Simian Immunodeficiency Virus Infection of CD4+ T Cell Subsets and Its Impact on B Cell Responses in Early Infection

Eva Jacqueline Archer

University of Cambridge Pembroke College

This dissertation is submitted for the degree of Doctor of Philosophy

July 2016

Abstract

Simian Immunodeficiency Virus Infection of CD4+ T Cell Subsets and Its Impact on B Cell Responses in Early Infection

Eva Jacqueline Archer

Human immunodeficiency virus (HIV) disease is marked by infection and loss of CD4+ T cells and by a gradual crippling of the immune system including the absence of an effective humoral response in a majority of individuals. The model system of simian immunodeficiency virus (SIV) infection of rhesus macaques offers an opportunity to study both the immunology of early infection and immune responses in secondary lymphoid organs. In this thesis, I examine SIV evolution and infection of CD4+ T cell subsets and its impact on the SIV-specific immunoglobulin response.

Follicular helper T cells (TFH), located in secondary lymphoid organs, are thought to be a major target cell for HIV/SIV infection. We showed that during acute infection, multiple subpopulations of memory CD4+ T cells are equally infected, but productively infected cells are largely restricted to follicular T cells in chronic infection. We measured SIV infection using DNA qPCR to quantify proviral infection, and RNA qRT-PCR to quantify spliced and unspliced cell-associated RNA. Next, we used RNA probes in conjunction with flow cytometric phenotyping panels to measure the frequency of individually infected cells in memory CD4+ T cell compartments. The viral protein nef down-regulates CD4 in the early phase of cellular infection, and we show that CD3+ T cells with dim CD4 staining have the highest copy numbers of SIV RNA. Finally, we performed phenotypic analysis of CD4+ T cell subsets in uninfected, acutely infected, and chronically infected macaques using flow cytometry panels of cytokine markers.

HIV/SIV infection of TFH may impact the development of the humoral response, as early antibodies to HIV/SIV are non- or weakly neutralizing. To characterize the development of the antibody response, we performed deep sequencing of immunoglobulin heavy chains from longitudinal blood, lymph node, and bone marrow biopsies from four to 24 weeks post infection. We used a trimeric SIV gp140 protein probe to isolate SIV-specific IgG and IgM memory B cells from total memory B cells. We found that SIV protein probe specific IgG B cells increase as a percentage of lymph node and PBMC B cells over the course of infection, while SIV-specific IgM B cells are detected at lower frequencies throughout infection. SIV-specific IgG heavy chain repertoires had low scores on measures of diversity in early infection, and showed accumulation of mutations by later infection relative to total memory B cells. Common SIV-specific sequences — immunoglobulins with identical CDR3 regions and VDJ gene assignments found in different animals — represented a small but significant percentage of the total SIV-specific response.

The lifespan and location of infected cells varies greatly, and only a fraction of cells with an integrated proviral genome go on to produce replication competent virus. We examined the compartmentalization of SIV by sequencing cell-associated RNA and proviral DNA from memory CD4+ T cell subsets. We compared tissue-resident sequences to circulating plasma virus, and measure the frequency of mutations across the genomes. Finally, we examined the phylogenies within individual animals to identify the spread and evolution of viral lineages chronologically and anatomically throughout infection.

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text.

It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University of similar institution except as declared in the Preface and specified in the Preface and specified in the text.

It does not exceed the word limit of 60,000 words (excluding bibliography, figures, and appendixes) as prescribed by the Degree Committee for the Faculty of Biology at the University of Cambridge.

Dr. Kristin Boswell and Dr. Takuya Yamamoto assisted with biopsy and necropsy tissue collection. David Ambrozak performed all infectious cell sorting. All sequencing was performed either at the Wellcome Trust Sanger Institute sequencing core facility or at the Vaccine Research Center Genome Analysis Core. SIV sequencing was primers were designed with help from Dr. Shelby O'Connor at the University of Wisconsin. Dr. Swee Hoe Ong performed SIV sequence assembly.

Eva Jacqueline Archer

July 2016

Acknowledgements

First and foremost, thanks to my supervisors: Dr. Richard Koup, Dr. Daniel Douek and Prof. Paul Kellam for agreeing to take on a student they would only see 50% of the time, and for your support, advice and encouragement over the last four years. I am very grateful for the opportunity to do this work and for your mentorship. Thanks to all the members of the labs in both places, for training and helping me, and for endless discussion and feedback, especially Kristin Boswell, Sara Ferrando-Martinez, Takuya Yamamoto, David Ambrozak, and Joe Casazza in the Koup Lab; Sam Darko, Amy Ransier, Brenna Hill and Eli Boritz in the Douek Lab; and Rachael Bashford-Rogers, Swee Hoe Ong, Simon Watson, and Astrid Gall in the Kellam Lab. Thanks also to Rebecca Lynch, Jason Hataye, Adam Wheatley, Pratip Chattopadhyay, Rosie Mason, and to the animal facility (especially JP Todd) at the VRC, and the sequencing cores at the Sanger Institute. Thanks to the NIH Oxford Cambridge Scholars Program, especially Katie Soucy and Liz McIntyre, and to Annabel and Christina at the Sanger Institute for keeping track of me as I came back and forth. Thanks also to my college, Pembroke, for support for travel to conferences.

When not in the lab (!) I am grateful for the friendships, both new and old, that have enriched my time on both sides of the Atlantic. Thanks to all of the UNC group in DC (Katherine Novinski, Emma Din, Genevieve Kelly, Hogan Medlin, Clayton Thomas, Brad Waters, and many others); fellow OxCammers Monica Kasbekar, Geoff Lynn, Ian Goldlust and Bennett Waxse; the VRC sorority; and in Cambridge Pinky Langat, Neneh Sallah, James Hadfield, Beverly McCann, and James Hamp.

My biggest thanks go to my family, whose love and support I have relied on from day one. Dad, you are the reason I wanted to become a scientist, and I would not have made it this far without your advice and encouragement. Mom, your unflagging support and belief in me has helped me through highs and lows. Isabella, Helena, and Norman, you are the best siblings and the best friends anyone could ask for- thanks for listening to me complain, celebrate, and everything in between.

Eva Jacqueline Archer

July 2016

Table of Contents

1.1. Introduction to HIV Virology. 1 1.1.1 HIV subtypes and geographic distribution 1 1.1.2 Virus features and lifecycle 3 1.1.3 HIV Transmission and cellular replication 4 1.2 Pathogenesis of HIV infection 8 1.2 Pathogenesis of HIV infection 9 1.2 Chronic HIV infection 9 1.2.3 Virus Evolution and Phylogenetics 11 1.2.4 The innate immune response to HIV 12 1.3 The adaptive immune response to HIV 13 1.3.1 T Folicular Helper Cells 14 1.3.2 TFH in HIV/SIV 16 1.3.3 Peripheral TFH-like cells in HIV/SIV 16 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4.1 SIV Strains used in infection models 29 1.4.2 Siman-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims. 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.3 Flow cy	1	Introduction	
1.1.1 HIV subtypes and geographic distribution 1 1.1.2 Virus features and lifecycle. 3 1.1.3 HIV Transmission and cellular replication 4 1.2 Pathogenesis of HIV infection 8 1.2.1 Actuct HIV infection 9 1.2.2 Chronic HIV infection 10 1.2.3 Virus Evolution and Phylogenetics 11 1.2.4 The innate immune response to HIV 12 1.3 The adaptive immune response to HIV 13 1.3.1 To Folicular Helper Cells 14 1.3.2 TFH in HIV/SIV 16 1.3.3 Peripheral TFH-like cells in HIV/SIV 16 1.3.4 To Body neutralizing antibodies 22 1.3 6 Genetics and genomics of antibodies 22 1.3 6 Jost Strains used in infection models 22 1.3 7 Antibody repertoires and sequencing of the humoral response 26 1.4 A Sintan Models of HIV infection 28 1.4.1 SiV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 A Simile Processing 37 <t< th=""><th></th><th>1.1 Introduction to HIV Virology</th><th>1</th></t<>		1.1 Introduction to HIV Virology	1
1.1.2 Virus features and lifecycle 3 1.1.3 HIV Transmission and cellular replication 4 1.2 Pathogenesis of HIV infection 9 1.2.1 Acute HIV infection 10 1.2.3 Virus Evolution and Phylogenetics 11 1.2.4 The innate immune response to HIV 12 1.3 The adaptive immune response to HIV 13 1.3.1 T Follicular Helper Cells 14 1.3.2 TFH in HIV/SIV 18 1.3.4 Humoral immunity 19 1.3.5 Beradentics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 12 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4 Animal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infect		1.1.1 HIV subtypes and geographic distribution	1
1.1.3 HIV Transmission and cellular replication 4 1.2 Pathogenesis of HIV infection 8 1.2.1 Acute HIV infection 9 1.2.2 Chronic HIV infection 10 1.2.3 Urus Evolution and Phylogenetics 11 1.2.4 The innate immune response to HIV 12 1.3 The adaptive immune response to HIV 12 1.3 The adaptive immune response to HIV 13 1.3.1 To Folicular Helper Cells 14 1.3.2 TFH in HIV/SIV 16 1.3.3 Forpiperal TFH-like cells in HIV/SIV 16 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Antibody repertoires and sequencing of the humoral response 26 1.4.4 Nimal Models of HIV infection 28 1.4.1 SiV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.3 Flow cytometry and floorescence-activated cell sorting 38 2.4 DNA and RNA EXtraction 39 2.5 In Vitro		1.1.2 Virus features and lifecycle	3
1.2 Pathogenesis of HIV infection 8 1.2.1 Acute HIV infection 9 1.2.2 Chronic HIV infection 10 1.3 The infection and Phylogenetics 11 1.3 The innate immune response to HIV 12 1.3 The adaptive immune response to HIV 13 1.3.1 T Follicular Helper Cells 14 1.3.2 TFhi n HIV/SIV 16 1.3.3 Peripheral TFH-like cells in HIV/SIV 16 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4 Animal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Siman-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.3 Flow Cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Co		1.1.3 HIV Transmission and cellular replication	4
1.2.1 Acute HV infection 9 1.2.2 Chronic HV infection 10 1.2.3 Virus Evolution and Phylogenetics 11 1.2.4 The innate immune response to HIV 12 1.3 The adaptive immune response to HIV 13 1.3.1 To Folicular Helper Cells 14 1.3.2 TFH in HIV/SIV 16 1.3.3 Peripheral TFH-like cells in HIV/SIV 16 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Toradly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4.4 Silv Strains used in infection models 29 1.4.5 US trains used in infection models 29 1.4.5 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SU's equencing 43 </td <td></td> <td>1.2 Pathogenesis of HIV infection</td> <td></td>		1.2 Pathogenesis of HIV infection	
12.2 Chronic HIV infection 10 12.3 Virus Evolution and Phylogenetics 11 12.4 The innate immune response to HIV 12 13. The adaptive immune response to HIV 13 13.1 The Tollicular Helper Cells 14 13.2 TFH in HIV/SIV 16 13.3 Peripheral TFH-like cells in HIV/SIV 16 13.4 Humoral immunity 19 13.5 Genetics and genomics of antibodies 22 13.6 Broadly neutralizing antibodies in HIV 23 13.7 Antibody repertories and sequencing of the humoral response 26 1.4 Animal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42		1.2.1 Acute HIV infection	9
1.2.3 Virus Evolution and Phylogenetics 11 1.2.4 The innate immune response to HIV 12 1.3 The adaptive immune response to HIV 13 1.3.1 T Follicular Helper Cells 14 1.3.2 TFH in HIV/SIV 16 1.3.3 Peripheral TFH-like cells in HIV/SIV 18 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 43 2.9 B cell sorting and 5' RACE sequencing 43 2.10 Single cell S cell sequencing		1.2.2 Chronic HIV infection	
1.2 4 The innate immune response to HIV 12 1.3 The adaptive immune response to HIV 13 1.3.1 T Folicular Helper Cells 14 1.3.2 TFH in HIV/SIV 16 1.3.3 Peripheral TFH-like cells in HIV/SIV 16 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4.4 nimal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 IV sequencing and 5' RACE sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 </td <td></td> <td>1.2.3 Virus Evolution and Phylogenetics</td> <td></td>		1.2.3 Virus Evolution and Phylogenetics	
1.3 The adaptive immune response to HIV 13 1.3.1 T Follicular Helper Cells 14 1.3.2 TFH in HU/SIV 16 1.3.3 Peripheral TFH-like cells in HIV/SIV 18 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4.4 Animal Models of HIV infection 28 1.4.5 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.8 SIV sequencing 45 2.1.1 Bioinformatics analysis 46 2.1.2 Statistical Analysis 46 2.1.2 Statistical Analysis 47 2.1.3 Lift Perimers		1.2.4 The innate immune response to HIV	12
1.3.1 T Follicular Helper Cells 14 1.3.2 TFH in HIV/SIV 16 1.3.3 Peripheral TFH-like cells in HIV/SIV 18 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4 A nimal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 45 2.10 Single cell B cell sequencing 45 2.10 Single cell B cell sequencing 45 2.10 Single cell B cell sequencing 45		1.3 The adaptive immune response to HIV	13
1.3.2 TFH in HIV/SIV 16 1.3.3 Peripheral TFH-like cells in HIV/SIV 18 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4 Animal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 43 2.14 Flow Cytometry Panels 40 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52		1.3.1 T Follicular Helper Cells	14
1.3.3 Peripheral TFH-like cells in HIV/SIV 18 1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4 Animal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 45 2.11 Bioinformatics analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 47 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 2.15 IGH Sequencing Results - cells sorted and sequencing reads r		1.3.2 TFH in HIV/SIV	16
1.3.4 Humoral immunity 19 1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4.1 SIV Strains used in infection 28 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 2.12 Statistical Analysis 47 2.		1.3.3 Peripheral TFH-like cells in HIV/SIV	
1.3.5 Genetics and genomics of antibodies 22 1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4 Animal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 A nimal Study Protocol 37 2.3 Emple Processing 37 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.13 ERG Primers 48 2.14 Flow Cytometry Panels 49 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3.1 Introduction and aims 55 3.2 Results 66 3.2.2 Sorting of SIV-specific		1.3.4 Humoral immunity	19
1.3.6 Broadly neutralizing antibodies in HIV 23 1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4 Animal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines. 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 3.2		1.3.5 Genetics and genomics of antibodies	
1.3.7 Antibody repertoires and sequencing of the humoral response 26 1.4 Animal Models of HIV infection 28 1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 A nimal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.13 Informatics analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 Animal Specimens 52 3.1 Infection of immunoglobulin heavy chain repertoires throughout SIV infection 57		1.3.6 Broadly neutralizing antibodies in HIV	
1.4 Animal Models of HIV infection 28 1.4.1 SIV Strains used in infection models. 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines. 32 1.6 Summary and Aims. 36 2 Materials and Methods. 37 2.1 Animal Study Protocol 37 2.2 Sample Processing. 37 2.3 Flow cytometry and fluorescence-activated cell sorting. 38 2.4 DNA and RNA Extraction. 39 2.5 In Vitro infections of cell lines and primary cells. 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing. 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing. 45 2.13 PCR Primers. 48 2.14 Flow Cytometry Panels. 49 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 2.15 IGH Sequencing Results - cells norted and sequencing reads retained 52 2.15 IGH Sequencing Results - cells norted and sequencing reads retained 52 2.2 Sorting of SIV-specific B cell throughout infection. 57 <td< td=""><td></td><td>1.3.7 Antibody repertoires and sequencing of the humoral response</td><td></td></td<>		1.3.7 Antibody repertoires and sequencing of the humoral response	
1.4.1 SIV Strains used in infection models 29 1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing. 46 2.12 Statistical Analysis 46 2.13 PCR Primers. 48 2.14 Flow Cytometry Panels 49 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3.2 Evolution of immunoglobulin heavy chain repertoires throughout SIV 55 infection		1.4 Animal Models of HIV infection	
1.4.2 Simian-human hybrid viruses 31 1.5 HIV Vaccines 32 1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 A nimal Study Protocol 37 2.1 A nimal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection <t< td=""><td></td><td>1.4.1 SIV Strains used in infection models</td><td></td></t<>		1.4.1 SIV Strains used in infection models	
1.5 HIV Vaccines. 32 1.6 Summary and Aims 36 2 Materials and Methods. 37 2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting. 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells. 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing. 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers. 48 2.14 Flow Cytometry Panels 49 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3.1 Introduction and aims 55 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 63 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 63 <t< td=""><td></td><td>1.4.2 Simian-human hybrid viruses</td><td></td></t<>		1.4.2 Simian-human hybrid viruses	
1.6 Summary and Aims 36 2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells. 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 Animal Specimens 52 2.16 Sequencing Results - cells sorted and sequencing reads retained 52 3.1 Introduction and aims 55 3.2.2 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 68 <td></td> <td>1.5 HIV Vaccines</td> <td></td>		1.5 HIV Vaccines	
2 Materials and Methods 37 2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells		1.6 Summary and Aims	
2.1 Animal Study Protocol 37 2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 2 2 52 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 68 3.2.5 Gene usage in IgG B cells 68 <	2	Materials and Methods	
2.2 Sample Processing 37 2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 Animal Specimens 52 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3 Evolution of immunoglobulin heavy chain repertoires throughout SIV 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 68 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage		2.1 Animal Study Protocol	
2.3 Flow cytometry and fluorescence-activated cell sorting 38 2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 46 2.14 Flow Cytometry Panels 49 2.15 Animal Specimens 52 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 63 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection		2.2 Sample Processing	
2.4 DNA and RNA Extraction 39 2.5 In Vitro infections of cell lines and primary cells 40 2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 Animal Specimens 52 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 68 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 <t< td=""><td></td><td>2.3 Flow cytometry and fluorescence-activated cell sorting</td><td></td></t<>		2.3 Flow cytometry and fluorescence-activated cell sorting	
2.5 In Vitro infections of cell lines and primary cells		2.4 DNA and RNA Extraction	
2.6 Construction of absolute standards for qRT-PCR 41 2.7 PrimeFlow 42 2.8 SIV sequencing 43 2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 Animal Specimens 52 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3 Evolution of immunoglobulin heavy chain repertoires throughout SIV 55 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of Ig B cells 63 3.2.5 Gene usage in Ig B cells 63 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 3.2.8 Shared sequences across time and space 81 <td></td> <td>2.5 In Vitro infections of cell lines and primary cells</td> <td>40</td>		2.5 In Vitro infections of cell lines and primary cells	40
2.7 PrimeFlow422.8 SIV sequencing432.9 B cell sorting and 5' RACE sequencing452.10 Single cell B cell sequencing452.11 Bioinformatics analysis462.12 Statistical Analysis472.13 PCR Primers482.14 Flow Cytometry Panels492.15 Animal Specimens522.15 IGH Sequencing Results - cells sorted and sequencing reads retained523 Evolution of immunoglobulin heavy chain repertoires throughout SIVinfection553.1 Introduction and aims553.2 Results563.2.1 Infection Model and plasma neutralization563.2.2 Sorting of SIV-specific B cell throughout infection573.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells613.2.4 Diversity and evolution of IgG B cells633.2.5 Gene usage in IgG B cells683.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage713.2.7 SIV-specific heavy chains become more diverse throughout infection753.2.8 Shared sequences across time and space813.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells89		2.6 Construction of absolute standards for qRT-PCR	41
2.8 SIV sequencing432.9 B cell sorting and 5' RACE sequencing452.10 Single cell B cell sequencing452.11 Bioinformatics analysis462.12 Statistical Analysis472.13 PCR Primers482.14 Flow Cytometry Panels492.15 Animal Specimens522.15 IGH Sequencing Results - cells sorted and sequencing reads retained523 Evolution of immunoglobulin heavy chain repertoires throughout SIVinfection553.1 Introduction and aims553.2 Results563.2.1 Infection Model and plasma neutralization563.2.2 Sorting of SIV-specific B cell throughout infection573.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells613.2.4 Diversity and evolution of IgG B cells633.2.5 Gene usage in IgG B cells683.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage713.2.7 SIV-specific heavy chains become more diverse throughout infection753.2.8 Shared sequences across time and space813.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells89		2.7 PrimeFlow	42
2.9 B cell sorting and 5' RACE sequencing 45 2.10 Single cell B cell sequencing 45 2.11 Bioinformatics analysis 46 2.12 Statistical Analysis 47 2.13 PCR Primers 48 2.14 Flow Cytometry Panels 49 2.15 Animal Specimens 52 2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3 Evolution of immunoglobulin heavy chain repertoires throughout SIV infection 55 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 63 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 3.2.8 Shared sequences across time and space 81 3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells 89		2.8 SIV sequencing	43
2.10 Single cell B cell sequencing.452.11 Bioinformatics analysis462.12 Statistical Analysis472.13 PCR Primers.482.14 Flow Cytometry Panels492.15 Animal Specimens522.15 IGH Sequencing Results - cells sorted and sequencing reads retained523 Evolution of immunoglobulin heavy chain repertoires throughout SIVinfection553.1 Introduction and aims553.2 Results.563.2.1 Infection Model and plasma neutralization563.2.2 Sorting of SIV-specific B cell throughout infection573.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells613.2.4 Diversity and evolution of IgG B cells633.2.5 Gene usage in IgG B cells683.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage713.2.7 SIV-specific heavy chains become more diverse throughout infection753.2.8 Shared sequences across time and space813.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells89		2.9 B cell sorting and 5' RACE sequencing	45
2.11 Bioinformatics analysis462.12 Statistical Analysis472.13 PCR Primers482.14 Flow Cytometry Panels492.15 Animal Specimens522.15 IGH Sequencing Results - cells sorted and sequencing reads retained523 Evolution of immunoglobulin heavy chain repertoires throughout SIVinfection553.1 Introduction and aims553.2 Results563.2.1 Infection Model and plasma neutralization563.2.2 Sorting of SIV-specific B cell throughout infection573.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells613.2.4 Diversity and evolution of IgG B cells633.2.5 Gene usage in IgG B cells633.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage713.2.7 SIV-specific heavy chains become more diverse throughout infection753.2.8 Shared sequences across time and space813.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells89		2.10 Single cell B cell sequencing	45
2.12 Statistical Analysis472.13 PCR Primers482.14 Flow Cytometry Panels492.15 Animal Specimens522.15 IGH Sequencing Results - cells sorted and sequencing reads retained523 Evolution of immunoglobulin heavy chain repertoires throughout SIVinfection553.1 Introduction and aims553.2 Results563.2.1 Infection Model and plasma neutralization563.2.2 Sorting of SIV-specific B cell throughout infection573.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells613.2.4 Diversity and evolution of IgG B cells633.2.5 Gene usage in IgG B cells683.2.6 IgM memory B cells: CDR3, mutation, and V/I gene usage713.2.7 SIV-specific heavy chains become more diverse throughout infection753.2.8 Shared sequences across time and space813.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells89		2.11 Bioinformatics analysis	46
2.13 PCR Primers		2.12 Statistical Analysis	47
2.14 Flow Cytometry Panels492.15 Animal Specimens522.15 IGH Sequencing Results - cells sorted and sequencing reads retained523 Evolution of immunoglobulin heavy chain repertoires throughout SIVinfection553.1 Introduction and aims553.2 Results563.2.1 Infection Model and plasma neutralization563.2.2 Sorting of SIV-specific B cell throughout infection573.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells613.2.4 Diversity and evolution of IgG B cells633.2.5 Gene usage in IgG B cells683.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage713.2.7 SIV-specific heavy chains become more diverse throughout infection753.2.8 Shared sequences across time and space813.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells89		2.13 PCR Primers	
2.15 Animal Specimens522.15 IGH Sequencing Results - cells sorted and sequencing reads retained523 Evolution of immunoglobulin heavy chain repertoires throughout SIVinfection553.1 Introduction and aims553.2 Results563.2.1 Infection Model and plasma neutralization563.2.2 Sorting of SIV-specific B cell throughout infection573.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells613.2.4 Diversity and evolution of IgG B cells633.2.5 Gene usage in IgG B cells683.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage713.2.7 SIV-specific heavy chains become more diverse throughout infection753.2.8 Shared sequences across time and space813.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells89		2.14 Flow Cytometry Panels	
2.15 IGH Sequencing Results - cells sorted and sequencing reads retained 52 3 Evolution of immunoglobulin heavy chain repertoires throughout SIV 55 infection 55 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 68 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 3.2.8 Shared sequences across time and space 81 3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells 89		2.15 Animal Specimens	52
3 Evolution of immunoglobulin heavy chain repertoires throughout SIV infection 55 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 68 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 3.2.8 Shared sequences across time and space 81 3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells 89		2.15 IGH Sequencing Results – cells sorted and sequencing reads retained	
infection 55 3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 68 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 3.2.8 Shared sequences across time and space 81 3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells 89	3	Evolution of immunoglobulin heavy chain repertoires throughout SIV	
3.1 Introduction and aims 55 3.2 Results 56 3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 68 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 3.2.8 Shared sequences across time and space 81 3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells 89	in	fection	55
3.2 Results		3.1 Introduction and aims	
3.2.1 Infection Model and plasma neutralization 56 3.2.2 Sorting of SIV-specific B cell throughout infection 57 3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 68 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 3.2.8 Shared sequences across time and space 81 3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells 89		3.2 Results	
3.2.2 Sorting of SIV-specific B cell throughout infection573.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells613.2.4 Diversity and evolution of IgG B cells633.2.5 Gene usage in IgG B cells683.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage713.2.7 SIV-specific heavy chains become more diverse throughout infection753.2.8 Shared sequences across time and space813.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells89		3.2.1 Infection Model and plasma neutralization	
3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells 61 3.2.4 Diversity and evolution of IgG B cells 63 3.2.5 Gene usage in IgG B cells 68 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 3.2.8 Shared sequences across time and space 81 3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells 89		3.2.2 Sorting of SIV-specific B cell throughout infection	
3.2.4 Diversity and evolution of IgG B cells		3.2.3 Next-generation sequencing of memory, naïve, and antigen-specific B cells	
3.2.5 Gene usage in IgG B cells 68 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage 71 3.2.7 SIV-specific heavy chains become more diverse throughout infection 75 3.2.8 Shared sequences across time and space 81 3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells 89		3.2.4 Diversity and evolution of IgG B cells	
 3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage		3.2.5 Gene usage in IgG B cells	
 3.2.7 SIV-specific heavy chains become more diverse throughout infection		3.2.6 IgM memory B cells: CDR3, mutation, and V/J gene usage	
3.2.8 Shared sequences across time and space		3.2.7 SIV-specific heavy chains become more diverse throughout infection	
3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells 89		3.2.8 Shared sequences across time and space	
		3.2.9 Isoelectric point and charge distinguish HCDR3 in antigen-specific memory cells	s 89

	3.2.10 Single cell sorting of B cells and comparison with bulk sorting	96 99
4	Dynamics of SIV infection of follicular T cells 4.1 Introduction and aims 4.2 Results	101 101
	4.2.1 Chemokine and activation markers on CD4 T cell subsets throughout HIV/SIV infection	102
	4.2.2 Development of spliced RNA primers and probes	112
	4.2.3 CD4 down-regulation as a marker of active infection	116
	4.2.4 Quantifying SIV in CD4 T cell subsets throughout infection	118
	4.2.5 RNA flow cytometry – detecting and phenotyping individually infected cells	124
	4.3 Conclusions	133
5	Intra-host Evolution of Simian Immunodeficiency Virus	135
	5.1 Introduction and aims	135
	5.2 Results	136
	5.2.1 A near-full-length genome sequencing protocol for SIV DNA and RNA	136
	5.2.2 Sequencing and assembly of SIV DNA and cell-associated RNA	138
	5.2.3 Hypermutation in assembled DNA contigs	140
	5.2.4 Diversity of sequences within and between animals	142
	5.2.5 Phylogeny of SIV early infection	145
	5.3 Conclusions	153
6	Discussion	155
7	References	163
8	Abbreviations	179