
Chapter 5

Predicting protein
transmembrane topology and
signal peptides: An HMM
approach with a new parameter
optimisation strategy

5.1 Introduction

5.1.1 The aim of this study

In Chapter 3, we have seen that using predicted protein transmembrane (TM)

topology statistics, such as the fraction of N-terminal amino acids lying in a TM

helix and the number of TM helices, improves subcellular localisation predic-

tion. In this chapter, I investigated the possibility of developing an alternative

to TMHMM (Krogh et al., 2001) that was used in Lokum.

In this chapter, I also introduce a new strategy to optimise hidden Markov

model (HMM) transition probabilities, based on nested sampling. This is an

alternative to the classical approach of Baum-Welch optimisation procedure (see

Section 1.3.1).
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5.1 Introduction

I tested this new methodology in optimising transition probabilities of an

HMM that tries to automatically annotate a set of given sequences with their

most probable TM topologies, and presence of SPs. This prediction is a mapping

procedure of the most probable state path (“annotations”) to best describe a

sequence, according to a pre-determined model (see the “second task of HMMs”,

on page 15). Thus we require a good HMM model to make predictions from.

Using our a priori knowledge about what sequence regions are preceded by what

other sequential features etc., it is possible to construct a finite, deterministic

state machine to describe this problem. We are also given a set of sequences from

which it is possible to directly determine the emission probabilities of the symbols

that a state can emit.

However, usually there is only a couple of available options to determine the

relations, or transition probabilities, between these states: the use of the Baum-

Welch algorithm to find a set of “optimal” probabilities by trying to find the

optimal ordering of states which will maximise the series multiplication of emitted

symbols’ probabilities, or to manually set them. If there are multiple states in the

HMM having the same emission probability distributions (like a loop state and

a globular-region state that are both trained with some cytoplasmic sequence),

the transition optimisation will be harder by the Baum-Welch algorithm which

already does not guarantee finding the best probability set.

With the method I will introduce I try to overcome these difficulties by:

• using nested sampling to search the whole parameter space and also par-

tially to steer Baum-Welch, which reduces the chance of getting stuck in a
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local maxima, and,

• following a fully supervised training that utilises known state labels of a

given set of training data.

5.1.2 Transmembrane topology and signal peptide predic-
tion

Membrane proteins span bilayer lipid phases. Membrane spanning regions of

these proteins are usually made up of transmembrane α-helices or antiparallel

β-sheets. Most of the membrane proteins have α-helices, although there are a

number of proteins containing β-barrel structures in the outer membrane regions

of bacteria, and in the organelles mitochondria and chloroplasts. Tight bundling

of these α-helical segments forms globular structures in membrane proteins. A

typical transmembrane α-helix contains around 20-25 predominantly hydrophobic

amino acid residues. This property forms the basis of computational methods in

identifying membrane proteins.

Like transmembrane α -helices, SPs are also rich in hydrophobic residues. SPs

typically range in length between 20 and 30 amino acids in eukaryotes (Emanuels-

son et al., 1999; von Heijne, 1990), however it is possible to have up to 70aa long

SPs (for example, the SP of a protein, P1383, “Ring-infected erythrocyte surface

antigen precurser” is 65aa long). They can be divided into three sections in terms

of their amino acid content (see Section 3.3.1), with the core hydrophobic region

and the cleavage site being more conserved (see Section 5.3.1 and Figure 5.5 in

Results, as an interesting note on how mRNAs of SPs look like). This tri-partite

structure is quite useful to predict SPs. Also, their cleavage sites feature a “-3,
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-1” rule (von Heijne, 1986), corresponding to the positions occupied by small,

conserved amino acids like G or A relative to the actual cleavage position (Figure

3.4a).

Membrane topology describes which regions of the polypeptide chain span

the membrane, and which portions lie on either of the watery sides of the lipid

bilayer. Membrane topology prediction is important in many ways, as it can

help biochemists design drugs or antibodies etc. which are bound to a membrane

protein. Many researchers have studied automatic transmembrane topology pre-

diction, and many predictors including TopPred (Claros & von Heijne, 1994),

SOSUI (Hirokawa et al., 1998), TMHMM (Krogh et al., 2001) and HMMTOP

(Tusnády & Simon, 2001) have been developed in recent years. In 2001 Müller

et al. showed that all transmembrane prediction methods available at that time

had a tendency to interpret hydrophobic parts of signal sequences and transit

peptides as membrane-spanning regions. A year after this study, Lao et al. eval-

uated 12 transmembrane topology prediction methods, including the popular ones

mentioned above, for their abilities to discriminate between signal peptides and

transmembrane regions. These review studies showed that there is still room

for improvement in the prediction performance of these programs. While it was

shown that TMHMM performed better than the rest of the predictors, in general

all the tested programs were badly affected by the presence of a signal peptide

in tested sequences. Examples for other TM predictors developed after 2001 are

ENSEMBLE (Martelli et al., 2003), Phobius (Käll et al., 2004), PONGO (Amico

et al., 2006), PRODIV-TMHMM (Viklund & Elofsson, 2004), and MEMSAT 3

(Jones, 2007).
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Käll et al. (2004) developed a hidden Markov model (HMM) based system

called Phobius, which combined the transmembrane protein topology predictor

TMHMM (Krogh et al., 2001) and the signal peptide (SP) predictor, SignalP

(Nielsen et al., 1997b) (SignalP is discussed in 1.1.1). This combinatorial design

of Phobius has been shown (Käll et al., 2007) to improve the performance of

TMHMM: By forcing the predictor to choose either of the two sub-models, they

increased the discrimination rate between transmembrane regions and N-terminal

signal peptides, which resulted in fewer false positives for transmembrane regions.

Unfortunately, the stand-alone version of the Phobius program, although it

is downloadable from the program’s prediction service web page, does not come

with the “model file” which contains the crucial program parameters. Academic

users who want to use this application on their local servers or computers are

required to sign a user license agreement. The “terms and conditions” of this

license restricts full ownership of even other independent programs that somehow

use Phobius or its modifications.1 In the Lokum localisation prediction system I

used TMHMM, because of the mentioned limitations in Phobius, and also because

TMHMM is available as a stand-alone application. However, because Phobius has

been shown to outperform TMHMM, I chose Phobius to be my sample model as

a transmembrane predictor. Thus, the developed prototype predictor is an HMM

system whose architecture is similar to that of Phobius.

1The LICENSOR retains ownership of the SOFTWARE delivered to the LICENSEE. Any
modifications or derivative works based on the SOFTWARE are considered part of the SOFT-
WARE and ownership thereof is retained by the LICENSOR, and are to be made available to
him upon request.
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5.2 Materials and methods

5.2.1 Architecture of the HMM

It is no surprise that most of the major transmembrane protein prediction pro-

grams use Hhidden Markov models (HMMs) to predict protein transmembrane

topology. The prototype predictor introduced in this chapter is also based on

HMMs (see Section 1.3.1 for a brief description of HMMs).

The architecture of the program introduced here (Figure 5.1) is similar to that

of Phobius (Käll et al., 2004). In this model, I used an SP cleavage site motif

by directly attaching it into the HMM as a “profile HMM” (Section 1.3.1) where

inner states have no self-transitions. This motif was discovered by NestedMICA

from a set of secretory protein sequences for the developed localisation prediction

program Lokum, and is shown in Figure 3.4.

There are two major possible routes a sequence can be “threaded” into the

shown HMM architecture: it could start by traversing through the SP states if

this is a more probable option as determined by the dynamic programming part

of the algorithm, or it can choose to go directly to the hub state.

In the first route, the SP is modeled as consisting of a three parts: An n-

part, a hydrophobic core part (h-part), and a c-part which includes the cleavage

site and connects it to the rest of the mature protein region. From here on,

it can either go into a short or a long non-cytoplasmic state. Note that, if a

sequence has an actual SP, it is not possible for the adjacent part to be in a

cytoplasmic region, as the SP will be pointing towards the ER and will drag

the rest of the mature part which remains behind it. However, if the N-terminal
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were a non-SP transmembrane region, it could penetrate into the membrane from

either direction. So the described HMM was designed to reflect this biological

phenomenon, by not allowing an SP signal to be followed by a cytoplasmic loop.

The second route that can be followed is to directly go to the hub state of

the HMM, from where it is possible to go to either a cytoplasmic or a non-

cytoplasmic region (the hub state serves as a symbolic state for better visualising

state connections and does not emit any symbols). Non-cytoplasmic loops have

been modeled as two states: one for modeling shorter ones, and one for the

relatively longer loops. Both loops can be followed by a globular region, although

this is not necessary. If a non-cytoplasmic globular state is visited from a non-

cytoplasmic state, the system has to go back through the same type of loop,

namely the same non-cytoplasmic state (the short or the long one). On the

contrary, cytoplasmic loops were not modeled as two separate states, as it has

been suggested that their length distributions show less variation (Krogh et al.,

2001). Similar to the loops on the other side, cytoplasmic loops can also be

proceeded by cytoplasmic globular regions.

Emission probabilities for the cytoplasmic and non-cytoplasmic globular states

in the HMM have been trained by using cytoplasmic and non-cytoplasmic amino

acid sequence chunks of a set of annotated proteins (see “Datasets” below, Section

5.2.2). Similarly, amino acid distributions of SP, transmembrane and loop states

were trained from the corresponding sequence chunks. As stated above, the

emission probability distributions for the cleavage site positions of SP states were

determined directly using the weights of the discovered cleavage site motif, instead

of using a single distribution to represent the entire signal. Unlike cytoplasmic
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Figure 5.1: The architecture of the developed transmembrane predictor
The “cyto” HMM states indicate those representing globular or loop protein re-
gions on the cytoplasmic side, while the “non-cyto” ones correspond to regions
lying outside of the cell. Globular and loop regions are represented in different
states, to better represent these structures by allowing different length distribu-
tions and amino acid distribution for each. The model can either follow the path
of a Signal Peptide (SP) or the alternative route where it may pass through trans-
membrane regions. ε represents the “hub state” which does not emit any symbol
but connects certain states. Cap columns are shown in the direction the HMM
moves (0 to 4, or 4 to 0), and “to membrane” caps correspond to the positions
shown in Tables 5.1 and 5.2, where “0” lies outside of the membrane. The system
can terminate while being in any of the states depicted in thicker circles.
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regions, for instance, symbol emission distributions at different positions of the

cleavage site vary significantly (see Section 3.3.1 for the “-3 -1” rule).

5.2.1.1 Representing helix caps in the HMM

Amino acid POS 0 POS 1 POS 2 POS 3 POS 4
TRP 0.012 0.034 0.040 0.026 0.030
SER 0.059 0.053 0.045 0.049 0.068
ASN 0.056 0.020 0.018 0.018 0.019
ALA 0.049 0.101 0.121 0.101 0.094
HIS 0.029 0.009 0.014 0.015 0.009
TYR 0.034 0.056 0.037 0.039 0.050
PHE 0.038 0.074 0.078 0.082 0.094
ARG 0.148 0.021 0.020 0.020 0.016
LEU 0.053 0.187 0.181 0.163 0.147
PRO 0.035 0.032 0.029 0.037 0.025
MET 0.015 0.052 0.044 0.046 0.040
GLU 0.041 0.011 0.016 0.011 0.011
ILE 0.025 0.098 0.099 0.113 0.114
VAL 0.041 0.104 0.097 0.097 0.104
GLY 0.070 0.059 0.065 0.074 0.077
LYS 0.136 0.016 0.017 0.018 0.014
GLN 0.031 0.010 0.016 0.016 0.019
THR 0.051 0.045 0.044 0.047 0.049
ASP 0.059 0.010 0.010 0.011 0.002
CYS 0.018 0.008 0.010 0.017 0.018

Table 5.1: Amino acid emission probabilities in the transmembrane helix
cytoplasmic side cap. POS 0 refers to the residue which falls in the cytoplasmic
part, while positions 1 to 4 are within the helix. POS0 also corresponds to
position-0 of the top and position-4 of the bottom “cyto” caps shown in Figure
5.1.

Transmembrane helices show different amino acid propensities in different po-

sitions, too, although these are not so obvious and consistent to be represented as

constant motifs. It has been suggested (Jones et al., 1994; Richardson & Richard-

son, 1988) that middle regions, parts closer to the cytoplasmic loops, and parts
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Amino acid POS 0 POS 1 POS 2 POS 3 POS 4
TRP 0.022 0.039 0.045 0.040 0.038
SER 0.079 0.040 0.059 0.062 0.054
ASN 0.053 0.026 0.024 0.023 0.015
ALA 0.053 0.103 0.099 0.087 0.110
HIS 0.031 0.016 0.015 0.018 0.015
TYR 0.039 0.051 0.048 0.048 0.050
PHE 0.033 0.096 0.090 0.093 0.077
ARG 0.069 0.014 0.011 0.010 0.012
LEU 0.063 0.162 0.156 0.145 0.164
PRO 0.051 0.046 0.041 0.034 0.028
MET 0.025 0.035 0.039 0.043 0.035
GLU 0.073 0.015 0.015 0.011 0.005
ILE 0.028 0.096 0.084 0.100 0.105
VAL 0.043 0.099 0.086 0.106 0.109
GLY 0.082 0.068 0.096 0.083 0.093
LYS 0.062 0.009 0.005 0.008 0.006
GLN 0.047 0.018 0.019 0.015 0.023
THR 0.062 0.046 0.046 0.051 0.041
ASP 0.073 0.017 0.013 0.011 0.008
CYS 0.013 0.005 0.009 0.010 0.011

Table 5.2: Amino acid emission probabilities in the transmembrane he-
lix non-cytoplasmic side cap. POS 0 refers to the non-cytoplasmic residue
position (outer cell), while positions 1 to 4 are within the helix. POS0 also cor-
responds to position-4 of the top and position-0 of the bottom “non-cyto” caps
shown in Figure 5.1.
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near the non-cytoplasmic regions of membrane spanning helices feature signifi-

cantly different amino acid composition. Consistent with this idea, I calculated

amino acid emission probabilities for helix middle regions and helix “cap” regions

independently. I extended both helix cap regions to overhang outside of the helix

by one residue, where a total of 5 amino acid positions are considered.

If the symbol “i” represents the “inner” cytoplasmic part, “M” the membrane,

and “o” the outer, non-cytoplasmic region residues, then one can write the pos-

sible two configurations that alpha helices can be in, in terms of these letters, as

follows:

1. ...iiiMMMMM...MMMMooo...

2. ...oooMMMMM...MMMMiii...

Residue KL Residue KL
TYR -0.0064 ASP -0.01727
MET -0.0110 ASP -0.01727
LEU -0.0134 PRO -0.01922
ILE -0.0043 TRP -0.01052
GLN -0.0188 CYS 0.00751
PHE 0.0080 SER -0.02420
THR -0.0142 HIS -0.00233
ALA -0.0056 GLU -0.03438
GLY -0.0157 ARG 0.16262
VAL -0.0024 LYS 0.15494

Table 5.3: KL deviations of cytoplasmic side helix termini from the
noncytoplasmic side helix termini in relative amino acid abundance
rates. Amongst the other amino acids, Arginine (ARG) and Lysine (LYS) differ
the most in terms of their relative KL deviations between the two first non-helical
positions on both sides (see text). That is, the first non-helix position of a helix
cap on the cytoplasmic side is more enriched in ARG and LYS than the first
non-helix position on the other side of the membrane.
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The so-called “cyto cap” of Figure 5.1 corresponds to the left-hand side of the

first helix topology, and the right-hand side of the second. Similarly, the “non-

cyto cap” regions overlap where M is either preceded or followed by “o”. Each

position in the caps was represented as an independent state as in a profile HMM,

and therefore, for each position a separate probability distribution was calculated,

rather than using a single, general distribution for the entire cap lengths. This

was done after reversing the order of residues in the second type topology. Tables

5.1 and 5.2 summarise the amino acid emission probabilities in the helix caps

near the cytoplasmic side, and non cytoplasmic side, respectively. Probability

distributions for amino acid position 0 in the tables indicate the first amino acid

residue outside of the helix on either side. A good statistical measure to evaluate

the difference between two distributions is to use Kullback Leibler (KL) deviation

which measures the relative entropy between two distributions:

DKL(P‖Q) =
∑

i

P (i) log
P (i)

Q(i)
(5.1)

where P is the “true” distribution from which we measure how another dis-

tribution “Q” deviates in terms of relative entropy. KL deviation is not a proper

distance measure as it is not symmetric, hence it is called a deviation, although

sometimes it may be referred to as “KL distance”. Its value is always positive,

but some of the individual terms summed up in the above equation could be

negative, due to the nature of the logarithmic part.

Amino acid probability distribution of the cytoplasmic cap at position 0 (Table

5.1) deviates from the non-cytoplasmic cap’s position zero distribution (5.2) by a
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KL value of 0.137 (as computed in logarithm base 2). This number does not make

much sense alone, but from the individual values contributing to the sum, which

are given in Table 5.3, one can easily spot the differences from the relative values

computed for the same pair of amino acid symbols. From Table 5.3 it can be

easily noticed that the primary difference between the two distributions is due to

the differing abundance rates of the Arginine (ARG or R) and Lysine (LYS or K)

residues. That is, we can safely conclude that the first amino acid position outside

of the helix that points to the cytoplasmic region is more enriched in ARG and

LYS than the first non-cytoplasmic position at the other end of the membrane,

protruding into the extracellular space. This is also evident by directly comparing

the raw probabilities of both distributions.

The other cap positions (1 to 4) obviously differ from the rest of the sequence

positions in that they tend to be rich in hydrophobic residues. However, com-

paring the corresponding positions in the cytoplasmic and non-cytoplasmic cap

regions in terms of KL deviation, we see that they are more similar to each other.

While position zero distributions of the caps deviate by a KL of 0.137 as men-

tioned above, the KL deviations (specifically, of the cyto-cap distributions from

the non-cyto cap ones) for the other positions are:

1. 0.037

2. 0.044

3. 0.030

4. 0.037
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Appendix D lists the individual KL distances between all corresponding pairs

of amino acid distributions within the cytoplasmic side, within the non-cytoplasmic

side, and finally amongst cytoplasmic and non-cytoplasmic helix cap positions.

The computed KL deviations implied that within the same helix cap, there is

not much difference among the different cap positions, except for when compared

with the ones in the edges. For example, the KL deviation for the distributions at

non-cytoplasmic side helix cap positions 3 and 4 is 0.013, which is pretty small.

For this reason, it may not be necessary to use separate distributions for such

similar two positions; however, this does not introduce any extra complication to

the algorithm in optimising their transition probabilities in the HMM, as they

have a fixed probability of moving to the adjacent state of 1. Furthermore, any

small distribution difference across the same position of different caps can be

more valuable than the possible differences within a particular cap’s positions in

figuring out the correct overall state path. That is why all cap positions were

modeled independently, while this does not increase the burden of the state path

optimiser.

5.2.1.2 Duration HMM states

Even though it will not be biologically possible to have a transmembrane helix of,

say length of 3aa, HMMs which are probabilistic methods, can generate predicted

state labels corresponding to biologically unfeasible lengths no matter how high

the self-transition probabilities of the associated states are. This can be prevented

by setting a “minimum number of self-visits” to the problematic states. As men-

tioned earlier in the Introduction chapter (page 15), such HMMs are referred to
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as “duration HMMs”. Unfortunately, the current version of Biojava (BioJava,

2007), the Java libraries collection which was used to implement this prediction

system, does not have such a duration concept. However, I implemented a du-

ration HMM package that allows users to create Markov models having states

with a certain number of minimum self-transitions. The probability of staying in

a certain “duration” state remains constant while the number of transitions are

less than the user-set minimum number, and then goes into an exponential decay

in accordance with its classical self-transition probability (see Figure 1.2).

The states representing the helical regions (see Figure 5.1) were not allowed to

be any shorter than 6 amino acids. This makes the minimum allowed length of a

transmembrane alpha helix 14 amino acids, when both cap regions are considered

(in Phobius this was taken as 15). Note that, although the cap regions were of

length 5aa each, only 4 positions are spanning helices in the designed model.

Minimum durations for all the states of the HMM are given in Table 5.4.

5.2.2 Datasets and training of the model

For training the emission probabilities of the HMM states, I used the same se-

quence sets used in Phobius. These sequences are provided in labelled fasta

format (Krogh, 2002) to indicate what type of region (i.e. α-helix, n-region of

signal peptide, loop protruding towards the extracellular space etc.) they fall

into. Table 5.5 lists the number of sequences from each category of sequences. As

the table shows, the HMM was trained using sequences that include both trans-

membrane regions and signal peptides, sequences having only one type of these

features, and finally sequences not having any of these structures. HMM state
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HMM State Minimum duration
n-region of SPs 6
h-region of SPs 6
c-region of SPs 5 (including cleavage site)
Non-cytoplasmic long loop 15
Non-cytoplasmic short loop 1
Cytoplasmic loop 1
Globular (cytoplasmic) 15
Globular (non-cytoplasmic) 15
Transmembrane alpha helices 6 (14, with both caps)

Table 5.4: Minimum allowed emission state occupancy numbers for the
transmembrane topology predicting HMM. The n, h, and c regions refer
to the sub-regions in N-terminal Signal Peptides (SP). The c-region includes the
cleavage site which is modeled as a profile HMM, based on a NestedMICA motif
for this region. Transmembrane alpha helices can hardly be shorter than 14, so the
corresponding helical states in the HMM allow a minimum of stay of 6 emissions
in these states, which is then added with durations of the N- and C-terminal helix
caps regions to yield a total length of 14 amino acids.

emission probabilities were determined from the amino acid frequency distribu-

tions of only the corresponding sequence segments. That is, the “membrane”

states shown in Figure 5.1, for example, have amino acid emission probabilities

calculated only from the transmembrane segments of sequences featuring those

regions.

Type of sequence Number of sequences
Transmembrane proteins with signal peptides 45
Transmembrane proteins without signal peptides 247
Non-transmembrane proteins with signal peptides 1773
Non-transmembrane proteins without signal peptides 1520

Table 5.5: Sequences used in the training of Phobius and of the program
developed.

The HMM was trained using 10-fold cross validation, with the new HMM tran-
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sition probability optimisation procedure that is introduced below. The dataset

(Table 5.5) was divided into 10 equal portions having more or less the same num-

ber of sequences from each type, 9 of which were used in the training while the

singled out one was used for testing performance.

5.2.3 Transition probability optimisation: a new approach

The optimisation of state transition probabilities was first performed using the

standard Biojava (BioJava, 2007) implementation of the Baum-Welch algorithm.

This semi-supervised learning method tries to find the best model parameters

by maximising the likelihood of the state path, given a set of “emittable” ob-

servables and their emission probabilities for each state. It can be considered as

semi-supervised, because it tries to optimise the transition probabilities without

using the true state labels of a given training data. If the number of parameters

to optimise is too large, this method may not produce a good set of parameters

at all, particularly for problems where different emission states have similar emis-

sion probability distributions. Also, it is often the case during any automatic

learning that overfitting of the model can occur, which makes determining the

number of iterations in the Baum-Welch algorithm somewhat tricky. Of course,

another laborious approach would be to set the model parameters empirically,

judging according to what set of parameters maximises performance at the end,

where performance would be the number of observables correctly assigned into

the associated state label. However, this trial-and-error approach would not be

practical for problems involving many emission states.

Here I introduce a new approach to optimise HMM transition probabilities.
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It is based on finding a set of state transition probabilities learnt from a given

training set with known state labels, by using a probabilistic, generative sampling

strategy. “Labels” correspond to sequence annotations such as transmembrane

helix, cytoplasmic loop, globular region etc. for each amino acid position. At

each iteration of the method, a different set of transition probabilities is tried,

and a likelihood score corresponding to the fraction of correctly labelled amino

acids in the training dataset is calculated.

This procedure is analogous to other Monte Carlo techniques in that we either

accept or reject a proposed set of probabilities, but in order to eliminate the

possibility of getting stuck in some local maxima, I use Nested Sampling (see

Section 2.2.1 on page 28) that keeps an ensemble of fixed number of proposals, or

“probability vectors”. Because we sample typically hundreds of different vectors,

this ensures finding a globally optimal solution given enough time and a good

likelihood function. In the initialisation step, a likelihood score for each vector

in the ensemble is calculated. Transition probabilities of HMM states having

a single transition are automatically set to a value of 1.0, and these states are

omitted in the rest of the parameter optimisation.

Each step in this algorithm starts with the search for the vector generating

the least likelihood score. This “worst” vector is removed from the ensemble, and

replaced with a newly sampled one according to the following two rules:

1. The new probability vector is generated by modifying the probabilities of

the removed vector.

2. The new vector has to have a likelihood score that is greater than that of

151



5.2 Materials and methods

the removed. Another random vector is sampled until this condition is met,

or the algorithm is terminated under certain termination criteria.

Once an appropriate move is found the ensemble is updated. This ensures that

after each step we move into a better set of solutions, and that the total likelihood

increases after each accepted step as illustrated in the cumulative likelihood plot

in Figure 5.2. Figure 5.3 shows the likelihood curves of the worst and the replace-

ment states after each move, in an example optimisation problem. The overall

likelihood continues to get better monotonically until the system converges or

termination occurs as determined by some stopping criteria. Convergence slows

down when it becomes harder to find “better” moves than those in the current

ensemble (Figure 5.4).

In the sampling process, it is necessary to choose a good, relevant likelihood

function that will reflect the fact that we are optimising for the number of correct

labels in an HMM state path. To this end, I used a simple likelihood function

calculated in the log-space:

L(m) =
N∑

i=1

log (
1

|Si|

|Si|∑
j=1

ki
j) (5.2)

where |Si| is the length of sequence i, N is the total number of sequences,

and ki
j is a unit function that is non-zero if the jth amino acid position of the

ith sequence is correctly identified by the evaluated Markov model m. The total

likelihood function is the sum of accepted model likelihoods that constitute the

ensemble. It is this cumulative likelihood function that is ensured to increase at

each step before accepting a proposed Monte Carlo move. Similarly, the least
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Figure 5.2: Total likelihood function monotonically increases in nested
sampling. This plot illustrates how the likelihood function (y-axis) used in
the developed HMM transition probabilities optimisation technique varies over
accepted steps (x-axis).
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Figure 5.3: Transition probability set having the least likelihood is re-
placed by new better one. A suggested move has to have a likelihood that
is larger than the “worst” vector’s likelihood to be accepted. The red line repre-
sents the least likely probability vector of the ensemble at a particular step. It is
replaced by a “better” vector, shown in green colour.
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Figure 5.4: It becomes more difficult over time to find “acceptable”
states. The curve shows the ratio of accepted moves to the total number
of proposed moves, which is updated after each accepted move. This ac-
cepted/(accepted+rejected) ratio helps to determine whether an optimisation run
is close to convergence or not.
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likely state’s score Lw at each step will increase in parallel with the improving

overall goodness of the ensemble.

Increasing the ensemble size may result in better parameter sets. However,

the number of sampled vectors in the ensemble hugely affects the program speed

and convergence rate. At the end, I observed that setting the ensemble size to

around 10 times the number of HMM states being optimised in a particular prob-

lem proved to be sufficient for typical HMM transition probability optimisation

problems.

The individual probabilities forming the vectors are sampled according to

Gaussian functions associated with each of the probabilities. The sampling is

carried out using a Gaussian with a mean that is equal to the previous probability

value. The main sampled entity is, of course, probability distributions of HMM

states. This is achieved through multiple ways:

• All state probabilities at the same time, using a large Gaussian variance

• All state probabilities at the same time, using a small Gaussian variance

• A randomly picked state’s probabilities, using a large Gaussian variance

• A randomly picked state’s probabilities, using a small Gaussian variance

• All state probabilities at the same time, using a Gaussian variance dynam-

ically updated according to the number of rejected moves

• A randomly picked state’s probabilities, using a Gaussian variance dynam-

ically updated according to the number of rejected moves
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• All state probabilities at the same time, using a random Gaussian variance

• A Baum-Welch iteration of a model created based on the probabilities of a

randomly picked state

That is, the distributions are perturbed by using uniform Gaussian distribu-

tions with either pre-determined or dynamically updated standard deviations (see

below for how this is achieved). The mean of each Gaussian is equalised to the

previous selected probability value of a particular state transition. Two standard

deviations, one small and one large, are used. The one that will be utilised in

a particular step is determined by a random selection process. These variance

values can be later dynamically updated based on the number of accepted and

rejected proposals. This reduces the number of rejected proposals, and also allows

the system to explore different sets of solutions as much as possible. As the above

list shows, sampling could be applied on all states of an HMM simultaneously, or

by working on a single distribution in each proposed step. Another possibility is

to select a state randomly and then change its transition weights according to a

randomly picked variance value around the previous values of the probabilities.

Finally, a Baum-Welch move can be proposed, based on a certain probability

(for instance, 15% of the proposed steps are based on moves proposed by the

Baum Welch algorithm in the current implementation). In a Baum-Welch move,

the actual Markov model is updated with the transition weights of a randomly

chosen item from the ensemble. A certain number of Baum-Welch iterations

are run on the model characterised by the selected transition weights set, as

in a classical transition probability optimisation procedure. If this new model
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increases our likelihood function that measures the number of correctly assigned

labels, then this move is accepted, and the ensemble is updated with the transition

set that the Baum-Welch algorithm fine-tuned.

In the case of rejected Baum-Welch proposals for the same worst state, de-

pending on the number of recent rejections, the iteration number of the Baum-

Welch training is increased. This iteration number is randomly chosen from num-

bers up to a maximum value equal to the number of local rejections, provided

that it does not exceed an empirically set 20 iterations per move.

Whenever needed, the standard deviations that are allowed to change are

dynamically altered, as stated above (some remain fixed during the entire opti-

misation). This is performed by multiplying or dividing the previous standard

deviation value by e1.0/rejected, making sure it will be in the interval (0,1). This

way, when there is room for large gains in the total likelihood, this is achieved

faster by using a larger standard deviation, and when the system begins to reject

more and more proposals, the probability distributions are less perturbed when

sampling from the ensemble.

Individual transition probabilities for each state are sampled from their Gaus-

sians by using the “online” standard deviation divided by the number of total

transitions a state possesses. If a negative value is obtained from a particular

sampling of a state, all other transition probabilities in that state are shifted to

the positive side by an amount equal to the minimum probability obtained (plus

some very small number, to avoid absolute zero probabilities). The values sam-

pled from the Gaussians in each step are then re-normalised to obtain sensible

probabilities that will sum up to 1 for each state.
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5.3 Results

Tables 5.6 and 5.7 compare transmembrane (TM) predictors Phobius and the

developed prototype program, in terms of their performance in predicting TM

topology for i) proteins having both TM and signal peptides (SP), ii) proteins

having only TM helices, iii) proteins having only SPs, and finally, iv) proteins

having neither a TM nor an SP. For a prediction to be counted as correct, all

annotated individual TM helices and loop regions must be predicted correctly.

An overlap of at least 5 residues was considered a “correct” prediction for each

helix, as done in the CASP competitions (Cozzetto et al., 2005, 2007; Soro &

Tramontano, 2005; Valencia, 2005), or as in other studies reporting TM accuracies

(Jones, 2007; Käll et al., 2004). In the presence of a signal peptide (SP), whether

a program predicted the SP or not in a particular protein was not taken into

account in determining the overall correct TM topology.

SP prediction performance is evaluated separately, and the results for pre-

dictors that are capable of detecting SPs are summarised in Table 5.7. The

developed predictor was compared with two versions of SignalP, in addition to

Phobius which is both a TM and SP predictor. TMHMM is not designed to

predict SPs directly.

The results generally suggest that the developed HMM program is better in

predicting SPs than the other compared programs, although its architecture is

quite similar to that of Phobius. On the other hand, the prototype program

performs relatively badly in correct transmembrane (TM) topology prediction,

although it performs reasonably well in predicting individual TM helices.
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This predictor Phobius TMHMM2.0
TM and SP proteins
Correct topology 66.7% 91.1% 71.1%
Correct TMs 76.1%
Correct SPs 88.9%
False positive TMs 18.1%
TM-only proteins
Correct topology 36.0% 63.6% 65.2%
Correct TMs 76.1%
False positives 3.6% 7.7%
Non-SP and non-TM proteins
Correct topology 99.87% 98.2% 98.7%

Table 5.6: Prediction performance summary for “TM-and-SP”, “TM-
only” and “non-SP, non-TM” proteins. A prediction was taken as correct
when all the predicted Transmembrane (TM) helices overlap all the annotated
TM helices of the protein over at least 5 amino acids, and when the loops were
correct. In the evaluation of predictions for proteins having no TM helices, the
reported “correct topology” corresponds to not having any predicted TM helices
for that protein. Incorrect signal peptides (SPs) were not considered in determin-
ing correct topology prediction rates. The available prediction rates for Phobius
and TMHMM2.0 were taken as reported in Käll et al. (2004), where TMHMM
results were not cross validated.

This predictor Phobius SignalP-NN SignalP-HMM
Correct SPs 89.8% 96.5% 97.7% 98.6%

Table 5.7: Correct prediction rates for SP-only proteins. Correct SP
prediction rates are shown for the program developed, Phobius, Neural network
version of SignalP (Nielsen et al., 1997a) and the HMM version of SignalP (Nielsen
& Krogh, 1998). The available prediction rates for Phobius and the two version
of SignalP were taken as reported in Käll et al. (2004), where SignalP results
were not cross validated.
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Using a duration-enabled HMM which was trained by the new optimisation

procedure improved the results dramatically. When no minimum-durations were

set in the HMM model, the correctly predicted TM helices rate, for example,

decreased to 12.5% from 76.1% for the TM and SP containing protein dataset,

while it decreased to 19.6% from the same initial value of 71.6% for the TM-

only proteins. On the other hand, optimising transition probabilities by Baum-

Welch without using any initial “clever guesses” resulted in very poor TM helix

prediction accuracies (<1%), after letting it to run for about a dozen, 50 and

finally a few hundreds of cycles, even when it was trained using the entire protein

set.

5.3.1 Signal peptides at the DNA level

As mentioned in Section 3.1.1, most of the signal peptides are at least 20 aa long.

Inspecting the available annotated protein sequences having signal peptides, we

observed that this signal could stretch out to as long as 50 aa. One question that

arises for such long N-terminal sequence patterns is how their untranslated form

might look at the DNA level, given that their corresponding mRNAs would be

three times longer than the amino acid signal. Because NestedMICA is a DNA

discovery tool at the same time, using the motif finder in the DNA mode, I had a

chance to investigate how conserved the hydrophobic regions are at the genomic

level. Interestingly, as Figure 5.5 shows, only certain residues in the codons that

translate into this signal are conserved. The hydrophobic part of the signal is

generated from codons having a conserved second position which is usually a

“T”, while the cleavage site, having small residues like Alanine (A), Glycine (G)
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Figure 5.5: Signal peptide motif at the RNA level. Conservation of only
certain positions in the codons corresponding to the SP signal suffices to generate
hydrophobic amino acid chains, as the genetic code table above illustrates having
a ’T’ at the middle of a codon usually generates hydrophobic amino acid residues.
The sequence logo shows 10 residues before the actual cleavage residue position
which is indicated by an arrow. Codons beginning with the “GC” dinucleotides
correspond to the small amino acids of the “-3 and -1 positions ” rule (see text),
with respect to the cleave site. Numbers right below the sequence logo correspond
to the actual positions of amino acids within the codons in the associated correct
reading frame.

etc in the protein level, is dominated by Guanine and Cytosine at positions 3 and

1, respectively, at the DNA level.
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5.4 Discussions

In this chapter, I introduced a new, fully supervised methodology for training

HMM transition probabilities and applied it on TM topology prediction as an

example. While this method is open to further improvements and also to some

more testing, the essential idea behind it, the use of Monte Carlo strategies to

fine tune transitions, seems to be a promising approach. These kind of optimisa-

tion problems normally involve huge parameter landscapes where each optimised

parameter can take any probability value. Another hurdle in this type of search

heuristics is that, in principle it is not uncommon for a sampled property to move

towards some local maxima and get stuck there. However, with the use of nested

sampling, a fruitful strategy that has proven itself in biological sequence motif

discovery before, such possibilities can be avoided. With this approach multiple

possible solutions representing different maxima from the entire probability land-

scape are considered at the same time, instead of trying to make a single sample

better during the entire process. This is simply to eliminate the greediness of

sampling at each step that could possibly miss the real solution set at the end,

had it not moved to the locally “best”condition in previous steps. Removal of the

“weakest” state having the least likelihood probability from a large population,

and re-sampling from the “fitter” entities to replace the worst, is conceptually

nothing but a genetic algorithm way of optimising, with the exception that the

space is continuous here – entities are not simply of type that either exist or not.

Transmembrane topology prediction is a well established field for many years

now, and there are many good TM topology prediction programs. However, due
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to the similarities between N-terminal TM helices and SPs (see Sections 3.1.1 and

3.3.1), they tend to misclassify SPs as TMs and vice versa. Programs such as

Phobius have recently reduced this by using a combinatorial approach where SPs

and TMs are predicted in the same model. This resulted in a reduced number of

false positive predictions and cross-misclassifications (Käll et al., 2007).

As mentioned in the methods, this prototype program differs from Phobius

in that in the HMM I directly used a cleavage site motif that was discovered by

NestedMICA, and I use a new optimal transition probability estimisation method.

A relatively low correct topology prediction with respect to the correctly iden-

tified TM helices indicates that the program tends to invert the orientations of

the topologies it predicts. Apart from the difficulties inherent in the biology of

the problem, this could possibly be due to immature termination of the transi-

tion probability optimisation procedure, which has not been fully optimised for

termination criteria yet.

Both the parameter optimisation approach and the prototype TM topology

predictor that was developed to demonstrate that this approach can actually

be used successfully are promising. The optimisation method is open to fur-

ther development, which, in turn, can significantly improve the TM predictor’s

performance.
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