
Chapter 1

Introduction

1.1 General introduction

Proteins perform vital functions in all living organisms. After being synthesised

in the cytosol, most of the proteins are transferred to other places in the cell or

sent out to the extracellular space where they carry out their specialised tasks.

One of the important questions modern biology has been trying to address is how

new born proteins can find their ways in reaching their destinations. Throughout

their journey they come across many obstacles, including different organelle or cell

membranes, pores that have to be passed, and pathways that must be followed.

Studies on the structure of the secretory pathway by George Palade were awarded

with a Nobel prize in Physiology or Medicine in 1974. This and other pioneering

studies yielded the theory that proteins carry intrinsic signals that govern their

localisation, which sounds simple and natural to us now. This important discovery

brought Günter Blobel the 1999 Nobel prize in Physiology or Medicine, less than

a decade ago.

The identification of protein subcellular localisation has been the subject of

1

1.1 General introduction

numerous experimental and computational studies. However, despite the ad-

vances made in understanding the underlying mechanisms, this complicated pro-

cess has still not been fully explained. Most of the protein targeting mechanisms

have been identified and well studied, certain localisation-related protein signals

have been discovered, but it is still not possible to determine every proteins’ lo-

calisation by inspecting only their amino acid sequences. In automatic protein

localisation annotation, computational methods that rely on sequence and struc-

ture homology could be advantageous only if some other similar protein locali-

sations have already been fully characterised in experiments. Furthermore, these

methods, while performing well, cannot help much in explaining the underlying

biological processes and interactions involved in protein targeting.

In this study, in accordance with the general notion that “signals govern pro-

tein targeting”, my aim was to investigate whether an ab initio, signal-based com-

putational prediction system can adequately help us to predict and classify sub-

cellular localisation, without using any kind of sequence similarity, text-mining,

or any kind of database searches to check for known localisation signal matches.

Using known localisation signals, protein domain motifs etc., but no sequence

similarity could still be anticipated as a valid ab initio methodology, however, in

this work, in addition to predicting localisation, as a secondary goal I tried to di-

rectly discover potentially localisation-related amino acid sequence motifs as well,

by extending a robust, ab initio, probabilistic DNA motif discovery tool program,

NestedMICA (Down & Hubbard, 2005) to work on amino acid sequences.

As can be seen in the “thesis graph” (Figure 1.1), Chapter 2 is devoted to

motif finding using NestedMICA, which was originally developed for transcription

2

1.1 General introduction

factor binding site motif finding. This chapter is an extended version of our study,

published under the title “NestedMICA as an ab initio protein motif discovery

tool” (Doḡruel et al., 2008), where I added protein support to the program and

fine tuned it for optimal protein motif discovery. A comparison of the protein-

capable NestedMICA with another popular program, MEME (Bailey & Elkan,

1994), is also given in the same chapter.

In Chapter 3, I introduce Lokum, or localisation by using motifs, a novel

eukaryotic protein subcellular localisation prediction program which mainly uses

motifs discovered by the new NestedMICA. In addition to NestedMICA motifs

found from datasets of proteins with experimentally determined localisations, I

modified and used a hierarchical motif finder, Eponine (Down & Hubbard, 2002),

for discovering and modeling multi-component localisation motifs such as the bi-

partite nuclear localisation signals. I changed Eponine, originally developed for

finding transcription start site motif models, to work with amino acid sequence,

too. Lokum incorporates both mono and bipartite motifs along with amino acid

composition, and finally transmembrane topology statistics. In Lokum, predic-

tions based on these features are made by a Support Vector Machine (SVM), a

robust machine learning strategy.

The predicted eukaryotic localisation categories are:

1. Cytoplasmic

2. Nuclear

3. Plasma membrane

3

1.1 General introduction

Lokum:
localisation
predictor

NestedMICA:
protein “mono”
motif discovery

Nested
Sampling

SVM

HMM

In - house
Transmembrane

predictor

TMHMM:
External

transmembrane
predictor

ChapterChapter 2

Chapter 3

Chapter 5

Sub-nuclear
prediction

Chapter 4

Duration
HMM states

Eponine:
protein bipartite

motif
discovery

RONN:
Disordered

region prediction

Figure 1.1: The “thesis graph”. Main relations between the thesis chapters are
shown. Rectangular shapes indicate programs that can produce “deliverables”
such as a motif or a prediction, whereas elliptical shapes indicate the used in-
termediate computational methodologies or algorithms. Orange shapes represent
external tools used, while the others are developed, implemented or modified
programs.

4

1.1 General introduction

4. Endoplasmic reticulum (ER)

5. Golgi

6. Extracellular / secretory

7. Mitochondrial

8. Peroxisomal

9. Lysosomal

10. Vacuolar

11. Chloroplast

The first nine localisations above represent the protein localisation categories

for animals. Another nine categories predicted for fungi are the first eight classes

with the addition of vacuolar proteins (instead of lysosomes). Finally, in addition

to the categories in the list of fungal localisations, proteins targeted into the

chloroplast are predicted, too, to have a total of ten categories for plants.

Chapter 4, which can be considered as an application of what is learned in

Chapters 2 and 3, discusses whether it is possible to fine tune predictions by

classifying some nuclear proteins in terms of their sub-localisation categories. I

chose nuclear proteins as an example, because it was possible to find a significant

number of protein sequences from databases, annotated as “nuclear” or “nucle-

olar”. As an addition to the features used in Lokum, here I also evaluate the

use of protein disordered regions as predicted by the RONN (Yang et al., 2005)

disorder predictor (Figure 1.1).

5

1.1 General introduction

Transmembrane topologies are predicted by an external program, TMHMM

(Krogh et al., 2001). As an alternative to this, I developed a hidden Markov

model (HMM)-based, prototype predictor (see Chapter 5) which can be plugged

into this system. The underlying HMM of this predictor was optimised for its

transition probabilities by using a novel procedure developed that relies on nested

sampling. This new approach is introduced in the same chapter along with the

prototype transmembrane topology predictor. For this HMM approach to work

more efficiently I also implemented “duration capable HMMs” which are defined

in this chapter.

The main chapters in the thesis have their own introduction sections that will

be useful while reading a particular chapter. In this general introduction, I sum-

marise the most popular subcellular localisation prediction programs, briefly de-

scribe three main computational techniques I used in the developed tools, namely

support vector machines, HMMs, and lastly motif finding by using sampling

strategies.

Finally, in the Conclusions (Chapter 6, page 165) I summarise the developed

computational tools and discuss their applications in biology, together with their

pros and cons. In the rest of this introductory chapter, I briefly mention previous

work done on automatic protein subcellular localisation prediction and the main

computational tools used.

1.1.1 Previous work on subcellular localisation prediction

Dozens of software applications are available that deal with particular aspects of

subcellular localisation prediction. Some of the popular ones are listed in Table

6

1.1 General introduction

1.1. I will first mention three widely used sets of prediction programs, before

discussing others: those developed at the Danish Technical University (DTU),

programs by the Rost group in Columbia University, and those developed by

Kenta Nakai of the University of Tokyo and his colleagues.

Predictor Architecture Features Original reference
TargetP ANN N-terminal sequence Emanuelsson et al. (2000)
SignalP HMM and ANN N-terminal sequence Nielsen et al. (1999)

Bendtsen et al. (2004b)
ChloroP ANN Presence of cTP Emanuelsson et al. (1999)
LipoP HMM N-terminal sequence Juncker et al. (2003)
PredictNLS Template based NLS look-up Cokol et al. (2000)
LOChom Database Sequence similarity Nair & Rost (2002b)
LOCkey Lexical analysis Sequence similarity Nair & Rost (2002a)
PSORT “If-then” rules PSORT features Nakai & Kanehisa (1991)
PSORT II kNN PSORT features Horton & Nakai (1997)

Nakai & Horton (1999)
iPSORT Rule based N-terminal patterns Bannai et al. (2002)
WolfPSORT kNN PSORT features, aa Horton et al. (2007)
PLOC SVM aa Park & Kanehisa (2003)
SubLoc SVM aa features Hua & Sun (2001)
CELLO SVM aa of k-words Yu et al. (2004)
ELSpred SVM aa, BLAST Bhasin & Raghava (2004)
Proteom Analyst Naive Bayes SwissProt keywords Lu et al. (2004)
pTarget SVM PFAM domains Guda & Subramaniam (2005)
MultiLoc SVM aa, motif DBs Höglund et al. (2006)
BaCelLo SVM aa, decision tree Pierleoni et al. (2006)

Table 1.1: A list of some popular eukaryotic localisation predictors. For
each prediction tool the main computational methodology and features used are
listed, along with related bibliographic reference(s). ANN stands for Artificial
Neural Networks, kNN represents the “k-Nearest Neighbours” algorithm, “aa”
indicates amino acid composition, SVM indicates support vector machines , cTP
is Chloroplast targeting peptide, and finally DB means database.

One of the most popular protein subcellular localisation predictors that use

N-terminal sorting signals is TargetP (Emanuelsson et al., 2000), developed at

the DTU. This program is limited to only three classes (signal peptides (SP),

7

1.1 General introduction

mitochondrial, and “other”) for non-plants, and four classes (SP, mitochondrial,

chloroplast, and “other”) for plants. The “other” class represents proteins that do

not have N-terminal signals, and consists of only nuclear and cytosolic proteins.

Until now, most of the novel programs that predict the presence of N-terminal

targeting signals still use TargetP datasets as a benchmark set and compare

their prediction performance with that of TargetP. Another popular tool, SignalP

(Bendtsen et al., 2004b; Nielsen et al., 1997b) from the same group, predicts the

presence and location of signal peptide cleavage sites, and can accept eukaryotic,

Gram-positive and Gram-negative bacteria input. SignalP has two different ar-

chitectures: one is based on artificial neural networks (ANN), while the other is an

HMM predictor. ChloroP (Emanuelsson et al., 1999) predicts chloroplast transit

peptides (cTP) and the possible cleavage site position. Similar to TargetP, it is

based on ANNs. LipoP (Juncker et al., 2003) predicts lipoprotein signal peptides

for Gram-negative bacteria, achieving a reported correct prediction rate of 96.8%.

LipoP is an HMM based prediction system. Programs developed in this group

are mainly specialised tools, and based on predicting certain localisation related

features in proteins. Last year, the group published a Nature Protocols article

(Emanuelsson et al., 2007) describing the use of several localisation predictors

that aim to detect N-terminal sorting signals, including TargetP, SignalP, and

ChloroP which are all hosted at DTU’s Centre for Biological Sequence Analysis.

Predictors developed in Rost’s group can possibly be shortened by LOC*,

with the exception of PredictNLS. PredictNLS (Cokol et al., 2000) uses NLSdb

(Nair et al., 2003), a database of nuclear localisation signals (NLS) containing

both experimentally verified and “extrapolated” NLSs, to predict nuclear pro-

8

1.1 General introduction

teins. LOChom (Nair & Rost, 2002b) is a sequence similarity based classifier,

and it is based on the findings of a large-scale analysis of the relation between

sequence similarity and identity in subcellular localisation. Another “LOC” pro-

gram, LOCkey, (Nair & Rost, 2002a) classifies proteins according to their locali-

sations by a lexical analysis of SWISS-PROT keywords that assigns sub-cellular

localisation. LOCtarget and LOCtree (Nair & Rost, 2004) are two programs that

combine and use the other LOC* predictors, with the latter being based on SVM

decision trees.

Predictors based on Prof. Nakai’s “localisation knowledge base” (Nakai &

Kanehisa, 1991, 1992) constitute the PSORT family of programs. This knowledge

base is a set of “if-then” rules that are either determined from experimental

observations or derived empirically. The first PSORT predictor was announced

together with the knowledge base publication by Nakai & Kanehisa in 1991.

This is an expert system which is based on detection of the compiled rules. An

improved version, PSORT II (Horton & Nakai, 1997; Nakai & Horton, 1999) works

by detecting the same PSORT features using a “k-nearest neighbours” classifier.

Bannai et al. extended the PSORT family by a new predictor, iPSORT (Bannai

et al., 2002), which is the “TargetP counterpart” of this group. It basically

has additional rules to check for some physiochemical patterns in signal peptide

sequences. This program did not perform as well as the neural network based

TargetP, nevertheless it directly used signals and signal properties for N-terminal

sorting sequence prediction. After the development of PSORT-b (Gardy et al.,

2003, 2005) to predict Gram-negative bacterial localisation, the newest predictor

of the PSORT family, WoLF PSORT (Horton et al., 2007) was released (more

9

1.1 General introduction

than one year before its publication). WoLF PSORT, a eukaryotic localisation

predictor, is an extension of PSORT II. It uses the PSORT “if-then” rules, but

additionally incorporates some of the iPSORT features. This program uses amino

acid composition as well as some functional motifs such as DNA-binding motifs

obtained from public protein databases. As in the previous version PSORT II, it

is based on the k-nearest neighbour algorithm with feature selection.

In addition to the above, there are many other, mostly support vector ma-

chine -based protein classification programs. Examples of SVM-based methods

using amino acid composition as their main feature to predict eukaryotic protein

localisation categories include: PLOC (Park & Kanehisa, 2003), SubLoc (Hua &

Sun, 2001), CELLO (Yu et al., 2004), and ELSpred (Bhasin & Raghava, 2004)

(also PLSpred (Bhasin et al., 2005) from the same authors for bacteria), and so

on. BaCelLo (Pierleoni et al., 2006) is another SVM-based prediction system

that can predict 4 localisation categories for non-plant and 5 for plant protein

sequences. BaCelLo does not distinguish between secretory pathway proteins. It

uses N- and C-terminal sequence features such as the composition rates of amino

acid chunks of different lengths from both termini.

In spite of the numerous available methods to predict protein localisation,

there are only a few programs that can predict all major eukaryotic localisation

categories. Apart from the WoLF-PSORT program mentioned above, Proteom

Analyst (Lu et al., 2004), pTarget (Guda & Subramaniam, 2005) and MultiLoc

(Höglund et al., 2006) are the notable multi-class predictors.

Proteom Analyst predicts protein localisations for animal, plant, fungi, Gram-

negative and Gram-positive bacteria with reported correct prediction rates of

10

1.1 General introduction

around 81% for fungi, and at rates ranging from 92 to 94% for the other four cat-

egories. These high prediction accuracies are not surprising because this method,

combined with some sequence features, looks up textual subcellular localisation

annotations of other homologous sequences in annotated databases to report lo-

calisation.

pTarget is a subcellular localisation predictor that searches for the presence of

over 2100 PFAM (Bateman et al., 2004) domains in sequences, and also uses N-

and C-terminal amino acid composition. It classifies mammalian proteins in nine

localisation classes. Sequences used in pTarget’s development and evaluation have

been filtered to remove highly homologous sequences. However, only sequences

having identity rates greater than 95% were eliminated in the localisation datasets

used for training and testing of the program, which possesses the danger that

sequences with too high identities will be ‘recognised’ by the program rather

than ‘predicted’.

MultiLoc (Höglund et al., 2006) is a new, SVM-based eukaryotic localisation

predictor which combines features such as N-terminal signals, amino acid compo-

sition, and protein motifs from databases including Prosite (Hulo et al., 2006) and

the nuclear localisation signals database NLSdb (Nair et al., 2003). It predicts

nine animal, nine fungal and ten plant subcellular localisation categories with

an accuracy of around 74%. It uses a total of 5959 non-homologous sequences

having a maximum identity rate of 80%.

Sprenger et al. (2006) compared five mammalian protein subcellular localisa-

tion programs including the multi-class predictors CELLO, MultiLoc, Proteom

Analyst, pTarget, and WoLF PSORT, although these are not equivalent pro-

11

1.2 Sequence identity thresholds

grams in terms of their methodology and training procedures in that some are

not ab initio, and that they were originally trained from datasets having different

sequence similarity rates. Nevertheless, all these prediction programs can predict

the nine major subcellular localisation categories, and they are publicly avail-

able for download or use as a web service that can accept large number of input

sequences. This comparative study showed that no individual method had a suffi-

cient level of sensitivity for the datasets used in the evaluation that would enable

reliable application to entirely new or different proteins. All methods showed

lower performance than reported in the original publications. The benchmarking

tests were performed with low-redundancy sequences from the LOCATE database

(Fink et al., 2006). However, the datasets were constructed such that two-thirds

of them consist of only nuclear and extracellular proteins, while the remaining

seven localisation categories make up the remaining portion.

Despite this, even when we judge from what these programs report as their

accuracies, there is still a need for true ab initio automatic classifiers that can

mimic the underlying biology and predict localisation with higher accuracies in

the protein annotation field.

1.2 Sequence identity thresholds

Protein subcellular localisation predictors (see the previous section on page 6)

use amino acid sequences from public protein databases such as SWISS-PROT

(Bairoch & Apweiler, 1996, 2000) for program training and prediction accuracy

assessment purposes. Highly homologous sequences present in datasets used in

program training and testing phases could result in misleading reported prediction

12

1.2 Sequence identity thresholds

accuracies, and therefore must be removed from sequence datasets prior to train-

ing and testing. Different programs allow different maximum mutual sequence

identity thresholds to reduce sequence redundancy. Specialised programs that

predict only a certain number of protein localisation categories tend to use non-

homologous sequences as determined by some homology reduction algorithms

(Hobohm et al., 1992), or empirically determined sequence identity thresholds

that could be as low as 30%. However, those covering the majority of protein

localisation categories (generally 9-11 classes) tend to use higher thresholds, as

demonstrated in Table 1.2.

Program Max allowed sequence identity
MultiLoc (Höglund et al., 2006) 80%
PLOC (Park & Kanehisa, 2003) 80%
pTarget (Guda & Subramaniam, 2005) 95%
PSORTb 2.0 (Gardy et al., 2005) 100%
Proteome Analyst (Szafron et al., 2004) 100%

Table 1.2: Maximum mutual sequence identity rates allowed in the dif-
ferent predictors. PSORTb datasets are not filtered to eliminate sequence
redundancy. Sequence homology-based programs such as Proteome Analyst tend
to use the entire protein sequence sets.

On the other hand, using very low sequence identity thresholds may dramat-

ically reduce the number of available sequences in training and testing datasets.

For example, the vacuolar sequence dataset used in MultiLoc (Höglund et al.,

2006) (see Chapter 3) normally contains 164 sequences with no redundancy re-

duction applied. In MultiLoc, the allowed maximum mutual sequence percent

identity was taken as 80%, which reduces the number of vacuolar protein se-

quences to 103 (Table 1.3).

Chothia & Lesk (1986) demonstrated the relation between the divergence of

13

1.2 Sequence identity thresholds

Max allowed sequence identity Number of vacuolar proteins
100% 164
80% 103
40% 36
30% 26
25% 23

Table 1.3: Several allowed maximum mutual sequence identity rates
versus the number of vacuolar sequences. The vacuolar sequences refer to
the same dataset used in MultiLoc and in Chapter 3. Generally, as the percent
identity decreases, sequence dataset size shrinks.

sequence and structure in proteins. Sander & Schneider (1991) later showed that

sequence identity does not correlate linearly with sequence homology. Namely,

to avoid homologous pairs in a protein sequence dataset, the maximum percent

sequence identity for long amino acid sequences must be smaller than that of

relatively shorter sequences. That is, even a pairwise alignment with only 30%

sequence similarity over a length of 60 residues may imply homology, but it

does not if the alignment length is around 40. Generally, 30% sequence identity

is regarded as a good threshold. However, as the percent identity threshold is

decreased, there is a danger that there won’t be sufficient number of sequences re-

quired for healthy training and testing. Therefore, whenever possible, I used 30%

(Chapter 4) and when the number of sequences was critically low, 40% sequence

identities (for instance, for the training and testing of Lokum: see Chapter 3).

Compared to the other sequence identity thresholds used by the other mentioned

multi-class predictors, the 40% maximum threshold used in Lokum is significantly

lower (Table 1.2).

I used the CD-HIT (Li & Godzik, 2006; Li et al., 2001, 2002) clustering algo-

rithm to eliminate the existince of homologous sequences in the various sequence

14

1.3 Computational methodologies

datasets that are employed in Chapters 2, 3 and 4. As explained in Li et al.

(2002), CD-HIT, in principle, uses the same basic sequence clustering algorithm

originally developed by Hobohm et al. (1992) that guarantees the elimination of

homologous pairs, but also uses some alternative heuristic strategies instead of

directly performing pairwise alignments that could normally be quite CPU in-

tensive. In CD-HIT, the minimum number of identical short substrings, called

‘words’, such as dipeptides, tripeptides and so on, shared by two proteins is a

function of their sequence similarity (Li & Godzik, 2006).

1.3 Computational methodologies

Below I summarise and describe briefly the main computational methods I used

(See Figure 1.1). These are, primarily, hidden Markov Models (HMM), motif

finding by Nested Sampling, and SVMs. Motif finding and inference by Nested

Sampling is the topic of Chapter 2 and explained there in more detail in the

context of NestedMICA. Another area where Nested Sampling is used is Chapter

5 which introduces a prototype HMM based transmembrane topology predictor.

Nested Sampling in Chapter 5 is used for HMM parameter optimisation. SVMs

form the crux of Lokum, combining all the features used.

1.3.1 HMMs

HMMs are useful for characterising sequentially changing behaviour, including

signals such as speech or a string of amino acids, in a mathematically tractable

way. An HMM is a stochastic finite automaton consisting of finite states. Each

state in a model is associated with a probability distribution which usually has

15

1.3 Computational methodologies

multiple dimensions. An outcome or observable is said to be emitted from a state

based on the emission probability distribution of that particular state. Transition

probabilities reflect the transition frequencies between the states of a given model.

They must be explicitly set in the model.

The three main problems HMMs can address are:

1. Computing likelihood (given a set of observables, find the corresponding

probability of having that sequence). This problem is solved by the forward

algorithm.

2. Viterbi decoding (given a model, find the most probable sequence of states

which might have yielded a certain set of observables)

3. Model learning (inferring the model parameters, mainly that of the transi-

tion probabilities, that would best describe a set of observables) Parameter

optimisation or learning can be achieved with the Baum-Welch algorithm

which is an expectation maximisation (EM) procedure.

HMMs have been widely used in bioinformatics (Durbin et al., 1999) par-

ticularly for computational gene prediction, secondary structure prediction, and

modeling of protein families and domains. For example, gene prediction using

HMMs involves the second and possibly the third tasks of the above HMM objec-

tives. In the case of motif finding with NestedMICA, we use all three canonical

objectives in Chapter 2, for tasks including sequence and background likelihood

calculation, model learning and fitting.

Duration HMMs (Rabiner, 1989), which were originally developed for allevi-

ating problems in speech recognition, have many benefits in most applications

16

1.3 Computational methodologies

of HMMs in bioinformatics. Probability distributions of state occupancy can be

represented by continuous probability density functions. Duration HMMs may

utilise functions like Gaussian or Gamma distribution functions, instead of a de-

caying exponential in the case of classic HMMs. Thus, in practical terms, it

is possible to ‘set’ the minimum (and in certain circumstances the maximum)

number of times a model has to emit from within a certain state, once it en-

ters that state. Figure 1.2 shows an example state occupancy probability plot

for a duration-enabled HMM state with a pre-determined minimum number of

self-transitions.

Figure 1.2: Probability of staying in the same state in a minimum du-
ration capable HMM state. Normally the probability curve would be only a
decaying function (of the form ae−x) from a maximum probability towards zero.
However, in duration-enabled states, it has to spend at least a certain number of
emission times in the same state before it starts to decay (corresponding to the
horizontal part in the curve).

A profile HMM (Gribskov et al., 1987) consists of multiple states connected

in series, none of which has a self-transition but usually a single transition to the

17

1.3 Computational methodologies

Figure 1.3: Profile HMMs. In this thesis, in what I call a “profile HMM” each
state Si has a single transition to the next state Si+1 with a duly set probability of
1.0, which makes them a way of representating position weight matrices (PWMs)
in the context of HMMs.

next state. For instance, gapped multiple alignments can be represented as profile

HMMs, in which case there is a need to add a “delete” and an “insert” state along

with each “match” state (see Durbin et al. (1999) for use of HMMs in sequence

alignment). However, throughout the thesis I will use the term “profile HMM”

to indicate linearly constructed series of states, each of which has a transition

probability of 1.0 to go to the next state, excluding the last state (Figure 1.3). In

this regard, there is not much difference between such a construct and a sequence

motif represented as a position weight matrix (PWM) where each fixed column

has its own symbol distribution.

1.3.2 The general idea behind motif finding

Interesting motif regions and the remaining uninteresting parts of sequences can

be represented as HMMs. These types of models can be referred to as sequence

mixture models (SMM), as they contain states representing motifs as well as some

prior models. Example of an SMM is the zero-or-one occurrences per sequence

(ZOOPS) model which is the default strategy in most motif finders based on

expectation maximisation (Dempster et al., 1977), or Gibbs sampling (Smith,

1987), a typical example of which is the MEME (Bailey & Elkan, 1995) motif

18

1.3 Computational methodologies

discovery program.

NestedMICA differs from other ZOOPS models in that it does not perform a

greedy search to discover the best single motif and then by masking it out focus

on the next motif (if necessary). Instead, it considers different motifs at the same

time and learns a model to best describe them based on independent compo-

nent analysis (ICA) (Comon, 1994). In signal processing, ICA is a computational

technique aiming to separate multivariate signals into independent subcompo-

nents that constitute a given (generally noisy) signal. In linear, noiseless ICA:

xi = ai,1s1 + . . . + ai,ksk + . . . + ai,nsn (1.1)

where x represents the observed components vector, i.e:

x = (x1, . . . , xm)T (1.2)

with the constituent components, each having a weight aik, being:

s = (s1, . . . , sn)T (1.3)

The task is to be able to write s in terms of x : s = Wx, where W is some

static transformation matrix. This situation is generally likened to the “cocktail

party problem” which involves different people talking simultaneously in a room,

and therefore one hears a constant random “noise”. If individual components of

the observed “noise” are independent, then using ICA one can try to map the

individuals in the room to what each person has said. In the case of motif ICA

(MICA), motifs correspond to the individual voices in this example.

19

1.3 Computational methodologies

1.3.3 Inference by Nested Sampling

Inferring optimal parameters for probabilistic models is a difficult task, partic-

ularly when the number of model parameters becomes large. NestedMICA per-

forms inference using Nested Sampling (Skilling, 2004), a robust Bayesian sam-

pling method for model selection and parameter optimisation. Nested Sampling

is a Monte Carlo inference strategy which can find globally good solutions to high-

dimensional problems. Classical Monte Carlo methods work by moving a single

state (i.e. set of parameters) around the problem’s parameter space, accepting

or rejecting proposed moves depending on whether they increase or decrease the

likelihood of the observed data. Nested Sampling is always applied to an ensem-

ble of e different states, where the value of e is typically a few hundred. The

process starts with an ensemble of states sampled uniformly from the prior.

Having sampled the states, they are then sorted in order of likelihood, and the

least likely state is removed from the ensemble. To maintain the ensemble size,

a new state is sampled, subject to the constraint that the new state must have

a likelihood greater than that of the state it is replacing. Repeating this process

many times means that nested samplers progressively move towards a small sub-

set of the state space which contains high-likelihood states. This is somewhat

analogous to simulated annealing methods where a temperature parameter is re-

duced to bring the model progressively closer to the posterior distribution, but

nested sampling avoids the need to explicitly cool the model: progress towards

high-likelihood states occurs automatically.

For each step of Nested Sampling, a certain fraction of state space is removed

20

1.3 Computational methodologies

from further consideration (since it contains states with likelihoods lower than

the threshold). Over many steps, the fraction of prior mass that is removed from

consideration at step t will tend towards 1

Wt =
1

e
(

e

e + 1
)t (1.4)

where e is the ensemble size. Since all the states which have been removed from

consideration will have a likelihood of approximately Lt, the likelihood of the

state which was removed at step t, the Bayesian evidence for the model, Z, can

be estimated as:

Z =
∞∑

t=1

WtLt (1.5)

Clearly, it is possibly to progressively accumulate an estimate of Z during the

Nested Sampling process. The final estimate of Z can be used for model com-

parison purposes (for example, finding optimal parameters for the NestedMICA

sequence model). NestedMICA also uses Zt, the online Z estimate up to step

t, to decide when to terminate the Nested Sampling process. Specifically, we

terminate when:

1

Zt

Lt(
e

e + 1
)t < 0.01 (1.6)

i.e. the likely increase of Z in future iterations is small compared to the current

value. Formally, this may lead to premature termination if L increases dramati-

1Derivation of this formula is explained in the 4-page Nested Sampling illustrations by David
MacKay at http://www.inference.phy.cam.ac.uk/bayesys/box/nested.ps (URL last visited in
2008)

21

1.3 Computational methodologies

cally late in the training process, but in practice we find that this simple criterion

is effective for motif discovery.

1.3.4 Support vector machines

SVMs are one of the most popular classification and regression algorithms, and

are applied in a variety of disciplines for tasks including signal processing, pattern

and image recognition, and biological sequence analysis. The support vector (SV)

algorithm is a generalised, non-linear form of the “generalised portraits” concept

developed by Vapnik in the 1960s (Vapnik & Lerner, 1963).

SVMs can be thought of as classifiers that try to maximise the geometric

margin separating data points from different classes. Points are actually mul-

tidimensional feature or attribute vectors which are mapped by some selected

function into some other mathematical space, where it would be more convenient

to perform the required tasks such as classification or regression. This new space

usually has a larger number of dimensions than the actual feature space, which

in turn increases the separability of data.

This separability is determined by the VC (Vapnik-Chervonenkis) dimension

of the model, which can be considered an upper theoretical limit for the set of

points a classifier can “shatter” in that space. To “shatter” some given points be-

longing to different classes, SVMs “draw” hyperplanes near the support vectors of

each class. SVs are those that are near the class boundaries, and contribute more

than the other points in shaping the hyperplanes. Then, an optimal separating

hyperplane is selected such that it maximises the geometric distance between any

two drawn hyperplanes that define class zones. Although defining hyperplanes

22

1.3 Computational methodologies

associated with each class can in principle solve the problem of correctly assign-

ing new, unseen data that is similar to the training data into one of the classes,

for more “difficult” test points that lie between any two zone-determining hyper-

planes, assignments can be done according to their distances to the maximum

margin hyperplane.

A dot-product function can be used in simple problems for data mapping,

but using kernel functions allows non-linear hyperplanes to be created. Apart

from linear kernels, the most commonly used kernels are polynomial (Eq 1.7),

radial-basis function (RBF)(Eq 1.8), and the sigmoid (Eq 1.9):

k(x,x′) = (x · x′)d (1.7)

k(x,x′) = exp(−γ‖x− x′‖2) (1.8)

k(x,x′) = tanh(κx · x′ + c) (1.9)

More information regarding SVMs can be found in the excellent tutorials of

Burges (1998) and Smola & Scholkopf (1998), and also from SVM-dedicated web

sites such as:

• http://www.support-vector.net/

• http://www.support-vector-machines.org/.

Examples of popular SVM implementations that are free for use in academic

studies are libsvm (Chang & Lin, 2001), SV M light (Joachims, 1999), and another

23

1.3 Computational methodologies

libsvm derivative, BSVM (Hsu & Lin, 2002). In Lokum we used both the C and

Java implementations of libsvm (Chang & Lin, 2001), version 2.85 (see Sections

3.2.6 and 3.5).

Artificial Neural Networks (ANNs), similar to SVMs in terms of their goal and

function, are widely used classifiers. ANNs differ substantially from SVMs in that

their proposed solutions could correspond to some local maxima. As C. Burges

put it in his SVM tutorial (Burges, 1998), “They (SVMs) differ radically from

comparable approaches such as neural networks: SVM training always finds a

global minimum, and their simple geometric interpretation provides fertile ground

for further investigation”.

24

