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4 FINE-SCALE ARCHITECTURE  OF THE CIS REGULATORY 

LANDSCAPE 

In this chapter I will:  

 Discuss that LD is a useful property of the genome for association 

studies at the large scale, but that it can impede the fine-mapping of 

functional variants.  

 Outline a number of approaches employed to enable localization and 

identification of functional variants.  

 Present a strategy used to scan all cis eQTLs detected for a given gene 

and to identify those that tag independent effects on gene expression. 

 Describe the genetic architecture of the cis regulatory landscape and 

show that multiple regulatory elements can interact to regulate 

expression in cis.  

4.1 FROM GENOME-WIDE ASSOCIATION HITS TO FUNCTIONAL VARIANTS 

The power of a SNP to show association with a phenotype is related to its correlation 

coefficient with the causal variant (Ioannidis, Thomas et al. 2009). This correlated 

structure of variants in the genome has made it possible to carry out GWAS and 

identify a plethora of associations between genetic variants and complex traits. 

However, the variants discovered are not necessarily the ones that give rise to 

phenotypes, but are more likely tags of functional drivers. Furthermore, when a locus is 

identified by SNP association, the causal mutation itself need not be a SNP (Altshuler, 

Daly et al. 2008). For example variants in the IRGM gene were found to be associated 

with CD, but subsequent analysis indicated that the causal mutation is most likely a 
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deletion upstream of the promoter affecting tissue-specific expression (McCarroll, Huett 

et al. 2008).  

Using GWAS-detected regions as a starting point, the field is currently focusing 

on strategies for the localization and identification of true functional variants. It is only 

when these variants are discovered that it will be possible to piece together the 

biological pathways and processes sculpting complex traits and disease risk. Fine-

mapping and identification of functional variants is not an easy task as the correlated 

structure between variants can impede fine-mapping, with patterns of LD determining 

the number of markers required to detect and fine-map an association (Mackay, Stone et 

al. 2009). If a group of markers is in high LD, it is only necessary to genotype one of 

them as a proxy for all others in the LD block. In pure breeds of dogs for example, 

where LD blocks are large, only a few markers are required to detect candidate regions. 

However it is not possible to localize functional variants precisely using this approach 

(Sutter and Ostrander 2004). In species such as Drosophila, LD declines rapidly over 

short physical distances and knowledge of all sequence variants is necessary for 

association mapping (Carbone, Jordan et al. 2006), but localization of variants with an 

impact on the phenotype is precise. Given the extent of LD in humans,  genetic variants 

are likely to have a number of close proxies (Slatkin 2008). A detailed survey of 5 Mb of 

the human genome (Encyclopedia of DNA Elements or ENCODE regions) genotyped 

and sequenced in HapMap individuals, revealed that over half of all common SNPs 

have at least 10 other SNPs in their proximity with an r2 > 0.8 (International HapMap 

Consortium 2005).  

Fine-mapping established associations involves selecting a set of non-redundant 

SNPs that are in perfect, or near perfect correlation (Ioannidis, Thomas et al. 2009). The 

rationale behind this approach is that one of the variants selected is the functional 

driver of the phenotype. Consequently, fine-mapping requires detailed knowledge of 

variation. Currently the most complete catalogue of human genetic variation is the 
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HapMap Phase 2, (four million SNPs genotyped for four geographically distinct 

populations), which covers roughly 30% of common variants. A much more detailed 

assay of variation will be provided by the ongoing 1000 Genomes Project which 

involves sequencing the genomes of 1,000 individuals (http://www.1000genomes.org). 

Deeper sequencing will subsequently reveal rarer variants (International HapMap 

Consortium 2005). 

GWAS interrogating regulatory variation are also faced with the same issues 

when it comes to localization of functional variants. Association studies of SNP 

genotypes with transcript levels reveal that for most genes multiple cis eQTLs exist 

(Stranger, Nica et al. 2007; Dimas, Stranger et al. 2008; Dimas, Deutsch et al. 2009). In 

such cases, it is likely that most variants mapping to the same genetic locus and are in 

high LD do not tag independent regulatory effects. On the contrary, SNPs with 

promising association signals are those that are not in LD and are expected to contribute 

independent effects to the phenotype of interest (Ioannidis, Thomas et al. 2009). Single 

loci however may harbour multiple independent functional variants, as is the case of 

chromosome 8q24 which contains seven independent risk alleles for prostate cancer 

(Haiman, Patterson et al. 2007). 

4.2 NARROWING DOWN THE REGION OF INTEREST 

Mapping eQTLs has two components: detection and localization (Mackay, Stone et al. 

2009). eQTL detection depends on effect sizes and allele frequencies and delimits a 

broad genomic region harbouring regulatory elements. Localization or fine-mapping of 

eQTLs depends on the recombination frequency between regulatory elements and 

markers. Many approaches have been employed to fine-map eQTLs mostly by 

narrowing down the region likely to harbour the regulatory variant. In general, the 

smaller the space outlined by significant associations, the narrower the region that has 

http://www.1000genomes.org/
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to be surveyed for variation, although this can be complicated by local patterns of LD, 

population history and non-genetic factors. Despite all this, one of the ways forward is 

to make use the properties of the genome (e.g. information about recombination hotspot 

intervals) and integrate data from various fields to limit the size of the genomic space to 

be scanned. Some approaches employed thus far are discussed below.  

One approach, employed by Veyrieras et al (2008) who studied HapMap Phase 2 

LCLs, involved taking the position of the most significant SNP as an estimate of the 

location of the functional site. The authors point out that this is only a rough proxy and 

that these SNPs are unlikely to be true functional variants since: a) HapMap Phase 2 

contains only about a third of common SNPs, b) some significant SNP associations may 

arise if the SNP is in LD with CNVs and c) non-functional SNPs in strong LD with the 

causal SNP may have lower p-values just by chance. A Bayesian hierarchical model 

incorporating information about the physical location of SNPs, as well as SNP 

functional annotation was used to create a high-resolution map of cis regulatory 

variation. Thirty three percent of most significant eQTLs were found to map within 10 

kb of the TSS, and immediately upstream of transcription end site (TES). The former are 

likely to be polymorphisms that affect the strength of TF binding sites and influence the 

rate of transcription. The latter may have an impact on microRNA binding and 

subsequent transcript degradation. eQTLs were also found to be more frequent in exons 

compared to introns, suggesting that these polymorphisms may affect transcript 

stability or rate of degradation.  

Another study interrogating cis regulatory variation employed allelic expression 

to measure the relative expression of alleles within a sample, assaying both primary 

(unspliced) transcripts and mRNA (Pastinen and Hudson 2004). This approach yields 

direct (vs. statistically inferred) relationships between SNPs and cis regulatory 

differences (Verlaan, Ge et al. 2009),  but does not detect differences in transcript levels 

driven by variants unlinked to the primary transcript. Allelic expression screening in 
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LCLs and primary osteoblasts revealed that even for genes that were expressed in both 

tissue types, identical haplotypes exerted different effects in ~ 50% of the cases. 

Therefore the same haplotype can display different regulatory effects depending on the 

tissue it is acting in. (Note that in this study each tissue type originated from one of two 

populations. Both populations however were of Northern European origin). 

A third study investigated the relationship between expression levels of 4,200 

genes and proportion of European ancestry in LCLs from African American individuals 

(Price, Patterson et al. 2008) who inherit variable proportions of African and European 

ancestries. It was shown that expression differences in individuals of different ancestry 

proportions reflect expression differences between African and European populations. 

Using information on an individual’s ancestry at the location of a gene whose 

expression was being analysed, ancestry effects were employed to quantify the relative 

contributions of cis and trans regulation of human gene expression. The authors 

estimated that 12 ± 3% of all heritable variation in human gene expression is due to cis 

variants. However, as they point out, distinction between cis and trans was somewhat 

imprecise due to the extended length (> 10Mb) of segments of continental ancestry in 

African Americans.  

The examples above illustrate that association analyses testing marker panels 

cannot differentiate causal SNPs from proxies. Identifying causal variants will be aided 

by obtaining a more complete catalogue of genetic variation (e.g. 1000 Genomes), but 

also by cataloguing variants with a functional role on a genome-wide scale. This is the 

aim of the ENCODE Project (Birney, Stamatoyannopoulos et al. 2007), whose ultimate 

goal is to find all functional elements in the genome across different cell types. In its 

pilot phase, a number of techniques were employed to analyse 1% (30Mb) of the human 

genome. 

With the same aim in view, two recent studies focused on identifying regulatory 

elements across the genome. In the first study Heintzman et al  (2009) used a chromatin 
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immunoprecipitation (ChIP)-based microarray method to identify promoters, enhancers 

and insulators in multiple cell types and investigate their role in cell type-specific gene 

expression. Over 55,000 potential transcriptional enhancers were identified, marked 

with highly cell type-specific histone modification patterns. The patterns detected 

correlated strongly to cell type-specific gene expression programmes on a global scale 

and were functionally active in a cell type-specific manner. In contrast, the chromatin 

state at promoters, as well as binding of CTCF (a major protein involved in insulator 

activity), were largely invariant across diverse cell types. The second study used in vivo 

mapping of p300 binding to identify regulatory sequences that control the spatial and 

temporal expression of genes (Visel, Blow et al. 2009). p300 is a near-ubiquitously 

expressed transcriptional co-activator and a component of enhancer-associated protein 

assemblies. ChIP of p300, followed by massively parallel sequencing led to mapping of 

several thousand p300 binding sites in mouse embryonic forebrain, midbrain and limb 

tissue. Eighty six of the identified sequences were tested in a transgenic mouse assay 

and enhancer activity was detected in nearly all cases. 

In this study I dissected the fine-scale architecture of the cis regulatory landscape 

using eight of the eleven HapMap Phase 3 populations. I designed and applied a 

strategy to filter all cis eQTLs detected for a given gene and identify those that tag 

independent regulatory elements. I also explored the extent to which pairs of 

interacting variants shape expression levels in cis to highlight the complexity and 

multidimensionality of gene regulation. At the time of writing this work was in 

preparation for publication.  

4.3 HAPMAP PHASE 3 CIS EQTLS 

With the availability of additional populations, as well as additional individuals per 

population, HapMap Phase 3 provides greater power for eQTL detection within and 
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across populations. SRC was used to test for association in cis between SNP genotypes 

(of approximately 1.2 million SNPs per population) and transcript levels of 18,226 

Ensembl genes, independently in each population and considering only unrelated 

individuals (Table 8). All SNPs mapping in a 2 Mb window, centred on the TSS of genes 

were tested and correction for significance was through permutations. Gene expression 

for GIH, LWK, MEX and MKK was PCA-corrected and analysed against non-PCA-

corrected genotypes (see section 2.3.2.1). This work was carried out in collaboration 

with Barbara Stranger and Stephen Montgomery at the WTSI.  

 

 
 

Table 8. HapMap Phase 3 SNPs, probes and total association tests performed in cis. 

 

At the 0.01 permutation threshold of significance, roughly 180 genes are expected 

to have one significant association by chance. We detected 657, 774, 698, 795, 773, 472, 

947 and 799 genes in CEU, CHB, GIH, JPT, LWK, MEX, MKK and YRI populations 

respectively (estimated FDR of 20-40%) (Table 9). From a non-redundant union of 3,130 

gene associations (18% of all genes tested) 1,074 (34%) were shared in at least two 

populations and 63 (2%) had a significant association in all eight populations.  
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Table 9. HapMap Phase 3 cis significant gene associations. 

 

To explore the location and strength of cis eQTLs for each of the eight 

populations, the distance of the most significant cis eQTL per gene was mapped relative 

to the TSS. In agreement with previous studies (Stranger, Nica et al. 2007; Veyrieras, 

Kudaravalli et al. 2008) a strong signal was found close to the TSS, with no discernable 

trend in a 5’ or 3’ direction (Figure 20). This symmetrical trend has also been 

documented in the analysis of the ENCODE Consortium (Birney, Stamatoyannopoulos 

et al. 2007) and is likely to reflect variation in core regulatory sequences such as 

promoter elements.  
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Figure 20. Distance (in bases) of the most significant cis eQTL per gene to the transcription 

start site (TSS). For HapMap Phase 3 populations (0.01 permutation threshold) the strength and 

abundance of cis eQTLs decrease with increasing distance from the TSS. 

 

4.4 INDEPENDENT REGULATORY INTERVALS 

Over half of the genes with a significant association at the 0.01 permutation threshold 

possess more than one SNP with a significant association in each of the eight 

populations (Figure 21 a and Figure 21 b). Multiple eQTLs identified for a given gene 

most probably tag the effects of the same regulatory element. Gene regulation however 

is dependent on the joint action of multiple regulatory elements (Figure 22) and the aim 

of this study was to identify cis eQTLs that tag independent regulatory effects 

(independent eQTLs or regulatory intervals).  
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Figure 21. Percent of genes with multiple cis eQTLs and independent intervals. a) shows the 

% of genes possessing multiple cis eQTLs prior to recombination hotspot interval mapping and 

LD filtering and b) shows the % of genes possessing multiple independent cis eQTLs (intervals) 

(0.01 permutation threshold).  

 

A detailed description of the strategy employed to do this has been given in 

section 2.7.1. Briefly, for a given gene eQTLs were mapped in recombination hotspot 

intervals, the most significant eQTL per interval was retained and remaining eQTLs 

were filtered further to exclude the least significant variant from variant pairs with a D’ 

> 0.5. This rigorous filtering strategy ensures that surviving eQTLs tag the effects of 
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independent regulatory elements. Furthermore, since filtering is strict the count of 

independent cis eQTLs most likely represents the lower bound of the true number of 

regulatory elements controlling the expression of genes. As expected, the number of cis 

eQTLs detected for each gene after filtering is much lower (Figure 21 c and Figure 21 d). 

 

 
 

Figure 22. Multiple independent regulatory elements control gene expression. a) Regulatory 

elements interact with each other to control levels of transcription. In this example independent 

regulatory elements (with variation in the population) are shown in blue, orange and green and 

map in different recombination hotspot intervals. The red bars represent SNPs tagging the 

effects of these elements. b) The action of multiple elements controls transcription initiation. 

Folding of DNA allows numerous activators bound to enhancer sequences to make contact with 

the basal transcription complex. From (Clark 2005). 
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At the 0.01 permutation threshold the number of genes possessing multiple 

independent intervals ranged from 5-10% across the eight populations (Table 10). 

Specifically, 50 genes with multiple eQTLs (8% of all genes tested), 46 (6%), 44 (6%), 55 

(7%), 36 (5%), 34 (7%), 97 (10%) and 52 (7%) were detected for the CEU, CHB, GIH, JPT, 

LWK, MEX, MKK and YRI populations respectively. Taken together, multiple 

independent regulatory intervals were detected for approximately seven percent of 

genes. This observation is in agreement with a mechanism for gene regulation involving 

the coordinated action of multiple elements (Figure 22). 

 

 
 

Table 10. HapMap Phase 3 independent eQTLs (intervals) at the 0.01 permutation threshold. 

 

To address the extent to which gene activity is controlled by common regulatory 

sequences across populations, I explored sharing of independent eQTLs (intervals). This 

was done for all regulatory intervals detected in each population and comparison was 

not restricted to intervals detected for a given gene (the latter analysis was ongoing at 

the time of writing). At the 0.01 permutation threshold and from a non-redundant 
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union 3,288 independent intervals, 2,281 (70%) were found in a single population, 404 

(12%) were shared in exactly two populations, 201 (6%), 145 (4%), 84 (3%), 65 (2%), 52 

(2%) and 56 (2%) were shared in exactly three, four, five, six, seven and all eight 

populations respectively. Taken together, roughly 31% of intervals were found in at 

least two populations (Table 11). The high proportion of intervals detected in only one 

population suggests that even for the same cell type, genes are regulated to some extent 

by different regulatory elements across populations. Conversely, sharing of intervals 

implies sharing of regulatory elements. Relative sharing in ≥ five populations increased 

with higher significance stringency. The lower degree of sharing at the 0.01 permutation 

threshold may arise as a consequence of winner’s curse (Goring, Terwilliger et al. 2001; 

Lohmueller, Pearce et al. 2003; Ioannidis 2008) which states that the effect sizes 

discovered when applying specific statistical significance thresholds are inflated 

compared to true effect size. Consequently the discovery sample usually achieves 

higher significance than replication samples. In this analysis the degree of sharing 

across populations may be underestimated if a gene with a significant association in one 

population barely fails significance correction in a second population. Sharing is likely 

to be further underestimated due to the fact that eQTL detection is affected by allele 

frequency differences across populations. Therefore a regulatory element may be active 

in multiple populations, but detected via an eQTL only in a fraction of these groups.  
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Table 11. Sharing of intervals for HapMap Phase 3 cis significant genes.  

 

4.5 EQTL-EQTL INTERACTION IN CIS 

As outlined above, the genetic architecture of cis regulatory landscapes is complex with 

multiple regulatory intervals controlling gene expression. To dissect cis regulatory 

architecture further, I explored the degree to which interactions between variants in cis 

affect expression levels. DNA sequences containing enhancer elements for example are 

known to loop over great distances (> 1 Mb) and make physical contact with regulatory 

elements close to the TSS, in an interaction that affects initiation and rate of 

transcription (Figure 22 b). To detect such interactions, I applied a similar strategy to 

that used in Chapter 3 to test for interactions between regulatory and protein-coding 

variants (also see section 2.6.7). This analysis was carried out for the CEU and YRI 

populations.  

SNPs with a nominal (uncorrected) p-value < 0.001 from the SRC association test 

were mapped in recombination hotspot intervals and the most significant SNP per 

interval was retained. SNP pairs with a D’ > 0.5 across intervals were excluded from the 

analysis. Filtering for permutation significance was not performed to include variants 

that do not necessarily have large marginal effects on the phenotype, but whose impact 
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on gene expression may be revealed through an interaction. I carried out ANOVA to 

test the independent effects of each SNP as well as the SNP x SNP interaction term on 

gene expression in cis. Assuming a uniform distribution of nominal p-values, at the 0.01 

nominal p-value threshold approximately 47 and 79 significant associations are 

expected by chance for the interaction term in the CEU and the YRI populations 

respectively. I detected 87 and 131 associations corresponding to an estimated FDR of 

54% and 60% respectively (Table 12). At the stricter 0.001 nominal p-value threshold, 

approximately 5 and 8 significant associations are expected by chance for the interaction 

term in the CEU and the YRI populations respectively. I detected ten and 22 

corresponding to an estimated FDR of 47% and 36% respectively (Table 12). Although 

this is not a very strong signal, given the strict filtering and relatively low power of this 

analysis, an enrichment of significant interaction terms is observed.  

 

 

Table 12. Expected and observed significant interaction terms for CEU and YRI.  

 

To explore this signal further, I conducted a single permutation of expression 

levels relative to genotypes. The p-value distributions of observed and permuted 

interaction terms were compared and an abundance of low p-values was found in the 

observed data for both populations (Figure 23). This suggests that gene expression in cis 

is sculpted to a certain extent by interacting regulatory elements.  

 



112 

 

 

 
Figure 23. QQ plots of observed vs. permuted cis interaction p-values for the CEU and YRI 

HapMap Phase 3 populations. The signal at the tail of the observed distributions suggests that 

interactions between variants in cis influence expression levels of genes.  

4.6 CONCLUSIONS 

The signals detected in GWAS stem from markers that are not likely to be the causal 

variants. Furthermore, these markers typically delineate large genomic spaces that 

harbour causal variants. Replication of signals in independent studies provides 

corroborating evidence of causality, but the problem of delimiting the space carrying 

the functional variants remains. In this chapter I have presented a strategy that makes 

use of the properties of the genome and can be employed to restrict the space likely to 

contain regulatory elements controlling gene expression in cis. Using eight of the 

HapMap Phase 3 populations I demonstrated that seven percent of genes (0.01 

permutation threshold) across all populations possess multiple independent regulatory 

intervals. The strategy applied involved strict filtering to remove highly correlated 

markers likely to tag the same regulatory element. As outlined in section 1.4.1, 

regulatory element length ranges from a few to a few hundred bp. Recombination 
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hotspot intervals on the other hand have a median length of 9,000 bp, ranging from a 

minimum of 998 bp to a maximum 31,495,264 bp. As a result, a single interval may 

contain multiple regulatory elements. The strategy employed in this study involved 

selection of the most significant eQTL per interval. Therefore, the number of truly 

independent eQTLs acting on genes in cis is likely to be higher and the method 

employed is most probably conservative.  

The complexity of the regulatory landscape is further demonstrated through 

evidence of interactions between genetic variants with a small marginal impact on gene 

expression in cis. Using the CEU and YRI populations I explored the extent to which 

SNPs mapping in different intervals jointly affect cis expression levels. Although 

relatively underpowered, also because the ability to detect an interaction decays 

substantially when proxies of the functional variants are used, this study presents 

evidence for a cis interaction between regulatory variants. This approach does not test 

markers without marginal effects and cannot reveal variants that manifest themselves 

only in the context of an interaction. Consequently, the extent to which expression is 

influenced by interactions between variants in cis is likely to be an underestimate. A 

potentially more informative approach is to test all SNP pairs in the vicinity of a gene. 

This is currently being explored in collaboration with Doug Speed and Simon Tavaré at 

the CRI. 

This study has highlighted the complex architecture of the cis regulatory landscape. 

GWAS of phenotypes in which expression levels are likely to play a crucial role should 

take this observation into consideration. Furthermore, integrating this information with 

studies on trans gene regulation will help piece together a more complete picture of 

gene expression control. 

 


