Generation of a murine ES cell system deficient in microRNA processing for the identification of microRNA targets

Matthew P. Davis

The Wellcome Trust Sanger Institute University of Cambridge Hughes Hall College

This dissertation is submitted for the degree of Doctor of Philosophy 31st March 2009

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. No part of this thesis has been submitted for any other qualification.

This thesis is within the 300-page limit laid down by the Biology Degree Committee.

Matthew P Davis

Abstract

MicroRNAs (miRNAs) are 21-22nt RNA molecules that regulate mRNAs, generally by triggering their degradation or blocking their translation. This effect is mediated via direct binding of the miRNA to its mRNA target at sites of partial complementarity. The number of miRNAs annotated in miRBase has grown rapidly in the last decade. There are now 695 human miRNAs and 488 mouse miRNAs. The significance of miRNA mediated post-transcriptional regulation has led to rapid advances in our understanding of miRNA expression, biogenesis and functional mechanism. However, with miRNAs predicted to regulate up to 60% of the human genome, there is a necessity for the development of methods to identify miRNA target sets on a large scale. It is increasingly evident that miRNAs can be functional components of large regulatory networks. The complexity of these associations is compounded by the ability of multiple miRNAs to regulate the same target mRNA simultaneously. It is also understood that miRNAs with a high degree of sequence similarity at their 5' end may be functionally redundant; this makes the analysis of target associations more challenging.

To address these problems I have developed a system in mouse embryonic stem (ES) cells to simply and rapidly derive gene lists enriched for miRNA targets. DGCR8 is a doublestranded RNA binding protein essential for the first cleavage of miRNA primary transcripts in the canonical miRNA processing pathway and is required for the maturation of these miRNAs. I have disrupted miRNA processing by the targeted insertion of a gene trap cassette into the second allele of Dgcr8 in cell lines that already bear a gene trap within their first allele. This led to a broad reduction of miRNA processing in these cells and a depletion of mature miRNAs. As a

Π

consequence of the disruption of this locus I was able to identify a number of miRNAs that appear to be processed in DGCR8 independent manner.

I proceeded to transfect these cells with ES-cell-expressed miRNA mimics. I used microarrays to identify transcripts that are down regulated as a consequence of the miRNA reintroduction. By comparing transcripts that had been up regulated upon the depletion of *Dgcr8* to this set I was able to create miRNA target lists for mmu-miR-25 and mmu-miR-291a-3p. These lists should be enriched for functionally relevant, co-expressed targets, moderated for miRNA mimic over expression and to a large extent devoid of interference from target saturation and combinatorial regulation. The system should also not be susceptible to problems associated with functional redundancy. In total I identified 25 target candidates for miR-291a-3p and 40 candidates for miR-25. Amongst these genes are a number of oncogenes and tumour suppressor genes in addition to genes involved in cell cycle regulation and extracellular signal transduction.

In conclusion it appears that miRNAs play a fundamental role in the regulation of the ES cell transcriptome and as such are deserving of considerable future research. It is my belief that the method presented in this thesis could contribute significantly to this effort by providing substantial and experimentally derived miRNA candidate target lists upon which to base future hypotheses.

Acknowledgements

I would like to begin by thanking my supervisor Dr. Ian Dunham for his advice, guidance, understanding and patience throughout the last four and a half years. Ian has given time and support generously especially when it has been needed the most. I am extremely grateful for his commitment to helping me to the end of my PhD.

In addition I would like to thank Dr. Anton Enright and Dr. Bill Skarnes for their support and help both in and out of the lab and in particular for adopting me when my team left the Institute. This PhD would have been impossible without their experience and knowledge. My thanks also extends to Dr. Eric Miska for his advice as a member of my Thesis Committee and for offering his assistance with the use of Luminex 100 technology.

I also need to acknowledge the members of Team 62; Andy, Cat, Caroline, Charmain, Christoph, Dave, Gayle, Ian, James, Jamil, Jo, John, Lotte, Owen, and Sarah. Their scientific know how helped me throughout my PhD and there were times when the offer of a beer was really just what I needed, even if that beer was at the top of a very muddy field. I know that to single out anyone in particular would be unbelievably complicated so thank you all...

I was fortunate during the course of my PhD that I was able to meet a large number of kind and generous individuals. In particular, I would like to express my gratitude to Dr. Peri Tate and all the members of Teams 107 and 87 for not only allowing me to use their stem cell facilities but also for all of the counsel and tuition that that entailed.

The members of the Enright laboratory at the EBI deserve a special mention for teaching me bioinformatics. I particularly wish to thank Dr. Cei Abreu-Goodger for patiently answering all of my R queries and for practical discussions, guidance and mapping of sequence data. In addition I would like to thank Dr. Stijn van Dongen and Dr. Harpreet Saini for both advice and contributions to my array and sequencing analysis.

My help I received from the laboratories of Dr. Duncan Odom (CRI) and Dr. Eric Miska (Gurdon Institute), both in Cambridge, also thoroughly deserve my thanks. Especially Dr. Claudia Kutter for teaching me to clone small RNA libraries and perform Northern Blots and Dr. Cherie Blenkiron for training me to work with the Luminex 100 system.

I need to acknowledge Dr. Peter Ellis and Dr. Cordelia Langford for hybridising my arrays and the Sanger Institute sequencing groups for the Solexa sequencing of my libraries and for various other small scale sequencing jobs. I would also like to thank Bee Ling Ng for FACS sorting my cell samples and advice on their analysis.

Thank you to Dr. Christina Hedberg-Delouka for helping my PhD to run as smoothly as possible.

Several additional teams have adopted me in the last 2 years, including the teams of Dr. Inês Barroso and Dr. Matthew Hurles. Their lab and office space has been pretty useful and the personal support has been handy too. Thanks. In the same vein I am very grateful to Dr. Alison Coffey for an occasional calming influence and Maureen, Kath, Christine, Dominic and Ian for pink cake, coffee, lunch and for reading bits and pieces I have sent to them. To all of my friends, it has been a while since I have seen them but for their support I owe them all much.

Very special thanks to my family. Without their love and support this PhD would have been so much harder. I am unbelievably grateful. Finally, thank you to Diana. Her patience and understanding has been amazing and her love a great comfort. It would not have been possible without her.

Contents

Declaration	I
Abstract	II
Acknowledgements	
Figures	
Tables	
Abbreviations	
Chapter 1: Introduction	1
1.1 miRNAs	
1.1.1 MicroRNA processing pathway	
1.1.1.1 Pri-miRNAs	6
1.1.1.1.1 Transcription of pri-miRNAs	
1.1.1.1.2 Intronic miRNAs	
1.1.1.2 Cleavage of primary miRNA transcript	
by the microprocessor protein complex	8
1.1.1.2.1 The microprocessor	
1.1.1.2.2 Recognition and mechanism of	
pri-miRNA processing	10
1.1.1.2.3 Processing of intronic miRNAs	
1.1.1.2.4 miRNAs within the 3'UTRs of protein	
coding genes	12
1.1.1.2.5 Co-transcriptional miRNA	
processing	12
1.1.1.3 The fate of the precursor miRNA	
1.1.1.3.1 Pre-miRNA processing	
1.1.1.3.2 Dicer associated proteins	
1.1.1.4 Regulation of the miRNA processing pathway	16
1.1.1.5 miRNPs, the effector complexes of miRNA	
mediated regulation	17
1.1.1.6 Mirtrons and other exceptions to the canonical	
rules	19
1.1.2 Mechanism of miRNA function	21
1.1.2.1 Deadenylation: Destabilisation of targets	
through the removal of the poly-A tail	
1.1.2.2 Translational inhibition	23
1.1.2.3 A role for the P-body	26
1.1.2.4 Reconciling the different mechanisms for	
miRNA mediated post-transcriptional regulation	
1.1.2.5 Other miRNA mediated regulatory mechanisms	27
1.1.3 The rules of miRNA target recognition and target	
prediction algorithms	29
1.1.4 Endogenous siRNAs	
1.2 Embryonic stem cells	38
1.2.1 Transcriptional networks for maintaining the stem cell	
state	
1.2.2 ES cell cycle	
1.2.3 miRNAs and mouse ES Cells	42

1.2.3.1 The role of miRNAs in stem cells – Perturbing	
the processing pathway	42
1.2.3.2 miRNA expression in stem cells	44
1.2.3.3 The role of miRNAs in stem cells	
1.2.3.4 The role of miRNAs in stem cells – Lessons	
from cancer	48
1.3 Aims of this project	
Chapter 2: Materials and Methods	53
2.1 Centrifuges	
2.2 General techniques	
2.2.1 DNA phenol chloroform extraction	
2.2.2 DNA ethanol precipitation.	
2.2.3 Small RNA isopropanol precipitation	
2.2.4 PCR	
2.2.4 PCR	
2.2.4.2 PCR programmes	
2.2.5 Colony PCR	
2.2.6 Gel electrophoresis	
2.2.7 Bacterial culture	
2.2.7.1 Antibiotic concentration	
2.2.7.2 Bacterial transformation	
2.2.8 Sequencing	
2.2.9 Restriction digest	
2.3 Generating a targeting trap vector	
2.3.1 Long PCR	
2.3.2 Preparing the pR3R4AsiSI plasmid	
2.3.3 Cloning the <i>Dgcr8</i> fragment	61
2.3.4 Preparing the targeted trap vector	
2.4 ES cell culture	
2.4.1 Splitting cells	63
2.4.1.1 Method 1	63
2.4.1.2 Method 2	63
2.4.2 Growth conditions for specific cell lines	64
2.4.3 Freezing ES cells	65
2.4.4 Defrosting cells	
2.4.5 Subcloning	66
2.4.6 Colony picking	
2.4.7 Gene targeting/electroporation	
2.5 Judging ES cell characteristics.	
2.5.1 Xgal staining	
2.5.2 Immuno-staining	68
2.5.2.1 Preparing the slides	
2.5.2.2 Immuno-staining the slides	
2.5.2.3 Imaging immuno-stained slides	
2.5.3 Optimised embryoid body (EB) formation protocol	
2.5.4 Cell cycle assay	
2.5.4.1 Cell growth	
2.5.4.2 Fluorescence activated cell sorting (FACS)	
2.5.4.3 FACS analysis	
2.3. 7 .3 1 ACS analysis	1 4

2.6 Protein purification and Western blots	.72
2.6.1 Protein purification	
2.6.2 Western blot	.73
2.7 RNA purification	.74
2.7.1 Trizol	.74
2.7.2 DNase treatment	.75
2.7.3 SV purification	.75
2.7.4 Harvesting HeLa S3 RNA	.76
2.8 RT-PCR	
2.9 mRNA expression profiling	.77
2.9.1 Northern blot	
2.9.1.1 Northern blot preparation	
2.9.1.2 Northern probes	
2.9.1.3 Hybridisation	
2.9.2 Illumina expression arrays	
2.9.2.1 Expression array preparation	
2.9.2.2 Expression arrays	
2.9.3 Computational analysis of expression arrays	
2.9.4 Relationship plots	
2.9.5 Identification of expression changes between cell lines	
2.9.6 KEGG and GO analysis	.83
2.9.7 Wilcoxon Rank Test of the expression changes of the	
targets of transcription factors (TFs) when compared to	
the general expression changes in DGCR8 depleted cell	
lines	.84
2.9.8 Annotation of probes associated with potential miRNA	
targets	
2.10 miRNA expression profiling.	
2.10.1 miRNA Northern blots	
2.10.1.1 Preparing the blots	
2.10.1.2 Probe labeling.	
2.10.1.3 miRNA Northern blot probes	
2.10.1.4 Hybridisation of miRNA Northern blots	
2.10.2 Luminex 100 analysis of mRNA expression	
2.10.2.1 Running the Luminex 100 system	
2.10.2.2 Computational analysis of the Luminex data	.90
2.10.3 miRNA expression profiling using Illumina/Solexa	00
high-throughput sequencing	
2.10.3.1 Preparing Illumina/Solexa samples	.90
2.10.3.2 Computational analysis of the high-throughput	02
sequencing data	
2.11 Optimised transfection protocols	
2.11.1 LacZ siRNA transfection 2.11.1.1 siRNAs	
	.94
	04
2.11.1.2 Optimised RNAi protocol	
2.11.1.2 Optimised RNAi protocol 2.11.1.3 LacZ siRNA transfection and slides	.95
2.11.1.2 Optimised RNAi protocol2.11.1.3 LacZ siRNA transfection and slides2.11.1.3.1 Slide preparation	.95 .95
 2.11.1.2 Optimised RNAi protocol 2.11.1.3 LacZ siRNA transfection and slides 2.11.1.3.1 Slide preparation 2.11.1.3.2 Imaging slides siRNA transfected slides 	.95 .95 .95
2.11.1.2 Optimised RNAi protocol2.11.1.3 LacZ siRNA transfection and slides2.11.1.3.1 Slide preparation	.95 .95 .95 .95

2.11.2.2 miRNA transfection protocol	96
2.12 Optimisation of transfection conditions	96
2.12.1 siGLO siRNA transfection	96
2.12.1 KIF11 siRNA transfection	97
2.13 Solutions	98
2.13.1 General laboratory solutions	98
2.13.2 Xgal staining solutions	100
2.13.3 Western blot solutions	101
2.13.4 miRNA Northern blot solutions	102
2.13.5 Cell culture solutions	103
Chapter 3: Disrupting the <i>Dgcr8</i> locus	106
3.1 Aim	
3.2 Introduction	
3.3 Disrupting the <i>Dgcr</i> 8 locus	
3.3.1 Experimental design	
3.3.2 Selecting <i>Dgcr8</i> trapped cell lines	
3.3.3 Confirmation of <i>Dgcr8</i> gene trapped cell lines	
3.3.4 Subcloning <i>Dgcr8</i> cell lines	
3.3.5 Generating a targeting vector	
3.3.6 Identification of cells with a successfully targeted	
Dgcr8 locus	124
3.3.7 Determining the functional significance of trap	
insertions through the use of miRNA Northern blots	130
3.3.8 Confirmation of the position of inserted targeted traps	
by gene-trap specific staining	134
3.4 Characterisation of <i>Dgcr8</i> expression and a broader spectrum	
of miRNAs	136
3.4.1 Detection of wild type and truncated <i>Dgcr8</i> transcripts	
3.4.2 The expression of ES cell miRNAs	
3.5 Investigation of ES cell properties in $Dgcr \delta^{gt1/tm1}$ and	
$Dgcr8^{gt2/tm1}$ cell lines	141
3.5.1 Expression of core ES cell transcription factors	
3.5.1.1 Oct4 expression measured by Western blot	
3.5.1.2 Comparing Oct4 and SOX2 expression by the	
immuno-staining of cell cultures	142
3.5.2 Morphological phenotype of $Dgcr8^{gt/tm1}$ cells	145
3.5.2 Morphological phenotype of $Dgcr8^{gt/tm1}$ cells 3.5.3 Investigation of $Dgcr8^{gt1/tm1}$ and $Dgcr8^{tm1, gt1/+}$ cell	
pluripotency	146
3.5.4 Flow sort for cell cycle	
3.6 Discussion	
5.6 5150055101	135
Chapter 4: The miRNA expression profile of ES cells depleted of	
functional <i>Dgcr8</i>	
4.1 Aim	
4.2 Introduction.	
4.3 Results	
4.3.1 Use of the Luminex platform to profile mature miRNA	
expression	159

4.3.2 miRNA expression profiling of cell lines with	
Illumina/Solexa high throughput sequencing	166
4.4 Discussion	186
Chapter 5: The derivation of ES cell miRNA candidate target lists in a	l
background depleted of endogenous miRNA expression	190
5.1 Aim	190
5.2 Introduction	190
5.3 Results	
5.3.1 A comparison of growth conditions and their effect on	
	194
cell phenotype	
$Dgcr8^{gt1/tm1}$, $Dgcr8^{gt2/tm1}$ and $Dgcr8^{+/+}$ cells	202
5.3.2.1 Comparison of the expression profiles of	202
5.3.2.1 Comparison of the expression profiles of <i>Dgcr8^{tm1,gt1/+}</i> , <i>Dgcr8^{tm1,gt2/+}</i> , <i>Dgcr8^{gt1/tm1}</i> , <i>Dgcr8^{gt2/tm}</i>	11
and $Dgcr\delta^{+/+}$ cells	202
	202
5.3.2.2 Functional analysis of genes up regulated upon	200
DGCR8 depletion	208
5.3.2.3 Identifying DGCR8 dependent alterations to	
the targets of the ES cell core transcriptional	
network	
5.3.3 Reintroducing miRNA mimics to <i>Dgcr8</i> ^{gt1/tm1} cells	216
5.3.3.1 Optimisation of the conditions for miRNA	
reintroduction	216
5.3.3.2 Demonstration of Oct4 expression in	
transfected cells	219
5.3.3.3 Selecting miRNA mimics to reintroduce into	
$Dgcr8^{gt1/tm1}$ cells	222
5.3.3.4 Transfection time course to identify the optimal	
time point for cell lysis	223
5.3.3.5 miR-25 and miR-291a-3p potential target lists	228
5.3.3.6 Comparison of genes in the miR-291a-3p	
candidate target list to a previously published	
experimentally predicted miR-290 cluster target	
list	
5.3.3.7 Candidate targets of particular interest	
5.4 Discussion	
Chapter 6: Discussion	249
6.1 Disruption of the <i>Dgcr8</i> locus to deplete mature miRNAs in	
	240
mouse ES cells	250
6.2 The small KNA profile of Dgcros and Dgcros cells	230
6.2.1 DGCR8 independent miRNA processing	
6.3 Generating miRNA candidate target lists	
6.3.1 The influence of miRNAs on the ES cell transcriptome	252
6.3.2 The re-addition of miRNAs to the DGCR8 deficient ES	0.5.4
cells and miRNA candidate target lists	
6.4 Future work	256
6.4.1 Expanding the system for the generation of candidate	<i></i>
target lists	256

ls258 259
259
260
261
262
263
264
CD

Figures

Figure 1.1: A simplified outline of the miRNA processing pathway,
depicting the two cleavage steps required to liberate the mature
mRNA5
Figure 1.2: Canonical microRNA processing pathway in vertebrate,
with the introduction of mirtronic miRNAs at the pre-miRNA
stage
Figure 1.3: The mechanisms of miRNA mediated regulation
Figure 1.4: The miRNA seed region and the definitions of –mer target sites
as given by http://www.targetscan.org
Figure 3.1 A: The structure of the ORF of the <i>Dgcr8</i> gene and the positions
of inserted traps relative to protein domains
Figure 3.1 B: The structure of the gene trap cassettes used to disrupt the
<i>Dgcr8</i> locus111
Figure 3.2: Nested RT-PCR to confirm the gene trap position within two
BayGenomics <i>Dgcr</i> 8 ^{gt/+} cell lines116
Figure 3.3: Gene traps and vectors used to disrupt the <i>Dgcr8</i> locus122
Figure 3.4: Principles of targeting vector construction
Figure 3.5 A: A schematic of the expected outcomes of the targeted vector
insertion and the primers designed to distinguish these events125
Figure 3.5 B: RT-PCR was used to distinguish the genotypes of ES cell
lines resulting from the electroporation of the gene trap
targeting vector
Figure 3.6: Northern blot to judge miRNA expression within a range of
cell lines
Figure 3.7: Xgal staining of cell lines to determine β -geo (β -galactosidase)
activity
Figure 3.8: Northern blot to demonstrate the loss of wild type Dgcr8
transcript in $Dgcr 8^{gt1/tm1}$ and $Dgcr 8^{gt2/tm1}$ cell lines and the effect
of the traps on transcript length
Figure 3.9: miRNA Northern blots demonstrating the loss of ES cell
miRNA expression in $Dgcr8^{gt1/tm}$ and $Dgcr8^{gt2/tm1}$ cells
Figure 3.10: Western blot to demonstrate comparable Oct4 expression
between cell lines
Figure 3.11: Immuno-staining of $Dgcr \delta^{tm1,gt1/+}$ and $Dgcr \delta^{gt1/tm1}$ cells to
demonstrate consistent expression of both Oct4 and Sox2
within the cultures
Figure 3.12: An example of the morphological phenotype seen among
$Dgcr \delta^{gt1/tm1}$ cells when compared to $Dgcr \delta^{tm1,gt1/+}$ controls
Figure 3.13: Images of EBs cultured on low attachment plates after 8 days
of culture in the absence of LIF
Figure 3.14: Representative images of cell morphologies seen amongst EBs
spreading on gelatinised tissue culture plates
Figure 3.15: ES cells depleted in the expression of <i>Dgcr8</i> and mature
miRNAs accumulate in the G1 phase of the cell cycle
Figure 4.1: A box plot of the raw fluorescence values for each miRNA
specific bead derived from the Luminex miRNA profiling
system across multiple samples
Figure 4.2: Box plots of bead/miRNA-associated MFIs following
normalization

Figure 4.3:	A comparison of the expression of miRNAs in $Dgcr8^{tm1,gt1/+}$ and $Dgcr8^{tm1,gt2/+}$ cells compared to $Dgcr8^{gt1/tm1}$ and
	$Dgcr \delta^{gt2/tm1}$ cells
Figure 4.4:	The proportion of ncRNA matching reads in each library that
	are accounted for by each ncRNA type
Figure 4.5	A: A Comparison of the small RNA libraries derived from the
	replicate cell lines
Figure 4.5	B: A wide selection of ncRNAs are not affected by the depletion
	of functional <i>Dgcr8</i> and are thus used to normalise the samples 172
Figure 4.6:	Normalised total maximum sequence depths for each ncRNA
D : 4 d	species in each cell line
Figure 4.7:	The normalised maximum sequence depth for the library of
D : 4.0	ncRNAs was compared between samples
Figure 4.8:	A demonstration of the significance of the change in
	expression of miRBase annotated miRNAs between
D : 4.0	$Dgcr8^{tm1,gt/+}$ and $Dgcr8^{gt/tm1}$ genotyped cells
Figure 4.9:	The maximum read depth and log fold changes of miRNAs
	that are potentially processed in a DGCR8 independent manner
	in pairwise comparisons between each <i>Dgcr8gt/tm1</i> cell line and
D' 4.10	their respective heterozygous control
Figure 4.10): The maximum depth of reads which match the miR-320
г [.] 411	hairpin sequence
Figure 4.11	: A Northern blot for miR-320 expression in $Dgcr8^{+/+}$,
	$Dgcr8^{tm1,gt1/+}, Dgcr8^{tm1,gt2/+}, Dgcr8^{gt1/tm1} \text{ and } Dgcr8^{gt2/tm1}$
D' 4.10	cell lines
Figure 4.12	2: Maximum read depth for all miRNAs for which the
	expression pattern has been demonstrated by Northern blot in
D' C 1	this thesis
Figure 5.1	A: A rootless tree depicting the degree of correlation between all
	of the mRNA array profiles on the basis of the complete set of
F: 5 1	normalized probe intensities
	B: A rootless tree depicting the degree of correlation between all
	of the mRNA array profiles on the basis of a refined set of
E:	probe intensities
Figure 5.2:	Sylamer plots to identify miRNA seed sequence enrichment or
	depletion within up-regulated or down-regulated genes
	following the depletion of DGCR8, conducted separately using
	arrays derived from cells cultured under the older culture
E: 5 2.	conditions and the more recent culture methods
Figure 5.3:	A Venn diagram depicting the number of probes registering
Eiguro 5 1	significant expression changes between cell types
Figure 3.4	A: A plot depicting the average expression of each probe in the
	heterozygote and homozygous mutant cell lines against the log
	fold change of each probe following the depletion of DGCR8 form the ES cells
Eiguro 5 1	
1 igule 3.4	B: Sylamer plots to identify miRNA seed sequence enrichment
	or depletion within up-regulated or down-regulated genes
	following the depletion of DGCR8 based on expression data derived from cells grown under both the older and the most
	recent culture conditions

0	C: The miRNA seed sequences highlighted as enriched or depleted by Sylamer analysis in gene lists ordered by LFC or	
	t-statistic following the disruption of both alleles of the <i>Dgcr8</i>	
	locus	,
Figure 5.5:	Plots to assess the change in the expression of the transcriptional	
	targets of various core transcription factors relative to the other	
	genes following the depletion of DGCR8212	,
	Xgal staining results of LacZ siRNA transfected Dgcr8 ^{gt1/tm1}	
	cells in the 6 well format to be used for miRNA mimic	
	reintroduction experiments219)
•	Immuno-staining of transfected <i>Dgcr8^{gt1/tm1}</i> cells with LacZ	
	and Oct4 specific antibodies to demonstrate siRNA transfection	
	does not influence Oct4 expression	
Figure 5.8:	Sylamer plots querying gene lists ordered according to LFC	
	and t-statistic following the transfection of DGCR8 depleted	
	cells (<i>Dgcr8^{gt1/tm1}</i>) with miRNA mimics and lysed according	
	to a time series	1

Tables

Table 1.1: The miRNA naming convention and definitions of relevant	
terms used throughout this thesis	4
Table 2.1: Primers used in during the course of this study	55
Table 2.2: Media quantities used to culture ES cells	63
Table 2.3: Culture plates and media quantity used for defrosting ES cells	66
Table 2.4: The sequences of DNA oligos used to make a size ladder for	
small RNA gel electrophoresis	87
Table 2.5: miRNA Northern blot probe sequences	87
Table 3.1: A description of the relative positions of important features	
within the structure of the <i>Dgcr8</i> transcript	112
Table 3.2: A summary of the genotype nomenclature used throughout this	
thesis	113
Table 3.3: A summary of the number of each kind of insertion event	
resulting from the targeted gene trap electroporation	
experiment	127
Table 3.4: Summary of the phenotypes seen amongst EB colonies after	
12 days of culture in the absence of LIF	149
Table 4.1: The maximum mappable read depth of each of the small RNA	
libraries and the number of reads that subsequently map to the	
Ensembl and miRBase derived non0coding RNAs	167
Table 4.2: miRNAs that maintain relatively constant expression between	
the $Dgcr\delta^{tm1,gt/+}$ and $Dgcr\delta^{gt/tm1}$ genotyped cell lines	179
Table 5.1: GO term and KEGG pathway analysis of genes up regulated	
upon the depletion of DGCR8	210
Table 5.2: Probes associated with Oct4, Sox2, Nanog, Klf4 and c-Myc that	
exhibit a significant expression change between $Dgcr \delta^{tm1,gt/+}$	
and $Dgcr8^{gl/tm1}$ cell lines	213
Table 5.3: Tables summarizing the genes that are the suspected targets	
of mmu-miR-25 and mmu-miR-291a-3p as determined by	
transfection analysis	231

Abbreviations

ATP	Adenosine triphosphate
BAC	Bacterial artificial chromosome
BLAST	Basic Logical Alignment Search Tool
BMP	Bone morphogenic protein
bp	Base pairs
BSA	Bovine serum albumin
cDNA	Complementary DNA
ChIP	Chromatin immunoprecipitation
ChIP-Seq	ChIP-Sequencing
CRI	Cambridge Research Institute
DAS	Distributed annotation system
DDW	Double distilled water
DMSO	Dimethyl sulphoxide
DNA	Deoxyribonucleic acid
DPBS	Dulbecco's PBS
dsRNA	Double stranded RNA
EB	Embryoid body
EDTA	Ethylene-diamine-tetra-acetic acid
EGFP	Enhanced green fluorescent protein
ES cell	Embryonic stem cell
EST	Expressed sequence tag
FACS	Fluorescence activated cell sorting
FBS	Foetal bovine serum
GFP	Green fluorescent protein
GO	Gene ontology
GSK3	Glycogen synthase Kinase 3
IGTC	International Gene Trap Consortium
Indels	Insertion deletions
iPS cell	Induced pluripotent stem cell
IPTG	Isopropyl B-D-1-thiogalactopyranoside
IQR	Inter-quartile range
IRES	Internal ribosome entry site

kb	Kilobase
KEGG	Kyoto Encyclopedia of Genes and Genomes
LB	Luria-Bertani
LFC	Log fold change
LIF	Leukemia inhibitory factor
LNA	Locked Nucleic Acid
МАРК	Mitogen-activated protein kinase
MEFs	Mouse embryonic fibroblasts
mRNA	Messenger RNA
MFI	Median fluorescence intensity
miRNP	microRNA-associated ribonucleoprotein complex
miRNAs	microRNAs
ncRNAs	non-coding RNAs
nt	Nucleotides
ORF	Open reading frame
P-body	Processing body
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PI	Propidium Iodide
PITA	Probability of interaction by target accessibility
pol	RNA polymerase
polyA	polyadenylation
pre-miRNA	Precursor miRNA
pri-miRNA	Primary miRNA
pSILAC	Pulsed stable isotope labeling with amino acids in
	cell culture
qRT-PCR	Quantitative reverse transcriptase polymerase
	chain reaction
RA	Retinoic acid
RACE	Rapid amplification of complementary DNA ends
RNA	Ribonucleic Acid
RNAi	RNA interference
RNP	Ribonucleoprotein complex

RISC	RNA-induced silencing complex
rRNA	Ribosomal RNA
RT-PCR	Reverse transcriptase polymerase chain reaction
SAPE	Streptavidin R-phycoerythrin
SDS	Sodium dodecyl sulphate
shRNA	Short hairpin RNA
siRNA	Small interfering RNA
snoRNA	Small nucleolar RNA
SNP	Single nucleotide polymorphism
snRNA	Small nuclear RNA
SSC	Saline sodium citrate
ssRNA	Singe stranded RNA
TBE	Tris-Borate EDTA
TF	Transcription Factor
TK promoter	Thymidine kinase promoter
T _m	Melting temperature
tRNA	Transfer RNA
UTR	Untranslated region