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Abstract

A number of large genomes have now been sequenced, and biologists are now faced with

the challenge of identifying all the functional pieces of sequence, and understanding how they

contribute to the development and life of the organism. While identification of protein coding

genes, and annotating their products, has been progressing well, there are a great many open

questions relating to the regulatory regions which control the expression of these genes.

Here, I investigate the question of identifying and annotating promoters, one of the

most important regulatory signals in the genome, which mark the points where transcription

is initiated, and regulate the transcription of genes. I present a new computational method,

EponineTSS, which can predict transcription start sites in bulk genomic sequence data with

excellent sensitivity and specificity. Unlike the existing methods, it gives an indication of the

actual location of the transcription start site. Comparisons with available experimental data

suggest that the positional accuracy of these predictions is very good. Results from this method

are included as part of the Ensembl human genome annotation.

Having located transcription start sites for genes, I also discuss the use of results from

comparative genomics the estimate the extent of the functional promoter region upstream of

the start site. I show that the extent of promoters is very variable, and that promoter size is

correlated with the function of the gene for whose regulation it is responsible. Genes associated

with developmental processes tend to have particularly large, and thus presumably complex,

promoters, with the homeobox transcription factors among the most extreme examples.

I also introduce sparse Bayesian learning, a recently developed approach to supervised

machine learning which can be applied to the training of a wide range of model types, and

embodies the principle of selecting the simplest possible model to explain the observed data.

I demonstrate a new technique which makes sparse Bayesian learning much more scalable,



allowing it to be applied to very large and complex problems, and present a convenient, freely

available Java library which provides a general-purpose implementation of this technique. This

library was used here in the training of the transcription start site predictor, but has a wide range

of applications in computational biology and beyond.
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