
Chapter 6

Conclusions

Motif discovery is an important step in protein functional annotation as it can

help to identify different protein properties in curation of protein annotation. I

adapted and extended NestedMICA for finding short protein signals, and com-

pared its performance with the MEME tool. NestedMICA was tested on synthetic

and biologically-authentic datasets produced by spiking instances of known mo-

tifs into a some random protein sequences. NestedMICA was also assessed at

various conditions including using different input sequence lengths, target motif

length, target motif number, and finally different motif abundance rates.

Generally NestedMICA recovered most of the short (3-9 amino acid long) test

protein motifs spiked into a test set of sequences at different frequencies. All

assessments experiments I performed showed that NestedMICA’s motif discovery

performance was better than MEME in terms of the number of correctly recovered

motifs, although generally there was no significant difference in terms of the

quality of recovered motifs by both of the compared programs. NestedMICA

performed clearly well even in the discovery of relatively short motifs that exist

in only a small fraction of sequences.
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Protein subcellular localisation identification is another concrete key step in

functional annotation. Most of the biologically inspired ab initio methods that

have been developed to tackle this problem had either a limited number of lo-

calisation categories, or low prediction accuracies, particularly for eukaryotic se-

quences. Similarity-based prediction methods could be more reliable than ab

initio predictors for sequences having annotated highly homologous counterparts

in databases. However, predicting localisation for unseen, different proteins be-

comes a more challenging task for this type of prediction program. Furthermore,

signal-based ab initio prediction efforts can give us more insight and clues about

the underlying biology in protein targeting.

I developed a novel computational ab initio classification tool, Lokum, for

protein subcellular localisation prediction, covering 9 major localisation classes

for animal, 9 for fungal and 10 for plant sequences. It uses targeting and retention

signal motifs reported by the probabilistic motif discovery tool NestedMICA, and

other protein features including transmembrane topologies and amino acid com-

position. Lokum does not use sequence similarity, or any other a priori knowledge

such as known nuclear localisation signals by searching databases. Additionally,

we propose a multi-component, probabilistic model tolerating positional shifts

for the bipartite nuclear localisation signals (NLS). To find the bipartite NLS, we

added protein support to Eponine, a tool originally written for mammalian tran-

scription start site modeling. We also show that using the N-linked glycosylation

motif, which was amongst the motifs detected by NestedMICA, can contribute

to localisation prediction.

Combining all these features in a Support Vector Machine (SVM), we get an
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average correct prediction rate of more than 80% for nine animal, nine fungal and

ten plant protein localisation classes in 5-fold cross-validated tests performed on

an eukaryotic dataset. Finally, a web service has been implemented for public

use.

In Chapter 3, I showed that including reported statistics from transmembrane

prediction programs can increase prediction accuracy in automatic ab initio clas-

sification of protein subcellular localisation. A large number of transmembrane

proteins follow the secretory pathway and end up in localisations such as ER,

Golgi, plasma membrane or extracellular space. Plasma membrane proteins have

a larger number of membrane-spanning regions than the other classes of pro-

teins, as shown in the same chapter. Therefore, it is actually not surprising that

transmembrane topology prediction can improve localisation.

Motifs reported by NestedMICA and Eponine have been more useful than any

other component in the prediction system. In addition to the reported motifs

that I could associate with known localisation signals, a couple of three-letter

PWMs were discovered from a set of plasma membrane sequences, which turned

out to be the two variants of the N-linked glycosylation site motifs. Some of

the discovered motifs, such as these glycosylation motifs that are known not to

be directly involved in localisation, also increased the prediction performance,

because of their differing abundance rates in different types of proteins.

In Chapter 4, I showed that it is reasonably possible to predict more spe-

cific, sub-compartmental localisation categories, by showing that proteins that

spend at least some time in nucleoli can be distinguished reasonably well from

the remaining nuclear proteins. In addition to the features used in Lokum, I used
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protein disorder region predictions. As summarised in Section 3.3.7, using dis-

order prediction did not contribute significantly to the prediction of the general

localisation categories. But I demonstrated that disorder prediction can be a use-

ful feature in discriminating between proteins targeted into different sub-nuclear

compartments. In fact, sub-dividing the main localisation categories to further

fine tune localisation prediction can be said to overlap with the field of ab initio

protein function identification, where disorder prediction has been shown to work

(Dunker et al., 2000; Lobley et al., 2007; Wright & Dyson, 1999). Interestingly,

the results obtained in Chapter 4 suggested that a larger number of nuclear local-

isation signals exist in the disordered regions of nucleolar proteins as compared

to the disordered regions of other proteins in the nucleus. It should be possible

to further exploit this phenomenon in the prediction of proteins localised in other

sub-compartments.

An interesting observation we can make from Chapters 3, 4, and 5 is that

there is a general tendency in protein amino acid composition to contain Lysine

(K) and Arginine (R) residues at larger proportions as we move from the ex-

tracellular space towards the cytoplasm, and finally into the nucleus and other

subnuclear compartments. If we consider the amino acid contents of extracellu-

lar, cytoplasmic and nuclear proteins, amino acids K (Figure B.12) and R (Figure

B.2) are least abundant in extracellular, followed by cytoplasmic and then nuclear

proteins, in this order. In Section 5.2.1.1 of Chapter 5, we saw that membrane

spanning regions towards the cytoplasm become richer in K and R content com-

pared to their parts on the opposite side, towards the extracellular space (Tables

5.1, 5.2 and 5.3). Finally, in Chapter 4, where I analysed the differences between
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nuclear and nucleolar protein sequences, it turned out that nuclear proteins, which

are confined in the sub-nuclear compartment of nucleolus, tend to contain a larger

number of K and R amino acid residues (Figure 4.7).

Finally, as demonstrated by its application on transmembrane topology pre-

diction, the introduced alternative transition probability optimisation method

that I developed (Chapter 5) is a promising approach for use in any prediction

program that utilises HMMs, including the classical problems of gene finding,

secondary structure prediction, and so on.
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