
Chapter 3

Lokum: ab initio protein
subcellular localisation prediction
for eukaryotes by using mono and
bipartite motifs, transmembrane
protein topologies, and amino
acid composition

3.1 Introduction

Protein sorting in eukaryotes is generally more complicated than in bacteria, sim-

ply because a typical eukaryotic cell contains a larger number of compartments.

Presence of different compartments defined by various internal membranes within

the cell mean different proteins must successfully pass through these internal

envelopes, which naturally involves a larger number of molecules and different

targeting and retention mechanisms. Identification of protein regions that are

involved in protein transport across a certain membrane is a key step in all pre-

diction efforts mimicking the underlying biological interactions. I try to address

this issue by using a new, probabilistic, ab initio protein motif discovery tool,
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NestedMICA (Down & Hubbard, 2005), which has been recently shown to work

better than another popular program MEME (Bailey & Elkan, 1995), particu-

larly for short proteins motifs that range in 3-9 amino acids (aa) (see Chapter 2

or Doḡruel et al. (2008)). This makes NestedMICA suitable for use in localisation

signal discovery, as targeting signals could be as short as 3 aa. NestedMICA, us-

ing a new Monte Carlo technique called Nested Sampling (Skilling, 2004), reports

motifs in Position Weight Matrices (PWMs).

One of the basic forms protein localisation signals could be characterised by

are multi-component probabilistic motifs, which most motif finders cannot deal

with. I use a combinatorial strategy involving both NestedMICA and the Eponine

tool (Down & Hubbard, 2002) that I have improved for protein sequence support.

3.1.1 Features used in Lokum

In this study, to predict protein localisation I used mono- and bipartite protein

localisation signals discovered by NestedMICA and Eponine, other NestedMICA

motifs that are not directly involved in localisation but that I show to be useful

in the computational predictions, amino acid frequency distributions, and finally

protein transmembrane topology statistics.

Apart from the difficulty of discovering genuine localisation signals, in signal-

based ab initio protein subcellular localisation prediction another complication

is the poor discriminative power of these motifs in the classification problem.

Proteins can share the same type of localisation motifs, not necessarily because

they are from the same cellular localisation, but because they could be involved

in a similar translocation pathway. Partly because of such common localisation
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signals, it is usually difficult to attain high prediction accuracies in automatic ab

initio classification methodologies (for a list of some popular automatic prediction

tools, see Section 1.1.1 in the introduction chapter). One possible way to reduce

the weaknesses of individual features is to use as many relevant protein properties

in combination as we can, where a pre-trained automatic prediction system will

evaluate possible relations among the features to make a final decision. I used

a popular classification method, Support Vector Machines (SVM), as they can

provide very good generalisation performance by finding optimal hyper-surfaces

that split data points of different classes in multi-dimensional spaces.

One general type of intrinsic signals proteins carry is targeting sequences.

They are usually found in the N-terminal regions of proteins, and some of them

are cleaved off from the nascent protein after the protein is translocated across a

membrane. There could also be targeting signals located on the far C-terminus,

like the Peroxisomal Targeting Signal 1 (PTS1) which is usually characterised by

the tripeptide sequence SKL (Gould et al., 1987, 1989). However, PTS1 is not

found in all proteins that are post-translationally transported to the peroxisome.

It is believed that peroxisomal proteins contain a weakly conserved N-terminal

signal of the form [RK][LVI].....[HQ][LA], named PTS2 for “Peroxisomal Tar-

geting Signal 2”, where the dots represent any amino acid (Osumi et al., 1991;

Swinkels et al., 1991). Certain mitochondrial targeting peptides are located in

the N-terminus, too, while these proteins can also have secondary signals which

are thought to be present possibly anywhere along the entire pre-protein sequence

(Endres et al., 1999; Wiedemann et al., 2001).

Not all secreted proteins have N-terminal targeting signals (Bendtsen et al.,
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2004a; Nickel, 2003), however the major type of proteins that have an N-terminal

targeting signal is the secretion pathway proteins, as they contain a conserved

signal peptide (SP) (Milstein et al., 1972) that can range in length between 20

and 30 amino acids in eukaryotes (Emanuelsson et al., 1999; von Heijne, 1990).

A usually cleavable N-terminal targeting peptide directs them into the ER by

penetrating through the ER membrane, while the rest of the nascent polychain

peptide is still being synthesised in ribosomes that are located near the ER. A

smaller number of them are maintained and employed by the ER if they con-

tain the tetrapeptide KDEL signal on their C-termini (Pelham, 1995). Most of

these proteins that pass several “quality control tests” of the ER are then sent to

the Golgi apparatus for further processing, but some of them, such as the mal-

folded or unassembled ones that failed those tests, are delivered by the ER to the

proteolytic system for degradation. This indicates there is some sort of back-and-

forth traffic between the ER and Golgi, but that there are no reported retention

or targeting motifs associated with the Golgi compartment. However, Yuan &

Teasdale (2002) showed that up to a certain extent it is possible to distinguish

Golgi Type II membrane proteins from the others, by using the hydrophobicity

values and frequencies of different residues within their transmembrane domains.

For most cargo molecules traversing through the “Golgi cisternae”, or multiple

ordered stacks of the Golgi apparatus, Golgi acts only as an intermediate place.

They eventually either end up in the plasma membrane, or are secreted out of

the cell.

N-linked glycosylation is a common type of post-translational protein modifi-

cation that takes place shortly after the nascent chain enters into the ER lumen
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(Kaplan et al., 1987; Machamer et al., 1985). Starting as early as 1985, some

previous studies have claimed glycosylation could have a role in cell transport

(Guan et al., 1985; Hannink & Donoghue, 1986; Kelley & Kinsella, 2003; Yan

et al., 2002) while others (Matsuda et al., 2004; Mohrmann et al., 2005) reported

that it is not specifically required in cell surface transport for the tested protein

molecules. A recent study demonstrated that N-linked glycosylation is required

for structural stabilisation but not for membrane localisation of a tested partic-

ular protein (Gao & Mehta, 2007). The generally accepted notion seems to be

that N-linked glycosylation is not directly involved in localisation. However, I

show in this chapter that it is enriched in secretory pathway proteins over the

other types, making it a potential secondary signal to aid in computational lo-

calisation prediction, just in a similar way to use the “secondary signal” coming

from protein composition.

Amino acid residues can have similar physical and chemical characteristics. It

is for this reason that protein signals such as the secretory pathway signal peptide

(SP) are described often in terms of their general characteristics like hydropho-

bicity, net charge etc., rather than in terms of their individual amino acid letters

which might not be conserved, as in the case of SP, for example. Individuals of

different generations can have protein sequences that are still functionally simi-

lar yet different in terms of the actual amino acid line up due to the associated

DNA-level mutations that take place in the process of evolution. Up to a cer-

tain extent, it is therefore possible to safely substitute certain amino acid residues

with other similar ones without much harming the function and thus affecting the

tertiary structure of a protein. The study of such functionally homologous blocks
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showing sequence variation has resulted in amino acid substitution matrices like

PAM (Eck & Dayhoff, 1966) and BLOSUM (Henikoff & Henikoff, 1992)

In Lokum, apart from the motifs discovered ab initio, I used the normalised

amino acid abundance rates in sequences. Amino acid composition has been

proven useful in localisation prediction (Klein et al., 1984; Nakai & Kanehisa,

1991; Reinhardt & Hubbard, 1998). There have been many machine learning

approaches incorporating amino acid frequency distributions alone or sometimes

accompanied with other features. Reinhardt & Hubbard (1998) suggested that

using amino acid composition would be advantageous over other signal-based

methods as it makes a protein less susceptible to possible annotation errors,

particularly in the 5’ regions where most targeting signals reside. However, by

using probabilistic representations such as Position Weight Matrices (PWMs) to

characterise such signals it is possible to tolerate slight sequential variations. This

argument becomes more valid especially for PWM positions having almost flat

distributions of amino acid probabilities, where any amino acid can be expected

to occupy those positions.

The third type of protein feature I used is predicted secondary transmembrane

structures. Amongst the transmembrane topology predicting programs such as

TopPred (Claros & von Heijne, 1994), SOSUI (Hirokawa et al., 1998), TMHMM

(Krogh et al., 2001) and HMMTOP (Tusnády & Simon, 2001), studies on evalu-

ation of these programs showed that TMHMM performed better than the rest of

the predictors. It has been reported that, in general all the tested programs can

easily misclassify the predominantly hydrophobic membrane spanning regions as

N-terminal signal peptides which also contain a similar strong hydrophobic re-
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gion (Lao et al., 2002; Müller et al., 2001). For the same reason, signal peptide

predictors may often misjudge transmembrane regions as signal peptides, too.

Chapter 5 summarises my efforts to develop a transmembrane topology predic-

tor that can be used in subcellular localisation prediction, but this HMM-based

tool didn’t perform as well as TMHMM. Therefore, in the end, in Lokum I used

transmembrane topology statistics based on TMHMM predictions.

3.1.2 Predicted classes

In this manuscript, I compare my ab initio method, Lokum (Localisation predic-

tion using motifs) with both PSORT and MultiLoc. Similarly to these programs,

Lokum predicts nine localisation categories for animal proteins: nucleus, cyto-

plasm, plasma membrane, extracellular space, mitochondrion, endoplasmic retic-

ulum, Golgi apparatus, lysosome, and peroxisome. Next, substituting lysosomes

with vacuolar proteins in the animal set, Lokum’s predictions are extended to

cover all major nine fungal protein localisations, and finally ten plant localisation

classes with the addition of chloroplast to the list of fungal classes.

3.2 Materials and methods

3.2.1 Localisation motif discovery with NestedMICA

I used NestedMICA, an ab initio DNA and protein motif discovery tool, to search

for localisation-specific motifs that can be used in classification. NestedMICA

employs a new Monte Carlo inference technique called nested sampling developed

by Skilling (see page 28). It was originally developed for finding DNA motifs, and

has been recently extended to find protein motifs (see Chapter 2 or Doḡruel et al.
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(2008)). It reports motifs in the form of Position Weight Matrices (PWMs) which

allow more flexibility for having alternative residues at certain positions than, for

example, motifs represented as regular expressions.

The target motif length interval parameter was given to be between 3 and

15 amino acids long in all the NestedMICA runs. Initially, the target motif

number was specified as 2, but I experimented with this program parameter for

each localisation class to cover as many potentially localisation-related motifs as

possible. NestedMICA was run on the full-length sequences, as well as 50 N- and

C-terminal amino acid chunks for each localisation dataset. The ER retention

signals (Figure 3.4f-g) and PTS1 (Figure 3.4j) were recovered when NestedMICA

was fed with the last (C-terminal) 50aa long regions.

For motif discovery purposes, I used nine datasets from pTarget (Guda &

Subramaniam, 2005), a subcellular localisation predictor based on searching more

than 2100 PFAM domains, after reducing the mutual sequence identities of the

datasets from 95% to a maximum of 40% by the CD-HIT algorithm (Li & Godzik,

2006). Table 3.1 lists the number of sequences before and after applying redun-

dancy reduction. For localisation categories that do not exist in pTarget, namely

for chloroplasts and vacuolar classes, I used the redundancy-reduced datasets of

MultiLoc (Höglund et al., 2006), a recent subcellular localisation prediction pro-

gram. The details for these two sequence sets can be seen in Table 3.4 where

Lokum predictions are compared with those of MultiLoc. I further decreased the

maximum mutual sequence identities of the MultiLoc datasets as well to 40%

before running NestedMICA.

NestedMICA uses complex background models which could be composed of
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Localisation Number of sequences Number of sequences
class in the original set after the filtering
Cytoplasmic 2062 946
ER 693 251
Extracellular 5688 1671
Golgi 221 141
Lysosome 174 66
Mitochondria 1698 711
Nuclear 3446 2014
Peroxisome 173 83
Plasma membrane 4162 1212

Table 3.1: Sequences used in the motif discovery phase. Each pTarget
(Guda & Subramaniam, 2005) dataset, originally having a sequence identity of
95%, was filtered to have a maximum mutual identity of 40% by using the CD-
HIT (Li & Godzik, 2006) clustering program. Vacuolar and chloroplast classes do
not exist in pTarget, so the corresponding datasets of MultiLoc (Höglund et al.,
2006) were used for these two categories (Table 3.4).

multiple subgroups of different amino acid probability distributions to better rep-

resent different sequence regions statistically inclined to feature certain amino acid

residues more frequently. As has been discussed in 2.3.1, training dedicated back-

ground models for each sequence dataset yields better performance than using a

generic background model. Therefore, for each type of localisation a specialised

NestedMICA background model was trained. The background model parameters

used for each localisation dataset are summarised in Table 3.2. NestedMICA was

run on each dataset with its default protein motif finding parameters.

3.2.2 Motif selection

NestedMICA does not report any significance measure. To decide if a reported

motif is significantly contributing to localisation classification, I scanned it across
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some test sequences to plot Receiver Operating Characteristic (ROC) curves, as

in Figures 3.7 and 3.9. A motif discovered from the plasma membrane set, for

example, was tested for its usefulness to discriminate between plasma membrane

sequences and every other class of sequences. By using equal number of sequences

of both types, in each binary classification based on only raw bit scores of a motif,

I classified sequences in two classes according to a range of motif score thresholds.

ROC curves were plotted using the sensitivity and specificity pairs obtained for

each threshold used. Motifs producing promising ROC curves in any possible

binary classification were then selected to be used in the general multi-class SVM.

Additionally, I performed a brute-force principle component analysis to assess

the contribution of each selected feature, or dimension of SVM vectors. I observed

Dataset MC-order Number of Mosaics
ER 0 5
Vacuolar 0 2
Lysosome 0 4
Golgi 0 5
Mitochondria 1 3
Chloroplast 0 5
Peroxisomal 0 6
Nuclear 1 4
Cytoplasmic 1 6
Extracellular 1 4
Plasma membrane 1 6

Table 3.2: Protein background parameters for datasets used in local-
isation motif discovery The table summarises the NestedMICA background
properties of the datasets where localisation related motifs were searched, in terms
of the used Markov-chain order and the number of mosaic classes in the back-
ground. These parameter values have been optimised after a systematic analysis
of each dataset as described in Chapter 2, Section 2.2.4.
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the effects of removing a single or multiple dimensions from the input vectors on

the overall performance. Features increasing the prediction performance upon

removal were not used in the final SVM. None of the amino acid frequency di-

mensions were necessary to remove. As an interesting example, PTS2 was among

the motifs I decided not to use in the end (see results).

3.2.3 Using Eponine with NestedMICA for multi-component
motif discovery

Some localisation signals can consist of multiple components separated by a dis-

tance. The best known such signal is the bipartite NLS (Dingwall & Laskey,

1991) which has been identified to have two core NLS parts that are separated by

at least 10 (Robbins et al., 1991) and around 12 (Schreiber et al., 1992) “spacer”

amino acids. NestedMICA currently does not deal with multi-component motifs.

I modified and extended the Eponine (Down & Hubbard, 2002) tool to discover

and represent such protein localisation signals.

Eponine was originally developed to find promoter models from mammalian

genomic DNA to represent multi-component, hiearchical motifs. Eponine de-

scribes these multi-component motifs as Eponine Anchored Sequence (EAS) mod-

els, where motifs are modeled around a fixed, or “anchor” point. It generates a

number of weight matrices corresponding to different sequence motifs which it

believes to be collectively involved in signaling a certain sequence characteristics.

Each motif within an Eponine motif set has a positional distribution relative to

a point of interest, such as a transcription start site (TSS) point. When scor-

ing sequences with an Eponine model, positional deviations of the best matching
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sub-motifs with respect to the means of the corresponding Gaussian distributions

are considered, too. Figure 3.1 shows an EAS which models mammalian TSS

regions, as reported by Down & Hubbard. It has been later shown in a PhD

dissertation that it can actually be used as a multi-purpose motif finder, where

it was specifically used in the detection of transcription termination sites (TTS)

(Ramadass, 2005). Figure 3.2 shows the discovered EAS model for mammalian

TTS regions.

Figure 3.1: Eponine TSS model. Blue triangle in Eponine Anchored Sequence
(EAS) models indicate the anchor point. Individual motif weight matrices are po-
sitioned with respect to the anchor. Gaussian distributions indicate the positional
distributions of the corresponding motif. This TSS model has been reproduced
from the original Eponine publication (Down & Hubbard, 2002).

Eponine was later extended for use in non-coding DNA region analysis with

the purpose of discovering overrepresented multi-component motifs conserved in

mouse and human intergenic regions Down & Hubbard (2004). This version

of Eponine describes motifs as Eponine Windowed Sequence (EWS) models, in

analogy to the previous model type. In EWS, unlike the first version, there
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Figure 3.2: Eponine TTS model. As in Figure 3.1, this mammalian tran-
scription termination site (TTS) model, too, is an example to EAS models, as
reported in Ramadass’s PhD thesis.

is no need to have a specific sequence position around which other sub motif

components are placed. Instead, this model classifies sequence regions based on

only their sequence contents within specific windows.

Eponine, which uses Biojava (BioJava, 2007) libraries, relies on a new machine

learning strategy called Relevance Vector Machines (RVMs) (Tipping, 2001) tak-

ing a set of suggested basis functions and then iteratively choosing certain com-

binations that would presumably yield a better performance at each step. To

this end, it optimises candidate PWMs and their parameters including width

and positional Gaussian distributions. It requires both a positive and a negative

training set to decide if the combination used at each step is better discriminating

the two classes. Because Eponine actually works by trying to discriminate data

points, it searches for motifs in the negative set, too. This can result in reported

models to have some “negative” motifs which have negative weights in the models

(they are drawn in blue colour in the graphical representations, as opposed to the

black “positive” motifs). Generally speaking, not having any negative motifs in

reported Eponine models trained using negative datasets that are obtained by
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shuffling the used positive samples indicates a successful training. More informa-

tion about how Eponine works can be found in the original Eponine publication

by Down & Hubbard (2002).

With the idea of employing Eponine to discover multi-component protein

motifs such as the bipartite nuclear motifs, I added protein sequence support

to Eponine. Having modified it to accept protein sequence input, I tested its

efficiency in the protein space. However, my tests generally indicated that the

parameter space was too large for Eponine to be directly used efficiently in multi-

component protein motif discovery (data not shown), which could be explained

by the fact that amino acid alphabet is 5 fold larger than the DNA one, having

high noise levels to be analysed with this tool. In most of these experiments, the

system never converged automatically, and it contained “negative” motifs (data

not shown).

In order to limit the problem size, I have come up with a hybrid, semi-guided,

two-step procedure involving the probabilistic motif discovery tool NestedMICA,

as well as the Eponine tool which can build multi-component hierarchical motif

models to describe complicated sequence structures with its machine learning

strategies. In the first step, I use NestedMICA to find some monopartite motifs,

then by expanding those sequence regions by around 20 amino acids from both

sides, where there is a significant match of a reported NestedMICA motif, I

construct a new dataset composed of sequence chunks that have an instance of

the used single-part motif. In the second phase, Eponine is run on this filtered

dataset containing the positive samples, and also a negative dataset which has

the same number of samples but not containing any motif hit.
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To preserve the general sequence characteristics of the positive set across the

negative set, sequence samples in the negative set are obtained from the same

protein dataset so as to prevent Eponine from finding motifs that could possibly

be reflecting potential compositional differences of the two sets.

Because I have sequence chunks with fixed lengths, each having a monopartite

motif at the middle, Eponine was run in the EAS mode. After all, the aim is

to find a multi-component motif model based on a reported NestedMICA motif

whose position is known. The anchor point was specified as the maximum scoring

point when scanned with the monopartite NestedMICA motif.

3.2.4 Using amino acid composition

It is possible to group amino acids according to their physical and chemical charac-

teristics. If there are similar amino acids, one question to ask is whether grouping

similar amino acid residues together, and then calculating the composition of the

‘labels’ of these groups rather than finding occurrence rates for each of the 20

amino acids could be a better approach or not. This brings two complications:

determining the optimal number of such groups, and deciding which amino acid

letters will be classified under which group. I used three amino acid groupings

suggested by Thomas & Dill (1996), found by an iterative procedure involving

“energy” scores calculated by iteration until they correctly discriminate a set of

known protein folds from decoy conformations. Table 3.3 shows two types of

amino acid groupings from Thomas & Dill (1996) and one grouping I formed

based on general amino acid characteristics.

In the SVM, I kept all other features, except that the composition values
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Group 1 Group 2 Group 3
1 VILMF VILMFWYA ILVM
2 HQN GPSTHQN TSNQ
3 C C EDKRH
4 ED ED WFYP
5 RK RK C
6 A GA
7 G
8 WY
9 P
10 ST

Table 3.3: Alternative amino acid groupings used in composition cal-
culation. Groups 1 & 2 are from Thomas & Dill (1996), while Group 3 was
constructed based on general amino acid properties.

were calculated according to these amino acid groups rather than using the 20

amino acids directly. The performances of the SVMs in the experiments were

evaluated by using 5-fold cross validation. All parameters of the kernel function

were optimised for each type of amino acid grouping I used, as in the optimisation

of the actual SVM I used (see the section below, 3.2.6).

It turned out that grouping amino acids according to their physical and chem-

ical properties is not particularly helpful (see page 95 in the Results section), so

instead, 20 values have been computed to demonstrate amino acid composition

statistics for each sequence.

3.2.5 Using transmembrane topology predictions

Apart from using amino acid composition and bit scores of motifs discovered

by NestedMICA and Eponine, predicted transmembrane topology statistics were

used as well to create Support Vector Machine feature vectors. Transmembrane
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region predictions were reported by the 2c version of the TMHMM transmem-

brane topology prediction program (Krogh et al., 2001). TMHMM was run in the

“short statistics” mode. Amongst the reported TMHMM statistics, I included

the following reported features:

• the number of predicted transmembrane helices

• the expected number of amino acids lying in transmembrane helices, con-

sidering the entire sequence

• the expected number of amino acids lying in transmembrane helices, con-

sidering only the first 60 N-terminal amino acids

Before using these reported numbers in the SVM, they were normalised with

respect to the length of the input sequence considered.

3.2.6 Training and testing of SVM

I used a popular open source implementation of SVM, libsvm (Chang & Lin,

2001), in the multi-class predictor Lokum. In the parameter optimisations carried

out to maximise the performance of each tried SVM application, libsvm performed

slightly better than the other popular SVM applications I tried, namely, SV M light

(Joachims, 1999) and BSVM (Hsu & Lin, 2002).

Eventually, a radial basis kernel function (RBF) was used in libsvm after

a systematic evaluation of a selection of kernel functions. In a similar way, I

performed a grid search to optimise the gamma (g) and cost (C) parameters of

this kernel function (Figure 3.3). The training and performance assessment of

the SVM involved a 5-fold cross validation procedure in which the data were
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divided into 5 portions; 4/5 of which were used for training and 1/5 for testing,

using a particular portion for testing at a time in each of the 5 cycles. All

protein scores coming from different features have been normalised to have a

minimum value of -1 and a maximum value of 1, before the SVM software was

run. The individual SVMs constructed to give an idea about the contributions

of motif scores, composition and structural information were trained with 4/5 of

the data. Kernel parameters of each SVM using a particular type of feature has

been optimised, too, before I tested the SVMs with the remaining 1/5 portion.

During kernel parameter optimisation, 3-fold cross validation was used for faster

analysis.

3.2.7 Evaluation of Lokum predictions

The reported overall accuracy is the arithmetic mean of the correctly classified

sequence percentage in each cross validation iteration. Sensitivity (SN), specificity

(SP) and Matthew’s Correlation Coefficient (MCC) (Matthews, 1975) values were

calculated for each predicted class according to the formulae given in Equations

2.3, 2.4 and 2.5, respectively.

3.3 Results

By using NestedMICA, I found many motifs from different localisation datasets

(see Appendix A for sequence logos of these motifs). Not all of these motifs ended

up being used in Lokum, however: discovered motifs were assessed for their dis-

criminative powers (see Section 3.2.2), and those not contributing to localisation

prediction were filtered out. Figure 3.4 shows some mono-partite localisation
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Figure 3.3: SVM kernel parameter optimisation. The plot shows an example
set of percent accuracy contours formed by different values of the gamma (g) and
cost (C) parameters (given in log2) during the optimisation of a radial-based
kernel function (RBF) used in the SVM. Different pairs of g and C may produce
similar percent accuracy rates, hence the countours. The specific example shown
is for the animal protein version of Lokum. Accuracies plotted have been rounded
to the nearest lower half values, i.e., an accuracy of 80.78% was considered in the
80.5% group of accuracies for plotting. Increasing the number of cross-validation
iterations can increase the perceived performance (see text for the actual percent
accuracies attained for different organisms using cross validation).
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signals I used in Lokum. These motifs, represented as sequence logos here, cor-

respond to some known localisation signals which are mostly characterised as

regular expressions in literature. Other longer, and probably mostly unanno-

tated, part-of-domain motifs that were used in Lokum can be found in Figure

3.5. Lokum prediction server is available online for public use at:

http://www.sanger.ac.uk/Software/analysis/lokum/

The discovered localisation related motifs that were used by Lokum can be

downloaded in NestedMICA’s XML format (.xms) from the same web page. See

Section 3.5 for more information on the Lokum web server.

3.3.1 Discovered monopartite motifs

As plasma membranes have a highly hydrophobic region within their transmem-

brane helices (Figure 3.4c), which is very similar to hydrophobic regions of signal

peptide sequences (Figure 3.4b), only the latter was used in the predictor. The

signal peptide (SP) that is found in most of the secretory pathway proteins can

be thought of consisting three parts: an N-terminal part (n-region) which can

vary in length and has a net positive charge, a central hydrophobic core (Figure

3.4b), and a c-region which features a “-3 -1” rule (von Heijne, 1986) indicating

the conserved positions with respect to the cleavage site (Figure 3.4a).

Figure 3.4k shows a good example of how NestedMICA can be efficiently

used in short functional protein site finding. The depicted 4-position PWM looks

quite similar to the cleavage site of a previously reported long chloroplast transit

peptide (cTP) sequence logo (Figure 3.6) which was obtained by aligning the

N-terminal regions of 62 chloroplast sequences with known cleavage site positions
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Name Motif

a) SP cleavage site

b) Hydrophobic part of SP

c) Transmembrane helix
    hydrophobic core

d) N-linked glycosylation (1)

e) N-linked glycosylation (2)

f) ER retention

g) C-terminal signal for
recycling into ER

h) Nuclear signals

i) Nuclear signals

j) Peroxisomal targeting
signal 1 (PTS1) 

k) Chloroplast transit peptide
(cTP) cleavage site

Figure 3.4: Some of the protein localisation related signals as recovered
by NestedMICA. Each motif has a maximum information content of 4.3 bits
per position. Amino acids are drawn in four colours: hydrophobic residues are
depicted in orange, hydrophilic and polar ones in green, acidic ones in pink, and
finally basic amino acids are in blue.
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# Dataset Motif Location
scanned

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

mitochondrial

plasma membrane

plasme membrane

lysosome

lysosome

golgi

peroxisomal

nuclear

vacuolar

vacuolar

vacuolar

vacuolar

vacuolar

vacuolar

vacuolar

chloroplast

chloroplast

chloroplast

Figure 3.5: Some of the unannotated signals, or part-of-domain motifs
reported by NestedMICA. These motifs were discovered from localisation
datasets given on the second column. Sometimes the motifs were scanned in
certain positions on protein sequences, rather than using the whole sequence
(last column).
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Figure 3.6: Manually constructed motifs that are used in the ChloroP
predictor. This figure has been reproduced from the chloroP paper by Emanuels-
son et al. (1999). The sequence logos were constructed from the 62 sequences used
in the cleavage site predictor (chloroP) development. The sequences are aligned
around their SWISS-PROT annotated cleavage site (top logo) and around the
predicted cleavage site (bottom logo). Note the similarity between the motif
shown in Figure 3.4k which is discovered automatically by NestedMICA and the
conserved cleavage region of the manually aligned ChloroP logo in this figure
(bottom).

that were kept fixed in the alignments (Emanuelsson et al., 1999).

3.3.1.1 Contribution of N-linked glycosylation signal

Investigating the 3-letter motifs reported (Figure 3.4d-e), I found that these mo-

tifs correspond to the N-linked glycosylation signal which is found in two forms:
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there is an Asparagine (N) residue in the first position followed by a non-conserved

position, while the third position, determining the sub-variant, is occupied by ei-

ther a Threonine (T) or a Serine (S) residue. Given that this is only a 3-letter

motif, the chances are a fraction of its contribution to predictions could be due

to some compositional effects. Namely, sequences having more number of the

amino acid letters N, T or S, for example, could get higher scores when scanned

with this motif, although, in reality they may not feature a glycosylation site.

To investigate if there is a significant contribution coming from this motif apart

from its compositional effects, I built artificial 3-letter motifs by inverting the

positions of residues in this motif. Figure 3.7 shows the ROC curves measur-

ing the classification power of the N-linked glycosylation motif, along with the

shuffled motifs which of course retain the same composition as the original. The

unshuffled original motif showed a better performance than all the other 5 possi-

ble variants, which indicates that using the N-linked glycosylation motifs is useful

in computational protein localisation predictions, although it may not be directly

involved in protein sorting processes as previous studies have demonstrated (see

introduction).

3.3.1.2 Alternative ER retrieval

When NestedMICA was run on a dataset containing C-terminal ER sequences of

length 20 aa, it reported the [KH]DEL motif shown in Figure 3.4f. When it was

asked to find two motifs from the same region, instead of reporting a different or

a weak motif (see the discussion on “null motifs” in Section 2.3.5), it reported

another motif that looks like the first one, with the first residue being quite weak.
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Figure 3.7: ROC plots showing the contribution of the N-linked glycosy-
lation motif in binary classification between nonredundant 509 plasma
membrane and 509 mitochondrial protein sequences taken from the
Multiloc datasets. The curves correspond to the sensitivity (x-axis) and speci-
ficity (y-axis) values of multiple classifications performed by using a range of
threshold scores. Each sequence was scored according to the best hit of the gly-
cosylation motif and also the best hits of each of the derived PWMs obtained by
shuffling the original motif’s positions. This way I can evaluate a signal’s perfor-
mance with respect to the contribution of composition which is conserved in all
the derived motifs. The red solid line shows the ROC for the original motif, while
the dashed lines represent the shuffled PWMs’ ROCs. Each motif’s consensus
sequence is shown in the legend, where the [TS] notation means there is either a
T or S at that position, while ‘x’ indicates an unconserved position.
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Figure 3.8: The two C-terminal ER retention motifs reported. The two
motifs differed in their first residues, which may indicate that while some ER
sequences have either K or H at position 1 of their C-terminal ER retention
signals, some of them simply have not conserved the first position of this signal.

Figure 3.8 shows both motifs reported in this second run. This may suggest that

while some sequences have either K or H at position 1 of this signal, in the others

there is no preferred amino acid residue for this position, and that for them this

signal is practically three amino acid longs.

NestedMICA has a useful feature which enables the user to find motifs other

than a set of user-supplied motifs that are ignored during the program’s motif

search if they are found in the input sequence. When I run NestedMICA on a

set of 20 amino acid long C-terminal ER amino acid sequence chunks by masking

the [KH]DEL PWM found before, I came across an Arginine (R) and Lysine

(K) rich motif that is shown in Figure 3.4g. While investigating some possible

explanations to this motif in the literature, I found that Pelham (1995) had

previously demonstrated that [KH]DEL is not the only C-terminus signal ER

proteins might possess: a similar mechanism recycles escaped ER membrane

proteins that have a loosely defined lysine (K)-rich, 4 amino acid long signal.
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This reported NestedMICA PWM which does not have a clear consensus sequence

could possibly be linked with this second ER retrieval mechanism. Including this

motif in the SVM had a slight contribution (< 1%) in the overall prediction

performance.

3.3.1.3 Scanning motifs in certain positions

Some localisation signals have specific positions in sequences. The ER retention

signal (Figure 3.4f), for example, is located at the far C-terminal end. Therefore,

while scanning and scoring sequences for the presence of such motifs, only specific

regions have been considered. In the case of the ER retention signal, this was

the last four residues on the C-terminus. The SP cleavage motif (Figure 3.4a)

was scanned in a window of 50 N-terminal amino acid positions. Similarly, the

hydrophobic-residue rich motif of Figure 3.4b has been scored only within the 20

N-terminal sequences. Scanning PWMs in specific sequence regions where they

are more likely to be present has a significant advantage over scanning them in

the entire sequences. Figure 3.9 demonstrates one such example of how well motif

b of Figure 3.4 can discriminate between redundancy reduced 841 extracellular

and 841 cytoplasmic proteins, where two ROC curves are plotted using scores

obtained by scanning the motif in whole-length sequences, and only in the first

(N-terminal) 40 amino acid region, respectively.

3.3.1.4 Scoring multiple instances of motifs

In constructing the SVM vectors, in addition to using the maximum motif score

corresponding to the sequence position where the best match occurs, I used the

second best scores for the core NLSs (Figure 3.4h-i), and also for the N-linked

89



3.3 Results

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

S
p

e
c
if
ic

it
y

Sensitivity

Figure 3.9: A ROC curve showing the effect of scanning sequences with
PWMs in certain segments only. The plot shows different sensitivity (x-axis)
and specificity (y-axis) values obtained for a range of score thresholds, indicating
how well extracellular proteins can be discriminated from cytoplasmic proteins by
using motif b of Figure 3.4. The red line is obtained when sequences were scored
using only chunks of 40 N-terminal amino acids, while the green line represents
the reduced performance attained when full-length sequences were scanned to
obtain the maximum score.
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glycosylation motifs (3.4 d-e). With this addition, I observed a significant increase

in the overall classification accuracy, suggesting that some of the identified signals

can possibly exist in more than a single region across a sequence. Other motifs

did not even slighly increase the overall accuracy when I additionally used their

second best scores.

3.3.2 Bipartite motif models

3.3.2.1 Bipartite NLS

As described in the methods section, I used a semi-guided procedure where I used

both Eponine and NestedMICA to characterise such motifs. Figure 3.10 shows

one possible model to describe a bipartite NLS signal. Generally, individual mo-

tif components do not have to have fixed positions in Eponine models; instead

in Eponine’s EAS models they are attributed with positional distributions with

respect to an anchor point as described in Section 3.2.3. These Gaussian distri-

butions reflect a motif’s occurrence frequency within an optimal sequence range.

The variations in the distributions shown on Figure 3.10 are quite minimal, indi-

cating that relative sub-motif positions in this particular NLS model usually vary

at most by a couple of residues.

In “nuclear versus others” type binary predictions made to assess the contri-

bution of individual nuclear motifs, this bipartite NLS motif by its own classified

correctly 141 nuclear sequences that the other mono-partite motifs shown in Fig-

ure 3.4h-i could not predict alone. Raw motif score thresholds used in these two-

way classifications were chosen such that they maximise the corresponding MCC

values computed to measure correct classification rate. The “others” sequence
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Figure 3.10: Schematic representation of the Eponine bipartite NLS
model. The constraint distributions, the sequence logos and the relative po-
sitions of the individual components of the model are shown with respect to an
anchor point (blue triangle). The central parts of the two main branches in the
model are separated by 13aa’s as shown. The model tolerates each sub-PWM to
change position within the depicted probabilistic distribution width.

set in this particular experiment was compiled from the remaining 8 localisation

datasets contributing in roughly equal numbers, and contained the same number

of sequences in the tested nuclear set, 836.

3.3.2.2 Bipartite PTS2

To find a bipartite Eponine model for PTS2 (see Section 3.1.1), I followed the

same procedure in modeling the bipartite NLS. However, it was more difficult for

NestedMICA to discover the individual components of this weak bipartite motif,

92



3.3 Results

each consisting of only a couple of adjacent residues, to enable me to perform the

sequence filtering step in the multi-component model finding methodology (see

methods) before running Eponine.

To investigate why NestedMICA failed to identify this motif or its components,

I scanned the PTS2 regular expression “[RK][LVI].....[HQ][LA]” (Section 3.1.1) in

157 peroxisomal sequences I used. PTS2 is normally regarded as an N-terminal

signal, but surprisingly I could locate only 4 hits within the first 50 amino acid

N-terminal regions of these sequences. There were only a total of 31 matches

of this regular expression when it was scanned in the whole-length sequences.

This low abundance rate could explain why this weak motif, having two not well

conserved amino acids on either side separated by 5 “spacers”, could not be found

by NestedMICA.

As an alternative, I ran Eponine on a dataset consisting of amino acid chunks

matching the regular expression [RK][LVI].....[HQ][LA] of this motif. However,

neither plotting ROCs to assess the obtained model’s discriminative power from

other types of proteins, nor the principle component analyses (see methods) I

have performed suggested any performance gain from using this model. This

indicates that this particular less conserved motif could be found in other classes

of proteins by chance, and therefore it is not disjunctive enough in localisation

prediction.

On the other hand, although the C-terminal PTS1 motif (having the short

but conserved “SKL” form) that is shown in Figure 3.4j was not present in the

majority of peroxisomal proteins, whenever a motif hit was found in the far C-

terminal region, its selectivity was high, namely, it was most of the time capable
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of discriminating a peroxisomal protein from another type.

3.3.3 Golgi N-terminal transmembrane topology predic-
tion statistics help in localisation prediction

Knowing the transmembrane topology of a protein contributes to its localisation

determination, since most of the cytoplasmic proteins will not contain as many

membrane-spanning regions as plasma membrane proteins, for example. I found

that even for different proteins of the secretory pathway where transmembrane

regions are abundant, this could be used as a distinguishing feature.

Golgi does not have an apparent targeting or retention signal, but I observed

that TMHMM, which may not distinguish between a signal peptide (SP) and

a transmembrane (TM) helix, predicted at least one TM helix for 91% of the

sequences in the Golgi dataset, 86% of which were predicted to be crossing the

membrane once, while only approximately half of the ER sequences had at least

one predicted TM helix. An overwhelming majority (97%) of plasma membrane

sequences were predicted to possess at least one TM helix, too, but these were

distributed across the sequence unlike in the Golgi sequences. Figure 3.11 shows

the expected number of amino acids among the first 60 N-terminal residues that

fall within a transmembrane region as reported by TMHMM for different protein

classes. We know that these N-terminal transmembrane domain predictions are

most likely signal peptide (SP) sequences responsible for targeting the majority

of secretory pathway proteins into the ER after their synthesis. Unlike the other

types of secretory pathway proteins, most of the Golgi proteins have their pre-

dicted membrane-spanning regions containing between 15 and 25 amino acids,
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with a strong length preference of around 20 amino acid residues. This obser-

vation is justified by a previous study that showed that changing the length of

the transmembrane domain of Golgi or plasma membrane proteins affected their

protein localisation (Munro, 1995). In short, when incorporated into the SVM as

described in Section 3.2.4 structural properties, such as the number and length of

predicted TM structures in the N-termini and as well as in full-length sequences,

clearly help Lokum in identifying protein localisation.

3.3.4 Effect of amino acid composition

In this work, in addition to using other protein features I use amino acid com-

position, too. However, this is not associated with the intention of by-passing

possible annotation errors with this choice; instead, it is mostly to make advan-

tage of the biological fact that proteins in a certain compartment can possess

similar macroscopic properties such as composition, possibly for better interact-

ing with their environment. As mentioned in the introduction section of this

chapter, many previous studies have used amino acid composition as a strong

sequence-level attribute that can be used as a distinguishing feature in subcellu-

lar localisation prediction. I used normalised amino acid frequencies to convey

this macro-molecular characteristics that would presumably be similar in proteins

sharing a common compartment. Proteins in different localisations can bear dif-

ferent predilections for certain amino acid residues, as the plots in Appendix B

demonstrate.

Using the first type of amino acid grouping suggested by Thomas & Dill (1996)

(see page 77 in the Methods for more detail), instead of the 20 amino acid letters
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Figure 3.11: The expected number of amino acids in the first 60 N-
terminal residues to be part of a transmembrane region. Plotted using
a bin size of 5, the normalised histogram shows the predicted number of amino
acids in the first 60 N-terminal residues lying within a transmembrane region
as reported by TMHMM. Distributions for different types of secretory pathway
proteins are shown. Plasma membrane proteins generally have a larger number
of membrane-spanning regions spread across their entire amino acid sequence
(see text), whereas Golgi sequences tended to have a single predicted TM helix
in their N-termini, demonstrating a strong total length preference of around 20
amino acids.

96



3.3 Results

in the calculation of composition, I was able to get a maximum correct prediction

rate of 77.61% from the SVM using 5-fold cross validation, which is about 4%

less than the result obtained from using all the amino acids in classifying the

animal proteins. In addition to using composition, I also kept the other features

like motif scores and transmembrane topology that I use in the general classifier.

This group has 10 classes of amino acids (Table 3.3). Similarly, when I used

the second type of amino acid grouping (3.3) from Thomas & Dill, where amino

acids are categorised in 5 subgroups, the mean of the accuracy in the 5-fold cross

validation tests was 76.54%. Finally, using the third type of grouping, also shown

in Table 3.3, in which I mapped the 20 amino acids into 6 classes based on general

physical and chemical properties of amino acids, I obtained an average correct

prediction percentage of 75.81, in predicting the 9 animal protein localisation

sets. These obtained figures are about 3-4% smaller than what I obtained by

calculating the composition of each of the 20 amino acids without any grouping.

3.3.5 Lokum’s performance

Table 3.4 summarises the performance of Lokum, in terms of the program’s clas-

sification sensitivity (SN) and specificity (SP). Also, Matthew’s Correlation Co-

efficient (MCC) values are given for Lokum, MultiLoc and PSORT in Table 3.5.

SN, SP and MCC values were computed as explained in Section 3.2.7 on page

80. Individual cross validation sets used in the MultiLoc study were not available

to enable me to perform a direct comparison. However, since Lokum is trained

and evaluated using the same datasets of MultiLoc (Höglund et al., 2006), for

comparison I reproduced MCCs in the table for both MultiLoc and PSORT from
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the MultiLoc paper where the latter programs are compared. For the SN and SP

values of MultiLoc and PSORT please refer to the same article by Höglund et al.

(unfortunately, this paper does not mention SN, SP and MCC values for all plant

localisations).

3.3.6 Contributions of different features

To better understand the individual contributions of using motifs, composition

and structural information, I stratified the prediction system by using only a

particular type of feature at a time. I counted the number of correctly predicted

protein sequences by running 3 different SVM predictors that use only motifs, only

amino acid composition, and finally only transmembrane structure information.

Figure 3.12 shows the proteins that were independently classified correctly by a

single predictor, by any two, or by three of them. The Venn diagram tells us

that about a third of the correct predictions can be achieved by either using only

motifs or by composition alone. This indicates that the amino acid composition

can be thought of as partially representing some of the motif information and vice

versa. 13.7% of the predicted proteins can be said to be the easiest to predict,

because they could be classified by any of the SVMs. More than a quarter of the

proteins were predicted successfully only by the SVM using motif scores. The

SVM that was trained only with structural information had the least number of

correct predictions (3.8%) that the other predictors could not correctly classify.
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Version Localisation Total sequence Lokum performance
SN SP MCC

Animal plasma membrane 1238 0.85 0.95 0.86
mitochondrial 510 0.76 0.73 0.71
nuclear 837 0.79 0.74 0.72
cytoplasmic 1411 0.75 0.82 0.70
ER 198 0.79 0.68 0.72
extracellular 843 0.87 0.90 0.85
Golgi 150 0.86 0.71 0.77
lysosome 103 0.88 0.57 0.71
peroxisomal 157 0.77 0.30 0.46

Fungal plasma membrane 1238 0.86 0.95 0.86
mitochondrial 510 0.75 0.72 0.70
nuclear 837 0.77 0.75 0.70
cytoplasmic 1411 0.75 0.81 0.70
ER 198 0.82 0.68 0.73
extracellular 843 0.85 0.90 0.85
Golgi 150 0.84 0.71 0.77
vacuolar 63 0.86 0.24 0.45
peroxisomal 157 0.75 0.30 0.46

Plants chloroplast 449 0.76 0.56 0.62
cytoplasmic 1411 0.59 0.79 0.56
plasma membrane 1238 0.86 0.95 0.86
mitochondrial 510 0.69 0.66 0.63
nuclear 837 0.75 0.73 0.69
ER 198 0.81 0.67 0.73
extracellular 843 0.84 0.88 0.83
Golgi 150 0.83 0.72 0.77
vacuolar 63 0.86 0.24 0.45
peroxisomal 157 0.79 0.30 0.47

Table 3.4: Prediction performance summary for Lokum. Sensitivity (SN)
and specificity (SP) and Matthew’s Correlation Coefficient (MCC) values are
given for Lokum. Lokum was trained and evaluated by 5-fold cross validation
using the MultiLoc (Höglund et al., 2006) datasets.
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Version Localisation Lokum MultiLoc PSORT
MCC Correct% MCC Correct% MCC Correct%

Animal p. membrane 0.86 81.73 0.76 74.6 0.73 59.9
mitochondrial 0.71 0.83 0.58
nuclear 0.72 0.73 0.54
cytoplasmic 0.70 0.68 0.43
ER 0.72 0.60 0.11
extracellular 0.85 0.77 0.72
Golgi 0.77 0.53 0.04
lysosome 0.71 0.48 0.18
peroxisomal 0.46 0.44 0.25

Fungal p. membrane 0.86 81.67 0.86 74.9 0.78 53.9
mitochondrial 0.70 0.88 0.58
nuclear 0.70 0.73 0.54
cytoplasmic 0.70 0.69 0.43
ER 0.73 0.60 0.13
extracellular 0.85 0.73 0.68
Golgi 0.77 0.60 0.04
vacuolar 0.45 0.42 0.08
peroxisomal 0.46 0.43 0.25

Plants chloroplast 0.62 78.92 0.85 74.6 0.50 57.5
cytoplasmic 0.56 0.70 0.42
p. membrane 0.86
mitochondrial 0.63
nuclear 0.69
ER 0.73
extracellular 0.83
Golgi 0.77
vacuolar 0.45
peroxisomal 0.47

Table 3.5: MCCs and correct prediction rates for Lokum, MultiLoc and
PSORT. The shown MCCs for MultiLoc and PSORT were taken from Table 3
of the MultiLoc article (data not available for all plant classes).
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Figure 3.12: Individual contributions of features used in the SVM. This
Venn diagram shows the percentage of proteins that could be correctly predicted
by 3 individual SVM systems designed to use only motif scores, only amino acid
composition, or only transmembrane statistics, respectively. The provided figures
sum up to 100%, because only the distribution of proteins classified correctly
at least by one predictor is given. The overlapping region between “Motifs”
and “Composition” for example, indicates that amongst the proteins that could
be predicted by at least one predictor, 32.3% of the “labeled” proteins could
be successfully classified independently both by an SVM using only motif and
another one using only composition information.
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3.3.7 Contribution of disordered region predictions

Protein disorder regions are described and discussed in Chapter 4 (page 111)

where I evaluated the use of disorder region statistics for use in sub-organelle

localisation prediction. It has been suggested that inferring function improves

when using patterns of native disorder in proteins (Lobley et al., 2007). In order

to assess the possible contribution of disorder prediction: i) I scanned the dis-

covered localisation-related motifs in the predicted disorder regions to obtain a

second set of motif scores, and ii) I considered the predicted disorder scores of

sequence regions where a particular NestedMICA motif has a maximum score.

Disorder region predictions were made using the RONN (Yang et al., 2005) dis-

order prediction program (for the description of the software and methodology

please see the dedicated Chapter 4).

However, adding these extra score sets (both at the same time or individually)

to the SVM vectors resulted in no significant performance increase in the overall

localisation prediction. After trying individual scores from both categories in

different combinations, as performed by a systematic analysis, only a negligible

maximum gain of around 0.01% could be achieved.

Using protein disorder predictions did not improve the overall prediction for

the major localisation categories. This could be due to a number of reasons.

Proteins can use different means to reach the same destination. Targeting into

major cellular localisations can be achieved through general characteristics such

as having a certain tendency in amino acid composition, which makes the disorder

region statistics less effective for general localisation prediction. Nevertheless, as
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shown in Chapter 4, knowing disorder regions could be useful for distinguishing

proteins localised in different specific sub-organelle compartments.

3.4 Discussions

Computational prediction of protein localisation from amino acid sequence only

is a challenging task not only because of some possible limitations in the method-

ologies, or even because of the lack of enough knowledge about the underlying

biology. We know that proteins can migrate from a certain compartment to

another, which does not permit a “one protein one localisation” correlation to

always hold true. Besides, not all proteins have targeting signals, some are ‘piggy-

backed’ and transported by other proteins which have the necessary signals (Wu

et al., 2000). Also, not all proteins from the same localisation categories show

significant similarities in their general properties such as amino acid composi-

tion to enable one to make near-perfect predictions by only using these statistics.

Therefore, one key factor in getting reasonable prediction accuracies lies in using

as much relevant information as possible. When protein features such as locali-

sation motifs, amino acid composition, or structural information etc. are used in

combination, perhaps each bit would be characterising a certain number of pro-

tein classes better, but also their synergy would result in better overall prediction

quality by possibly reducing some of the false positive predictions that individual

feature components would otherwise produce.

Motifs like the N-linked glycosylation signal, one of the oldest known protein

signals (Prosite id: PDOC00001), could be of great help in localisation prediction,

even though they may not be directly involved in protein targeting. The N-
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linked glycosylation process which normally takes place in the ER lumen aids us

in predicting secretory pathway proteins when combined with the extra motifs

found.

Representing motifs as PWMs rather than regular expressions is advanta-

geous. As mentioned in the introduction, there are two major types of peroxiso-

mal targeting signals (PTS). The first identified PTS is the C-terminal SKL-type

signal. However, in some cases, it can take the form of a similar tripeptide, namely

“KKL” (Takada et al., 1990) and in some other eukaryotes it could be “SQL”

(Purdue et al., 1992), “NKL” (Lumb et al., 1994; Oda et al., 1987), or “SSL”

(Motley et al., 1995). Existence of many such possible variants clearly indicates

that localisation motifs represented in regular expressions cannot be as efficient

as probabilistic representations. PWMs, such as the PTS1 motif shown in Figure

3.4j, can potentially tolerate slightly differing forms by allowing a certain degree

of sequence variation due to their probabilistic construction.

Although the ab initio Lokum does not use any database look ups to detect

proteins matching a certain Prosite or NLSdb motif, its performance in assigning

eukaryotic proteins into the correct localisation category was better for most of the

localisation categories than the other multi-class predictors compared. I showed

that by combining features including motifs represented as PWMs, amino acid

composition and transmembrane topology statistics, one can get very reasonable

(as high as 81%) prediction accuracies. As I demonstrated with the glycosylation

motif example, protein motifs that are not directly involved in protein sorting

could be used as secondary signals, too. In some cases, composition can substitute

the information coming from a signal, but most of the time using direct biological

104



3.5 Availability

localisation signals along with composition and structure statistics proved to be

more efficient.

By leaving out one sequence at a time and training a dedicated model by using

the rest of the sequences to predict the localisation of that sequence, I was able to

get an average correct prediction rate of 81.77% after repeating this procedure for

each sequence in the entire dataset. This accuracy rate obtained by this “jack-

knifing” methodology, however, only marginally differs from the reported correct

prediction percentage of 81.73 (Table 3.5), which is obtained from the 5-cross

validation tests done for the animals category. On the other hand, the overall

performance was calculated to be 79.5%, 80.5%, and 81.1% when I used, 2, 3

and finally 4-fold cross validation, respectively. This indicates that using 5-cross

validation was adequate and that there is no need to further increase the number

of cross validation test sets.

3.5 Availability

The Lokum protein subcellular localisation predictor is available for public use

through a web server which can be reached at:

http://www.sanger.ac.uk/Software/analysis/lokum/

It allows users to either paste some sequences into a text box or upload a file

of protein sequences in fasta format. A screenshot of the server can be seen in

Figure 3.13. Users can specify the Lokum prediction mode (animals, plants or

fungi) that they want to use for their sequences.

I wrote the public Lokum predictor as a Java servlet. It runs on a “Resin”

dynamic web server on a Linux cluster, but it has been also tested on different
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Figure 3.13: Lokum prediction service hosted by the Wellcome Trust
Sanger Institute. Sequences must be uploaded either as a single fasta file, or
entered into the text box in fasta format. Predictions are displayed in a separate
page, following the submission of data.

platforms and using Tomcat, another popular web server. The servlet is based

on the same command line version of Lokum, and also the same trained SVM

classification model files. However, the prediction server works with a Java imple-

mentation of libsvm version 2.85, instead of the commonly used version written

in the C programming language. No significant difference was observed between

the predictions made by the two Lokum versions.

Interested users can download the protein motifs used in Lokum in Nested-

MICA’s XML format (XMS) from the Lokum home page.
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