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Abstract
N-methyl-D-aspartate receptors (NMDARs) are found at the postsynaptic membrane of

glutamatergic synapses and play essential roles in brain development, plasticity, learning and

memory. Synaptic activation of NMDARs is transduced to a large complex of intracellular

postsynaptic proteins. Synapse-associated protein 102 (SAP102) is part of the MAGUK protein

family whose members, including PSD-95 and PSD-93, interact directly with the NR2 subunits of

NMDARs and appear to act as adaptors connecting the receptor to its intracellular signalling

network. Truncating mutations in SAP102 in humans are associated with X-linked mental

retardation, however the in vivo function of SAP102 is unknown.

This dissertation describes a gene targeting approach to elucidate the function of SAP102 in mice.

A DNA cloning technique using homologous recombination in bacteria was adapted and found to

provide a highly efficient and flexible tool for the production of large numbers of varied mutation

types in different loci of the mouse genome. Targeting vectors were generated for the

introduction of three different mutations into the SAP102 locus: a constitutive knockout; a

reporter gene knock-in and a conditional mutation.

SAP102 knockout mice were generated and found to be viable and fertile with grossly normal

adult brain morphology. Behavioural tests uncovered a deficit in spatial learning in the watermaze

which, in contrast to PSD-95 mutant mice, could be overcome with training. SAP102 mice

exhibited a specific, frequency-dependent deficit in NMDAR-mediated hippocampal synaptic

plasticity, a possible physiological mechanism for learning, while basal synaptic function and

NMDAR conductance were unaffected. A screen of postsynaptic protein phosphorylation states

in SAP102 mutant mice showed a specific increase in phosphorylation of extracellular signal-

related kinase (ERK), part of the MAP kinase signalling pathway.
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Targeted mutations in SAP102 and PSD-95 were utilised to explore the functional relationship

between the two proteins. PSD-95 mutants have evelated hippocampal expression of SAP102,

while SAP102 knockouts have increased PSD-95 associated with NMDARs, suggesting a partial

compensation in these two targeted strains arising from functional overlap between SAP102 and

PSD-95.  A SAP102/PSD-95 double mutation was lethal, indicating an important role for these

proteins during development.

These data show that SAP102 is crucial for normal postsynaptic signalling, synaptic plasticity and

learning and begins to shed light on the differential roles of NMDAR-associated MAGUKs in

coordinating intracellular responses to postsynaptic activation. SAP102 null mice may prove a

useful tool in discovering and testing treatments for human learning disability.
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