifs within the Trial 4 site-ID palmitome	
purification dataset	93
Figure 3.9: Trial site-ID palmitome purification by ABE for Plasmodium berghei and	
Toxoplasma gondii	96
Figure 4.1: Repertoire of DHHC-containing proteins in Plasmodium	105
Figure 4.2: Generation of PbDHHC triple-HA-tagged and knock-out transgenic lines	107
Figure 4.3: Expression of PbDHHC proteins in purified P. berghei schizonts	108
Figure 4.4: Localisation of DHHC proteins in <i>P. berghei</i> schizonts	111
Figure 5.1: Generation of PfDHHC and PfMBOAT triple-HA-tagged transgenic lines	119
Figure 5.2: Expression of PfDHHC and PfMBOAT proteins in P. falciparum schizonts	121
Figure 5.3: Localisation of DHHC and MBOAT proteins in <i>P. falciparum</i>	124
Figure 5.4: Generation of PfDHHC and PfMBOAT knock-out transgenic lines in P. falciparum	133
Figure 5.5: Reverse transcription (RT)-PCR analysis of PfDHHC5-KO and PfDHHC9-KO	
transgenic lines	136
Figure 5.6: Growth assay comparing the growth of PfDHHC5-KO and PfDHHC9-KO with	
wild-type 3D7	138

Figure 6.1: PAT activity assay	144
Figure 6.2: Localisation of codon-optimised P. falciparum proteins in HEK293 cells	150
Figure 6.3: Immunoprecipitation of PfSec22 and PfARO proteins using antibodies against the	
c-Myc tag	153
Figure 6.4: PAT activity assay demonstrating the PAT activity of PfDHHC proteins on the	
target protein, PfSec22	155
Figure 6.5: PAT activity assay demonstrating the PAT activity of PfDHHC proteins on the	
target protein, PfARO	158
Figure 6.6: Immunoprecipitation of mutant PfSec22 and PfARO proteins using antibodies	
against the c-Myc tag	162
Figure 6.7: Immunoprecipitation of PfSec22 and PfARO proteins when co-expressed with	
mutant PfDHHC5 using antibodies against the c-Myc tag	165

List of Tables

Table 1.1: Common classes of palmitoylated proteins	20
Table 2.1: Primers used for the generation of <i>P. falciparum</i> triple-HA-tagged plasmid	
Constructs	38
Table 2.2: Primers used for the generation of P. falciparum double-crossover knock-out	
plasmid constructs	39
Table 2.3: PlasmoGEM vectors used for the generation of 3HA-tagged and knock-out	
transgenic strains in <i>P. berghei</i>	40
Table 2.4: Primers used for the generation of point mutations in HEK293 expression	
plasmid constructs	43
Table 2.5: Primers used for the genotyping of P. falciparum triple-HA-tagged lines	47
Table 2.6: Primers used for the genotyping of P. falciparum knock-out lines	48
Table 2.7: Primers used for the PCR analysis of the cDNA of PfDHHC5-KO and PfDHHC9-KO	
transgenic clones	49
Table 2.8: Primers and probes used for the qPCR analysis of the cDNA of PfDHHC5-KO and	
PfDHHC9-KO transgenic clones	50
Table 2.9: All primary and secondary antibodies used in this work along with their	
appropriate working dilutions	51
Table 3.1: Summary of all five trial site-ID purifications and the analyses performed on	
the five datasets	81
Table 3.2: The 14 enriched peptides identified in all 4 trial site-ID palmitome purifications	84
Table 3.3: A selected set of enriched proteins found to be common between both label-free	
trial site-ID datasets (Trial 3B and Trial 4), as well as the total palmitome, along with	
a selected set of enriched peptides common between both the trial datasets	88
Table 3.4: A selected set of enriched proteins found to be common between the Trial 4	
site-ID dataset and the total palmitome, along with a selected set of	
corresponding enriched peptides	91
Table 3.5: Summary of the analyses performed on the overlaps between the different trial	
site-ID palmitome purifications	94
Table 3.6: Summary of the trial site-ID purifications for P. berghei and T. gondii, and the	
analyses performed on the two datasets	97
Table 3.7: A selected set of enriched proteins purified in the P. berghei trial site-ID	
palmitome purification, along with their <i>P. falciparum</i> homologues, present in	
the P. falciparum Trial 4 site-ID palmitome purification	98
Table 3.8: A selected set of enriched proteins purified in the T. gondii trial site-ID	
palmitome purification, along with their <i>P. falciparum</i> homologues (homologues	
were determined by protein-protein BLAST search) found to be present in the	
P. falciparum Trial 4 site-ID palmitome purification	100
Table 4.1. DUUC domain containing proteins in <i>Discussionalium barabai</i> and <i>Discussionalium</i>	
	104
i dicipul ulti	T04