
Chapter 4

Discriminating nucleolar proteins
from nuclear proteins: is it
possible?

4.1 Introduction

In Lokum (Chapter 3), I tried to predict the conventional eukaryotic protein local-

isation categories which usually fall into one of the general localisation groups of

cell organelles, cell membrane or extracellular space. Here, I investigate the pos-

sibility of fine tuning some of these predictions by trying to predict sub-organelle

categories. As an example, I consider nuclear proteins, and try to classify proteins

in this category under two labels: nuclear and nucleolar.

Proteins destined to the nucleus have to pass through the nuclear pores (Fig-

ure 4.1 1). Nuclear pores could be imagined as holes piercing the impenetrable,

hard nuclear envelope which, unlike the ER or plasma membrane, does not per-

mit proteins to cross the membrane of the organelle directly regardless of whether

1The image, originally designed by Mike Jones (http://en.wikipedia.org/wiki/User:Adenosine)
has been reproduced here under the “Attribution-Share Alike 2.5 Generic” license of Creative
Commons.
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4.1 Introduction

they contain membrane spanning regions. This makes the translocation of nu-

clear proteins different from secretory pathway proteins, including that they do

not contain any cleavable targeting signals. Nuclear localisation signals (NLS),

which mediate the import of proteins into the nucleus, could be anywhere on

the sequence, unlike the C-terminal ER retention signal (see Section 3.3.1.2 and

Figure 3.8), for instance. They comprise short sequences of basic amino acids

like Arginine (R) and Lysine (K) (see Figures 3.4h-i and A.1), and form short

binding sites for recognition by other molecules. In 1986, Goldfarb et al. showed

that mutations in the NLSs can impair nuclear localisation, but also, non-nuclear

proteins can be targeted into the nucleus if artificial NLSs were added to them.

Previously, other subnuclear localisation compartments have been proposed

for where RNA splicing related proteins (“nuclear speckles”) (Li & Bingham,

1991) accumulate, and also for small nuclear ribonucleoprotein (snRNP) com-

ponents (“foci”) (Chang & Lin, 2001), but the major and most studied subnu-

clear compartment is the nucleolus. There is experimental evidence suggesting

a sequence-dependent targeting into the nucleolus by means of Nucleolar Local-

isation Signals (NOSs) (Dang & Lee, 1989) which are similar in composition to

NLSs. Because nucleolar proteins have to first pass through the nuclear pores

just like any other nuclear proteins, it is quite reasonable to expect them to have

similar sort of signals that mediate their passages. Furthermore, having no mem-

brane around the nucleoli may suggest that localisation in nucleoli could actually

be achieved through mainly molecular binding. In fact, in an experimental study

some nucleolar proteins in mouse have been reported to carry only an NLS but

no identifiable NOS (Maeda et al., 1992). Therefore in addition to the presence
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4.1 Introduction

Figure 4.1: Nuclear pore. This schematic representation shows the nucleus,
its nuclear envelope and a cross-section view of nuclear pores. Nuclear envelop
is made of double membranes enclosing the genetic material in eukaryotic cells.
Nuclear pores, crossing the nuclear envelop, allow water-soluble molecules to cross
the nuclear envelope. Labels shown represent: 1 - Nuclear Envelope, 2 - Outer
Ring, 3 - Spokes, 4 - Basket, and 5 - Filaments.
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4.1 Introduction

of NOSs, general protein properties such as amino acid composition could be

important in nucleolar localisation.

The prediction of nuclear proteins is important because there are a lot of nu-

clear proteins in the cell, and difficult because the NLSs vary in sequence (Cokol

et al., 2000) and do not have specific positions. Prediction of nuclear proteins has

probably begun with the multi-class localisation predictor PSORT (Nakai & Hor-

ton, 1999) which is based on many “if-then” type rules that comprise many biolog-

ical features including discovered and known localisation signals (for a comparison

of PSORT with Lokum see page 97). One of the more recent nuclear sequence pre-

diction methods is PredictNLS (Cokol et al., 2000). It predicts nuclear proteins

by extrapolating from known NLSs which are listed in a specific database called

NLSdb (Nair et al., 2003). Initially, NLSdb had 114 experimentally determined

NLSs that were obtained through an extensive literature search, but using ‘in sil-

ico mutagenesis’ this set was extended to 308 experimental and potential NLSs.

PredictNLS is now part of a more general classifier, LOCtarget (Nair & Rost,

2004) that uses 4 specialised predictor programs: apart from NLSdb matches, it

uses sequence homology (LOChom), SWISS-PROT keywords that are strongly

correlated with localisation (LOCkey), and hierarchical support vector machines

(LOCnet). Another dedicated nuclear sequence predictor, NucPred (Brameier

et al., 2007), has been recently developed to predict proteins that spend at least

some time in the nucleus. NucPred is based on regular expression matching of

NLSs and multiple program classifiers induced by genetic programming, and has

similar overall prediction sensitivity and specificity with PSORT and PredictNLS.

Predictors involving nuclear proteins also include NetNES (la Cour et al., 2004)
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4.1 Introduction

that predicts nuclear export signal containing proteins.

While there are several dedicated tools that can directly predict or help identi-

fying nuclear proteins, no particular prediction algorithm has been available that

can predict proteins destined into the nucleolus or that can distinguish nucleolar

proteins from nuclear proteins. Nevertheless, there has been studies to derive a

knowledge-base that could be useful in predicting nucleolar proteins (Leung et al.,

2003), which generally suggested the use of amino acid and peptide composition

and sequence homology information across different species.

4.1.1 Disordered protein regions

Natively unstructured regions are a common feature of eukaryotic proteins and

many proteins have such regions with no well-defined 3-D structures in their

native states (Dunker et al., 2000). These natively unfolded protein regions could

be involved in molecular recognition, and they can occasionally take regular forms

when functioning. The first evidence came from a study carried out by Alber

et al. in 1983, where it was concluded that the structure analysis of a complex,

triose phosphate isomerase-substrate, had shown that a mobile region of 10 amino

acids becomes ordered when an associated ligand binds. Disordered-to-ordered

transition patterns can allow natively unstructured, related proteins to make

formations (Weinreb et al., 1996). However, these type of interactions involving

disordered regions are not limited to only protein-protein interactions, and could

be observed in protein-dna, enzyme-DNA, receptor-ligand interactions as well

(Huber, 1979).
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4.1 Introduction

Dunker et al. (2000); Wright & Dyson (1999) showed that intrinsically un-

structured protein regions are important regarding protein function. Lobley et al.

(2007) directly used predicted disorder patterns successfully to improve protein

function prediction. In Lokum, however, using disorder prediction did not im-

prove the prediction of general localisation categories (see 3.3.7), so in this chap-

ter, I try to address the potential contribution of protein disorder in distinguishing

proteins localisated in nucleoli from the rest of the other nuclear proteins, where

I also used the features used in Lokum (Chapter 3).

4.1.2 Protein disorder region prediction

PONDR R© is one of the best-known tools to predict disorder (Garner et al., 1999;

Li et al., 1999; Radivojac et al., 2003, 2004; Romero et al., 2004). It uses pattern

recognition techniques employing a set of attributes which are based on biological

knowledge. Examples of other disorder software are FoldIndex (Prilusky et al.,

2005), DisEMBL (Linding et al., 2003a), GlobPlot 2 (Linding et al., 2003b),

DISOPRED2 (Ward et al., 2004), and Prelink (Coeytaux & Poupon, 2005).

The protein disorder prediction category has been introduced in the fifth

“Critical assessment of methods of protein structure prediction” (CASP) com-

petition (Cozzetto et al., 2005, 2007; Soro & Tramontano, 2005; Valencia, 2005),

with the participation of the mentioned programs and several others.

A program developed in 2005, RONN, has been recently compared with most

of the notable CASP participants in the disorder category (Yang et al., 2005)

on an official CASP assessment dataset which contains 159 proteins sequences

with experimentally determined disorder regions. Table 4.1 summarises the per-
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4.2 Materials and methods

formances of the 8 compared programs, with DisEMBL being compared using

three different versions of the program. In addition to the traditional assessment

measures sensitivity (Equation 2.3), specificity (Equation 2.4) and Matthew’s

Correlation Coefficient (Equation 2.5), in CASP, a new weighted score (CASP-S)

(Jin & Dunbrack, 2005) was used which was defined as:

CASP−S =
100(wTP TP + wFP FP + wTNTN + wFNFN)

TP + FP + TN + FN
(4.1)

where wTP stands for the number of disordered residues divided by the total

number of residues, and so on. (wFN was taken as −wTP and similarly, wFP =

−wTN).

Also, the developers of RONN added yet another measure in their performance

assessment, probability excess:

Prob. excess =
TN TP − FN FP

(FN + TP ) + (TN + FP )
(4.2)

Because of its reported reasonably good performance over the other predic-

tors and availability as a stand-alone application I chose RONN for performing

disordered protein region predictions.

4.2 Materials and methods

4.2.1 Datasets

The first proteins annotated as “nucleolar” came from mass-spectrometry stud-

ies (Andersen et al., 2002, 2005; Scherl et al., 2002). Recently, the list of nu-

cleolar proteins, which have been previously identified mainly through mass-
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spectromentry, has been extended by a protein-protein interactions approach

(Hinsby et al., 2006).

The nuclear and nucleolar protein sequences used in this study were down-

loaded from the LOCATE mouse protein sequence database (Fink et al., 2006).

LOCATE is a well curated, web-accessible database containing descriptions for

the membrane organisation and subcellular localisation of FANTOM proteins.

The FANTOM (Functional Annotation of the mouse) consortium (Carninci et al.,

2005; Maeda et al., 2006) aims at providing the ultimate characterization of the

mouse transcriptome. Only full length proteins from the FANTOM-3 project are

present in LOCATE.

In LOCATE, I only considered protein annotations that are verified either by

experiments or from literature. Among these, I picked nuclear (GO id:00056341)

1http://www.ebi.ac.uk/ego/GSearch?query=0005634&mode=id&ontology=component

Method SN SP MCC Casp-S Prob excess
RONN 0.603 0.878 0.395 9.33 0.481
DISOPRED2 0.405 0.972 0.470 7.81 0.377
PONDR R© 0.557 0.816 0.278 7.22 0.373
DisEMBL(hot) 0.492 0.840 0.260 6.43 0.332
DisEMBL(465) 0.334 0.981 0.437 6.10 0.315
FoldIndex 0.488 0.811 0.224 5.79 0.299
PreLink 0.237 0.947 0.219 3.55 0.183
GlobProt 0.372 0.811 0.140 3.54 0.183
DisEMBL(coils) 0.740 0.424 0.104 3.19 0.165

Table 4.1: Performance measures calculated from the blind testing of
nine disorder prediction methods against the main blind test set of 80
proteins of CASP 6. The performance measures are sensitivity (SN), specificity
(SP), Matthews correlation coefficient (MCC), CASP S-score and probability
excess (Prob. excess). This table is re-produced from Yang et al. (2005).
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and nucleolar (GO id:00057301) protein sequences. I removed sequences anno-

tated as both nuclear and cytoplasmic etc. to have two datasets at the end, one

consisting of nucleolar proteins and another one consisting of only nuclear pro-

teins. Some nucleolar proteins could also be annotated as nuclear, as they can

spend some time in the nucleus, too. The final list of protein IDs used in this

study can be found in Appendix C.

Using the CD-HIT (Li & Godzik, 2006) sequence clustering program to reduce

the maximum sequence identity between any two sequences to 30%, the nuclear

mouse protein dataset downloaded from LOCATE was reduced to 386 sequences

from an initial number of 715. Similarly, the nucleolar set which initially had

815 sequences was filtered to allow a maximum identity of 30% between any two

sequences at the end, which resulted in 397 sequences. One third of each dataset

was reserved for testing purposes, while the remaining sequences were used in

motif discovery.

Protein-capable NestedMICA (Doḡruel et al., 2008) was run on randomly cho-

sen 257 nuclear and 265 nucleolar sequences, leaving the rest of the sequences in

the datasets for test purposes. In order to detect possible motifs at both termini,

N-terminal amino acid chunks of length 20 were compiled from the nucleolar and

nuclear sequences. Similarly, two more datasets were produced which contained

20aa C-terminal sequences from both types. NestedMICA has been run on the

nucleolar and nuclear training datasets containing whole-length sequences, 20

N-terminal amino acid chunks, and finally 20 C-terminal peptides.

1http://www.ebi.ac.uk/ego/GSearch?query=0005730&mode=id&ontology=component
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4.2.2 Training background models for nucleolar and nu-
clear datasets

Two NestedMICA background models were trained using a similar strategy de-

scribed in the background model related sections on pages 35 and 41. However,

particularly the nuclear motifs (shown in Figure 4.2) obtained using these back-

ground models were quite short and surprisingly not rich in residues like Lysine

or Arginine which are expected to be abundant in the core parts of the NLSs.

Nucleolar motifs were quite short, too, and they only possessed strong Arginine

residues but no Lysines (Figure 4.2). This could have resulted because of using

relatively simple, zero order background models which are trained on the rela-

tively small number of sequences in these two datasets (in Chapter 2 I showed

that using order-1 background models would be better than using an order-0

background, but if there is enough data to train it).

An alternative, third background model was trained using 438 redundancy

reduced cytoplasmic sequences (see page 55). Nuclear proteins are transferred

into the nucleus by the means of some molecules binding to their NLSs. Therefore,

as previous studies have shown, for example by Goldfarb et al. (1986), if these

signals are altered it is likely that a protein will remain in the cytoplasm and

will not be able to be carried into the nucleus. Thus, the uninteresting, non-

localisation segments of nuclear and other sub-nuclear proteins could best be

represented by a cytoplasmic background. Indeed, when I ran NestedMICA with

this first order cytoplasmic background model consisting of 4 mosaic classes on

the individual nuclear and nucleolar protein datasets that have been created, the

results were much more promising. Motifs obtained from each background model
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Localisation Sequence
segment Motif 

a) Nucleolar

b) Nuclear

c) Nucleolar

d) Nuclear

e) Nucleolar

f) Nuclear

N-terminal

N-terminal

Entire

Entire

C-terminal

C-terminal

Figure 4.2: NestedMICA motifs discovered from nuclear and nucleolar
datasets. NestedMICA was run on two sets: nuclear and nucleolar datasets.
In each run, it used a dedicated background model trained with the correspond-
ing dataset. Figure 4.4 shows a set of “better motifs” discovered using another
(cytoplasmic) background model trained with more sequences.
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4.2 Materials and methods

were assessed in terms of their performances to separate nuclear and cytoplasmic

proteins, and it was actually when I used this cytoplasmic background model

that they better discriminated the two classes, rather than when I tried the two

background models trained on nuclear and nucleolar sequences.

4.2.3 Running RONN

The RONN protein disordered prediction program (Yang et al., 2005) was run

with the “short output” command line options on a Linux server. BioJava scripts

were written to parse the output of the program and perform the statistics. A

score of greater than 0.5 was considered as a disordered prediction, as recom-

mended in the RONN manual. Figure 4.3 shows an example plot drawn according

to RONN predictions from a nuclear sequence, where RONN produces disorder

scores for each amino acid position. RONN version 3 was obtained by personal

communication with the program’s developers.

4.2.4 Training the SVM

As in previous chapters, a popular Support Vector Machine (SVM) implementa-

tion, libsvm (Chang & Lin, 2001), was used in the task of classifying nuclear and

nucleolar proteins. 10-fold cross validation was applied, and I used a radial-basis

kernel function whose gamma (g) and C penalty parameters were systematically

optimised.
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Figure 4.3: A protein disordered region plot based on RONN predic-
tions. The plot shows the disorder score of a nuclear sequence of length 459, as
an example. RONN produces a score between 0 and 1 for every single amino acid
position across a sequence. A score above 0.5 indicates a disordered residue or a
region. As the plot illustrates, a sequence can have multiple disordered regions
(5 in this example, with a strong disordered sequence chunk at the C-terminal
end).

119
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4.3 Results

Nucleolar proteins possess NOSs (Dang & Lee, 1989) to enter into the nucleus

from the cytoplasm. Figure 4.4 shows some of the nuclear and nucleolar protein

motifs reported by NestedMICA. NestedMICA was run on 3 datasets for each

localisation class: a dataset consisting of full-length sequences, and two datasets

of 20aa N- and C-terminal sequence chunks, respectively. The most striking

difference between the nuclear and nucleolar sequence motifs is how nucleolar

motifs are enriched with Arginine (R) and Lysine (K) amino acid letters over

the nuclear motifs discovered in the N- and C-terminal regions. NLSs have been

known not to have specific positions and can be located across the entire primary

structures of nuclear proteins; however, these results suggest the possibility that

nucleolar proteins, unlike nuclear proteins, have stronger NLS-like motifs (NOSs)

in their both N and C termini. We scanned and scored both the N- and C-terminal

nucleolar motifs (Figure 4.4) in the corresponding 20 aa N or C terminal regions

of both nucleolar and nuclear proteins to see if we can observe any difference in

the score distributions. The highest scores obtained from these nucleolar motifs

both in the nuclear and nucleolar sequences are plotted in Figure 4.5.

By using a simple SVM consisting of input vectors formed with only the scores

of the N- and C-terminal motifs (4 in total) shown in Figure 4.4, it was possible

to classify 65.4% of the proteins correctly into the two classes of nuclear and

nucleolar localisations. Adding amino acid composition to the four motif scores,

I was able to increase the performance up to 74.5%. Using only the 20-dimensional

amino acid composition rates was sufficient to predict 73.5% proteins correctly.
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Localisation Sequence
segment Motif 

a) Nucleolar

b) Nuclear

c) Nucleolar

d) Nuclear

e) Nucleolar

f) Nuclear

N-terminal

N-terminal

Entire

Entire

C-terminal

C-terminal

Figure 4.4: A selection of the protein motifs recovered by NestedMICA
from a set of nuclear and a set of nucleolar proteins, using a cyto-
plasmic background. N-terminal motifs shown were reported from the first 20
N-terminal amino acid regions. Similarly, the C-terminal motifs were searched
within the last 20 amino acid regions. Other motifs indicated by the “Entire”
segment were discovered when full length sequences were used.
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Figure 4.5: Score histograms for N- and C-terminal nucleolar motifs.
Both nuclear and nucleolar sequences were scanned using the N-terminal nucle-
olar motif (Figure 4.4a). Similarly, the C-terminal nucleolar motif (Figure 4.4e)
was scored in both types of datasets. Scores shown on the x-axis correspond to
the best matches within the relevant 20 amino acid long N or C terminal chunks.
The C-terminal motif generated Gaussian-like distributions when scored in the
last 20aa C-terminal regions, however, this motif is clearly more abundant in the
nucleolar C-termini. The other two curves indicate that the N-terminal regions
are less abundant in terms of the N-terminal nucleolar motif, but still, this mo-
tif was less frequent in the N-termini of nuclear proteins than the N-termini of
proteins localised in the nucleoli.
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Using transmembrane (TM) statistics reported by TMHMM (Krogh et al.,

2001) (reported “features” are summarised in 3.2.5) improved the prediction ac-

curacy in Lokum. Furthermore, nuclear proteins, in theory, should posses a larger

number of TM helices, compared to the nucleolar sequences which are confined

to the centre of the nucleus and less likely to have TM helices. In fact, running

THMMM on the entire sequences in both datasets to compare them in terms of

their number of predicted residues that possibly lie in a TM helix (Figure 4.6)

revealed that this feature can significantly improve predictions. With the addi-

tion of the two more types of predicted TM statistics mentioned in Section 3.2.5,

the correct prediction rate increased to 77.14%. When I used the three TMHMM

statistics alone, the correct prediction rate was 64.4%.

Finally, after adding the bipartite NLS motif (Figure 3.10, page 92) that

we obtained using the combinatorial approach involving both NestedMICA and

Eponine, the overall correct classification rate increased to as high as 78.42%.

Sequences used in the motif discovery were not used in training and testing of

the SVM. Due to the relatively low number of sequences in both datasets (783 in

total), this particular SVM was trained and tested using 10-fold cross validation

(see Methods).

That amino acid composition helped us in making more correct predictions

implies there is a certain degree of bias in composition even between the similar

classes of nuclear and nucleolar proteins, which could be associated with the

possibility that nucleolar proteins have slightly different compositional preferences

than the other proteins in the nucleus so as to allow them to be packed more

tightly to form the nucleolus. Figure 4.7 shows the compositional differences
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Figure 4.6: Distributions of amino acids predicted to be within TM
helices in nuclear and nucleolar proteins. TMHMM (Krogh et al., 2001)
was run on the entire nucleolar and nuclear protein sequences. The curves show
the total number of sequences (y-axis) having a certain, predicted total number of
amino acid residues in their sequences that fall in a membrane-spanning region,
for nucleolar (red), and nuclear (green) proteins. According to this plot, most
nuclear proteins have around 20 amino acids within their TM helices all together.
A bin size of 5 amino acids was used to plot the frequencies, and the curves were
smoothed by the “cubic splines” algorithm.
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Figure 4.7: Differences between nucleolar and nuclear proteins in terms
of their amino acid compositions. This statistics was obtained using the
nuclear sequences datasets consisting of 386 sequences and the nucleolar sequence
set having 397 sequences (see Materials and Methods). The most noticeable
difference is how nucleolar proteins are enriched with Lysine (K) over nuclear
proteins.

between the two types of proteins localised in nuclei and nucleoli. A similar figure

showing the comparison of nucleolar and nuclear proteins in terms of their amino

acid composition has been reported previosly by Leung et al. (2003). As seen

in Figure 4.7, the most notable difference is how nucleolar proteins are enriched

with Lysine (K) over nuclear proteins. While most other amino acid composition

rates were more or less identical, nuclear proteins had a larger number of the

nonpolar amino acids Leucine (L) and Proline (P), and the polar Serine (S) than

the nucleolar proteins.
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The fact that our motif finder discovered some motifs (Figure 4.4) from the

nucleolar protein set does not necessarily mean that these motifs can not be found

in the nuclear proteins, and vice versa. As can be seen in Figure 4.8, which, as

an example, shows the score distributions of motif c of Figure 4.4 for both types

of protein sequences, some nuclear proteins may also contain this particular K-

and R-rich motif despite that it was originally discovered in the nucleolar set.

However, the histogram plot suggests that mostly high scoring instances of this

motif are more abundant in nucleolar proteins compared to the best hits of the

motif in sequences localised in the nucleus.

In addition to demonstrating that terminal regions of nucleolar proteins could

be more biased towards positively charged residues, I investigated whether nu-

clear and nucleolar proteins differ in terms of their disordered region distribution.

41.99% of the amino acids in the nucleolar proteins set and 41.87% of the amino

acids in the nuclear proteins set were predicted as disordered by the RONN soft-

ware. This indicates that there is no significant difference in terms of the number

of residues falling into a disordered region between both types of proteins. How-

ever, there is a difference about what constitutes these disordered regions: it

turned out that these disordered regions are enriched more with charged residues

in proteins localised in the nucleolus over proteins of the nucleus after some tests

I performed with some of the motifs found.

Using motif c of Figure 4.4 to scan only both types of sequences, I observed

that a larger number of disordered regions in the nucleolar sequences contained

this motif than disordered regions in the nuclear proteins. Figure 4.9 shows

the normalised frequency distribution of strong hits of this charged-residue rich
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Figure 4.8: Score distribution of a core nucleolar motif within nuclear
and nucleolar proteins. Motif scores shown on the x-axis are given in infor-
mation bits, for the best match per sequence. The y-axis indicates the number of
sequences for nucleolar (red line) and nuclear (green dashed line) featuring this
motif with different scores. For plotting the histogram, 500 nucleolar and 500
nuclear sequences that were sampled randomly from the original datasets have
been used.
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motif within the predicted disordered regions for both types of sequence classes.

Sequence regions scoring less than an empirically chosen value of 1.8 were not

considered as true NLS matches (Figure 4.8). However, a second similar analysis

performed by using another motif, which was discovered from a general nuclear

localisation dataset in the previous chapter (Figure 3.4i), revealed that even when

we consider the entire range of scores without using any threshold it is still possible

to observe the same kind of tendency of finding more NLS motifs within disorder

regions (Figure 4.10).

Given that there is a tendency in nucleolar proteins to possess “K & R”-

rich motifs more abundantly within their disordered regions compared to nuclear

proteins, I investigated whether this bias could be used in a prediction system.

The SVM that was built initially to distinguish nuclear proteins from nucleolar

proteins was modified so as to allow us to test this phenomenon. To this end,

firstly, I added to the SVM the best scores of those core NLS signals (represented

as a PWM in part c of Figure 4.4) that fall into a disordered region, exclud-

ing other potential motif hits in the rest of the sequence regions. Secondly, I

added the predicted disordered scores of sequence regions featuring a core nucle-

olar motif, such as motif c of Figure 4.4. Unfortunately, both approaches, when

used separately or together, failed to provide a substantial increase in the SVM’s

performance, meaning that their potential contributions are somehow already

achieved by the other used features including NLS motif scores and amino acid

composition etc. Using general disordered statistics for each sequence, such as

the number of disordered blocks per residue and the ratio of amino acid residues

predicted as disordered to the total number of residues in a sequence, resulted
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Figure 4.9: A larger number of nucleolar localisation motif hits fall in
disordered regions, compared to the NLS motifs in disordered regions
of nuclear proteins. The y-axis corresponds to the normalised frequencies,
while the x-axis represents the disorder region scores as reported by RONN. A
score of greater than 0.5 indicates a predicted disorder region. The dashed green
curve represents nuclear proteins which show a normal distribution around a
score of 0.4, while the solid red curve shows the histogram for nucleolar sequences
having a tendency to contain more number of the NOS within their disordered
regions.
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Figure 4.10: Generally a larger number of NLS signal hits can be found in
disordered regions of nucleolar proteins compared to nuclear sequences.
The y-axis corresponds to the frequencies of motif hits, while the x-axis represents
the disordered score regions as reported by RONN. A score greater than 0.5
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in the same maximum correct prediction percentage (78.42%) that I obtained

without using the disorder-related scores (see above). At the end, scores asso-

ciated with disorder were not included in the SVM, as this did not improve the

performance, although the nucleolar sequences showed a bias to possess a larger

number of “K & R”-rich motifs in their disordered regions.

4.4 Discussions and conclusions

Using the observation that nucleolar proteins tend to contain a larger number

of charged residues in their disordered regions was not particularly helpful in

automatic classification of nuclear and nucleolar proteins. Instead, using these

motifs directly without considering disordered regions to score proteins was more

effective. In addition to using the reported motifs found in the terminal regions

of nucleolar and nuclear sequences, incorporating amino acid composition in the

SVM proved useful, as in predicting major localisation categories (see previous

chapter). Thus, despite being confined by the nuclear membrane and sharing

similar characteristics, there are significant differences in amino acid compositions

between the members of these two types of proteins.

Loop regions and regions with no specific secondary structure in proteins

do not have to be disordered necessarily. A disordered region means that that

region has the capacity to change into an ordered state when needed, unlike,

for example, some loop regions which can not become “ordered”, that is, have a

certain structure and shape.

It is not very surprising to have observed that proteins forming the subnuclear

compartment nucleolus are rich in charged amino acids like K and R, and that
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they are more abundant in regions predicted to be disordered. It has been shown

that aromatic amino acids like Tryptophan (W), Tyrosine (Y) and Phenylala-

nine (F) are less likely to be found in long disordered regions (Kissinger et al.,

1995), because these amino acids usually have a strong interaction capability to

develop a structure, and thereby they inhibit disorder (Burley & Petsko, 1985).

It has also been observed by the same groups that charge imbalance in protein

sequences tends to favour disorder. But to find out that there are more of these

charged residues in disordered regions of nucleolar proteins compared to nuclear

proteins was surprising. This can be explained, to a certain extent, by the spec-

ulation that nucleolar proteins have to behave like any other nuclear proteins

while traversing the nuclear pore to enter into the nucleus, but after that point,

most probably their disordered regions which potentially convey the extra sig-

nals of nucleolar localisation signals (NOS) involved in their transport into their

subnuclear destination, become more ordered and functional.

Unfortunately, good quality and reliable localisation annotation is too limited

to satisfactorily study sub-localisation classes such as nucleolar or mitochondrial

membrane proteins. Also, there can always be annotation errors in the datasets

used. I tried to minimise these data related problems by choosing manually

annotated and well curated datasets. To avoid a potential bias in predictions,

sequence identity was lowered to a maximum of 30% by using a clustering algo-

rithm (see methods). Another problem stemming from the underlying biology is

that some proteins can be functioning in more than one compartment. However,

even if the datasets contain such protein sequences, statistically it should still be

possible to retrieve the general characteristics representing an individual group.

132



4.4 Discussions and conclusions

In the case of motif finding, for example, a few sequences coming from differ-

ent types of protein localisations or those having multiple possible localisations

should not prevent NestedMICA from finding the overexpressed, representative

sequence motifs.

In spite of possible errors and data related limitations, I think the observa-

tion that disorder regions have more charged residues in nucleolar proteins, the

compositional differences between the two classes, and finally the motifs found

in the terminal sequence regions to distinguish nuclear and nucleolar proteins

are promising results that can be used for discriminating nucleolar proteins from

other nuclear proteins, as the tests indicated.
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