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Abstract

Discovering overrepresented patterns in amino acid sequences is an
important step in protein functional annotation which includes the
identification of subcellular localisation. I adapted and extended Nest-
edMICA, an ab initio protein motif finder originally developed for
finding transcription binding site motifs, to find short protein signals,
and compared its performance with another popular protein motif

finder, MEME.

In order to assess NestedMICA as a protein motif finder, I have
tested it on synthetic datasets produced by spiking instances of known
motifs from protein databases into a randomly selected set of pro-
tein sequences. Apart from the artificially implanted motifs, Nested-
MICA also successfully recovered subcellular localisation signals from
biologically-authentic test sets. NestedMICA found most of the short
test protein motifs spiked into a test set of sequences at different fre-
quencies. In all the assessment experiments, its overall motif discovery

performance was better than that of MEME.

As a practical application of NestedMICA, T developed a novel Sup-

port Vector Machines based protein subcellular classification tool,



Lokum, for eukaryotic protein subcellular localisation prediction, cov-
ering all major localisation classes for animal, fungal and plant se-
quences. It uses targeting and retention signal motifs reported by
NestedMICA, and other protein features including transmembrane
topologies and amino acid composition. Additionally, in Lokum I use
bipartite nuclear localisation signals obtained by adding protein sup-
port to Eponine, a tool originally developed for transcription start site
modeling. Lokum does not use sequence similarity, or any other a pri-
ori knowledge such as known nuclear localisation signals by searching

databases.

I compared proteins targeted into the nuclei and nucleoli in terms of
the features used in Lokum, and also their predicted disorder regions.
I demonstrate that it is possible to computationally distinguish these

two sub-nuclear protein categories.

Finally, as an alternative to the transmembrane topology predictor
TMHMM that is used in Lokum, I designed and tested a new proto-
type program that is based on hidden Markov models (HMM). The
HMM has been trained by a novel, nested sampling based transition

probability optimisation procedure.
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